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Kohn-Luttinger pseudopairing in a two-dimensional Fermi liquid
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We consider possible superconducting instabilities in a two-dimensional Fermi system with short-ranged
repulsive interactions between electrons. The possibility of an unusual superconducting paring due to the
Kohn-Luttinger mechanism is examined. The quasiparticle scattering amplitude is shown to possess an attrac-
tive harmonic in second-order perturbation theory for finite values of the energy transfer. The corresponding
singularity in the pairing vertex leads to a superconducting pairing of the electron excitations with finite
energies. We identify the energy transfer in the Cooper channel as the binding energy of the excited pair. At
low enough temperatures, the Fermi system is a mixture of normal electron excitations and fluchuedivey
Cooper pairs possessing a finite gap.
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I. INTRODUCTION peratures calculated in Ref. 2 were higher than the original
estimate but still too low to attract much attention.

Superconductivity induced by mechanisms other than One of the most natural issues to be explored has been the
electron-phonon interactions has been of long-standing intestatus of the Kohn-Luttinger theory in two dimensions. First
est. Throughout the last decade there has been a continuiied all, Kohn-Luttinger physics is about the formation of
theoretical search for unconventional superconductivityoound states. It is very natural to expect that in the lower
mechanisms, particularly in two-dimensional systems. Thiglimensionality it is easier to form bound states., Cooper
interest was, indeed, motivated by interesting superconducpairg. However, a simple calculation of the polarization op-
ing materials such as highs cuprates, organic supercon- erator leads to the disappointing result: no singularity exists
ductors as well as by the studies dfle films. Currently, in second-order perturbation theory. Namely, the polarization
there is no full understanding of the physical processes reaperator readgéwe use unitsh =c=1 throughout the papger
sponsible for the pairing in those systems.

The Kohn-Luttinger effect is one of the oldest as well as v if q<2ke
among the most appealing and elegant physical effects, II(g)= ] 1)
which might be considered within this quest. Back in 1965, W[1—1—(2ke/q)?] if g>2ke,

Kohn and Luttinger showed that any three-dimensional

electron system with repulsive interactions between particlewherev=m/(2) is the density of states at the Fermi line,
was unstable against a superconducting transition at ex is the Fermi momentum, anglis the momentum transfer
tremely low temperatures. The origin of the effect is that thein the Cooper channelyE 2pgsing/2, whered is the scat-
screening of the bare interaction leads to the well-knowrtering angle. Let us remember that the attractive harmonics
Friedel oscillations in the electron density and to similar os4n the scattering amplitude in the three-dimensional case
cillations in the scattering amplitude. The renormalized intercomes from the well-known logarithmic Kohn’s singularity
action acquires a long-ranged oscillatory component. ThudIsind ¢) = (1+cos¢)Iin(1+cos¢) which exists in three di-
there appear some regions where the effective interaction imensions on both sides of the Fermi surface. As can be seen
attractive. This leads to the formation of Cooper pairs withfrom Eq.(1), the singularity in two dimensions is one sided,
nonzero orbital momenta#0. However, straightforward which suggests that no straightforward Kohn-Luttinger effect
calculations showed that the transition temperature was exhould exist in two dimensions.

tremely low (the estimate of Kohn and Luttindewas T, In 1993, Chubuko¥showed that this simple scenario was
~10 “°K for some realistic parameters of the fermion sys-not the complete story in two dimensions. A two-sided sin-
tem). This extreme low value of . was one of the reasons gularity exists, but to find it one should go beyond second-
why the effect has not been much studied in recent years. order perturbation theory. The corresponding transition tem-

In the early nineties, Kagan and co-workers obtained @erature derived by Chubukov reads(l)«=exd—1%/2f3],
number of interesting results within the Kohn-Luttinger wheref, is the dimensionless-wave scattering amplitude.
theory (such as cascade transitions, the Kohn-Luttinger efHaving applied this result to a realistic experiment on
fect in a three dimensional system with long-ranged Cou-*He-*He mixture films, the numerical value was found as
lomb interaction, Kohn-Luttinger superconductivity in the T (I=1)=10 *K.

Hubbard model, etg. One of the interesting results was that  Let us also mention a recent paper of Guireal®* in

the temperature of the superconducting transition derived imvhich the Kohn-Luttinger physics was phenomenologically
the pioneering papémwas shown to be underestimated due toincorporated in a model of high; cuprates. Within this

the unjustified extrapolation in the expression valid for largemodel the shape of the gap anisotropy has been explored as
orbital momenta down to the vallie=1. The transition tem- a function of doping.

0163-1829/2003/614)/14452@6)/$20.00 67 144520-1 ©2003 The American Physical Society



V. M. GALITSKI AND S. DAS SARMA PHYSICAL REVIEW B 67, 144520 (2003

Cc

PN

b
- MO + <> + FIG. 1. Renormalization of the scattering am-
plitude by Friedel oscillations. Kohn-Luttinger
d theory. If the bare coupling ig-independent dia-

€ gramsb, ¢, andd cancel each other out.
+ + X+
W L)

The main idea of the present paper is to search for anl cancel each other out, and ordycontributes to the renor-
effective attractive interaction by taking into account the fre-malized interaction. The latter diagram is functionally iden-
guency dependence of the polarization operator, instead dical tob, but depends op+ p’ rather then op—p’, where
going into higher order perturbation theory. The account forp=(p,e). Thus, knowing the two-dimensional polarization
dynamical screening, as we shall see below, yields a twoeperator, we readily obtain the total effective electron-
sided singularity. Thus, we are looking for a dynamicalelectron coupling.

Kohn-Luttinger effect rather than the original static pairing The polarization operator is defined as
problem as in Refs. 1 and 3. Due to the energy dependence
of the effective electron-electron coupling, the Cooper prob- d%k
lem turns into an integral equation, similar to thiaEhberg (A om) =T 2960+ (02)
. . . . &n (277)
equation in the strong coupling theory of superconductity.

Our paper is structured as follows. In Sec. I, we rederive
the expression for the polarization operator as a function of X
momentumg and Matsubara frequenay. Using this result,
we formulate the Cooper problem and derive the correspondvhereG, (k) =(is— &) ! is the Matsubara Green function,
ing Bethe-Salpeter equation for the pairing vertexé = (k?—k2)/2m, and e,=(2n+1)#T is the Fermionic
7(q;e,e"). Matsubara frequency. After the sum owgris evaluated, Eq.

In Sec. Ill, we consider spherical harmonics of the effec-(2) takes on the form
tive interaction),(w) and show that harmonic, which cor-
responds to the orbital momenturs 2, yields the strongest
effective attraction. m(q,0,) =2Re

In Sec. IV, we use the explicit expression for the interac-
tion in thed channel and derive an integral equation for thewheref (k) is the Fermi distribution. At not very high tem-
pairing vertex. Studying this equation, we show that the pairperaturesT<eg, it can be written ag(k) = 8(ke—|k|) and
ing vertex may diverge if the incoming particles have highafter a straightforward calculation we obtain
enough energies. We estimate the temperature at which the
pairing with the typical binding energy @ commences. We
conclude that at low enough temperature the system is a
mixture of low-lying electron excitations and fluctuating
Cooper pairs. We estimate the temperafligeat which the
effect of this fluctuaing pairs becomes essential and maf@ctness:
strongly change transport and thermodynamic properties of q  ilon
the system. =4+

In Sec. V, we briefly discuss the case of long-ranged Cou- 2ke - veq
lomb interactions. We argue that Kohn-Luttinger physicSang y.=k./m is the Fermi-velocity. One can easily check
strongly de_pends on the screening properties. In a purehy,,¢ Eq.(3) reproduces Eq) if w,=0. To get the expres-
two-dimensional system we do not expect any superconduction for the polarization operatdi(q,) as a function of

ing instability to survive. If transport is two-dimensional but {he real frequenc§one has to do the analytical continuation
screening is three-dimensional, the system is qualitatively, Eqg. (4). Let us note here that only the real part of the

q q
k+§ Ge, ~(w,,12) k_i): 2

dk f(k
J (k) B

(2m)2 e(k)—e(k—q)—ioy

1- i\/zz—l} (4)

w(z)=vRe Rez

where we have introduced the complex variabl®r com-

described by our theory and Ref. 3. polarization operator renormalizes the scattering amplitude.
The imaginary part is not relevant to this renormalization.
Il. COOPER PROBLEM The latter quantity is proportional to the density of the

electron-hole pairs.

Let us start by calculating the effective electron-electron Let us now formulate the Cooper problem for the case
interactionV(q, w) (wherew=2mnT is the bosonic Matsub- under consideration. We are looking for a singularity in the
ara frequency In second-order perturbation theory there areCooper channelsee the diagrammatic equation in Fig. 2
four diagrams to be considered, which are shown in Fig. 1. IAfter averaging over the spin indices, the Bethe-Salpeter
the bare potential (q) is short ranged the diagrarbsc, and  equation can be written as
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O(pp’s55") V(p-p',s—e')_l_ § Vk-p’,(-€") FIG. 2. The Bethe-Salpeter equation for the
- & irreducible verteX” (Cooper problem
».-e A .- R T
d?k energies smaller than some threshold vade&sg, which
ﬂq;s,s’)=V(q,w)—T2£ J 2 )zﬂk_p;s’g) will be serving as the high-energy cutdffist as the Debye
7 frequency in the classical weak-coupling BCS theoiyn
X G (k)G (k) this case, when performing actual calculations we can ex-
pand onw/eg.
XW(k=p',{—e'), (5 The | harmonics of polarization operatét) can be writ-

where(, &, ande’ are fermionic Matsubara frequencies, (€N as

=p—p’, andw=e—¢'. Let us emphasize that(q,w) is > (2m

the renormalized interaction which depends on the momen- (@)= \ﬁf (b, w,)cosl pdp. (10)
tum and energy transfer. mJo

th L'e:t us .nowfconS|dertI’(:nl)i Ezzlkect_ron72|n thf‘ very V.'C'?r']ty of Keeping in mind thatv<eg and evaluating the integral with
e Fermi surface so thaj= FSin(@/2), w ere¢ IS e the logarithmic accuracy, we obtain, for even orbital mo-
scattering angle. Following the standard route in the Kohn-

Luttinger theory, we expantt and7 in series of the normal- mental =2n,
ized eigenfunctions of the angular momentum, - \F || 3| 2er 1 1
Ton(®)= 726012 el pnts]=d5) [
V@,0)= 2 Vi(0)Pi($) (6) (11)
and, forl=2n+1,
and
B \F || 1| 2ef
Taie,e)=2 Ti(e,s ) ®i(), @) mani(@) =N o1 2T
w
where —2nu[C+ w(n+1)]}, (12
28|:
D(p)= ig‘lq{ where is the logarithmic derivative of the gamma function
V2 andC~0.577 is the Euler’s constant.

From Egs.(11) and (12) we see that the dependence on
the orbital momentum is very weak. The effective interaction
can be written as

Then, Eq.(5) takes on the form

Ti(e,e )= V(@)= T2 Ti(e.HCON(E "), (B | ,
¢ Vi(@)=m(@){N0)(=1)""+2[N(0)N(2kg) —N“(2kg) ]},

where, as usuafj({) is the Cooperon, which is the source of (13

the BCS logarithm: where\ (q) is the Fourier component of the bare interaction

) potential.
dk _mv 9) If the initial interaction isq independent, we see that the
(2m? I”

effective interaction is attractive only for the even values of
) the orbital momenturh=2n+#0. The effective attraction is

Let us note that Eq8) is exact at any temperature. HOWeVer, yhe strongest for=2. The corresponding harmonics reads

we shall consider only the case of low temperatures to avoid

technical difficulties connected with the analytical continua-

C<§>=f |G (K)|?

tion in Eq. (8). In the limit T—0, the procedure of the ana- Vi(w)=— iv)\z|i||n2—8F. (14

lytical continuation reduces to the simple Feynman rotation V2m  2er o]

and all the Matsubara sums involved may be replaced by the

corresponding integrals with the temperature serving as a IV. PAIRING AT FINITE ENERGIES

“low-energy cutoff.” The main result we are deriving in the . )

present paper can be noticed in this limit as well. ~ We can substitute resu(t4) into the Bethe-Salpeter equa-

tion (8) which turns into an integral equatigat T—0) with

Ill. EFFECTIVE ATTRACTION IN THE  d CHANNEL a well defined kerneK(e,&") =Vy(e —')C(e’). One can

easily see that if the incoming particles have zero energies,

The next step is to evaluate the spherical harmonics of ththe Cooper singularity gets canceled. However, at finite en-

renormalized interaction. At this point, let us assume that thergies the Cooper logarithm survives being cut off by the
initial electron-electron interaction is defined only for the energy transfer.
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For further treatment, let us define the following auxiliary 1
dimensionless variables and functions: To(w)~w exp{ - m—] . (18
kx“In(2ep/ w)
x=el2e, This estimate can be alternatively derived by considering the
o resolvent of the integral equation straightforwardly. Namely,
X=wleg, one can formally rewrite Eq.15) as follows:

1 g=go+«Kg,
go(X):_|X||n|7|v N

whereK is the operator with the kernel in therepresenta-
1 tion being equal t& (x,y) = (|x—y|/|y|)In(1/x—y]). The so-

g(x,x') = 2| Tes'), lution of this equation has can be formally written as
N2 o -
g=R(x)go=[1-«K] go,
and R
whereR(«) is the resolvent, which can be also written as:
3 N )2
K= —3/2 V). R % R
(2m) R(xk)= >, «"K", (19)
n=0

In these notations, E@8) takes on the form

whereK" can be found by evaluating the convolution of the
X— rr nding kernels in representation:
g(x,x’)=—go(x—x’)+KJ dygo(|y| Y)g(y,x’). corresponding kernels in therepresentatio
(15)
_ _ _ o K(”)(x,y)zf K(x,2)K""Y(z,y)dz
The integral in Eq.(15) is defined in such a way that the
largey singularities are cut off bw/er and lowy singulari-  Studying the geometric seri¢gq. (19)], one can see that its
ties atr=T/2ef. 2n term contains the logarithm Mw/T), with  being the
It is hard to solve Eq(15) exactly. However, we are typical energy of the electrons in the Cooper channel. Sum-
mostly interested not in the detailed solution but in the posming up the series, we reproduce E#8).
sibility of a singularity in the pairing verteg(x,x") which The integral equatioril5) and the corresponding eigen-
would be a signal of a superconducting pairiibgt not nec-  problem(16) are mathematically well defined for amys 7
essarily a global superconducting instabjlityet us empha-  (j.e., w<T). However, it does not make too much sense to
size here thag(0,0)=0 by construction, and it cannot di- study the structure of the solutions at such energies in the
verge simply because there is no attraction in this cas&ramework of our formalism based on the Matsubara tech-

qn_less we take into account the higher order.diagrams. Atique. Thus, result18) has the following domain of appli-
finite energy transfers, a large Cooper logarithm appeargapility:

which yields a divergence aj(x,x") which we interpret as
the appearance of fluctuating Cooper pairs built up of the -
electronic excitations with finite energies. One of the ways to T<ow=ow<eg.
search for the singularity is to consider the eigenvalue prob-
lem for the kernel of integral equatidi5): Working in this domain, the replacement of the Matsubara
sums by the integrals is legitimate and our interpretation of
[x—y]| 1 >T as a real energy of a pair is valid as well. Let us now
A(X):Kf T'”WAW)W- (160 priefly discuss how the appearance of the fluctuating pairs
affects the physical properties of the system. The correction
The singularity exists if there is a nontrivial solution of this to the conductivity is described by the diagrams similar to
equation. To get some qualitative estimates let us approxithe ones in the conventional fluctuation théofgee, e.g.,
mate the corresponding eigenvector by the following trialFig. 3, where the Aslamazov-Larkin-like diagram is shown
function: It is a rather difficult problem to calculate the corresponding
contributions in the case under consideration. However, we
A(x)=Ag+Aq|X], (17 can get some qualitative insight by noting that the analytical
continuation to the real frequencies in the expression for the
whereA, and A, are some weaklogarithmig functions of  conductivity contains the factor cot2T), which is basi-
x. From Eqgs(16) and(17) we can derive the self-consistency cally the Bose distribution for the fluctuating Cooper pairs
equation which yields the estimate for the threshold temperathe density of the Cooper pajrsThis factor and the corre-
ture at which the pairing with the typical energy transfewof sponding correction are exponentially small unless there ex-
commences ist Cooper pairs withw~T. Using Eq.(18), we can estimate
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ever, the account for the dynamically screened Coulomb in-

13 teraction may lead to other important effects such as the
renormalization of the Fermi-liquid parametesffective
A Y mass,g factor, etc). This issue is currently being investi-
gated by the authors, and the results will be reported else-
' where.

Second, one can consider a system in which the transport
FIG. 3. Aslamazov-Larkin contribution to the conductivity. IS two dimensional but the screening is three dimensional. In

Small wavy lines correspond to the facer. Shaded boxes are the this case the Coulomb interaction is well screened and de-

pairing vertexes which in the case under consideration are functiongdys exponentially at large distancéér)«exp(-r/d) (d is

of the four variabled (k; ,k, ;K] ,k5). the screening lengihin the limit ked<1, the potential be-

comes effectively short ranged and, thus, the theory devel-

(277)3/2 eF

3773

the temperaturd@, at which such pairs appear. It is defined oped in the present paper is qualitatively valid. Let us note
by the conditionT ,(T,)~T, . Thus, we readily obtain that in this model the high-energy cutoff is basically the
Fermi energy which violates the assumptiorce we used
1 in our calculations. This, however, should not change main
Ty NSFEXP[ B (A ,,)4] : (20 qualitative result of the paper.

There is also an intermediate situation which may exist

At this temperature, contribution to the conductivity due towhen the two-dimensional Fermi liquid lives in the very
the preformed Cooper pairs may become comparable to thelose vicinity of a metallic substrate. In this situation, each

Drude conductivity of a normal metal. two-dimensional electron produces an image in the metallic
substrate so that the bare electron-electron interaction decays
V. LONG-RANGE COULOMB INTERACTION only asr 3 at large distances. In this case, there is no simple

) . . _answer as to whether the Kohn-Luttinger pairing exists or
Until now, we have been studying a Fermi system with,o presumably, the Kohn-Luttinger pairing in such a setup
the bare electron-electron coupling being short-ranged. It ig possible if the Fermi liquid is dilute enough, so that Frie-

worth considering the case _When the_ initial interaction is th_qje| oscillations may compete with the initial dipole-dipole
long-range Coulomb repulsion. In this case our treatment iBoupling.

not applicable since the momentum dependence of the Cou-

lomb interaction becomes crucial. However, we can get some

qualitative insight into the problem without cumbersome cal- VI. CONCLUSION

culations. There are several possibilities one can consider.  patqra concluding, we point out that earlier theoretical

First, we can study a system in which both transport andy o in the literature has considef@cthe possibility of
screening are two dimensional. In this case, we can readily, g states and Cooper pairing in a dilute two-dimensional
conclude that there is no possibility for Kohn-Luttinger pair- p) system of fermions interacting via a short-ranged repul-
ing because the long-wavelength Thomas-Fermi screening §ye interaction. Engelbrecht and Randeria have considered a
weak, regular expansion in th& matrix in two dimensions analo-

d?a 27e? 1 1 gous to the e_xpansion on the dilute gas paran@m@l in
V(r)=f q g0, (21) three dimension&: Apart from the three-dimensional result,
(2m? 9 €) r they have found an unusual pole in the particle-particle chan-

. . . . . nel. Although we do not find any obvious connection be-
wherea,=1/mé is the effective two-dimensional screening tween our microscopic analysis and this earlier wrkhe

length and the Thomas-Fermi dielectric function has the&;aim of a new 2D collective mode interpreted as a bound
standard long-wavelength form excitation of two holes is somewhat reminiscent of our find-
ing in this paper that a Kohn-Luttinger-type superconducting

e(q)=1+——. (22 pairing is possible at finite excitation energies. Whether there
a0q is a deep connection between our work and the earlier
We can now calculate the spherical harmonics of thd@sults” remains unclear at this stage.
screened Coulomb interaction, Summarizing, we have shown that a clean two-
dimensional Fermi system with a short-range repulsive inter-
2 2 me? ¢ action between electrons becomes unstable against the for-
V= ;f mmﬁ ¢dd, q=2kesin, (23 mation ofd-wave Cooper pairs with a finite binding energy

at a low-enough temperature. Thus, the low-temperature
which are certainly all repulsive and remain repulsive everstate of the system is a mixture of low-lying electron excita-
after Friedel oscillations are taken into acco(sge Fig. .  tions and preformed fluctuating Cooper pairs. The carriers
Thus, even going beyond this long-wavelength Thomasmay noticeably change the physical properties of the system
Fermi analysis, we do not expect any pairing instability forsuch as conductivity, susceptibility, etc. at a temperalyre
the long-ranged Coulomb interaction to appear, as long asee Eq(20)]. Let us note that from our theory it follows that
both the transport and screening are two dimensional. Howthe fluctuating pairs appear within the normal state having a
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