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Kohn-Luttinger pseudopairing in a two-dimensional Fermi liquid
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We consider possible superconducting instabilities in a two-dimensional Fermi system with short-ranged
repulsive interactions between electrons. The possibility of an unusual superconducting paring due to the
Kohn-Luttinger mechanism is examined. The quasiparticle scattering amplitude is shown to possess an attrac-
tive harmonic in second-order perturbation theory for finite values of the energy transfer. The corresponding
singularity in the pairing vertex leads to a superconducting pairing of the electron excitations with finite
energies. We identify the energy transfer in the Cooper channel as the binding energy of the excited pair. At
low enough temperatures, the Fermi system is a mixture of normal electron excitations and fluctuatingd-wave
Cooper pairs possessing a finite gap.
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I. INTRODUCTION

Superconductivity induced by mechanisms other th
electron-phonon interactions has been of long-standing in
est. Throughout the last decade there has been a contin
theoretical search for unconventional superconductiv
mechanisms, particularly in two-dimensional systems. T
interest was, indeed, motivated by interesting supercond
ing materials such as high-Tc cuprates, organic supercon
ductors as well as by the studies of3He films. Currently,
there is no full understanding of the physical processes
sponsible for the pairing in those systems.

The Kohn-Luttinger effect is one of the oldest as well
among the most appealing and elegant physical effe
which might be considered within this quest. Back in 196
Kohn and Luttinger1 showed that any three-dimension
electron system with repulsive interactions between parti
was unstable against a superconducting transition at
tremely low temperatures. The origin of the effect is that
screening of the bare interaction leads to the well-kno
Friedel oscillations in the electron density and to similar
cillations in the scattering amplitude. The renormalized int
action acquires a long-ranged oscillatory component. Th
there appear some regions where the effective interactio
attractive. This leads to the formation of Cooper pairs w
nonzero orbital momentalÞ0. However, straightforward
calculations showed that the transition temperature was
tremely low ~the estimate of Kohn and Luttinger1 was Tc
;10240 K for some realistic parameters of the fermion sy
tem!. This extreme low value ofTc was one of the reason
why the effect has not been much studied in recent year

In the early nineties, Kagan and co-workers obtaine
number of interesting results within the Kohn-Lutting
theory2 ~such as cascade transitions, the Kohn-Luttinger
fect in a three dimensional system with long-ranged C
lomb interaction, Kohn-Luttinger superconductivity in th
Hubbard model, etc.!. One of the interesting results was th
the temperature of the superconducting transition derive
the pioneering paper1 was shown to be underestimated due
the unjustified extrapolation in the expression valid for lar
orbital momenta down to the valuel 51. The transition tem-
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peratures calculated in Ref. 2 were higher than the orig
estimate but still too low to attract much attention.

One of the most natural issues to be explored has been
status of the Kohn-Luttinger theory in two dimensions. Fi
of all, Kohn-Luttinger physics is about the formation o
bound states. It is very natural to expect that in the low
dimensionality it is easier to form bound states~i.e., Cooper
pairs!. However, a simple calculation of the polarization o
erator leads to the disappointing result: no singularity ex
in second-order perturbation theory. Namely, the polarizat
operator reads~we use units\5c51 throughout the paper!

P~q!5H n if q,2kF

n@12A12~2kF /q!2# if q.2kF ,
~1!

wheren5m/(2p) is the density of states at the Fermi lin
kF is the Fermi momentum, andq is the momentum transfe
in the Cooper channel (q52pFsinf/2, wheref is the scat-
tering angle!. Let us remember that the attractive harmon
in the scattering amplitude in the three-dimensional c
comes from the well-known logarithmic Kohn’s singulari
Psing(f)5(11cosf)ln(11cosf) which exists in three di-
mensions on both sides of the Fermi surface. As can be s
from Eq. ~1!, the singularity in two dimensions is one side
which suggests that no straightforward Kohn-Luttinger eff
should exist in two dimensions.

In 1993, Chubukov3 showed that this simple scenario wa
not the complete story in two dimensions. A two-sided s
gularity exists, but to find it one should go beyond secon
order perturbation theory. The corresponding transition te
perature derived by Chubukov readsTc( l )}exp@2l2/2f0

3#,
where f 0 is the dimensionlesss-wave scattering amplitude
Having applied this result to a realistic experiment
3He-4He mixture films, the numerical value was found
Tc( l 51)51024K.

Let us also mention a recent paper of Guineaet al.4 in
which the Kohn-Luttinger physics was phenomenologica
incorporated in a model of high-Tc cuprates. Within this
model the shape of the gap anisotropy has been explore
a function of doping.
©2003 The American Physical Society20-1



-
r

V. M. GALITSKI AND S. DAS SARMA PHYSICAL REVIEW B 67, 144520 ~2003!
FIG. 1. Renormalization of the scattering am
plitude by Friedel oscillations. Kohn-Luttinge
theory. If the bare coupling isq-independent dia-
gramsb, c, andd cancel each other out.
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The main idea of the present paper is to search for
effective attractive interaction by taking into account the f
quency dependence of the polarization operator, instea
going into higher order perturbation theory. The account
dynamical screening, as we shall see below, yields a t
sided singularity. Thus, we are looking for a dynamic
Kohn-Luttinger effect rather than the original static pairi
problem as in Refs. 1 and 3. Due to the energy depende
of the effective electron-electron coupling, the Cooper pr
lem turns into an integral equation, similar to the E´ liashberg
equation in the strong coupling theory of superconductivi5

Our paper is structured as follows. In Sec. II, we reder
the expression for the polarization operator as a function
momentumq and Matsubara frequencyv. Using this result,
we formulate the Cooper problem and derive the correspo
ing Bethe-Salpeter equation for the pairing vert
T(q;«,«8).

In Sec. III, we consider spherical harmonics of the effe
tive interactionVl(v) and show thatd harmonic, which cor-
responds to the orbital momentuml 52, yields the stronges
effective attraction.

In Sec. IV, we use the explicit expression for the intera
tion in thed channel and derive an integral equation for t
pairing vertex. Studying this equation, we show that the p
ing vertex may diverge if the incoming particles have hi
enough energies. We estimate the temperature at which
pairing with the typical binding energy ofv commences. We
conclude that at low enough temperature the system
mixture of low-lying electron excitations and fluctuatin
Cooper pairs. We estimate the temperatureT* at which the
effect of this fluctuaing pairs becomes essential and m
strongly change transport and thermodynamic propertie
the system.

In Sec. V, we briefly discuss the case of long-ranged C
lomb interactions. We argue that Kohn-Luttinger phys
strongly depends on the screening properties. In a pu
two-dimensional system we do not expect any supercond
ing instability to survive. If transport is two-dimensional b
screening is three-dimensional, the system is qualitativ
described by our theory and Ref. 3.

II. COOPER PROBLEM

Let us start by calculating the effective electron-electr
interactionV(q,v) ~wherev52pnT is the bosonic Matsub
ara frequency!. In second-order perturbation theory there a
four diagrams to be considered, which are shown in Fig. 1
the bare potentiall(q) is short ranged the diagramsb, c, and
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d cancel each other out, and onlye contributes to the renor
malized interaction. The latter diagram is functionally ide
tical to b, but depends onp1p8 rather then onp2p8, where
p5(p,«). Thus, knowing the two-dimensional polarizatio
operator, we readily obtain the total effective electro
electron coupling.

The polarization operator is defined as

p~q,vm!5T(
«n

E d2k

~2p!2
G«n1(vm /2)

3S k1
q

2DG«n2(vm /2)S k2
q

2D , ~2!

whereG«(k)5( i«2jk)
21 is the Matsubara Green function

jk5(k22kF
2)/2m, and «n5(2n11)pT is the Fermionic

Matsubara frequency. After the sum over«n is evaluated, Eq.
~2! takes on the form

p~q,vm!52ReF E d2k

~2p!2

f ~k!

«~k!2«~kÀq!2 ivm
G , ~3!

where f (k) is the Fermi distribution. At not very high tem
peraturesT!«F , it can be written asf (k)5u(kF2uku) and
after a straightforward calculation we obtain

p~z!5nReF12
1

Rez
Az221G , ~4!

where we have introduced the complex variablez for com-
pactness:

z5
q

2kF
1

i uvmu
vFq

,

and vF5kF /m is the Fermi-velocity. One can easily chec
that Eq.~3! reproduces Eq.~1! if vm50. To get the expres-
sion for the polarization operatorP(q,v) as a function of
the real frequency,6 one has to do the analytical continuatio
in Eq. ~4!. Let us note here that only the real part of th
polarization operator renormalizes the scattering amplitu
The imaginary part is not relevant to this renormalizatio
The latter quantity is proportional to the density of th
electron-hole pairs.

Let us now formulate the Cooper problem for the ca
under consideration. We are looking for a singularity in t
Cooper channel~see the diagrammatic equation in Fig. 2!.
After averaging over the spin indices, the Bethe-Salpe
equation can be written as
0-2
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FIG. 2. The Bethe-Salpeter equation for th
irreducible vertexG ~Cooper problem!.
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T~q;«,«8!5V~q,v!2T(
z
E d2k

~2p!2
T~kÀp;«,z!

3Gz~k!G2z~2k!

3V~kÀp8,z2«8!, ~5!

wherez, «, and«8 are fermionic Matsubara frequencies,q
5p2p8, and v5«2«8. Let us emphasize thatV(q,v) is
the renormalized interaction which depends on the mom
tum and energy transfer.

Let us now consider only electrons in the very vicinity
the Fermi surface so thatq52kFsin(f/2), wheref is the
scattering angle. Following the standard route in the Ko
Luttinger theory, we expandV andT in series of the normal-
ized eigenfunctions of the angular momentum,

V~q,v!5(
l

Vl~v!F l~f! ~6!

and

T~q,;«,«8!5(
l

Tl~«,«8!F l~f!, ~7!

where

F l~f!5
1

A2p
ei l f.

Then, Eq.~5! takes on the form

Tl~«,«8!5Vl~v!2T(
z

Tl~«,z!C~z!Vl~z2«8!, ~8!

where, as usual,C(z) is the Cooperon, which is the source
the BCS logarithm:

C~z!5E uGz~k!u2
d2k

~2p!2
5

pn

uzu
. ~9!

Let us note that Eq.~8! is exact at any temperature. Howeve
we shall consider only the case of low temperatures to av
technical difficulties connected with the analytical continu
tion in Eq. ~8!. In the limit T→0, the procedure of the ana
lytical continuation reduces to the simple Feynman rotat
and all the Matsubara sums involved may be replaced by
corresponding integrals with the temperature serving a
‘‘low-energy cutoff.’’ The main result we are deriving in th
present paper can be noticed in this limit as well.

III. EFFECTIVE ATTRACTION IN THE d CHANNEL

The next step is to evaluate the spherical harmonics of
renormalized interaction. At this point, let us assume that
initial electron-electron interaction is defined only for th
14452
n-

-

id
-

n
e
a

e
e

energies smaller than some threshold valueṽ!«F , which
will be serving as the high-energy cutoff~just as the Debye
frequency in the classical weak-coupling BCS theory!. In
this case, when performing actual calculations we can
pand onv/«F .

The l harmonics of polarization operator~4! can be writ-
ten as

p l~vm!5A2

pE0

2p

p~f,vm!coslfdf. ~10!

Keeping in mind thatv!«F and evaluating the integral with
the logarithmic accuracy, we obtain, for even orbital m
mental 52n,

p2n~v!52A2

p
n

uvu
2«F

H 3

2
ln

2«F

uvu
22FcS n1

1

2D2cS 1

2D G J ,

~11!

and, for l 52n11,

p2n11~v!52A2

p
n

uvu
2«F

H 1

2
ln

2«F

uvu

22n
uvu
2«F

@C1c~n11!#J , ~12!

wherec is the logarithmic derivative of the gamma functio
andC'0.577 is the Euler’s constant.

From Eqs.~11! and ~12! we see that the dependence
the orbital momentum is very weak. The effective interacti
can be written as

Vl~v!5p l~v!$l~0!~21!2 l12@l~0!l~2kF!2l2~2kF!#%,
~13!

wherel(q) is the Fourier component of the bare interacti
potential.

If the initial interaction isq independent, we see that th
effective interaction is attractive only for the even values
the orbital momentuml 52nÞ0. The effective attraction is
the strongest forl 52. The correspondingd harmonics reads8

Vd~v!52
3

A2p
nl2

uvu
2«F

ln
2«F

uvu
. ~14!

IV. PAIRING AT FINITE ENERGIES

We can substitute result~14! into the Bethe-Salpeter equa
tion ~8! which turns into an integral equation~at T→0) with
a well defined kernelK(«,«8)5Vd(«2«8)C(«8). One can
easily see that if the incoming particles have zero energ
the Cooper singularity gets canceled. However, at finite
ergies the Cooper logarithm survives being cut off by t
energy transfer.
0-3
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For further treatment, let us define the following auxilia
dimensionless variables and functions:

x5«/2«F ,

x̃5ṽ/«F ,

g0~x!52uxu ln
1

uxu
,

g~x,x8!5F 3

A2p
nl2G21

T~«,«8!,

and

k5
3p

~2p!3/2
~ln!2.

In these notations, Eq.~8! takes on the form

g~x,x8!52g0~x2x8!1kE dy
g0~x2y!

uyu
g~y,x8!.

~15!

The integral in Eq.~15! is defined in such a way that th
large-y singularities are cut off byṽ/«F and low-y singulari-
ties att5T/2«F .

It is hard to solve Eq.~15! exactly. However, we are
mostly interested not in the detailed solution but in the p
sibility of a singularity in the pairing vertexg(x,x8) which
would be a signal of a superconducting pairing~but not nec-
essarily a global superconducting instability!. Let us empha-
size here thatg(0,0)50 by construction, and it cannot d
verge simply because there is no attraction in this ca
unless we take into account the higher order diagrams
finite energy transfers, a large Cooper logarithm appe
which yields a divergence ofg(x,x8) which we interpret as
the appearance of fluctuating Cooper pairs built up of
electronic excitations with finite energies. One of the ways
search for the singularity is to consider the eigenvalue pr
lem for the kernel of integral equation~15!:

D~x!5kE ux2yu
uyu

ln
1

ux2yu
D~y!dy. ~16!

The singularity exists if there is a nontrivial solution of th
equation. To get some qualitative estimates let us appr
mate the corresponding eigenvector by the following tr
function:

D~x!5D01D1uxu, ~17!

whereD0 andD1 are some weak~logarithmic! functions of
x. From Eqs.~16! and~17! we can derive the self-consistenc
equation which yields the estimate for the threshold temp
ture at which the pairing with the typical energy transfer ofv
commences7:
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Tp~v!;v expH 2
1

k2x̃2ln~2«F /v!
J . ~18!

This estimate can be alternatively derived by considering
resolvent of the integral equation straightforwardly. Name
one can formally rewrite Eq.~15! as follows:

ĝ5g01kK̂ĝ,

whereK̂ is the operator with the kernel in thex representa-
tion being equal toK(x,y)5(ux2yu/uyu)ln(1/ux2yu). The so-
lution of this equation has can be formally written as

ĝ5R̂~k!g05@12kK̂#21g0 ,

whereR̂(k) is the resolvent, which can be also written as

R̂~k!5 (
n50

`

knK̂n, ~19!

whereK̂n can be found by evaluating the convolution of th
corresponding kernels in thex representation:

K (n)~x,y!5E K~x,z!K (n21)~z,y!dz.

Studying the geometric series@Eq. ~19!#, one can see that its
2n term contains the logarithm lnn(v/T), with v being the
typical energy of the electrons in the Cooper channel. Su
ming up the series, we reproduce Eq.~18!.

The integral equation~15! and the corresponding eigen
problem~16! are mathematically well defined for anyx&t
~i.e., v&T). However, it does not make too much sense
study the structure of the solutions at such energies in
framework of our formalism based on the Matsubara te
nique. Thus, result~18! has the following domain of appli-
cability:

T!v&ṽ!«F .

Working in this domain, the replacement of the Matsuba
sums by the integrals is legitimate and our interpretation
v@T as a real energy of a pair is valid as well. Let us no
briefly discuss how the appearance of the fluctuating p
affects the physical properties of the system. The correc
to the conductivity is described by the diagrams similar
the ones in the conventional fluctuation theory9 ~see, e.g.,
Fig. 3, where the Aslamazov-Larkin-like diagram is show!.
It is a rather difficult problem to calculate the correspondi
contributions in the case under consideration. However,
can get some qualitative insight by noting that the analyti
continuation to the real frequencies in the expression for
conductivity contains the factor coth(v/2T), which is basi-
cally the Bose distribution for the fluctuating Cooper pa
~the density of the Cooper pairs!. This factor and the corre
sponding correction are exponentially small unless there
ist Cooper pairs withv;T. Using Eq.~18!, we can estimate
0-4
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the temperatureT* at which such pairs appear. It is define
by the conditionTp(T* );T* . Thus, we readily obtain7

T* ;«FexpH 2F ~2p!3/2

3p

«F

ṽ
G 1

~ln!4J . ~20!

At this temperature, contribution to the conductivity due
the preformed Cooper pairs may become comparable to
Drude conductivity of a normal metal.

V. LONG-RANGE COULOMB INTERACTION

Until now, we have been studying a Fermi system w
the bare electron-electron coupling being short-ranged.
worth considering the case when the initial interaction is
long-range Coulomb repulsion. In this case our treatmen
not applicable since the momentum dependence of the C
lomb interaction becomes crucial. However, we can get so
qualitative insight into the problem without cumbersome c
culations. There are several possibilities one can consid

First, we can study a system in which both transport a
screening are two dimensional. In this case, we can rea
conclude that there is no possibility for Kohn-Luttinger pa
ing because the long-wavelength Thomas-Fermi screenin
weak,

V~r !5E d2q

~2p!2

2pe2

q

1

e~q!
eiqr}

1

r 3 , ~21!

wherea051/me2 is the effective two-dimensional screenin
length and the Thomas-Fermi dielectric function has
standard long-wavelength form

e~q!511
2

a0q
. ~22!

We can now calculate the spherical harmonics of
screened Coulomb interaction,

Vl5A2

pE 2pe2

q12/a0
coslfdf, q52kFsin

f

2
, ~23!

which are certainly all repulsive and remain repulsive ev
after Friedel oscillations are taken into account~see Fig. 1!.
Thus, even going beyond this long-wavelength Thom
Fermi analysis, we do not expect any pairing instability
the long-ranged Coulomb interaction to appear, as long
both the transport and screening are two dimensional. H

FIG. 3. Aslamazov-Larkin contribution to the conductivit
Small wavy lines correspond to the factorev. Shaded boxes are th
pairing vertexes which in the case under consideration are funct
of the four variablesG(k1 ,k2 ;k18 ,k28).
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ever, the account for the dynamically screened Coulomb
teraction may lead to other important effects such as
renormalization of the Fermi-liquid parameters~effective
mass,g factor, etc.!. This issue is currently being invest
gated by the authors, and the results will be reported e
where.

Second, one can consider a system in which the trans
is two dimensional but the screening is three dimensional
this case the Coulomb interaction is well screened and
cays exponentially at large distancesV(r )}exp(2r/d) (d is
the screening length!. In the limit kFd!1, the potential be-
comes effectively short ranged and, thus, the theory de
oped in the present paper is qualitatively valid. Let us n
that in this model the high-energy cutoff is basically t
Fermi energy which violates the assumptionṽ!« we used
in our calculations. This, however, should not change m
qualitative result of the paper.

There is also an intermediate situation which may ex
when the two-dimensional Fermi liquid lives in the ve
close vicinity of a metallic substrate. In this situation, ea
two-dimensional electron produces an image in the meta
substrate so that the bare electron-electron interaction de
only asr 23 at large distances. In this case, there is no sim
answer as to whether the Kohn-Luttinger pairing exists
not. Presumably, the Kohn-Luttinger pairing in such a se
is possible if the Fermi liquid is dilute enough, so that Fr
del oscillations may compete with the initial dipole-dipo
coupling.

VI. CONCLUSION

Before concluding, we point out that earlier theoretic
work in the literature has considered10 the possibility of
bound states and Cooper pairing in a dilute two-dimensio
~2D! system of fermions interacting via a short-ranged rep
sive interaction. Engelbrecht and Randeria have consider
regular expansion in theT matrix in two dimensions analo
gous to the expansion on the dilute gas parameterkFa!1 in
three dimensions.11 Apart from the three-dimensional resul
they have found an unusual pole in the particle-particle ch
nel. Although we do not find any obvious connection b
tween our microscopic analysis and this earlier work,10 the
claim of a new 2D collective mode interpreted as a bou
excitation of two holes is somewhat reminiscent of our fin
ing in this paper that a Kohn-Luttinger-type superconduct
pairing is possible at finite excitation energies. Whether th
is a deep connection between our work and the ear
results10 remains unclear at this stage.

Summarizing, we have shown that a clean tw
dimensional Fermi system with a short-range repulsive in
action between electrons becomes unstable against the
mation ofd-wave Cooper pairs with a finite binding energ
at a low-enough temperature. Thus, the low-tempera
state of the system is a mixture of low-lying electron exci
tions and preformed fluctuating Cooper pairs. The carri
may noticeably change the physical properties of the sys
such as conductivity, susceptibility, etc. at a temperatureT*
@see Eq.~20!#. Let us note that from our theory it follows tha
the fluctuating pairs appear within the normal state havin

ns
0-5
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finite gap which is connected with the binding energy. No
that there is no global superconductivity specifically p
dicted in our theory, only a pseudo-pairing at finite excitati
energies. The results obtained in the present paper ma
relevant to the pseudogap experiments in highTc
superconductors.12
d.
.

o,

en

c-

14452
e
-

be

ACKNOWLEDGMENTS

This work was supported by the U.S.-ONR, the LPS, a
DARPA. V.G. wishes to thank A. I. Larkin, M. Yu. Kagan, A
Kamenev, and M. Pustil’nik for useful discussions and A. Y
Kaminski for the help in preparation of the manuscript.
.

s.
1W. Kohn and J. H. Luttinger, Phys. Rev. Lett.15, 524 ~1965!.
2M. A. Baranov, A. V. Chubukov, and M. Yu. Kagan, Int. J. Mo

Phys. B6, 2471~1992!; M. Yu. Kagan, P. Brussaard, and H. W
Capel, Phys. Lett. A221, 407~1996!; M. A. Baranov and M. Yu.
Kagan, Z. Phys. B: Condens. Matter86, 237 ~1992!.

3A. V. Chubukov, Phys. Rev. B48, 1097~1993!.
4F. Guinea, R. S. Markiewicz, and M. A. H. Vozmedian

cond-mat/0206208~unpublished!.
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