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Stability of driven Josephson vortex lattice in layered superconductors revisited

S. N. Artemenko and S. V. Remizov
Institute for Radioengineering and Electronics of Russian Academy of Sciences, Mokhovaya 11, 125009 Moscow, Russia

~Received 22 October 2002; revised manuscript received 23 January 2003; published 28 April 2003!

We analytically study stability of sliding lattice of Josephson vortices driven by a transport current in the
stack direction in strong in-plane magnetic field. In contrast to recent findings we obtain that there are no
diverse configurations of stable vortex lattices, and, hence, the stable sliding vortex lattice cannot be selected
by boundary conditions. We find that in the bulk samples only the triangular~rhombic! lattice can be stable, its
stability being limited by a critical velocity value. At higher velocities there are no simple stable lattices with
single flux line per unit cell. Oblique sliding lattices are found to be never stable. Instability of such lattices is
revealed beyond the linear approximation in perturbations of the lattice.
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I. INTRODUCTION

Strong anisotropy of layered superconductors, such
high-Tc superconductors, results in a number of specific f
tures. In particular, magnetic field parallel to the conduct
layers induces coreless vortices similar to fluxons in the c
ventional Josephson tunnel junctions.1,2 In contrast to the
fluxons in the conventional Josephson junctions, the cur
and magnetic field of a Josephson vortex in layered su
conductors are spread over many conducting layers.
transport current flowing in the stack direction forces t
vortices to slide along superconducting layers. Since in c
trast to standard Abrikosov vortices the Josephson vort
are coreless, their motion does not involve perturbations
the amplitude of the superconducting order parameter
corresponds at low temperatures to an underdamped reg
So the velocity of such vortices, in principle, can be qu
large. Many dynamical properties of Josephson vortices
layered superconducting crystals are similar to those of fl
ons in artificially prepared stacked Josephson junctions~see,
e.g., Ref. 3!. The Josephson vortices can be arranged i
lattice; however, possibility of multiple metastable states c
responding to vortex configurations that do not form a
lattice is predicted as well at small magnetic field.4 At larger
magnetic field the Josephson vortices form a lattice a
hence, in the flux-flow regime the coherent motion of t
vortex lattice is expected. Such a regime must induce co
ent electromagnetic radiation from the uniformly sliding la
tice. The flux-flow regime of this lattice was observed
bismuth based cuprate superconductor mesa structure5–9

However, the regime of coherent sliding of the lattice w
found to be limited by a maximum voltage and, hence, b
maximum lattice velocity.6–9 Above this voltage either a dif
ferent regime was observed7,8 or no stable I-V curves were
found in a close range of currents and voltages.6 In addition,
above the maximum velocity a broadband non-Joseph
emission in the microwave region was observed.7,8

The upper limit for the velocity of the coherent flux-flo
regime was obtained theoretically in our studies of stabi
of the vortex lattice,10,11and was related to the interaction
the vortices with the Josephson plasma modes excited
moving vortices. A regular motion of the Josephson vortic
in a form of the rhombic lattice, usually called the triangu
0163-1829/2003/67~14!/144516~6!/$20.00 67 1445
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lattice, was found to be stable at velocities up to a criti
valuevcr.cs/(2l iAe), wheres is the period of the crysta
lattice in the stack direction,l i is the London penetration
depth,e is the dielectric constant in the stack direction. Th
critical velocity was identified with the experimentally ob
served velocity limiting two regimes of the vortex motion.6–9

We have found that at higher velocities sliding of a regu
vortex lattice is frustrated due to a growth of fluctuations
the vortex lattice. The instability is induced by the interacti
of the vortices with the Josephson plasma mode. The sim
results were obtained both in the limit of large magne
fields, when the distance between the vortices is smaller t
the size of the nonlinear region near the vortex center,
for the case of lower magnetic fields10,11 when the vortices
are separated by distances much larger than the size o
nonlinear region.

However, qualitatively different conclusions on the stab
ity of moving vortex lattice were made in recent papers
Koshelev and Aranson.12,13According to their calculations a
stable vortex lattice motion can occur not only in a form
the triangular lattice, but also in a form of various obliqu
lattices~see Fig. 1!, a particular experimentally realized la
tice being uniquely selected by the boundary conditions.
gimes of stable motion of various oblique vortex lattic
were found also for the velocities exceeding the critical va
vcr . The existence of a set of various stable vortex lattic

FIG. 1. The configuration of the vortex lattice is defined byx
52pdSi /Si . The rectangular lattice corresponds tox50, the ob-
lique lattices are defined by 0,x,p, and the triangular lattice
corresponds tox5p.
©2003 The American Physical Society16-1
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for a given sliding velocity would lead to interesting physic
consequences. If a particular vortex lattice is uniquely
lected by the boundary conditions, then the radiation sp
trum must also strongly depend on boundary conditio
Specifically, in contrast to other vortex lattices, the triangu
one does not emit at the main radiation frequency relate
the time needed to shift the lattice by its period. This happ
since the emissions by adjacent vortex rows, which in
triangular lattice are shifted by the half-period, compens
each other. Therefore, in case of the triangular lattice
radiation is generated at even harmonics only. The obli
lattices, in which the shifts between the adjacent vortex ro
are not equal to the half-period, can radiate both at even
odd harmonics as well. Furthermore, the intensity of the
diation maximum predicted at the Josephson plas
frequency10,11 would be much larger if there exists a stab
vortex lattice arrangement atv.vcr .

To eliminate the discrepancy and to resolve the prob
we reconsider stability of sliding vortex lattices and conclu
that the oblique vortex lattices are not stable. Instability
the oblique lattices is found out from the analysis of eq
tions of motion for perturbations of the lattice beyond t
linear approximation in the perturbations~Sec. IV!. We illus-
trate this statement by a particular case of the equilibri
state, i.e., of the lattice at rest~Sec. III!. In the equilibrium
state the results are especially transparent, because the
vortex arrangement can be selected as that correspondi
a minimal energy. We conclude that oblique lattices cor
spond to a saddle point of the energy functional with resp
to perturbations of a uniform lattice, and only the triangu
lattice corresponds to a minimum. This is revealed when
terms beyond the quadratic ones are kept in the corresp
ing energy expansion. Therefore, to study stability of slid
vortex lattices by means of equations of motion one sho
proceed beyond the linear approximation with respect to p
turbations.

II. MAIN EQUATIONS

Electrodynamic properties of layered superconductors
be described in terms of gauge invariant potentials which
be treated as superconducting momentum in layern, pn , and
gauge invariant phase difference between layersn11 andn
of the superconducting order parameterwn . In general case
electric and magnetic fields in the superconductor dep
also on gauge-invariant scalar potentialmn5(1/2)] txn
1Fn , Fn is the electric potential in thenth layer.~We con-
sider units withe5\51). We do not take into account her
the components of the electric field related tomn since we
consider low temperatures when the effects of branch im
ance related tomn can be ignored.

Equations for the moving vortex lattice are derived sim
lar to our previous paper,14 namely, substituting the expres
sion for the current densityj presented as a sum of superco
ducting and quasiparticle currents to the Maxwell equatio

“3H5
4p

c
j1

1

c
] tD.
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Then we find equations forpn andwn , which have a form

c

2s
]xx

2 wn2c
]xpn112]xpn

s

5
4p

c F j csinwn1
s'

2s
] twnG1

e

2cs
] tt

2wn , ~1!

2
c

2s2
~]xwn2]xwn21!1

c

s2
~pn111pn2122pn!

5
4p

c F c2

4pl i
2

pn1s i] tpnG , ~2!

Herel i is the magnetic penetration length for screening c
rents flowing in the plane direction,s i ands' are quasipar-
ticle conductivities for related directions.

Excluding superconducting momenta from Eqs.~1! and
~2! one readily obtains the equation of motion for superco
ducting phaseswn :

F S 11
V r

Vp
2

] tD 2
l i

2

s2
]nn

2 G ~] tt
2wn1v r] twn1vp

2sinwn!

5
c2

e S 11
V r

Vp
2

] tD ]xx
2 wn . ~3!

Here ]nn
2 f n5 f n111 f n2122 f n corresponds to the discret

version of the second derivative.V r54p is i , v r
54ps' /e are relaxation frequencies.Vp andvp are plasma
frequencies for the directions along and perpendicular to
layers,Vp5c/l i is much larger than all typical frequencie
of the considered problem,vp5c/Ael'!Vp , l' is the
magnetic penetration length for screening currents in
stack direction.

Studies of the vortex dynamics both in our papers a
in papers by Koshelev and Aranson are based upon s
equation.

We limit our study by the case of large magnetic fie
considered in Refs. 12 and 13 In high magnetic field
cores of Josephson vortices, i.e., nonlinear regions at the
ters of the Josephson vortices, strongly overlap and solu
of Eq. ~3! can be found perturbatively as a sum of a line
term and a small oscillating correction:

wn
(0)5Yn1cn~Yn!. ~4!

Here Yn5q0x2v0t1xn, v05q0v, q052p/Si , Si is the
period of the chain of vortices along the superconduct
layers, and x specifies the type of the vortex lattic
~see Fig. 1!.

cn~Y!5RG~v0 ,q0 ,x!eiYn, G~v0 ,q0 ,x!

5
ivp

2K~v0 ,x!

ĉ2~v0!q0
22K~v0 ,x!~v0

21 iv0v r !
. ~5!

Here K(v,q')512 iV rv/Vp
214(l i /s)2sin2q'/2, ĉ2(v)

5c2(12 iV rv/Vp
2)/Ae. The denominator ofG(v0 ,q0 ,x)
6-2
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STABILITY OF DRIVEN JOSEPHSON VORTEX . . . PHYSICAL REVIEW B67, 144516 ~2003!
does not become zero sincev05q0v and vortex velocity is
small enough, below the critical valuevcr mentioned above
and discussed below in Sec. IV. Hence, for stable vor
lattice ucn(Y)u!1.

III. STATIONARY VORTEX LATTICE

At first we consider the vortex lattice at rest as the m
simple and physically transparent case. Stability of a stat
ary vortex lattice is determined by its free energy. Minimu
of the free energy as function ofx corresponds to the stabl
vortex lattice. The energy of the vortex lattice can be cons
ered as a sum of the energy of magnetic field induced
superconducting electrons,

E(H)5
s

8p (
n
E dxH2,

the kinetic energy of superconducting currents,

E(s)5(
n
E dx

ms

2ns
j s
2 ,

and the Josephson energy ofn Junctions,

E(J)5
F0 j c

2pc (
n
E dx~12coswn!.

Then the total energy can be readily presented as

E(tot)5(
n
E dxF c2

8ps S ~wn8!2

4
2wn8~pn112pn!

1~pn112pn!21
pn

2

l 2 D 1
j c

2
~12coswn!G . ~6!

Here l 5l i /s.
The variation of the energy functional~6! over pn andwn

yields Eqs.~1! and ~2! with dissipative terms equal to zero
To determine the stable vortex configuration we substit

expressions forpn(Yn) and wn
(0) of Eqs. ~4! and ~5! to the

equation for the energy density~6!. After some algebra the
expression for the energy density of the vortex lattice rea

E(tot)5
c

8ps (
n
E dxS 2l 4sin2~x/2!2@sin~x/2!21#2

l'
4 q0

2

2
l 2sin2~x/2!

l'
4 q0

2
1

1

4
q0

22
1

8l'
4 q0

2
1

1

2l'
2 D . ~7!

From Eq. ~7! one can see that the energy minimum cor
sponds tox5p. It means that in accordance with previo
results~see, e.g., Ref. 2!, only the triangular lattice is stabl
~Fig. 2!. The difference between the energies of the trian
lar and the rectangular lattices is small and proportiona
14451
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q0
22. Note that the triangular lattice corresponds to the mi

mum of the bulk energy, which means that the existence
the triangular lattice in the equilibrium state is imposed
the forces acting in the bulk, but not by the boundary con
tions at the surface, as it was obtained in Ref. 13.

IV. STABILITY OF SLIDING JOSEPHSON
VORTEX LATTICE

Now we consider a sliding vortex lattice. We adopt he
the method used in Ref. 15 to study a system of two coup
Josephson junctions. The solution of Eq.~3! for wn can be
presented in form

wn~x,t !5wn
(0)~Y!1dwn~x,t !, ~8!

wherewn
(0)(Y) given by Eqs.~4! and ~5! describes the uni-

form motion of the vortex lattice with the velocityv, and
dwn(x,t) corresponds to small perturbations of the uniform
sliding lattice,udwn(x,t)u!1.

The vortex lattice is stable if all possible perturbatio
dwn(x,t) decrease with time and there are no increasing
lutions for dwn(x,t). If in the linear approximation in
dwn(x,t) there are solutions, which neither decay nor
crease, then the linear approximation in perturbation is
sufficient and one should take into account higher-order p
turbations indwn(x,t).

The equation fordw in the linear approximation we de
rive substituting Eq.~5! into Eq.~3! and performing the Fou-
rier transformation overx, t, andn. It reads

F~v,qi ,q'!dw~v,qi ,q'!1 f ~v1v0 ,qi1q0 ,q'1x!

3dw~v1v0 ,qi1q0 ,q'1x!

1 f ~v2v0 ,qi2q0 ,q'2x!

3dw~v2v0 ,qi2q0 ,q'2x!50. ~9!

Hereqi andq' (uq'u,p) are the wave vectors in the direc
tions parallel and perpendicular to the superconducting
ers, respectively,

FIG. 2. Dependence of the vortex energy onx. The curve is
calculated forl 5l i /s5160.
6-3
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F~v,qi ,q'!5 ĉ~v!2qi
22K~v,q'!@v21 ivv r

2~vp
2/2!IG~v0 ,q0 ,x!#,

f ~v,qi ,q'!5K~v,q'!vp
2/2.

The values of the perturbation with shifted argumen
dw(v6v0 ,qi6q0 ,q'6x), are small compared to
dw(v,qi ,q') with small values of the arguments. So usi
perturbation approach with respect toSi /lJ and neglecting
dw(v62v0 ,qi62q0 ,q'62x), we express the shifted va
ues in terms ofdw(v,qi ,q') and find a simple equation o
motion fordw, which determines the eigenmodes of the v
tex lattice:

S F~v,qi ,q'!2
f ~v,qi ,q'! f ~v1v0 ,qi1q0 ,q'1x!

F~v1v0 ,qi1q0 ,q'1x!

2
f ~v,qi ,q'! f ~v2v0 ,qi2q0 ,q'2x!

F~v2v0 ,qi2q0 ,q'2x! D
3dw~v,qi ,q'!50. ~10!

In this expression last two terms originate from interaction
the first harmonic of oscillating field induced by the slidin
lattice with the Josephson plasma mode.

As it follows from Eq. ~5! G(v0 ,q0 ,x)}(Si /lJ)
2 is

small, and one may neglect terms withG(v0 ,q0 ,x) in the
expressions forF in the denominators of the last terms of E
n
o

-
o
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a
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,
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~10!. Such simplifications allow us to calculate from Eq.~10!
the dispersion relation defining the spectrum of collect
oscillations:

v21 ivv r5
ĉ2~v!qi

2

K~v,q'!
1

vp
2

2 S IG~v0 ,q0 ,x!

1
i

2
G~v1v0 ,qi1q0 ,q'1x!

1
i

2
G~v2v0 ,qi2q0 ,q'2x! D . ~11!

Consider first the triangular vortex lattice,x5p. In the
long-wavelength limit, for the lattice in rest we obtain
soundlike spectrum with the velocitiesci5c/Ae and c'

5(lSi /A8epl'
2 )c in the in-plane and in-stack directions

respectively. These velocities coincide with ones obtained
Volkov.16

For the sliding triangular lattice the imaginary part of th
frequency of the eigenmodes, which determines the de
ment of damping, is non-negative for small velocitiesv
,vcr.(s/2Ael i)c. Thus, at such velocities the triangula
lattice is stable. At larger velocities we find that any latti
with a single vortex per unit cell is unstable. We demonstr
this below analytically for the case when the damping is
too large,V r!Vp /(sq0), and at lattice velocitiesv&vcr all
the terms with relaxation frequencies in the right-hand s
of Eq. ~11! can be neglected. Then after some simple alge
the dispersion relation~11! for qi50 and v!v0 can be
presented in the form
v21 ivv r1
2vp

2sin2~q'/2!@2 cos2~q'/2!1cosx~g2cosx!#

lJ
2q0

2~v/vcr!
2~g1cosx!@g1cos~x1q'!#@g1cos~x2q'!#

50, ~12!
e
-
ed
-

for
a

er
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e
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o
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is-

ap-
where g5(vcr /v)221. The lattice described by a give
valuex is unstable if the last term in the right-hand side
Eq. ~12! is positive. For the triangular lattice,x5p, this
term is not positive atv,vcr . It is not positive also for
oblique lattices with values ofx aroundp at small velocities
when ugu.1, stability of such lattices will be analyzed be
low beyond the linear approximation in perturbations. F
the rectangular lattice and the oblique lattices with posit
values of cosx, this term is positive and such lattices a
unstable. At large velocities,v.vcr , when ugu,1, the last
term several times changes its sign as a function ofq' for
any value ofx. Therefore, in this case there are values ofq'

for which the imaginary part of the frequency of the oscil
tions becomes positive. This means that fluctuations incre
with time resulting in an instability of the lattice at suc
velocities. It can be shown easily that the instability rema
at larger velocities,v@vcr , as well. The value ofvcr is
about 33105m/c, for typical parametersl i /s5100 ande
f

r
e

se

s

'20. This estimate of the critical velocity coincides with th
velocity limiting flux-flow regime in Refs. 6 and 7. The in
stability of the lattice at large velocities was also confirm
by our numerical study of Eq.~11! with parameters corre
sponding to BSCCO crystals.

Now we consider in more details the case of arbitraryx
and v,vcr . The sign of the imaginary part ofv, which
determines the decrement of damping, sets conditions
stability of the vortex lattice. A positive damping factor for
givenx and for all values ofqi andq' means the stability of
the vortex lattice. While a negative damping factor, in oth
words, a positive increment of growth, manifests the ins
bility. Analytical and numerical calculations show that th
damping factor is not negative for the whole region of valu
of x for a given value of the vortex velocity including zer
velocity. This result was interpreted in Refs. 12 and 13 as
evidence of the stability of these lattices. However, the ex
tence of a set of different stable lattices at zero velocity
6-4
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parently contradicts to the studies of the equilibrium lattic2

and to the results of the preceding section according to wh
only the triangular lattice must be stable. The point is t
though for the oblique lattices the damping factor is posit
for finite values ofq, it is equal to zero forq50. This indi-
cates that the linear approximation ondw does not give an
ultimate answer on the stability problem, and further study
needed. The situation can be clarified if we consider the
ticular example of the equilibrium state, then the stable
lution can be selected, using the energy considerations. I
series expansion of the energy with respect to perturbat
near the extremum does not contain the quadratic term,
contribution of the potential energy to the linearized equat
of motion becomes zero suggesting a zero damping co
cient in a corresponding equation of motion. Therefore,
order to study stability in such a case one must take
account the next order perturbations in the energy expan
in perturbations. If the third-order term in perturbations
the expansion of the potential energy is nonzero, then
extremum of the energy corresponds to a saddle point
hence, to an instability.

These considerations cannot be directly applied to
nonequilibrium case the stability of which should be stud
by means of equations of motion, but they point out that
find whether solutions with zero damping factor in the line
approximation are really stable, one must include in
equation of motion for the phase the next order terms
perturbationsdw. Therefore, we present the perturbed pha
in the form

wn5wn
(0)~x!1dwn1fn . ~13!

where, again,wn
(0)(Y) given by Eqs.~4! and~5! describes the

uniform motion of the vortex lattice with the velocityv, and
dwn(x,t)1fn(x,t) corresponds to perturbations of the un
formly sliding lattice. Further, we choosedwn5R$@Gn(x
1dxn)2Gn(x)#exp@iYn(x)#%, wheredxn is a smoothly vary-
ing function of the layer numbern. The initial perturbation
dwn describes distortion of the oscillating part of the pha
corresponding to the shift of the neighboring vortex rows
phasedxn . The small termfn in the perturbation to be
found from the equations of motion~2!. Thus, we calculate
temporal evolution of an additional perturbationfn in the
vortex lattice with the initial perturbations related todxn .

To derive equation forf we insertwn expressed accord
ing to Eq.~13! into Eq. ~2! keeping perturbationsdw. Then
we act similar to the derivation of Eqs.~11! and~10!, i.e., we
use perturbational approach with respect toSi /lJ , linearize
the equation with respect tof, and express the values o
f(v6v0 ,qi6q0 ,q'6x) with shifted arguments in term
of f(v,qi ,q'). Furthermore, for brevity we again consid
the case when the magnetic field or damping are not
large, (sq0)V r!Vp , and one can neglect the terms with t
relaxation frequencies. Then in the long-wavelength a
low-frequency limits (qi50, small q' and v) we find
simple equation forf,
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v r] tfn1
vp

2

4 F2dxn

]IG~v0 ,q0 ,x!

]x
fn

2
]2IG~v0 ,q0 ,x!

]x2
]nn

2 fnG50. ~14!

We seek solution of this equation in the formfn
5F(n)exp(2at). Then Eq. ~14! acquires a form of the
Schrödinger equation

2
1

2m
]nn

2 F1V~n!F5EF, ~15!

where we assume the continuous limit with respect to la
numbers and use the notations

1

m
52

cosx1u2sin2~x/2!~22cosx!

@12u2sin2~x/2!#3
,V~n!

5
sinx

@12u2sin2~x/2!#2
dxn ,u5

v
vcr

,E5av r

lJ
2qi

2

vp
2

.

Note that the lattices with positive values of cosx are un-
stable @see Eq.~12!#, therefore, for the states we consid
m.0 if the velocity of the lattice is small enough.

If we find a form of dxn corresponding to a potentia
V(n) for which the Schro¨dinger equation~15! has solutions
describing bound states,E,0, then Eq.~14! has increasing
solutions, which means the instability of the vortex lattic
As long as the potential depends both on sinx and ondxn
one can always choose perturbationdxn in the form of the
potential well. As long as there are bound states in any o
dimensional quantum well, then the bound solutions of E
~15! can be found unlessx is a multiple of p. As it was
shown above in the linear approximation in lattice perturb
tions the rectangular lattice,x50, is not stable due to per
turbations with finiteq' , so there is only solutionx5p for
which the bound states cannot be found. This means
there is only one simple vortex lattice with one flux quantu
per cell, which could be stable, namely, the triangular o
x5p. Note that one can find both decaying and increas
perturbations around the lattice state defined by the par
eter xÞp, this is typical for a behavior near the sadd
point.

V. CONCLUSIONS

In the frame of a simple theoretical model we studi
stability of sliding lattices of the Josephson vortices induc
by strong magnetic field applied parallel to conducting lay
of layered superconductor and driven by a transport cur
in the stack direction. We found that in contrast to rece
theoretical predictions12,13 the type of the stable sliding lat
tice is not selected by the boundary conditions, but ther
6-5
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only one possible stable vortex lattice arrangement of slid
the Josephson vortices containing single flux line per u
cell, namely, the triangular lattice. In other words, an expe
mentalist cannot have an influence on the structure of
sliding vortex lattice manipulating with the experiment
conditions. Sliding of vortices in the form of the regul
lattice is found to be stable up to the critical velocity only.
higher velocities there is no sliding regime with the vortic
-

ks

P

14451
g
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coherently arranged in an oblique, triangular, or rectangu
vortex lattices.
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