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We investigate the effects of gap fluctuations on the pair-transfer correlation and spectral functions in
nanoscopic superconducting grains at finite temperature, by means of the correlated static path approximation
(CSPA. The present approach is able to provide a reliable description of the lowest energy weighted moments
of the spectral function of small samples in critical regions, improving both the random-phase approximation
(RPA) and the SPA predictions. The results confirm the persistence of pairing effects in the spectral function
beyond the BCS critical temperatures and sizes, which is visible through the enhancement of the strength at
low energies and the concomitant decrease in the normalized first energy moment. The role played by the zero
and the imaginary quasiparticle RPA energies present in the CSPA is also discussed.
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[. INTRODUCTION tures, which are visible through an enhancement of the
strength at low energlf — 2. Although a basic microscopic
Since the development of individual nanometer-scale aluunderstanding of these effects in the fluctuation dominated
minum grains by Ralph, Black, and Tinkhdra great effort regime can be achieved by means of the quasiparticle
has been devoted to understand in detail the effects of superandom-phase approximatigiRPA),*® which takes into ac-
conducting pairing correlations in small electron systém3. count the small amplitude quantum fluctuations/of this
Nanoscopic grains are characterized bydiacrete energy  approach becomes unreliable in the vicinity of the BCS tran-
spectrum, with a mean energy spacing between independesition, where it develops divergencies associated with the
electron levels: «<%2/mk:V that can be of the same order as onset of a zero energy mode.
the bulk gapA,. In these circumstances, the conventional The aim of this work is then to examine the adiabatic
BCS approximation, based on an independent quasiparticleorrelated static path approximatitSnCSPA to the pair-
picture, is not longer accurate. The higher-order correlationdransfer spectral function, or more precisely, to its Laplace
which can be conveniently visualized fisctuationsof the  transform that is the imaginary time correlation functidn.
pairing order parametéf,become increasingly important as This quantity determines, through its derivatives, the energy
the size decreases, i.e., as the rafia, increases, and origi- weighted moments of the spectral function, and also exhibits
nate non-negligible pairing effects for temperatures, maga great sensitivity to pairing effects. The CSHRef. 12
netic fields or sizes for which a superconducting BCS solutakes into account both the large amplitude static fluctuations
tion no longer exists. Accordingly, the BCS phase transition®of A (Ref. 14 plus the RPA correlations, and is known to
become softened, and a smooth crossover to the so-callggovide an accurate approximation to the partition function
fluctuation dominated superconductivity regime endiés. in the crossover region around the critical temperature. As
In the latter, pairing effects may become evident throughwill be seen, the adiabatic CSPA approach is able to yield a
observables other than a spectroscopic ag3 simple smooth reliable description of the correlation function
One of the main signatures of pairing correlations is then critical regions, improving RPA results. It also provides a
enhancement of pair-transfer matrix elements. It is wellconsistent treatment of the zero RPA modes, as well as of the
known that the matrix element for Cooper pair transfer becomplex modes that arise in the CSPA when the RPA is
tween superconducting ground states is strongly enhancedyaluated at a nonstationary mean field, above a low break-
being essentially proportional to the pairing order parametedown temperature. It should be mentioned that at low tem-
A. 518 This will lead to a huge peak in the associated pair-peratures, where CSPA fails, exact canonical calculations for
transfer spectral functiol;*® which is absent in a normal the standard discrete pairing Hamiltonian can be done, in
system. This quantity exhibits therefore a very high sensitivprinciple, using Richardson’s method for obtaining the exact
ity to pairing correlations and can be used as an indicator o&igenstate&>! This method has been recently applied at
pairing effects in the fluctuation dominated regime. Inzero temperature for evaluating thermodynamic propéfties
nuclear physics, it has been employed to detect pairing efand correlation functions: Nevertheless, its applicability at
fects in nuclei at high spifh] where superconductivity may higher temperatures is limited in practice by the huge num-
become gaple$$and hence it is hard to detect through directber of states involved in a thermal calculation as each excited
observation of the spectrum. A recent exact calculation irstate requires a separate evaluation. The CSPA provides then
small configuration spac¥sindicates that evidences of pair- a simple alternative for finite temperatures. Improvements on
ing correlations should in principle, persist in this quantity the low-temperature limit of the CSPA have been recently
for T>T, in small systems or foe>A, at low tempera- also developed®
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In Sec. Il, we describe the main features of the pair-These expressions hold fany initial distribution Py . In a
transfer correlation function at finite temperature, includinggrand canonicalGC) treatment at temperatufie= 1/k8 and
the independent quasiparticle approximation to this quantitfixed number parityNP) v==*1,
and the adiabatic CSPA approach, in an ensemble with fixed
number parity. The half-filled situation is discussed in detail. 1 Ny am E,

We also describe the standard and effective RPA approaches PK_EZ [1+v(=1)"k]e 7=,

that can be obtained from the CSPA through a Gaussian ap-

proximation. Finite temperature results for parameters typiwhere Z=Tr[P e BH] with P,=1(1+v€'™), is the GC
cal of nanometer scale grains are given in Sec. Ill, whichpartition function for fixed NP, and Eq2) becomes
include calculations with up to 1800 levels and comparison

with full exact results for small configuration spaces. Finally, G(r)=2Z TP e—(ﬁ—f)ﬁQe— TEQT]. (6)
conclusions are drawn in Sec. IV. !

Il THEORY B. Independent quasiparticle approximation

A. Pair-transfer correlation function In a basic independent quasiparticle descriptidns ap-

) ) - o proximated by an operator of the form
We consider a discrete pairing Hamiltonian of the form

— h= 2 exNk—Ach, cf - —Afcy_cys (7)
H=2 (ex=pINi=GQ'Q, (D i
in which case Eq(6) becomes
Nk:Cl+Ck++Cl—Ck7= QTZE 'kaLCE,,
K G(7)=Spt > Sie 2wt ™, (®)
K
where|k*) denote time-reversed single-electron states with

energiess,, G>0 is the pairing strengthy, are suitable herex, = \s2+|AZ| are the quasiparticle energies and
weight factors, and the sums oveare restricted to a finite

interval around the Fermi levgl. For y,=1, Q' creates a e AN 0* )2
standard Cooper pair. $:—k, ros= |y2|f ( __k) ,
Denoting with |K) the exact many-body eigenstates of 2 sinf(B\y) M

Eq. (1), with H|K)=Ey|K) andEx=Eyx— uN , the imagi-
nary time correlation functidi for the operatoQ' can be Yk k7k’Ak’ afy

. t
defined as So=(Q ><Q>+§, B e (9)

G(nN=(Qa(NQN = Pyl(K'|Q"|K)[?e ExEx), yk P

(Qa(nQH= &, Pul > QH=> =(Q)*, (10
) k

where Qp(7)=e™Qe ™ and Py is the initial statistical Bh| | 2vT 1

weight of statdK) (ZxPx=1). Its Fourier transform in real f=tan o 1+ T sinh( BNy’ (11)

time gives the spectral or strength function for pair tranffer,
with T'=TItanif(8\/2). The expressions for the full GC
ensemble correspond to=0 in Eqg. (11). Here S
=3« Px|(K|QT|K)|? contains thediagonalterms in Eq.(2),
which arise in the present approximation whap+0.'®
_ 2 P I(K'|Q |K)|25(E—E = 3 They represent the_traqsitions between nearly degenerate
bt K Kr =K states in the exact pictufee., between the superconducting
’ ground states of thsl andN+ 2 systems in an even grain at
where E=E— 2y, while its derivatives at=0 determine T=0), and are essential in the present descriptiofihey
the energy weighted moments $(E), account for a major fraction of the total strengii0) in the
superconducting phase, practically exhaust@¢(0) in a

S(E)=%ﬂle(f)efgdr

% = n= () large system. The remaining terms in E8§) correspond to
Mn= foS(E)E dE=(-1)"G"(0). (4 absorption 6,) and depletion §,) of quasiparticle pairs in
excited states, the latter possibility arising at a finite tempera-
Forn=0, Eq.(4) yields the total strength ture. The spectral function moments then become
Mo= fﬁ S(E)dE=G(0)=(QQ"). 5 Mn:SO5nO+; (2N [SCH(-1)"S]. (12

144517-2



EFFECTS OF GAP FLUCTUATIONS ON THE PARR ..

Sy will not contribute toM , for n>0. A decrease in the ratio
M, /My is therefore a signature of pairing effects, indicating
the concentration of the strength at Idw

In a standard Hartree-like NP projected BCS approxima
tion for Hamiltonian(1), ey=¢e,—u and A=y A, with A
determined by the self-consistent gap equation

1
A=G(Q), (@)= 5 GAX Inlfine. (13

The diagonal tern$, then becomes proportional &?. The
transition to the normal phase at=T. will be reflected in
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BCS solution. The minimum of the potentiél5) is deter-
mined precisely by the gap equati¢hd).

Equation(16) accounts for the small amplitude quantum
fluctuations around the running, and remains finite and

positive for w,—0, as well as for imaginarys, provided
Blw<2m V k,A. This condition determines the CSPA
breakdown temperaturg; <T. below which the full CSPA
is no longer applicabl&

Let us examine now thadiabatic CSPA approach to the
correlation functiort® where just transitions between states
with the sameorder parameter§.e., with the samé\ in the
present situationare considered. The final result, which can

the Vanishing 0'50 and hence in a Sharp increase of the ratiobe forma"y obtained by the analytic continuation of the Fou-

M, /M.

C. Gap fluctuations

Due to the effects of gap fluctuations, however, the previ-
ous BCS transitions are softened in small systems, and cor-

rections to the BCS correlation function and moments be
come significant. The fluctuations of the pairing order
parameterA can be rigorously introduced by means of the

Hubbard-Stratonovich transformation and the ensuing path-

integral representation of the partition functifithe CSPA
partition function is obtained by conservitgrge amplitude
static plus small amplitude quantum fluctuationsAoand is
given by?

2 ©
z=—ﬁ f e AR Crpa(A)A dA, (14)
0
where
FA)=A%G— B~ ITP, e Bh), (15)
F(A)=Ek elNg—A(QT+Q) +hy,
oy Sinh(B\y)
Croa(A) =[] =— ————, 16
RPA( ) X 2)\k .._(lgwk) ( )
sSinn ——
2
with e =e— pu— 5G|, ho=3G=/ ¥4, Ak

= \/sk§+|y§|A2, and w, are the positive quasiparticle RPA
energies around the runniy, determined by the equation

17
Here R(w,A) is the finite temperature response madtftibor
the operators@. ,Q_)=(Q",Q) aroundh(A),

def1+GR(w,A)]=0.

(u? )*uﬁ'_uizo' (UK*U')*
K (,U_Z)\k a)+2)\k ’

R(m,(w,A)=§k: f (18
whereo,o' =+, uf =yu2, u,=—vyivZ. The RPA ener-
gies wy can also be obtained as the eigenvalues of the ass
ciated RPA matrix?!® The SPA partition functiol{ is ob-
tained by neglecting the RPA correcti¢h6), and includes
just the large amplitude static fluctuations &faround the

rier coefficients ofG(7) in the interval[0,8], is essentially
the average oveA of the RPA correlation function plus a
constant term. We obtain

G(T)=fmp(A)G(T,A)dA, (19
) 0
wherep(A)=(28/G)e P M) Crpa(A)A/ Z and
G(T,A)ZSO-F; Sfe Tkt S, ek, (20)
etﬁwk/ZFki
T (21
Zsim-(&)
2
A7 Iy+Ty -
SO_E_,B_G_ k  Bog ' 22

where the RPA strengths, can be obtained from the RPA
response function fo®, =QT,

Rerea(@,8)={[1+GR(w,A)] *R(w,A)}
e Ty

w—w, owtowy

. (23
K

The CSPA moments in the adiabatic approach can then be
expressed as

M= fxpmwn(mdA, (24)
0

Mn<A>=soano+; ol[SE+(—1)"S ]

Equation(22) represents again the contribution of the diag-
onal elements, with the first two terms accounting for the
Hartree contribution tdQQ") [(8G) ! is just the average
of A%/G? in the absence of field@g=0)]. The total CSPA
strengthM, agrees in this way with the average obtained
from the CSPA partition function,

190InZ
B 9G

=<Q*Q>=Mo+;|vﬁl<Nk—1>. (25)
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The SPA results correspond to t@e—0 limit in Eq. (23), C |,y2,|fk/)\k,a1_‘7k
i.e., o— 2\, g —T2", in which case Eqg19) and(24) T=—, C 1=8G2> kz—zk' (28)
become exactly the SPA average of E@.and(12).2° The Wy K’ [wf—4N,, ]2

most noticeable SPA effect in a small system is the subsis-

tence of a nonvanishing diagonal te@y for T>T, due to Whereoy,=1 (—1) if k=0 (<0). It can be verified that

the gap fluctuations. I'v=—3dw/dG, so that the total CSPA strengtil, be-
In the CSPA, the sum in Eq20) is just the standard RPA comes identical to the CSPA avera@d) (in the symmetric

correlation function for the runnind. Note, however, that case =] yg|(Ny—1)=0). The total contribution of each

in the CSPA each RPA mode contributes in addition to theRPA mode toG(7,A) andM,(A) becomes

diagonal term S, through the last term in Eq22). This

correction becomes particularly relevant when the lowsgst B

is close to zero, lowering the averageSgfas compared with COS'{ (E N T) @k

the SPA evaluation. This indicates a gradual replacement of Gy(7,4)=T Bo " By [ (29
the E=0 strength by the lowest RPA mode &sincreases sink(Tk) “

aboveT.. Moreover, this contribution becomes essential in

the case of vanishing or imaginary RPA energies, as only the

completeexpression folG(7,A) andM,(A) remain real and cotk( @) _s i n even
finite (above the CSPA breakdowrin contrast with the plain M o(A) =T o} 2 " Bw,’

RPA term. This will be verified below for the half-filled case. 1, n odd.

(30)
D. The symmetric half-filled case
Note that the RPA correlations do not affect the first moment.

It can be shown from Egq.(28) that 2, w=

. _ —1(010G)Zwi=2, T2\ V A, asZwf is the trace of
respect to the Fermi level, i.es, = —&\, Y—«= Yk wherg the effective reduced RPA matri.

k>0 (<0) denotes here levels abovbelow) the Fermi The lowest roow, of the =1 factor is the “collective”
level, such thah _, =\, f_,=f,. Inan everlodd system,  nde, which forT<T, vanishes at the nonzero solution of
the chemical potential will lie halfway between the central Eq. (13), as can be seen from E(R7). In such a casel;
levels (at the central [evej so thatk=*1,%£2,... *0/2  _ o Nonetheless, Eq€29)—(30) remainfinite if w,—0 for
(0,£1,...,20/2), with N\ <\, for k=0. The total somek andA. In this limit,

number of electrons i€ ((1+1). In the independent quasi-

Let us now analyze in more detail the symmetric half-
filled case, dealing with levels, located symmetrically with

particle approximation, Eq$8) and (12) become (Bl2—7? B
Gk(r,AHck[T—l—z}m(wE),
B
cosh| 5 —7 2Nk
G(1)=Sp+ > I'Y . : (26) C 2C
(M=% 3 TSt MMAH%, M(8)=Ci, Ma(4)— =5,
M= Sedno+ > FO(Z)\k)”[ coth( BN, n even with C, finite [Eq. (28)] andM ,,(A)—0 for n>2. The zero
" ot Tk 1, n odd, mode will then provide dinite contribution toM,, M, and

_ M, while its contribution to higher moments vanishes. Note
with Tf= %] yg|f(1+ o) and ai=|ey|/\¢. The SPA result  also that ther= — 1 term in Eq.(27) will also develop a zero
is just the average ovex of these expressions. root at a smaller gap determined BE | yZ| fa/2\ =1, if

The RPA equatiori17) can now be written &8 Tis sufficiently low.

For smaller values ofA, w; becomes purely imaginary
(w§<0, as seen in Fig.)1Nonetheless, Eq$29)—(30) re-
main real and finite forw, imaginary if 8|l |<2m, i.e.,
above the CSPA breakdown. In such a case, Shce0, Eq.
so that the RPA energies will be the roots of each factor in30) becomes

Eq. (27). For nondegenerate levels & &, if k#k'), each

| vl fihag @

w2—4)\ﬁ

I1

o==*1

1+2G§k‘, =0, (27)

factor will possess in the even ca&¥?2 distinct rootse?, ni2 2 Bloy
) - ——— —cot——|, N even
with the lowest one located below4 for G>0 and the rest IT " (=) 5“°,8|wk| co )

between 42_, and 47, whereas in the odd case the (—)n-1)2 n odd.
=1 factor will have an additional roab3<4\3 due to the
k=0 term(absent forc=—1 asap=0). All roots can then It can be seen thaWy(A)>0, so that an imaginary,

be labeled asv,, with k=0 (<0) for those of theo=1 provides apositive contribution to the CSPA strength. Its
(—1) factor. contribution to higher moments can nevertheless be negative.
In the symmetric case, EqR3) impliesT', =T with Even contributions diverge fq8|w,|— 2.
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o OF/4% o
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Mok
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A/Ay

FIG. 1. Top: The square of the four lowest quasiparticle RPA G (7)=M,+ >, I,
energies(left) and the corresponding strengtf®8) (right) as a K

function of A, for size parameteté=¢/A,~0.74, atT=0.5T..
Full (dashed lines depict the first two rootsa(andb) of the o=

+1 (—1) factor in Eq.(27). Dotted lines depict for reference the

first two quasiparticle pair squared energies\(Z (left) and
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oeff-1o]
ol

ForT<T,, a similar procedure around the solutitp+ 0 of
Eq. (13) yields

G(T)=§ Ty (32

1/2

AO 8’7TB
Z~e PTEICr(Ag) = : (33
G| 7(Ag)
2 | ¥4l afy
F'(A):E—Zk N feag+A ). (34)
In the half-filled case, we then obtain
cos E—
R
[ Boy 2 '
SII’]"(T)
(35

whereMg is determined by Eq$33) and(25) andw) are the

strengths(right). Bottom: The corresponding contributions to the RPA energies fol=A,. The lowest RPA energy now van-
total strength(left) and the first energy moment of the spectral ishes, but Eq(35) remains finite forT<T [if w,—0, the
function (right). A, and T, denote the bulk gap and critical tem- corresponding term in E¢35) become<C,7(7— B)/ 3, lead-

perature.

E. Standard and effective Gaussian approximations

ing to Mg,=0 and the same previous expressiods
:Ck' M2k:2Ck/181 andMnKZO, if n>3]

Equationg31)—(33) provide an accurate approximation to
Z andM, away fromT,, butdivergefor T—T, [as F'(0)

The CSPA derived quasiparticle RPA approximation 0= at T=T,] failing therefore in the crossover region
G(7) is, in principle, given by Eq(20), evaluated at the aroundT,. In the previous scheme, the influence of the mea-

self-consistent ga@\y that minimizesF(A). However, in

sureA in p(A) was neglected when determining the expan-

order to obtain a more accurate evaluation of the diagonadjon point A,. This factor arises from the original two-

term S, (and hence of the total strengfhy), it is preferable

dimensional integrdlthe gauge angle has been integrated out

to evaluate Eq(14) in the Gaussian approximation around in Eq. (14)] and represents and effective multiplicity of the
A and determind/, through Eq(25). We may then recover  «intrinsic” partition function,?® accounting for its reorienta-

Sy as
so=Mo—2k (Sc+S0),

such thatG(0)=M,.
For T>T,, a gaussian approximation to Ed.4) around
Ap=0 leads td?

Z% e,ﬂ}-(o)]i[ Slnr(ﬂ| 8k|)
k

) Bwk)’ 3D
sinh ——

2

wheree #79) s just the normal partition function and,

are the RPA energies fa&x=0. In the half-filled case, Eqs.

(31 and(25) yield My= =, I" coth(Bw/2), implying Sy=0
and

tions in the gauge space. It is possible to improve the Gauss-
ian approximation in the critical region in a simple way just
by taking into account the effect df on the potentiat? The

new expansion point is determined from the minimization of
the effective potential F(A)=F(A)— B N A/G, which
leads to the equation

1
1= 5 G| 2 [ Al fi/\ct LUBAY) |, (36
k

whose solutiomA y>A, remains nonzero for alf>0. The
ensuing approximation to Eq14) has the same forn33),
with Ag—A, and F'(Ag)— F'(Ao). The result remains fi-

nite and smooth throughout the crossover region, including
T=T., and approaches Eg81)—(33) away fromT,.

Ill. RESULTS

We consider in what follows the widely employed, uni-
formly spaced modéft where a constant spacing—e,_,
=¢ is assumed and pairing is restricted to an energy band of
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width 2w.= Qe around the Fermi levewith y,=1 (0) if
lex—u|<w: (>w)]. We set the coupling strengti®
=ge, with g=0.2 (assumed size independgnthe relevant
size parameter is the spacing to bulk gap ratmee/Ay,
whereA,=2w.e 9 is the solution of Eq(13) in the bulk
limit e—0 (i.e., é<1) for weak coupling. The bulk critical
temperature isT.,=aAy, with a=e¥/7~0.567 (y is the
Euler’s constant

Nanometer-scale grains may possess size parameters ¢ |

order one or even larger. In the present model, (E@) pre-
dicts a parity dependent lower-size limit for
superconductivity;* namely ¢ ~3.56, & ~0.89 for an
even and odd grain, respectively, such thatforé, no su-
perconducting solution of Eq13) exists atT=0. Neverthe-

less, for these sizes gap fluctuations become very important

The gap fluctuation in the SPA is of the ortfenf (A2)
~A§§at/lnt for t=T/T.>1 (and T<w,.), approaching the
same order ad? for é&~1. Moreover, it has been shoth

that neither BCS nor perturbative methods are accurate a 1

T=0 in the intermediate regimee<A,<\wcs, i.e.,
Aplw.=é<1, where Ay/w.,=2e Y9 (~0.013 for g
=0.2).

We first depict in Fig. 1 the typical behavior with of the
four lowest RPA energidghe first two roots of each factor in
Eq. (27)] for T<T,, together with their contribution to the
first moments. We have chosen an even case Rith200
levels ¢~0.74) atT=0.5T., in which the self-consistent
gap isAp~0.998\,. The lowest RPA energy, vanishes at
A=A, becoming imaginary foA <A, and remaining con-
siderably smaller than the quasiparticle pair energy for
A>Ay. The corresponding strengthi; is therefore very
large and diverges ah=A,. The lowest root of ther=
—1 factor becomes also imaginary far<A(~0.381,, but
approaches ®; above this value. The corresponding
strength, although diverging at;, becomes accordingly
much smaller thad™; for A>A,, approaching the unper-
turbed value. The remaining RPA energies are real foAall

PHYSICAL REVIEW B57, 144517 (2003

g |
0.5
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g [

0.5

0

FIG. 2. The scaled total strengttop), and the normalized first
energy momentcentej and dispersioribottom of the pair-transfer
spectral function, Eqs(37)—(38) (dimensionless in an even
(left) and odd(right) grain for size parameteré~0.08 (casea),
0.25(caseb), and 0.74(casec) (corresponding td)=1800, 600,
and 200 levels in the even systegnaccording to NP projected
CSPA, RPA, and BCS results. The normal resultTer T, is also
depicted.

body states in the canonical ensemble aréx 1091 4
x 10°°° and 13'9. The scaling factors in Eqg37)—(38)
have been chosen such that in the nortnahsuperconduct-

and their strengths, even though larger than the unperturbgflg) case allm,—1 for T,e<w., So that the BCS result

values, remain much smaller th&h. As seen in the lower

for T>T, is approximately 1. The deviation from

panels, the lowest RPA mode provides the main contributioRhjs asymptotic value will therefore reflect the effects
to the total RPA Strength and a Significant contribution to thqi‘om the gap fluctuations. All cases Correspond to the
first energy moment foA~A,,, although the contribution jntermediate regim&® A,/w.<&é<1. RPA denotes here
from the other modes are also important and larger than thessults obtained from the approximatiorid2) and (35),
unperturbed values. Note that all contributions remain finiteand diverge accordingly aT=T.. For T>T, they are

and smooth for allA.

Figure 2 depicts the scaled total strength and the nor-
malized first energy momem; and quadratic dispersian,
(all dimensionless defined by

my=—My;p, m i& (37
o c o l_(‘)CMO
3(M, M?
my=—|——-——|, (39
? wg Mo MS

for decreasing sizeé~0.08, 0.25, and 0.74, corresponding

practically coincident for the different sizes considered,
so that only a single RPA curve is seen. The CSPA results
remain smooth in the critical region, and approach those
of RPA away fromT,.. The CSPA breakdown occurs at
T/T,~(0.29,0.3,0.31) in the even case and
~(0.29,0.27,0.18) in the odd case fér~ 0.08, 0.25, and
0.74, respectively.

In a large superconducta¥) o~A2/G?=(g¢) 2 at T=0
for £<1, so thatmy~A,/(w.£9%). Accordingly, as size de-
creasesm, decreases folT<T., although the decrease in
the CSPAis less pronounced than in the BCS approximation.
For T>T,, the CSPA results fom, remain larger than the

to =1800, 600, and 200 levels, respectively, in the evemormal value, and become almost size independentTfor
system(note that the corresponding total number of many-well aboveT., approaching the present RPA result. Thus,
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the enhancement of the total strength 1o T. can be as- [ oo T
cribed to the RPA correlations contained in the correction 1 Exact :
factor of Eq.(31). ~ [

In a large sample, the increase in the strengthTfarT . is .
accompanied by a strong decreaseripy which reflects the 05

appearance of the collective peak@tvo (in an exact ca-

nonical calculation, itactuallyappearsﬁivs=§Ab.lB) In P Y N R T SR
BCS, it can be seen thadl, is of the order ofw?/éA, at T 0 05 1 15 2 0 05 1 15 2
=0 for £<1, in which casen, ~1/my~ £ég2w. /Ay . As size
decreases, the drop of, for T<T. becomes I_ess pro- FIG. 3. Comparison between exact and approximate results for
nounced, although the CSPA result becomes increasinghhe normalized first energy moment and dispersion in an even case
smaller than the BCS value. For>T,, the CSPA result is  with Q=10 andé~0.74.

significantly smaller than the normal value for all sizes, and

depends again only weakly on the sigefor T>T,. This CSPA results fom, andm, are theoretically confirmed
|nd|cites that an appreciable enhancement of the strength iﬂtFig. 3, where comparison witexactthermal NP projected
low E remains forT>T,. GC results for a small configuration spac® €10 levels,

The normalized quadratic dispersiam, which is a glo-  obtained with the exact eigenvalues of the Hamiltoniin
bal measure of the width of the spectral function, exhibitsat effective size parametegé~0.74 (corresponding to
again a significant drop fofF<T. in large sample¢in BCS, g=0.5), is made. The results differ from those of case
m, is again of order~1/my at T=0 for é<1). As the grain ¢ in Fig. 2 due to the larger ratid,/w.. Above the break-
size decreases, this drop becomes less pronounced in tHewn temperaturél/T ~0.31, the adiabatic CSPA results
CSPA, whereas in BC8, may become at low temperatures are in close agreement with the exact ones, which remain
even larger than the normal value. Moreover, the BCS resufotally smooth aff =T, and show no evidence of the peak
exhibits a pronounced peak in large samples just before th@ M, displayed by BCS. A similar agreement is obtained
transition, which is, however, totally absent in the CSPA. Infor the other size parameters of Fig. 2 and for odd
contrast, very small deviations from the normal value taked'@ins. Note also that there is a good agreement between
place forT>T, in all approximations and sizes for this value ;geg exact and the RPA results for<T,, if £ is not close
of g. c:

%he CSPA results for the odd grain are similar. The total The plain SPA results for these quantities deviate consid-

CSPA strength is slightly smaller than in the even case, regrably from those of the CSPA, particularly for the disper-

: P : , in Fig. 4 for the even casef Fig. 2 ((
flecting weaker pairing correlations, armd; and m, are ?on My, as seen In ;
therefore slightly larger than the corresponding even vaIuesTeOO)’. indicating the important role played b_y RPA.
rrelations. On the other hand, the results obtained with

Nevertheless, the parity dependence of the CSPA result e effective RPA approximation determined by Eq36)

i h ker than in BCS. For si hich is al
's much weaker than in BCS. For sipewhich is already are in remarkable close agreement with the full CSPA

close to the BCS lower size limi§, , the BCS result for results for bothm. and m. at all temperatures. excent
T<T, differs considerably from that of the even case, ) 1 2 peratures, p
for a narrow interval around ., where it exhibits a small

although this effect is not seen in the concomitant CSP, ump, remaining nevertheless finite B=T,. A similar

result. The total strength exhibits initially in BCS and RPA agreement for these quantities is found for the other cases in
a slight increase with temperature in small samplas 9 4 . : L
Fig. 2, as well as for the ultrasmall sizes considered in Fig. 6.

th rticle lying at the Fermi level m le to mov . ; .
© parficie ying e re evel becomes able to mo Gt provides therefore a much better gaussian evaluation of

to higher levelg which lead in turn to a flat minimum in Eq. (14) in finit i in all reai X : ith
m,. This effect could not be corroborated by the CSPA g.(14) in INite Systeéms, In all r’egimes, in comparison wi
results since it occurs for temperatures close to the CSPH?e conventional approximatiori81)—~(33).
breakdown.

It should be mentioned that results in the present model
depend on both the size paramefeandg (i.e., on ¢ and _
Apylwc). Nevertheless, within the weak-coupling regime, g |
the behavior with size and temperature of the previous quan
tities for other values ofy are similar to those in Fig. 2.
At fixed ¢, the deviation ofny, m;, andm, from the normal
result increases ag increases and, in particular, the

CSPA result for the dispersiom, may be smaller than

N

105

the normal value folf>T.. On the other hand, fof >T, /T T

the CSPA and RPA results fan, and m; deviate from ¢ ¢

the normal result even if§<A,/w.. RPA correlations FIG. 4. The normalized first energy moment and dispersion for
are then essential for describing these scaled quantities evéie even casé of Fig. 2, according to NP projected CSPA, SPA,
in this region. effective RPA, and BCS resullts.
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o3[ T T o3 .
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% I T/T=05 ] rt

0.1F J0.1f

03 .
% ! L ! 1 ! L ! | L !
@ | 0 0.5 1
0.1 T/e
! ned L3, FIG. 6. The normalized first energy moment fé+ 1.5 (case
5 10 15 2 4 6 d), 3.7 (casee) and 15(casef) in the even grain, according to NP
IR Ble projected CSPA, RPA, and BCS results. The exact result for the

ultrasmall casd is also depicted. The sparse dotted line indicates
FIG. 5. The pair-transfer spectral function for the even case  the normal resuilt.

Fig. 2, and increasing temperatures, according to NP projected
CSPA, RPA, and BCS resultin units of e “1). The right bottom  act thermal result that lies quite close to the CSPA result
panel shows a comparison with exact results for the parameters efxcept forT—0. It is also seen that wheé is close to
Fig. 3. the even critical size£, , as in casee, the RPA result
Figure 5 depicts results for the pair-transfer spectral funcs Sases to be. accurate at low temperatures, becoming
. e ) ! too small, which reflects the RPA overestimation of the
tion for the even casein Fig. 2. Details about conventional — 18 )
RPA and BCS results for this quantity have been discussed ipiréngth at lowE.™ CSPA improves RPA results at low
Ref. 18. We have set a width=0.25 for the representation (emperature for cases and f (where there is no CSPA
of the & functions!® For T<T, (top left panel, the peak breakdown, although it approaches the RPA results for
arising from the diagonal terr§, (which we have here lo- T-0.

cated aE~e¢, according to the exact results and the canoni-
cal energy correctiofi) is clearly dominant and CSPA cor- IV. SUMMARY

rections to the RPA results are small._l\levertheless,'l'for The present adiabatic CSPA treatment of the pair-transfer
~T., where the RPA result diverges Bt=0, the CSPA correlation function is able to provide a simple yet reliable
strength remains finite, in agreement with the exact behaviogescription of the lowest energy weighted moments of the
and is significantly larger than the already normal BCSgpectral function at finite temperature, significantly improv-
results. ForT>T_., the CSPA strength at lo is lower ing BCS and RPA results in the crossover region arotind

and more spread than in the RPA, although the enhancemelttalso gives a fully consistent treatment of the zero and the
over the BCS results remains significant. The RPA resultsmaginary RPA energies above the CSPA breakdown without
overestimate the Strength at |o§ for T close to TC,:L8 Singularities. For the half-filled case, we have eXpllCltly
as seen in the r|ght bottom pane| where the Comparisoﬁhown that the zero mode prOVideS a finite contribution
with exact NP projected GC thermal results for the paramio the total strength and the two first energy moments.
eters of Fig. 3 is made. CSPA improves RPA, althoughHowever, in order to achieve a closer agreement with
the agreement with the exact spectral function is only qualithe spectral function, higher-order corrections are necessary,
ta’[ive’ in Spite of the good prediction of the first energyWhiCh should include nonadiabatic effects at hlgher tempera—
weighted moment$Fig. 3). We should mention that results tures as well particle number projection at low temperatures.
obtained with the effective RPA approach determined by EqNonetheless, the present approach is sufficient to confirm
(36) (not shown also improve those of the conventional me enhancement of the pair-transfer strength at low energies
RPA, but differ from those of the full CSPA as fluctuations of E beyond the BCS critical temperature or sizes, which
the RPA energies are not included. The ensuing peaks awmnstitutes a clear evidence of the persistence of pairing
hence narrower and similar to those of the conventionaéffects.
RPA.

Finally, Fig. 6 depicts the behavior ofi;, for g=0.2 and
&£~1.5(cased), with =100, as well as for theltrasmall
sizesé~3.7 (casee) and é~15 (casef), for which BCS is R.R. and N.C. acknowledge support from CIC and
already normal for alll. The temperature is now in units of CONICET, respectively, of Argentina, and a grant of Funda-
the spacinge. The CSPA result remains smaller than thecion Antorchas. They are grateful to the hospitality of the
normal result even for siz& indicating the persistence of Physik Department der Technischen Univetsitélinchen,
pairing effects. For this size we have also calculated the exwhere part of this work was done.
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