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Effects of gap fluctuations on the pair-transfer correlation function in nanometer-scale
superconducting grains
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We investigate the effects of gap fluctuations on the pair-transfer correlation and spectral functions in
nanoscopic superconducting grains at finite temperature, by means of the correlated static path approximation
~CSPA!. The present approach is able to provide a reliable description of the lowest energy weighted moments
of the spectral function of small samples in critical regions, improving both the random-phase approximation
~RPA! and the SPA predictions. The results confirm the persistence of pairing effects in the spectral function
beyond the BCS critical temperatures and sizes, which is visible through the enhancement of the strength at
low energies and the concomitant decrease in the normalized first energy moment. The role played by the zero
and the imaginary quasiparticle RPA energies present in the CSPA is also discussed.
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I. INTRODUCTION

Since the development of individual nanometer-scale a
minum grains by Ralph, Black, and Tinkham,1,2 a great effort
has been devoted to understand in detail the effects of su
conducting pairing correlations in small electron systems.3–13

Nanoscopic grains are characterized by adiscrete energy
spectrum, with a mean energy spacing between indepen
electron levels«}\2/mkFV that can be of the same order
the bulk gapDb . In these circumstances, the convention
BCS approximation, based on an independent quasipar
picture, is not longer accurate. The higher-order correlatio
which can be conveniently visualized asfluctuationsof the
pairing order parameter,14 become increasingly important a
the size decreases, i.e., as the ratio«/Db increases, and origi
nate non-negligible pairing effects for temperatures, m
netic fields or sizes for which a superconducting BCS so
tion no longer exists. Accordingly, the BCS phase transitio
become softened, and a smooth crossover to the so-c
fluctuation dominated superconductivity regime ensues6,11

In the latter, pairing effects may become evident throu
observables other than a spectroscopic gap.9,11,13

One of the main signatures of pairing correlations is
enhancement of pair-transfer matrix elements. It is w
known that the matrix element for Cooper pair transfer
tween superconducting ground states is strongly enhan
being essentially proportional to the pairing order parame
D.15,16 This will lead to a huge peak in the associated pa
transfer spectral function,17,18 which is absent in a norma
system. This quantity exhibits therefore a very high sensi
ity to pairing correlations and can be used as an indicato
pairing effects in the fluctuation dominated regime.
nuclear physics, it has been employed to detect pairing
fects in nuclei at high spin,17 where superconductivity ma
become gapless16 and hence it is hard to detect through dire
observation of the spectrum. A recent exact calculation
small configuration spaces18 indicates that evidences of pai
ing correlations should in principle, persist in this quant
for T.Tc in small systems or for«.Db at low tempera-
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tures, which are visible through an enhancement of
strength at low energyE22m. Although a basic microscopic
understanding of these effects in the fluctuation domina
regime can be achieved by means of the quasipart
random-phase approximation~RPA!,18 which takes into ac-
count the small amplitude quantum fluctuations ofD, this
approach becomes unreliable in the vicinity of the BCS tr
sition, where it develops divergencies associated with
onset of a zero energy mode.

The aim of this work is then to examine the adiaba
correlated static path approximation19 ~CSPA! to the pair-
transfer spectral function, or more precisely, to its Lapla
transform that is the imaginary time correlation function19

This quantity determines, through its derivatives, the ene
weighted moments of the spectral function, and also exhi
a great sensitivity to pairing effects. The CSPA~Ref. 12!
takes into account both the large amplitude static fluctuati
of D ~Ref. 14! plus the RPA correlations, and is known
provide an accurate approximation to the partition funct
in the crossover region around the critical temperature.
will be seen, the adiabatic CSPA approach is able to yiel
simple smooth reliable description of the correlation functi
in critical regions, improving RPA results. It also provides
consistent treatment of the zero RPA modes, as well as of
complex modes that arise in the CSPA when the RPA
evaluated at a nonstationary mean field, above a low bre
down temperature. It should be mentioned that at low te
peratures, where CSPA fails, exact canonical calculations
the standard discrete pairing Hamiltonian can be done
principle, using Richardson’s method for obtaining the ex
eigenstates.20,11 This method has been recently applied
zero temperature for evaluating thermodynamic propertie10

and correlation functions.21 Nevertheless, its applicability a
higher temperatures is limited in practice by the huge nu
ber of states involved in a thermal calculation as each exc
state requires a separate evaluation. The CSPA provides
a simple alternative for finite temperatures. Improvements
the low-temperature limit of the CSPA have been recen
also developed.22
©2003 The American Physical Society17-1
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In Sec. II, we describe the main features of the pa
transfer correlation function at finite temperature, includi
the independent quasiparticle approximation to this quan
and the adiabatic CSPA approach, in an ensemble with fi
number parity. The half-filled situation is discussed in det
We also describe the standard and effective RPA approa
that can be obtained from the CSPA through a Gaussian
proximation. Finite temperature results for parameters ty
cal of nanometer scale grains are given in Sec. III, wh
include calculations with up to 1800 levels and comparis
with full exact results for small configuration spaces. Fina
conclusions are drawn in Sec. IV.

II. THEORY

A. Pair-transfer correlation function

We consider a discrete pairing Hamiltonian of the form

H̄5(
k

~«k2m!Nk2GQ†Q, ~1!

Nk5ck1
† ck11ck2

† ck2 , Q†5(
k

gkck1
† ck2

† ,

whereuk6& denote time-reversed single-electron states w
energies«k , G.0 is the pairing strength,gk are suitable
weight factors, and the sums overk are restricted to a finite
interval around the Fermi levelm. For gk51, Q† creates a
standard Cooper pair.

Denoting with uK& the exact many-body eigenstates
Eq. ~1!, with H̄uK&5ĒKuK& andĒK5EK2mNK , the imagi-
nary time correlation function19 for the operatorQ† can be
defined as

G~t![^QH̄~t!Q†&5 (
K,K8

PKu^K8uQ†uK&u2et(ĒK2ĒK8),

~2!

where QH̄(t)5etH̄Qe2tH̄ and PK is the initial statistical
weight of stateuK& ((KPK51). Its Fourier transform in rea
time gives the spectral or strength function for pair transfe18

S~E!5
1

2p i E2 i`

i`

G~t!etĒdt

5 (
K,K8

PKu^K8uQ†uK&u2d~Ē2ĒK81ĒK!, ~3!

where Ē5E22m, while its derivatives att50 determine
the energy weighted moments ofS(E),

Mn[E
2`

`

S~E!ĒndE5~21!nG(n)~0!. ~4!

For n50, Eq. ~4! yields the total strength

M05E
2`

`

S~E!dE5G~0!5^QQ†&. ~5!
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These expressions hold forany initial distribution PK . In a
grand canonical~GC! treatment at temperatureT51/kb and
fixed number parity~NP! n561,

PK5
1

2
Z 21@11n~21!NK#e2bĒK,

whereZ5Tr@P ne2bH̄#, with Pn5 1
2 (11neipN), is the GC

partition function for fixed NP, and Eq.~2! becomes

G~t!5Z 21Tr@Pn e2(b2t)H̄Qe2tH̄Q†#. ~6!

B. Independent quasiparticle approximation

In a basic independent quasiparticle description,H̄ is ap-
proximated by an operator of the form

h̄5(
k

«̄kNk2Dkck1
† ck2

† 2Dk* ck2ck1 , ~7!

in which case Eq.~6! becomes

G~t!5S01(
k

Sk
1e22tlk1Sk

2e2tlk, ~8!

wherelk5A«̄k
21uDk

2u are the quasiparticle energies and

Sk
65

e6blkGk
06

2 sinh~blk!
, Gk

065
1

4
ugk

2u f kS 16
«̄k

lk
D 2

,

S05^Q†&^Q&1(
k,k8

gk* Dkgk8Dk8
*

4blklk8

] f k

]lk8

, ~9!

^Q†&5(
k

gkDk* f k

2lk
5^Q&* , ~10!

f k5tanhS blk

2 D1
2nG

11nG

1

sinh~blk!
, ~11!

with G5)ktanh2(blk/2). The expressions for the full GC
ensemble correspond ton50 in Eq. ~11!. Here S0
5(KPKu^KuQ†uK&u2 contains thediagonalterms in Eq.~2!,
which arise in the present approximation whenDkÞ0.18

They represent the transitions between nearly degene
states in the exact picture~i.e., between the superconductin
ground states of theN andN12 systems in an even grain a
T50), and are essential in the present description.18 They
account for a major fraction of the total strengthG(0) in the
superconducting phase, practically exhaustingG(0) in a
large system. The remaining terms in Eq.~8! correspond to
absorption (Sk

1) and depletion (Sk
2) of quasiparticle pairs in

excited states, the latter possibility arising at a finite tempe
ture. The spectral function moments then become

Mn5S0dn01(
k

~2lk!
n@Sk

11~21!nSk
2#. ~12!
7-2
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S0 will not contribute toMn for n.0. A decrease in the ratio
M1 /M0 is therefore a signature of pairing effects, indicati
the concentration of the strength at lowĒ.

In a standard Hartree-like NP projected BCS approxim
tion for Hamiltonian~1!, «̄k5«k2m and Dk5gkD, with D
determined by the self-consistent gap equation

D5G^Q&, ^Q&5
1

2
GD(

k
ugk

2u f k /lk . ~13!

The diagonal termS0 then becomes proportional toD2. The
transition to the normal phase atT5Tc will be reflected in
the vanishing ofS0 and hence in a sharp increase of the ra
M1 /M0.

C. Gap fluctuations

Due to the effects of gap fluctuations, however, the pre
ous BCS transitions are softened in small systems, and
rections to the BCS correlation function and moments
come significant. The fluctuations of the pairing ord
parameterD can be rigorously introduced by means of t
Hubbard-Stratonovich transformation and the ensuing p
integral representation of the partition function.14 The CSPA
partition function is obtained by conservinglarge amplitude
static plus small amplitude quantum fluctuations ofD and is
given by12

Z5
2b

G E
0

`

e2bF(D)CRPA~D!D dD, ~14!

where

F~D!5D2/G2b21Tr@P n e2bh̄(D)#, ~15!

h̄~D!5(
k

«̄kNk2D~Q†1Q!1h0 ,

CRPA~D!5)
k

vk

2lk

sinh~blk!

sinhS bvk

2 D , ~16!

with «̄k5«k2m2 1
2 Gugk

2u, h05 1
2 G(kugk

2u, lk

5A«̄k
21ugk

2uD2, and vk are the positive quasiparticle RP
energies around the runningD, determined by the equation

det@11GR~v,D!#50. ~17!

HereR(v,D) is the finite temperature response matrix18 for
the operators (Q1 ,Q2)5(Q†,Q) aroundh̄(D),

Rss8~v,D!5(
k

f kF ~uk
s8!* uk

s

v22lk
2

uk
2s8~uk

2s!*

v12lk
G , ~18!

wheres,s856, uk
1[gkuk

2 , uk
2[2gk* vk

2 . The RPA ener-
giesvk can also be obtained as the eigenvalues of the a
ciated RPA matrix.12,13 The SPA partition function14 is ob-
tained by neglecting the RPA correction~16!, and includes
just the large amplitude static fluctuations ofD around the
14451
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BCS solution. The minimum of the potential~15! is deter-
mined precisely by the gap equation~13!.

Equation~16! accounts for the small amplitude quantu
fluctuations around the runningD, and remains finite and
positive for vk→0, as well as for imaginaryvk provided
buvku,2p ; k,D. This condition determines the CSP
breakdown temperatureTc* ,Tc below which the full CSPA
is no longer applicable.12

Let us examine now theadiabaticCSPA approach to the
correlation function,19 where just transitions between stat
with the sameorder parameters~i.e., with the sameD in the
present situation! are considered. The final result, which ca
be formally obtained by the analytic continuation of the Fo
rier coefficients ofG(t) in the interval@0,b#, is essentially
the average overD of the RPA correlation function plus a
constant term. We obtain

G~t!5E
0

`

p~D!G~t,D!dD, ~19!

wherep(D)5(2b/G)e2bF(D)CRPA(D)D/Z and

G~t,D!5S01(
k

Sk
1e2tvk1Sk

2etvk, ~20!

Sk
65

e6bvk/2Gk
6

2 sinhS bvk

2 D , ~21!

S05
D2

G2
2

1

bG
2(

k

Gk
11Gk

2

bvk
, ~22!

where the RPA strengthsGk
6 can be obtained from the RPA

response function forQ15Q†,

RRPA~v,D!5$@11GR~v,D!#21R~v,D!%11

5(
k

F Gk
1

v2vk
2

Gk
2

v1vk
G . ~23!

The CSPA moments in the adiabatic approach can then
expressed as

Mn5E
0

`

p~D!Mn~D!dD, ~24!

Mn~D!5S0dn01(
k

vk
n@Sk

11~21!nSk
2#.

Equation~22! represents again the contribution of the dia
onal elements, with the first two terms accounting for t
Hartree contribution tôQQ†& @(bG)21 is just the average
of D2/G2 in the absence of field (Q50)]. The total CSPA
strengthM0 agrees in this way with the average obtain
from the CSPA partition function,

1

b

] ln Z
]G

5^Q†Q&5M01(
k

ugk
2u^Nk21&. ~25!
7-3
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The SPA results correspond to theG→0 limit in Eq. ~23!,
i.e., vk→2lk , Gk

6→Gk
06 , in which case Eqs.~19! and~24!

become exactly the SPA average of Eqs.~8! and~12!.19 The
most noticeable SPA effect in a small system is the sub
tence of a nonvanishing diagonal termS0 for T.Tc due to
the gap fluctuations.

In the CSPA, the sum in Eq.~20! is just the standard RPA
correlation function for the runningD. Note, however, that
in the CSPA each RPA mode contributes in addition to
diagonal term S0 through the last term in Eq.~22!. This
correction becomes particularly relevant when the lowestvk
is close to zero, lowering the average ofS0 as compared with
the SPA evaluation. This indicates a gradual replacemen
the Ē50 strength by the lowest RPA mode asT increases
aboveTc . Moreover, this contribution becomes essential
the case of vanishing or imaginary RPA energies, as only
completeexpression forG(t,D) andMn(D) remain real and
finite ~above the CSPA breakdown!, in contrast with the plain
RPA term. This will be verified below for the half-filled cas

D. The symmetric half-filled case

Let us now analyze in more detail the symmetric ha
filled case, dealing with levels«k located symmetrically with
respect to the Fermi level, i.e.,«̄2k52 «̄k , g2k5gk , where
k.0 (,0) denotes here levels above~below! the Fermi
level, such thatl2k5lk , f 2k5 f k . In an even~odd! system,
the chemical potential will lie halfway between the cent
levels ~at the central level!, so thatk561,62, . . . ,6V/2
(0,61, . . . ,6V/2), with lk<lk11 for k>0. The total
number of electrons isV (V11). In the independent quas
particle approximation, Eqs.~8! and ~12! become

G~t!5S01(
k

Gk
0

coshF S b

2
2t D2lkG

sinh@blk#
, ~26!

Mn5S0dn01(
k

Gk
0~2lk!

nH coth~blk!, n even

1, n odd,

with Gk
05 1

4 ugk
2u f k(11ak

2) andak5u«̄ku/lk . The SPA result
is just the average overD of these expressions.

The RPA equation~17! can now be written as18

)
s561

F112G(
k

ugk
2u f klkak

12s

v224lk
2 G50, ~27!

so that the RPA energies will be the roots of each facto
Eq. ~27!. For nondegenerate levels («̄kÞ«̄k8 if kÞk8), each
factor will possess in the even caseV/2 distinct rootsvk

2 ,
with the lowest one located below 4l1

2 for G.0 and the rest
between 4lk21

2 and 4lk
2 , whereas in the odd case thes

51 factor will have an additional rootv0
2,4l0

2 due to the
k50 term~absent fors521 asa050). All roots can then
be labeled asvk , with k>0 (,0) for those of thes51
(21) factor.

In the symmetric case, Eq.~23! implies Gk
65Gk with
14451
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Gk5
Ck

vk
, Ck

2158G2(
k8

ugk8
2 u f k8lk8ak8

12sk

@vk
224lk8

2
#2

, ~28!

where sk51 (21) if k>0 (,0). It can be verified that
Gk52 1

2 ]vk /]G, so that the total CSPA strengthM0 be-
comes identical to the CSPA average~25! ~in the symmetric
case (kugk

2u^Nk21&50). The total contribution of each
RPA mode toG(t,D) andMn(D) becomes

Gk~t,D!5GkH coshF S b

2
2t DvkG

sinhS bvk

2 D 2
2

bvkJ , ~29!

Mnk~D!5Gkvk
nH cothS bvk

2 D2dn0

2

bvk
, n even

1, n odd.
~30!

Note that the RPA correlations do not affect the first mome
It can be shown from Eq. ~28! that (kGkvk5
2 1

4 (]/]G)(kvk
25(kGk

0(2lk) ; D, as(kvk
2 is the trace of

the effective reduced RPA matrix.18

The lowest rootv1 of thes51 factor is the ‘‘collective’’
mode, which forT,Tc vanishes at the nonzero solution
Eq. ~13!, as can be seen from Eq.~27!. In such a case,G1
→`. Nonetheless, Eqs.~29!–~30! remainfinite if vk→0 for
somek andD. In this limit,

Gk~t,D!→CkF ~b/22t!2

b
2

b

12G1O~vk
2!,

M0k~D!→ bCk

6
, M1k~D!5Ck , M2k~D!→ 2Ck

b
,

with Ck finite @Eq. ~28!# andMnk(D)→0 for n.2. The zero
mode will then provide afinite contribution toM0 , M1, and
M2, while its contribution to higher moments vanishes. No
also that thes521 term in Eq.~27! will also develop a zero
root at a smaller gap determined byG(kugk

2u f kak
2/2lk51, if

T is sufficiently low.
For smaller values ofD, v1 becomes purely imaginary

(w1
2,0, as seen in Fig. 1!. Nonetheless, Eqs.~29!–~30! re-

main real and finite forvk imaginary if buvku<2p, i.e.,
above the CSPA breakdown. In such a case, sinceCk.0, Eq.
~30! becomes

uGkvkunH ~2 !n/2Fdn0

2

buvku
2cot

buvku
2 G , n even

~2 !(n21)/2, n odd.

It can be seen thatM0k(D).0, so that an imaginaryvk
provides apositive contribution to the CSPA strength. It
contribution to higher moments can nevertheless be nega
Even contributions diverge forbuvku→2p.
7-4
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E. Standard and effective Gaussian approximations

The CSPA derived quasiparticle RPA approximation
G(t) is, in principle, given by Eq.~20!, evaluated at the
self-consistent gapD0 that minimizesF(D). However, in
order to obtain a more accurate evaluation of the diago
termS0 ~and hence of the total strengthM0), it is preferable
to evaluate Eq.~14! in the Gaussian approximation aroun
D0 and determineM0 through Eq.~25!. We may then recover
S0 as

S05M02(
k

~Sk
11Sk

2!,

such thatG(0)5M0.
For T.Tc , a gaussian approximation to Eq.~14! around

D050 leads to12

Z'e2bF(0))
k

sinh~bu«̄ku!

sinhS bvk

2 D , ~31!

wheree2bF(0) is just the normal partition function andvk
are the RPA energies forD50. In the half-filled case, Eqs
~31! and ~25! yield M05(kGkcoth(bvk/2), implying S050
and

FIG. 1. Top: The square of the four lowest quasiparticle R
energies~left! and the corresponding strengths~28! ~right! as a
function of D, for size parameterj5«/Db'0.74, at T50.5Tc .
Full ~dashed! lines depict the first two roots (a andb) of the s5
11 (21) factor in Eq.~27!. Dotted lines depict for reference th
first two quasiparticle pair squared energies (2lk)

2 ~left! and
strengths~right!. Bottom: The corresponding contributions to th
total strength~left! and the first energy moment of the spectr
function ~right!. Db and Tc denote the bulk gap and critical tem
perature.
14451
al

G~t!5(
k

Gk

coshF S b

2
2t DvkG

sinhS bvk

2 D . ~32!

For T,Tc , a similar procedure around the solutionD0Þ0 of
Eq. ~13! yields

Z'e2bF(D0)CRPA~D0!
D0

G F 8pb

F9~D0!
G 1/2

, ~33!

F9~D!5
2

G
2(

k

ugk
2u

lk
S f kak

21D
] f k

]D D . ~34!

In the half-filled case, we then obtain

G~t!5M01(
k

GkF coshF S b

2
2t DvkG

sinhS bvk

2 D 2cothS bvk

2 D G ,

~35!

whereM0 is determined by Eqs.~33! and~25! andvk are the
RPA energies forD5D0. The lowest RPA energy now van
ishes, but Eq.~35! remains finite forT,Tc @if vk→0, the
corresponding term in Eq.~35! becomesCkt(t2b)/b, lead-
ing to M0k50 and the same previous expressionsM1k
5Ck , M2k52Ck /b, andMnk50, if n>3].

Equations~31!–~33! provide an accurate approximation
Z andM0 away fromTc , but divergefor T→Tc @asF9(0)
50 at T5Tc] failing therefore in the crossover regio
aroundTc . In the previous scheme, the influence of the m
sureD in p(D) was neglected when determining the expa
sion point D0. This factor arises from the original two
dimensional integral@the gauge angle has been integrated
in Eq. ~14!# and represents and effective multiplicity of th
‘‘intrinsic’’ partition function,23 accounting for its reorienta
tions in the gauge space. It is possible to improve the Ga
ian approximation in the critical region in a simple way ju
by taking into account the effect ofD on the potential.12 The
new expansion point is determined from the minimization
the effective potentialF̃(D)5F(D)2b21ln D/G, which
leads to the equation

15
1

2
GF(

k
ugk

2u f k /lk11/~bD2!G , ~36!

whose solutionD̃0.D0 remains nonzero for allT.0. The
ensuing approximation to Eq.~14! has the same form~33!,
with D0→D̃0 andF9(D0)→F̃9(D̃0). The result remains fi-
nite and smooth throughout the crossover region, includ
T5Tc , and approaches Eqs.~31!–~33! away fromTc .

III. RESULTS

We consider in what follows the widely employed, un
formly spaced model,11 where a constant spacing«k2«k21
5« is assumed and pairing is restricted to an energy ban

l

7-5
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ROSSIGNOLI, CANOSA, AND RING PHYSICAL REVIEW B67, 144517 ~2003!
width 2vc5V« around the Fermi level@with gk51 (0) if
u«k2mu,vc (.vc)]. We set the coupling strengthG
5g«, with g50.2 ~assumed size independent!. The relevant
size parameter is the spacing to bulk gap ratioj5«/Db ,
whereDb52vce

21/g is the solution of Eq.~13! in the bulk
limit «→0 ~i.e., j!1) for weak coupling. The bulk critica
temperature isTc5aDb , with a5eg/p'0.567 (g is the
Euler’s constant!.

Nanometer-scale grains may possess size paramete
order one or even larger. In the present model, Eq.~13! pre-
dicts a parity dependent lower-size limit fo
superconductivity,3,4 namely jc

1'3.56, jc
2'0.89 for an

even and odd grain, respectively, such that forj.jc
n no su-

perconducting solution of Eq.~13! exists atT50. Neverthe-
less, for these sizes gap fluctuations become very impor
The gap fluctuation in the SPA is of the order13 of ^D2&
'Db

2jat/ ln t for t[T/Tc.1 ~andT!vc), approaching the
same order asDb

2 for j;1. Moreover, it has been shown10

that neither BCS nor perturbative methods are accurat
T50 in the intermediate regime«&Db&Avc«, i.e.,
Db /vc&j&1, where Db /vc52e21/g ('0.013 for g
50.2).

We first depict in Fig. 1 the typical behavior withD of the
four lowest RPA energies@the first two roots of each factor in
Eq. ~27!# for T,Tc , together with their contribution to the
first moments. We have chosen an even case withV5200
levels (j'0.74) atT50.5Tc , in which the self-consisten
gap isD0'0.996Db . The lowest RPA energyv1 vanishes at
D5D0, becoming imaginary forD,D0 and remaining con-
siderably smaller than the quasiparticle pair energy 2l1 for
D.Db . The corresponding strengthG1 is therefore very
large and diverges atD5D0. The lowest root of thes5
21 factor becomes also imaginary forD,D08'0.38Db , but
approaches 2l1 above this value. The correspondin
strength, although diverging atD08 , becomes accordingly
much smaller thanG1 for D.Db , approaching the unper
turbed value. The remaining RPA energies are real for aD
and their strengths, even though larger than the unpertu
values, remain much smaller thanG1. As seen in the lower
panels, the lowest RPA mode provides the main contribu
to the total RPA strength and a significant contribution to
first energy moment forD;Db , although the contribution
from the other modes are also important and larger than
unperturbed values. Note that all contributions remain fin
and smooth for allD.

Figure 2 depicts the scaled total strengthm0 and the nor-
malized first energy momentm1 and quadratic dispersionm2
~all dimensionless!, defined by

m0[
«

vc
M0 , m1[

1

vc

M1

M0
, ~37!

m2[
3

vc
2 FM2

M0
2

M1
2

M0
2G , ~38!

for decreasing sizesj'0.08, 0.25, and 0.74, correspondin
to V51800, 600, and 200 levels, respectively, in the ev
system~note that the corresponding total number of man
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body states in the canonical ensemble are'73101081, 4
310359 and 10119). The scaling factors in Eqs.~37!–~38!
have been chosen such that in the normal~nonsuperconduct-
ing! case allmi→1 for T,«!vc , so that the BCS resul
for T.Tc is approximately 1. The deviation from
this asymptotic value will therefore reflect the effec
from the gap fluctuations. All cases correspond to
intermediate regime,10 Db /vc,j,1. RPA denotes here
results obtained from the approximations~32! and ~35!,
and diverge accordingly atT5Tc . For T.Tc they are
practically coincident for the different sizes considere
so that only a single RPA curve is seen. The CSPA res
remain smooth in the critical region, and approach tho
of RPA away fromTc . The CSPA breakdown occurs a
T/Tc'(0.29,0.3,0.31) in the even case an
'(0.29,0.27,0.18) in the odd case forj' 0.08, 0.25, and
0.74, respectively.

In a large superconductor,M0'Db
2/G25(gj)22 at T50

for j!1, so thatm0'Db /(vcjg2). Accordingly, as size de-
creases,m0 decreases forT&Tc , although the decrease i
the CSPA is less pronounced than in the BCS approximat
For T.Tc , the CSPA results form0 remain larger than the
normal value, and become almost size independent foT
well aboveTc , approaching the present RPA result. Thu

FIG. 2. The scaled total strength~top!, and the normalized first
energy moment~center! and dispersion~bottom! of the pair-transfer
spectral function, Eqs.~37!–~38! ~dimensionless!, in an even
~left! and odd~right! grain for size parametersj'0.08 ~casea),
0.25 ~caseb), and 0.74~casec) ~corresponding toV51800, 600,
and 200 levels in the even system!, according to NP projected
CSPA, RPA, and BCS results. The normal result forT,Tc is also
depicted.
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the enhancement of the total strength forT@Tc can be as-
cribed to the RPA correlations contained in the correct
factor of Eq.~31!.

In a large sample, the increase in the strength forT,Tc is
accompanied by a strong decrease inm1, which reflects the

appearance of the collective peak atĒ'0 ~in an exact ca-

nonical calculation, it actually appears atĒ'«5jDb .18! In
BCS, it can be seen thatM1 is of the order ofvc

2/jDb at T
50 for j!1, in which casem1;1/m0'jg2vc /Db . As size
decreases, the drop ofm1 for T,Tc becomes less pro
nounced, although the CSPA result becomes increasi
smaller than the BCS value. ForT.Tc , the CSPA result is
significantly smaller than the normal value for all sizes, a
depends again only weakly on the sizej for T@Tc . This
indicates that an appreciable enhancement of the streng

low Ē remains forT.Tc .
The normalized quadratic dispersionm2, which is a glo-

bal measure of the width of the spectral function, exhib
again a significant drop forT,Tc in large samples~in BCS,
m2 is again of order;1/m0 at T50 for j!1). As the grain
size decreases, this drop becomes less pronounced in
CSPA, whereas in BCSm2 may become at low temperature
even larger than the normal value. Moreover, the BCS re
exhibits a pronounced peak in large samples just before
transition, which is, however, totally absent in the CSPA.
contrast, very small deviations from the normal value ta
place forT.Tc in all approximations and sizes for this valu
of g.

The CSPA results for the odd grain are similar. The to
CSPA strength is slightly smaller than in the even case,
flecting weaker pairing correlations, andm1 and m2 are
therefore slightly larger than the corresponding even valu
Nevertheless, the parity dependence of the CSPA res
is much weaker than in BCS. For sizec, which is already
close to the BCS lower size limitjc

2 , the BCS result for
T,Tc differs considerably from that of the even cas
although this effect is not seen in the concomitant CS
result. The total strength exhibits initially in BCS and RP
a slight increase with temperature in small samples~as
the particle lying at the Fermi level becomes able to mo
to higher levels!, which lead in turn to a flat minimum in
m1. This effect could not be corroborated by the CS
results since it occurs for temperatures close to the CS
breakdown.

It should be mentioned that results in the present mo
depend on both the size parameterj and g ~i.e., on j and
Db /vc). Nevertheless, within the weak-coupling regim
the behavior with size and temperature of the previous qu
tities for other values ofg are similar to those in Fig. 2
At fixed j, the deviation ofm0 , m1, andm2 from the normal
result increases asg increases and, in particular, th
CSPA result for the dispersionm2 may be smaller than
the normal value forT.Tc . On the other hand, forT.Tc
the CSPA and RPA results form0 and m1 deviate from
the normal result even ifj,Db /vc . RPA correlations
are then essential for describing these scaled quantities
in this region.
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CSPA results form1 and m2 are theoretically confirmed
in Fig. 3, where comparison withexactthermal NP projected
GC results for a small configuration space (V510 levels!,
obtained with the exact eigenvalues of the Hamiltonian~1!
at effective size parameterj'0.74 ~corresponding to
g50.5), is made. The results differ from those of ca
c in Fig. 2 due to the larger ratioDb /vc . Above the break-
down temperatureT/Tc'0.31, the adiabatic CSPA resul
are in close agreement with the exact ones, which rem
totally smooth atT5Tc and show no evidence of the pea
in m2 displayed by BCS. A similar agreement is obtain
for the other size parameters of Fig. 2 and for o
grains. Note also that there is a good agreement betw
the exact and the RPA results forT!Tc , if j is not close
to jc .

The plain SPA results for these quantities deviate con
erably from those of the CSPA, particularly for the dispe
sion m2, as seen in Fig. 4 for the even caseb of Fig. 2 (V
5600), indicating the important role played by RP
correlations. On the other hand, the results obtained w
the effective RPA approximation determined by Eq.~36!
are in remarkable close agreement with the full CS
results for bothm1 and m2 at all temperatures, excep
for a narrow interval aroundTc , where it exhibits a small
bump, remaining nevertheless finite atT5Tc . A similar
agreement for these quantities is found for the other case
Fig. 2, as well as for the ultrasmall sizes considered in Fig
It provides therefore a much better gaussian evaluation
Eq. ~14! in finite systems, in all regimes, in comparison wi
the conventional approximations~31!–~33!.

FIG. 3. Comparison between exact and approximate results
the normalized first energy moment and dispersion in an even
with V510 andj'0.74.

FIG. 4. The normalized first energy moment and dispersion
the even caseb of Fig. 2, according to NP projected CSPA, SP
effective RPA, and BCS results.
7-7
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Figure 5 depicts results for the pair-transfer spectral fu
tion for the even casec in Fig. 2. Details about conventiona
RPA and BCS results for this quantity have been discusse
Ref. 18. We have set a widthh50.25« for the representation
of the d functions.18 For T,Tc ~top left panel!, the peak
arising from the diagonal termS0 ~which we have here lo-
cated atĒ'«, according to the exact results and the cano
cal energy correction18! is clearly dominant and CSPA cor
rections to the RPA results are small. Nevertheless, foT

'Tc , where the RPA result diverges atĒ50, the CSPA
strength remains finite, in agreement with the exact behav
and is significantly larger than the already normal BC
results. ForT.Tc , the CSPA strength at lowĒ is lower
and more spread than in the RPA, although the enhancem
over the BCS results remains significant. The RPA res
overestimate the strength at lowĒ for T close to Tc ,18

as seen in the right bottom panel where the compari
with exact NP projected GC thermal results for the para
eters of Fig. 3 is made. CSPA improves RPA, althou
the agreement with the exact spectral function is only qu
tative, in spite of the good prediction of the first ener
weighted moments~Fig. 3!. We should mention that result
obtained with the effective RPA approach determined by
~36! ~not shown! also improve those of the convention
RPA, but differ from those of the full CSPA as fluctuations
the RPA energies are not included. The ensuing peaks
hence narrower and similar to those of the conventio
RPA.

Finally, Fig. 6 depicts the behavior ofm1 for g50.2 and
j'1.5 ~cased), with V5100, as well as for theultrasmall
sizesj'3.7 ~casee) andj'15 ~casef ), for which BCS is
already normal for allT. The temperature is now in units o
the spacing«. The CSPA result remains smaller than t
normal result even for sizef, indicating the persistence o
pairing effects. For this size we have also calculated the

FIG. 5. The pair-transfer spectral function for the even casec of
Fig. 2, and increasing temperatures, according to NP proje
CSPA, RPA, and BCS results~in units of «21). The right bottom
panel shows a comparison with exact results for the paramete
Fig. 3.
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act thermal result that lies quite close to the CSPA res
except for T→0. It is also seen that whenj is close to
the even critical sizejc

1 , as in casee, the RPA result
ceases to be accurate at low temperatures, becom
too small, which reflects the RPA overestimation of t
strength at lowĒ.18 CSPA improves RPA results at low
temperature for casese and f ~where there is no CSPA
breakdown!, although it approaches the RPA results f
T→0.

IV. SUMMARY

The present adiabatic CSPA treatment of the pair-tran
correlation function is able to provide a simple yet reliab
description of the lowest energy weighted moments of
spectral function at finite temperature, significantly impro
ing BCS and RPA results in the crossover region aroundTc .
It also gives a fully consistent treatment of the zero and
imaginary RPA energies above the CSPA breakdown with
singularities. For the half-filled case, we have explici
shown that the zero mode provides a finite contribut
to the total strength and the two first energy momen
However, in order to achieve a closer agreement w
the spectral function, higher-order corrections are necess
which should include nonadiabatic effects at higher tempe
tures as well particle number projection at low temperatur
Nonetheless, the present approach is sufficient to con
the enhancement of the pair-transfer strength at low ener
Ē beyond the BCS critical temperature or sizes, wh
constitutes a clear evidence of the persistence of pai
effects.
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FIG. 6. The normalized first energy moment forj'1.5 ~case
d), 3.7 ~casee) and 15~casef ) in the even grain, according to NP
projected CSPA, RPA, and BCS results. The exact result for
ultrasmall casef is also depicted. The sparse dotted line indica
the normal result.
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