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Stability of driven Josephson vortex lattice in layered superconductors revisited
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We analytically study stability of sliding lattice of Josephson vortices driven by a transport current in the
stack direction in strong in-plane magnetic field. In contrast to recent findings we obtain that there are no
diverse configurations of stable vortex lattices, and, hence, the stable sliding vortex lattice cannot be selected
by boundary conditions. We find that in the bulk samples only the triangdiambig lattice can be stable, its
stability being limited by a critical velocity value. At higher velocities there are no simple stable lattices with
single flux line per unit cell. Oblique sliding lattices are found to be never stable. Instability of such lattices is
revealed beyond the linear approximation in perturbations of the lattice.
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I. INTRODUCTION lattice, was found to be stable at velocities up to a critical
valuev,=~cs/(2\Ve), wheres is the period of the crystal
Strong anisotropy of layered superconductors, such akttice in the stack direction\ is the London penetration
high-T. superconductors, results in a number of specific feadepth,e is the dielectric constant in the stack direction. This
tures. In particular, magnetic field parallel to the conductingeritical velocity was identified with the experimentally ob-
layers induces coreless vortices similar to fluxons in the conserved velocity limiting two regimes of the vortex motitr.
ventional Josephson tunnel junctiorfsin contrast to the We have found that at higher velocities sliding of a regular
fluxons in the conventional Josephson junctions, the currentortex lattice is frustrated due to a growth of fluctuations of
and magnetic field of a Josephson vortex in layered supethe vortex lattice. The instability is induced by the interaction
conductors are spread over many conducting layers. Thef the vortices with the Josephson plasma mode. The similar
transport current flowing in the stack direction forces theresults were obtained both in the limit of large magnetic
vortices to slide along superconducting layers. Since in confields, when the distance between the vortices is smaller than
trast to standard Abrikosov vortices the Josephson vorticedhe size of the nonlinear region near the vortex center, and
are coreless, their motion does not involve perturbations ofor the case of lower magnetic fiefds* when the vortices
the amplitude of the superconducting order parameter andre separated by distances much larger than the size of the
corresponds at low temperatures to an underdamped regimeonlinear region.
So the velocity of such vortices, in principle, can be quite However, qualitatively different conclusions on the stabil-
large. Many dynamical properties of Josephson vortices ity of moving vortex lattice were made in recent papers by
layered superconducting crystals are similar to those of fluxkKoshelev and Aransolf:*®*According to their calculations a
ons in artificially prepared stacked Josephson junctises, stable vortex lattice motion can occur not only in a form of
e.g., Ref. 3. The Josephson vortices can be arranged in &he triangular lattice, but also in a form of various oblique
lattice; however, possibility of multiple metastable states cordattices(see Fig. 1, a particular experimentally realized lat-
responding to vortex configurations that do not form anytice being uniquely selected by the boundary conditions. Re-
lattice is predicted as well at small magnetic fiélt larger ~ gimes of stable motion of various oblique vortex lattices
magnetic field the Josephson vortices form a lattice andywere found also for the velocities exceeding the critical value
hence, in the flux-flow regime the coherent motion of thev.,. The existence of a set of various stable vortex lattices
vortex lattice is expected. Such a regime must induce coher-
ent electromagnetic radiation from the uniformly sliding lat-
tice. The flux-flow regime of this lattice was observed in
bismuth based cuprate superconductor mesa structttes.
However, the regime of coherent sliding of the lattice was
found to be limited by a maximum voltage and, hence, by a
maximum lattice velocity® Above this voltage either a dif- s
ferent regime was observe®ior no stable I-V curves were 7 3
found in a close range of currents and voltad&s addition, —X ,>'< X X X
above the maximum velocity a broadband non-Josephson /!
emission in the microwave region was obser¢éd. J
The upper limit for the velocity of the coherent flux-flow X X X X X
regime was obtained theoretically in our studies of stability
of the vortex latticé?™* and was related to the interaction of  FIG. 1. The configuration of the vortex lattice is defined py
the vortices with the Josephson plasma modes excited by2x76S,/S;. The rectangular lattice correspondsyte-0, the ob-
moving vortices. A regular motion of the Josephson vorticesique lattices are defined by<Oy<, and the triangular lattice
in a form of the rhombic lattice, usually called the triangular corresponds toy= .

0163-1829/2003/61.4)/1445166)/$20.00 67 144516-1 ©2003 The American Physical Society



S. N. ARTEMENKO AND S. V. REMIZOV PHYSICAL REVIEW B67, 144516 (2003

for a given sliding velocity would lead to interesting physical Then we find equations fqu,, and ¢,,, which have a form
consequences. If a particular vortex lattice is uniquely se-

lected by the boundary conditions, then the radiation spec- 3&2 _Cﬁxpnu—ﬁxpn

trum must also strongly depend on boundary conditions. 25 “xx®n s

Specifically, in contrast to other vortex lattices, the triangular

one does not emit at the main radiation frequency related to _
the time needed to shift the lattice by its period. This happens

since the emissions by adjacent vortex rows, which in the

triangular lattice are shifted by the half-period, compensate c C
each other. Therefore, in case of the triangular lattice the _E(&X(Pn_axﬁf’nfl)_"?(pwrl_" Pn—1—2Pn)
radiation is generated at even harmonics only. The oblique

lattices, in which the shifts between the adjacent vortex rows oy
are not equal to the half-period, can radiate both at even and =
odd harmonics as well. Furthermore, the intensity of the ra-

diation maximum predicted at the Josephson plasm

0,11 . .
frequency®!! would be much larger if there exists a stablerents flowing in the plane directiom; andc, are quasipar-

vor_lt_ex l?m.ce tarrter\]ngglment aver . dt ve th bl ticle conductivities for related directions.
0 eliminate the discrepancy and 1o resolve the problem Excluding superconducting momenta from E¢k. and

we reconsider stability of sliding vortex lattices and conclude(z) one readily obtains the equation of motion for supercon-
that the oblique vortex lattices are not stable. Instability Ofducting phases, :
ne

the oblique lattices is found out from the analysis of equa-
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ia-|ere)\|| is the magnetic penetration length for screening cur-

tions of motion for perturbations of the lattice beyond the QO A2
linear approximation in the perturbatioffSec. I1\). We illus- 1+ —;at - —!aﬁn (92 @n+ o dion+ wgsin ©n)
trate this statement by a particular case of the equilibrium Q5 S
state, i.e., of the lattice at re€Bec. Ill). In the equilibrium
state the results are especially transparent, because the stable Q, 2

i =—| 1+ —dt| dxxen- ()]
vortex arrangement can be selected as that corresponding to Qg

a minimal energy. We conclude that oblique lattices corre- 5 _
spond to a saddle point of the energy functional with respectiere d;,fn=fn. 1+ f,_1—2f, corresponds to the discrete
to perturbations of a uniform lattice, and only the triangularversion of the second derivativeQ),=4mio|, o,
lattice corresponds to a minimum. This is revealed when the=4mo, /€ are relaxation frequencieQ, andw, are plasma
terms beyond the quadratic ones are kept in the corresponéequencies for the directions along and perpendicular to the
ing energy expansion. Therefore, to study stability of slidinglayers,Q,=c/\| is much larger than all typical frequencies
vortex lattices by means of equations of motion one shoul®f the considered problempp=c/\/EM<Qp, N\, is the
proceed beyond the linear approximation with respect to pemagnetic penetration length for screening currents in the
turbations. stack direction.

Studies of the vortex dynamics both in our papers and

in papers by Koshelev and Aranson are based upon such
Il. MAIN EQUATIONS equation.

Electrodynamic properties of layered superconductors can e limit our study by the case of large magnetic field

be described in terms of gauge invariant potentials which Caﬁonsidered in Refs. 12. and_13 In high magnetic field the
be treated as superconducting momentum in layer,, and cores of Josephson vortices, i.e., nonlinear regions at the cen-

gauge invariant phase difference between layers andn ters of the Josephson vortices, strongly overlap and solution

of the superconducting order parameigr. In general case of Eq. (3) can be four_1d perturbativgly as a sum of a linear
electric and magnetic fields in the superconductor depenHErm and a small oscillating correction:

also on gauge-invariant scalar_ potentigl,= (1/2)d; xn eO=Y 4 (Yo (@)
+®,,, d, is the electric potential in theth layer.(We con- .

sider units withe=7 =1). We do not take into account here Here Y,=doX—wot+xN, wo=0ov, Go=27/S|, § is the
the components of the electric field relatedtq since we  period of the chain of vortices along the superconducting
consider low temperatures when the effects of branch imballayers, and x specifies the type of the vortex lattice

ance related tq,, can be ignored. (see Fig. 1L
Equations for the moving vortex lattice are derived simi- _ iy
lar to our previous papéf, namely, substituting the expres- In(Y)=RG(wg,do,x)€'"", G(wg,d0,X)

sion for the current densifypresented as a sum of supercon-

-2
ducting and quasiparticle currents to the Maxwell equation HwpK (@, x)

®)

" C(w0) a3~ K(wg,x)(wi+iwew;)

Here K(w,q,)=1-iQ.w/Q5+4(\/s)%sinfq,/2, c*(w)

47 1
VXH:?JJFE(?‘D' =cz(l—iQrw/Qr2,)/\/E. The denominator ofG(wq,q9,X)
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does not become zero sineg=(qqv and vortex velocity is
small enough, below the critical valug, mentioned above 0.08]
and discussed below in Sec. IV. Hence, for stable vortex

lattice | (Y)|<1. 0%
S 0.04
I1l. STATIONARY VORTEX LATTICE £
) . . %003
At first we consider the vortex lattice at rest as the most ?
simple and physically transparent case. Stability of a station- & 0.02
ary vortex lattice is determined by its free energy. Minimum
of the free energy as function gf corresponds to the stable 0.01
vortex lattice. The energy of the vortex lattice can be consid-

ered as a sum of the energy of magnetic field induced by 0
superconducting electrons,

FIG. 2. Dependence of the vortex energy pnThe curve is

s _ _
H__> 2 calculated forl =\ /s=160.
EM = ; f dxH?,
qu. Note that the triangular lattice corresponds to the mini-
the kinetic energy of superconducting currents, mum of the bulk energy, which means that the existence of

the triangular lattice in the equilibrium state is imposed by
the forces acting in the bulk, but not by the boundary condi-
EC) = E f dX—js, tions at the surface, as it was obtained in Ref. 13.

d the J h 9 . IV. STABILITY OF SLIDING JOSEPHSON
and the Josephson energyrodunctions, VORTEX LATTICE

o] Now we consider a sliding vortex lattice. We adopt here
EOD= > > f dx(1—cose). the method used in Ref. 15 to study a system of two coupled
7e Josephson junctions. The solution of E§) for ¢,, can be
presented in form

Then the total energy can be readily presented as

( )2 on(X, )= (Y) + Sen(x,t), ®)
<Pn
E(tot) — f ' _
Z ~@n(Pns1=Pn) where ¢{9(Y) given by Eqgs.(4) and (5) describes the uni-
form motion of the vortex lattice with the velocity, and
pn Sen(Xx,t) corresponds to small perturbations of the uniformly

i
fc(l— cosep) |.

+ (P Po)*+ m ®  sliding lattice,| ¢, (x,t)|<1.

The vortex lattice is stable if all possible perturbations
d¢n(X,t) decrease with time and there are no increasing so-
lutions for S¢,(x,t). If in the linear approximation in
d¢n(x,t) there are solutions, which neither decay nor in-
crease, then the linear approximation in perturbation is not
suff|C|ent and one should take into account higher-order per-
turbations inde,(X,t).

The equation forde in the linear approximation we de-
e substituting Eq(5) into Eq.(3) and performing the Fou-
rier transformation ovex, t, andn. It reads

Herel=\/s.
The variation of the energy functioné) overp,, and ¢,
yields Egs.(1) and(2) with dissipative terms equal to zero.
To determine the stable vortex configuration we substitute
expressions fop,(Y,) and ¢!%) of Egs.(4) and (5) to the
equation for the energy densit§). After some algebra the
expression for the energy density of the vortex lattice readsriv

214sir?(x/2)?[sin( x/2) —1]2

C
(o) — _~
E 87752,:‘ fdx(

INCE F(,0).9,) 0¢(@,0),q.) + f(0+wg,0)+do,d, +X)
12sil’(y/2) 1 1 1 X op(w+ wo,q;+do,d. + x)
o ta% st (7)
1d5 477 g\fg: 2a? (0= w0,9;= 00,01 — X)
From Eq.(7) one can see that the energy minimum corre- X 8¢(w—wo,q)—do,d, — x)=0. 9

sponds toy=r. It means that in accordance with previous

results(see, e.g., Ref.)2only the triangular lattice is stable Hereq; andq, (lq.|<m) are the wave vectors in the direc-
(Fig. 2. The difference between the energies of the triangutions parallel and perpendicular to the superconducting lay-
lar and the rectangular lattices is small and proportional teers, respectively,
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Flw,q1.0,)=6(0)20—K(w, 245 (10). Such simplifications allow us to calculate from E0) _
(.10 ) = clw) g = K(w,q, )™+ T we the dispersion relation defining the spectrum of collective
—(03/2)3G(wo,00.X) ], oscillations:

f(w,q),9.)=K(0,q,)w5/2. c*(w)qf

K(wqu)

w2
0’ +ivw,= +7p(jg(w0,qo,)()
The values of the perturbation with shifted arguments, i
Sp(w*wo,01+00,q, *x), are small compared to +59(@0+ 0,0+ do. L T X)
d¢(w,q,q,) with small values of the arguments. So using _
perturbation approach with respect $p/A; and neglecting 1. _ _
Sp(w*2wo,q;% 20,0, *2x), We express the shifted val- T o9@= 00,0~ G0, X)) (1D
ues in terms ob¢(w,q,q,) and find a simple equation of

motion for d¢, which determines the eigenmodes of the vor- Consider first the triangular vortex latticg=. In the

long-wavelength limit, for the lattice in rest we obtain a

e attee soundlike_spectrum with the velocitieg =c/ Je and c,
=(\Sj/\/Bem\?)c in the in-plane and in-stack directions,
Fw.01.0,) f(w,0),9.)f(0+ wo,qy+do,d. + x) (%s”;()g\c/:tllgely. These velocities coincide with ones obtained by
)AL Flo+wo,q;+do,d. + x) For the sliding triangular lattice the imaginary part of the

frequency of the eigenmodes, which determines the decre-
_He,qp.9.)f (0= 0,0~ 00,9, —x) meqnt of ydamping, ?s non-negative for small velocities
F(o— 0,0~ 90,4~ X) <ve,=(sl2\ex))c. Thus, at such velocities the triangular
_ lattice is stable. At larger velocities we find that any lattice
X 0¢(2,q),4,)=0. (10 with a single vortex pe? unit cell is unstable. We demyonstrate
In this expression last two terms originate from interaction ofthis below analytically for the case when the damping is not
the first harmonic of oscillating field induced by the sliding too large,Q2, <, /(sq), and at lattice velocities<v , all
lattice with the Josephson plasma mode. the terms with relaxation frequencies in the right-hand side
As it follows from Eg. (5) g(wo,qo,x)oc(a‘/m)z is  of Eg.(11) can be neglected. Then after some simple algebra
small, and one may neglect terms wifliwo,do,x) in the  the dispersion relatiorill) for ;=0 and w<w, can be
expressions foF in the denominators of the last terms of Eq. presented in the form

2w2sir?(q, /2)[ 2 cog(q, /2) +cosy(y—cosy)] B
N5ab(v/ve)®(y+cosy)l y+cod x+d) [ y+cosx—a,)]

o’ +ivo,+ (12

where y= (v /v)?—1. The lattice described by a given ~20. This estimate of the critical velocity coincides with the
value y is unstable if the last term in the right-hand side of velocity limiting flux-flow regime in Refs. 6 and 7. The in-
Eq. (12 is positive. For the triangular latticey= 7, this  stability of the lattice at large velocities was also confirmed
term is not positive ab<uv,. It is not positive also for by our numerical study of Eq.11) with parameters corre-
oblique lattices with values of arounds at small velocities  sponding to BSCCO crystals.

when|y|>1, stability of such lattices will be analyzed be-  Now we consider in more details the case of arbitrary
low beyond the linear approximation in perturbations. Forand v<v.,. The sign of the imaginary part ab, which

the rectangular lattice and the oblique lattices with positivedetermines the decrement of damping, sets conditions for
values of cog, this term is positive and such lattices are stability of the vortex lattice. A positive damping factor for a
unstable. At large velocities,>v.,, when|y|<1, the last given y and for all values ofy andg, means the stability of
term several times changes its sign as a functioq,ofor  the vortex lattice. While a negative damping factor, in other
any value ofy. Therefore, in this case there are valuegpof words, a positive increment of growth, manifests the insta-
for which the imaginary part of the frequency of the oscilla- bility. Analytical and numerical calculations show that the
tions becomes positive. This means that fluctuations increasgamping factor is not negative for the whole region of values
with time resulting in an instability of the lattice at such of y for a given value of the vortex velocity including zero
velocities. It can be shown easily that the instability remainsvelocity. This result was interpreted in Refs. 12 and 13 as an
at larger velocitiesp>uv.,, as well. The value ob., is  evidence of the stability of these lattices. However, the exis-
about 3x10°m/c, for typical parametera /s=100 ande  tence of a set of different stable lattices at zero velocity ap-
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parently contradicts to the studies of the equilibrium lattice w2 I3G( 0,0, X)

and to the results of the preceding section according to which w dydn+ Tp 25Xn$¢n

only the triangular lattice must be stable. The point is that 24

though for the oblique lattices the damping factor is positive 5

for finite values ofg, it is equal to zero fog=0. This indi- _ 9°3G(wo,90,X) prs b,|=0 (14)
cates that the linear approximation o does not give an P nn®n .

ultimate answer on the stability problem, and further study is

needed. The situation can be clarified if we consider the par-

ticular example of the equilibrium state, then the stable soWe seek solution of this equation in the fornp,
lution can be selected, using the energy considerations. If the ®(n)exp(-at). Then Eg.(14) acquires a form of the
series expansion of the energy with respect to perturbationSchralinger equation

near the extremum does not contain the quadratic term, then

contribution of the potential energy to the linearized equation 1

of motion becomes zero suggesting a zero damping coeffi- - —aﬁnq>+v(n)q>=Eq>, (15)
cient in a corresponding equation of motion. Therefore, in 2m

order to study stability in such a case one must take into

account the next order perturbations in the energy expansiofihere we assume the continuous limit with respect to layer
in perturbations. If the third-order term in perturbations innumbers and use the notations

the expansion of the potential energy is nonzero, then the

extremum of the energy corresponds to a saddle point and, 1 Cosy+ USin( /2)(2— cosy)

hence, to an instability. = (n)
These considerations cannot be directly applied to the M [1—u?sir?(x/2)]3 ’

nonequilibrium case the stability of which should be studied

by means of equations of motion, but they point out that to siny v )\ﬁqﬁ

find whether solutions with zero damping factor in the linear :[1_ u2sird( x/2)
approximation are really stable, one must include in the
equation of motion for the phase the next order terms in

perturbationsse. Therefore, we present the perturbed phasenote that the lattices with positive values of gosre un-
in the form stable[see Eq.(12)], therefore, for the states we consider
m>0 if the velocity of the lattice is small enough.
If we find a form of §x, corresponding to a potential
on=0O(x) + Son+ br . (13) V(n) fo_r which the Schrdinger equatior{15) has_ solutiqns
describing bound statek,<0, then Eq.(14) has increasing
solutions, which means the instability of the vortex lattice.
) ) _ As long as the potential depends both onj)siand ondy,,
where, againg;”(Y) given by Eqs(4) and(5) describes the  gne can always choose perturbatiéy, in the form of the
uniform motion of the vortex lattice with the Ve|OCity, and potentia' We" AS |Ong as there are bound states in any one-
Sen(X,t) + ¢y(x,t) corresponds to perturbations of the uni- gimensional quantum well, then the bound solutions of Eq.
formly sliding lattice. Further, we choos8e,=R{[G.(x  (15) can be found unlesg is a multiple of 7. As it was
+xn) — Gn(X) 1exdiY, ()]}, wheredy, is a smoothly vary-  shown above in the linear approximation in lattice perturba-
ing function of the Iayer numben. The initial perturbation tions the rectangu|ar |atticeG:O, is not stable due to per-
d¢, describes distortion of the oscillating part of the phaseyrbations with finiteq, , so there is only solutioy= 7 for
corresponding to the shift of the neighboring vortex rows bywhich the bound states cannot be found. This means that
phasedy,. The small term¢, in the perturbation to be there is only one simple vortex lattice with one flux quantum
found from the equations of motiof2). Thus, we calculate per cell, which could be stable, namely, the triangular one,
temporal evolution of an additional perturbatigh, in the =7 Note that one can find both decaying and increasing
vortex lattice with the initial perturbations related &y, . perturbations around the lattice state defined by the param-
To derive equation fory we insertp, expressed accord- eter y# 77, this is typical for a behavior near the saddle
ing to Eq.(13) into Eq.(2) keeping perturbationse. Then  point.
we act similar to the derivation of Eq&ll) and(10), i.e., we
use perturbational approach with respecféh ;, linearize
the equation with respect t¢, and express the values of
d(w* wy,q;=dg,q, = x) with shifted arguments in terms In the frame of a simple theoretical model we studied
of ¢(w,q),q,). Furthermore, for brevity we again consider stability of sliding lattices of the Josephson vortices induced
the case when the magnetic field or damping are not toby strong magnetic field applied parallel to conducting layers
large, 60p)(2,<(),, and one can neglect the terms with the of layered superconductor and driven by a transport current
relaxation frequencies. Then in the long-wavelength andn the stack direction. We found that in contrast to recent
low-frequency limits =0, small q, and ») we find theoretical predictior’$* the type of the stable sliding lat-
simple equation fowp, tice is not selected by the boundary conditions, but there is

]Zﬁxn,UZU—,EZawr

V. CONCLUSIONS

144516-5



S. N. ARTEMENKO AND S. V. REMIZOV PHYSICAL REVIEW B67, 144516 (2003

only one possible stable vortex lattice arrangement of slidingoherently arranged in an oblique, triangular, or rectangular
the Josephson vortices containing single flux line per unitortex lattices.
cell, namely, the triangular lattice. In other words, an experi-

mentalist cannot have an influence on the structure of the

sliding vortex lattice manipulating with the experimental

conditions. Sliding of vortices in the form of the regular  This work was supported by Russian Foundation for Ba-
lattice is found to be stable up to the critical velocity only. At sic ResearchiProjects Nos. 01-02-17527 and 02-02-06322
higher velocities there is no sliding regime with the vorticesand by Russian state program on superconductivity.
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