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We explain recent experimental results on the superconducting state spectral function as obtained by angle
resolved photoemission, as well as by tunneling, in higltuprates. In our model, electrons are coupled to the
resonant spin-fluctuation mode observed in inelastic neutron-scattering experiments, as well as to a gapped
continuum. We show that, although the weight of the resonance is small, its effect on the electron self-energy
is large, and can explain various dispersion anomalies seen in the data. In agreement with the experiment, we
find that these effects are a strong function of doping. We contrast our results to those expected for electrons
coupled to phonons.
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[. INTRODUCTION contributes to renormalization effects on the dispersion. Sec-
tion V offers a brief summary.

Understanding superconductivity in the cuprates is one of
the great challenges of physics. Determining the nature of
single-particle excitations is of fundamental importance for Il. EXPERIMENTAL EVIDENCE
achieving this goal. Two types of experiments have been
extensively used to study such excitations: angle resolved ,
photoemission spectrosco#RPES and tunneling. It has been known for some time that near theQ) (M)

In this paper, which deals with the superconducting state_?o'”t of the zone, the spectral function in the superconduct-
only, we address the questions, what the spectral propertiddd state of BjSp,CaCyOg. 5 shows an anomalloijs line-
of fermionic excitations are, and how their low-energy dis-Shape, the so-called “peak-dip-hump” structﬁr%z.* This
persion is renormalized. We do not directly address the quegiTucture was aiso found recently in Y&2,0;_;, and in
tion of the origin of superconductivity in the cuprates. Bi2SRC&CuO10. 5.7 For the notation of special points
Rather, we assume that an effective pairing interaction existd the Brillouin zone which we use throughout this paper, see
and study the additional effects which coupling to certainF9- 1.
collective excitations present in cuprates have in renormaliz-
ing single-particle properties. The corresponding collective
excitations responsible for such renormalizations are most
directly seen in other types of experiments. One of them,
inelastic neutron scattering, gives the most useful informa-
tion about both phonons and magnetic excitations in the en-
ergy range of interest<{100 meV).

Motivated by earlier work;’ we have presented in Ref. 8
a model that describes the ARPES and tunneling spectra.
Here, we describe details of our calculations, and extend )
them by including the effect of the spin-fluctuation con- ) N
tinuum. In addition, we address the issue of the doping de-
pendence of the ARPES spectra. Finally, for comparison, we 0.2 ¢t
discuss the effect on the electrons of coupling to a particular
phonon, which was recently suggested to account for the ‘ ‘ . )
rgnormalization of the ARPES dispersion in the nodal re- 0 02 04 06 08 1
gions of the zone. K /1

Our outline is the following: starting in Sec. Il from the X
informqtion which .experir_nerl'lts g_ive about single-particle g 1. Notation used for special points in the Brillouin zone.
properties of low-lying excitations in cuprates, we 00k for athe Fermi surface is shown as a black curve. Equal energy contours
suitable collective excitation that best fits the data. Then, Were shown in gray for energies betwees0 meV. The dispersion
develop in Sec. Il a model in which the collective mode is ysed here was obtained by a six-parameter tight-binding fit to an
identified as the magnetic-resonance observed in inelastigngle-resolved photoemission dispersion in optimally doped
neutron-scattering experiments. The results of calculationsi,Sr,CaCy0;_ 5.2 The dispersion has a saddle point at e
using this model are presented in great detail. Finally, in Seuoint. TheN point corresponds to the node of thewave order
IV, we address the question what electron-phonon couplingarameter in the superconducting state.

A. Angle-resolved photoemission

k/m
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Extensive studies on B$r,CaCyOg, s as a function of branch from the weakly dispersing high-energy brafitie
temperature revealed that this characteristic shape of thdump”). The kink, break, and dip features all occur at
spectral function is closely related to the superconductingoughly the same energy, independent of position in the
state. In the normal state, the ARPES spectral function igone?” the kink being at a slightly smaller energy than the
broadened strongly in energy, the broadening increasing withreak featuré? _ o _
underdoping! The width of the spectral peak quickly de-  The high-energy dispersion is renormalized up to at least
creases with decreasing temperature below!® and sharp 200 me\{ Zgnd. does not extrapolate to the _Ferm|—surface
quasiparticle peaks were identified well beldw along the ~ Crossingz"**This lets us conclude that the continuum part of
entire Fermi surfact® When lowering the temperature be- the bosonic spectrum coupling to the fermionic excitations
low T, the coherent quasiparticle peak grows at the positio/$xt€nds to high energies. _ _ o
of the leading edge gap, and the incoherent spectral weight is F_mally, there is an important information contained in the
redistributed to higher energy, giving rise to a dip and humgfloRing dependence of the self-energy effects. In unggﬁioped
structure %4 This peak-dip-hump structure is most strongly compounds, there is a pseudogap betwggrand T* ;™
developed near th®l point of the Brillouin zone. The well the pseudogap is maximal near thepoint of the Brillouin
defined quasiparticle peaks at low-energies contrasts to tHOne and is zero at arcs centered at Mgoints, which
high-energy spectra, which show a broad linewidth thaincrease with temperatufé.in the pseudogap state above
grows linearly in energy’'® This implies that a scattering T., there are Iow-energ_y renormahzaﬂo_ns in the_ dispersion,
channel present in the normal state becomes gapped in tlsdd some trace of thezéllq_nk feature persists. But in the recent
superconducting stafé. The high-energy excitations then Work by Johnsoret al,”" it was clearly shown that an addi-
stay broadened, since they involve scattering events aboonal renormalization of the dispersion sets in justTat
the threshold energy. While this explains the existence of Nis indicates that the bosonic spectrum redistributes its
sharp quasiparticle peaks, a gap in the bosonic spectrufPectral weight when entering the superconducting state. The
which mediates electron interactions leads only to a weaRdditional low-energy renormalization of the dispersion be-
diplike feature?® This suggests that the dip feature is insteadlOW the kink energy follows an order-parameter-like behav-
due to the interaction of electrons with a ship energy  ior @s a function of temperatuféArguing that the renormal-
bosonic mode. The sharpness implies a strong self-enerdgation near the nodal regions is influenced by the coupling
effect at an energy equal to the mode energy plus the quasi? the same bosonic mode, which causes the strong self-
particle peak energy, giving rise to a spectral Hiphe fact ~ €nergy effects at th®l point pf the.Brllloum zone, the abpve
that the effects are strongest at tepoints implies a mode implies that some mode intensity may be present in the
momentum close to then(, ) wave vector pseudogap state already, but there is an abrupt increase in the

More clues are obtained by studying the dispersion of thénode intensity when going from the pseudogap state into the
related self-energy effects. Recent advances in the momeguperconducting state, and this increase shows an order-
tum resolution of ARPES have led to a detailed mapping ofparameter-like behavior as a function of temperature below
the spectral lineshape in the high- superconductor Tc- )

Bi,Sr,CaCyOg, 5 throughout the Brillouin zon&'?? The The energy of the mode, as inferred from the energy sepa-
data indicated a seemingly unrelated effect neardtheave ~ ration (o between the peak and the dip, was shown to de-
node of the superconducting gap, where the dispersion shovgease with underdopirf. Similarly, the kink energy is

a characteristic “kink” feature: for binding energies less thanMaximal at optimal doping and decreases both with under-
the kink energy, the spectra exhibit sharp peaks with 4loping and overdoping’ indicating some relationship be-
weaker dispersion; beyond this, broad peaks with a strongdiveen the kink at the nod& point and the peak-dip-hump
dispersion'®?1?2This kink is present at a particular energy Structure at thé point. With underdoping, the sharp quasi-
all around the Fermi surfadd,and away from the node, the Particle peak moves to higher binding energy, indicating that
dispersion as determined from constant energy spéctea  the gap |ncreas€2§;At the same time, the spectral weigtof
mentum distribution curves, MDEshows arS-like shape in ~ the peakodrop?é’* leaving the quantitzAy /kgTc roughly

the vicinity of the kink?® The similarity between the excita- constant® Also, the hump moves to higher binding energy
tion energy where the kink is observed and the dip energy a@nd loses weight with underdopif§This doping evolution

M, however, suggests that these effects are refageati- of the quasiparticle peak points to an increasing mode inten-
tionally, the observation that the spectral width for bindingSity at the 7,7) wave vector with underdoping. Again,
energies greater than the kink energy is much broader thafere is a similarity to the nodal direction: the low-energy
that for smaller energié$?>??is very similar to the differ- renormalization of the dispersion below the kink energy in-
ence in the linewidth between the peak and the hump at theféases with underdopirfdconsistent with a common origin

M points. Further experimental studies supported the idea d¥f both effects.

a unique energy scale involvétThey found that away from
the node, the kink in the dispersion as determined from con-
stant momentum spectfanergy distribution curves, EDCs
develops into a “break”; the two resulting branches are sepa- Unusual spectral dip features in tunneling data of
rated by an energy gap, and overlap in momentum spac®i,Sr,CaCyQ;_ ; are found in point contact junctior$,in
Towards M, the break evolves into a pronounced spectralscanning tunneling spectroscopySTM),3>3 in break

“dip” separating the almost dispersionless quasiparticlejunctions®*3*3and in intrinsic c-axis tunnel junctioris.Con-

B. C-axis tunneling spectroscopy
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sistently, these data show a peak feature, usually assigned $erved in inelastic neutron-scattering experiments on bilayer
the maximald-wave superconducting gap, and a hump fea-cuprates in the superconducting state, with an energy near 40
ture at higher bias, separated from the peak by a pronouncedeV in optimally doped compound&:*® A similar reso-

dip feature. A characteristic of this dip feature in SIN junc- nance feature at them(7) wave vector is observed in un-
tions is that it occurs asymmetrically around the chemicalerdoped YB3CU;0g. «, but at a reduced enerd$=*’ The
potential, usually stronger on the occupied side of theegonance was also found in,Bi,CaCuyOg, 5, both in the
spectrunmit”* This asymmetry was succesfully explained gptimally dope®*8 and overdopelf regime. Recently, the

within the theoretical modgl presented befbithe dip fea—. resonance was discovered in single layes8B,CuQ; com-
ture has been observed in tunneling spectra of the S'nglﬁound as welf®
36 '
Cul-r?zolr?j}:a?rtgogft)ro:cr;dinEg%gtLijﬁ Zzg:ﬁ"t-he bosonic mode To show how well the above criteria fit, we summarize its
) i ) characteristics: the resonance is narrow in energy and mag-
that would produce a dip feature in the tunneling conduc-" . ", T T .
netic in origin’*” Its energy width is smaller than the instru-

tance, a systematic study as a function of doping was per-

formed in break junction tunneling spectroscopy by Zasadz[nental resolutioritypically less than 10 mefor optimally

inski etal® There, the doping dependence in and moderately underdoped mater_ials. Strongly underdoped
Bi,SrL,CaCyOg_ s of the peak-dip-hump structure was deter—matesr(')aéllS show a small broadening of the order of 10
mined over a wide range of doping. It was found that theM€&V-" "~ The resonance lies below a gapped continuum, the
dip-peak energy separatiéhfollows T, asQ =4.%gT.. As latter having »a signal typically a factor of 30 less than the
expected for an excitonic modé€) approaches but never maximum atQ at the mode energy. The mode energy de-
exceeds A in the overdoped region, and/A monotoni- creases with underdoping, and has its maximal value of
cally decreases as doping decreases and the superconductaimut 40 meV at optimal dopirf§=’ In both underdoped
gap increases. The dip feature is found to be strongest neand overdoped regimes, the resonance en@rgyis propor-
optimal doping. Similar shifts of the dip position with over- tional to T, with Q,o~5—5.5T 5047435148
doping were reported prevously by STRITogether with the An additional aspect, specific to bilayer materials, is that
ARPES results, these studies giVe a detailed piCtUre abOlﬂt 0n|y occurs in the “odd” ChanneL which connects the
the doping dependence of the mode energy involved in eleg;onding combination of the bilayer bands to the antibonding
tron interactions in the superconducting state. one> The continuum is gapped in both the even and odd
scattering channels(the even channel is gapped by
Ill. COUPLING TO THE MAGNETIC-RESONANCE MODE ~60 meV, even in the normal staf€ We will address this
) issue further below.

_ There have been several th_eoretlcal treatments that as- The resonance is strongly peaked at thexf) wave vec-

signed the anomalous ARPES lineshape neaMtmoint of égr. The momentum width of the spin-fluctuation spectrum is

the zone fo the c:ouplmg between spin "ﬂuctuatlons aNGninimal at the resonance eneffy?2where it is(in contrast
electrons:=®8 The “collective mode model” proposed by to

Norman and Dingwas suggested to account for the unusual the off-resonant momentum widtionly weakly doping

; ; & 54-56 T
APRES lineshapes by coupling electrons to a dispersionlesdsependent’ with a full width of about 0.22°A. This

collective mode. The main motivation for a more detailedgoggipznds to a correlation lengtly of about two lattice
study of this model in Ref. 8 was to additionally account for P gs.

; 41,57 _
the dispersion anomalig€kink), and the isotropy and robust- A sh.arp resonance is not observed abgye™ ™" On ap
ness of this characteristic energy sc3le. proachingT. from below, the resonance energy does not

The minimal set of characteristics for the collective modeShift towards lower enerdy;***but its intensity decreases

we are interested in follows from the experimental resultstowards Te, following an  order-parameter-like

from ARPES and tunneling. The mode is characterized by it§ehavior:®*#24457with underdoping, the intensity &®
energy and its intensity at ther(w) wave vectorthe wave = (. m) increases from about 1 for YBa,Cu;0, to
vector being suggested by the momentum dependence of tiaout 2.6:5 per unit cell volume for YBgCu;Og 5.
strength of the ARPES anomaljeslts properties from There is clearly an abrupt change in resonance intensity at
ARPES and SIS tunneling are as follows. The energy should, even in underdoped compounds.
be weakly dependent on momentum, roughly 40 meV in op- Note that in underdoped materials, an incommensurate
timally doped cuprates, follow. with doping, and be con- response develops below the resonance erérgyhich,
stant with increasing temperature up T@. The intensity however, never extends to zero energy, but instead the spec-
should be maximal at then(w) wave vector, where it trum is limited at low energies by the so-called spin gap
should increase with underdoping and follow an order-ESg.56This part of the spectrum behaves differently from the
parameter-like behavior as a function of temperature belowesonance part as a function of dopiigVe will neglect this
T.. The mode should be absent in the normal state; a remfweakey incommensurate part of the spectrum in this paper.
nant can be present in the pseudogap state, but an abrupt The total spectral weight of the resonance is small and
increase in intensity should occur B with lowering tem- amounts to about 0.G& per formula unit at low
perature. temperature$’>* We will show below that the smallness of

A sharp resonance with characteristics fitting those exthe weight of the resonance is not an obstacle to achieving
tracted from ARPES and tunneling measurements was obarge self-energy effects.
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TABLE I. Parameters for the effective dispersigp. The parametefy is not known from experiment. We set it
. . to a reasonable value to preserve a dispersion shape similar
krna kmad éwm & huyla A mya to that obtained from the band theory. The inverse mass at

the M point is known to be negative and small in thé
—TI' direction, and it was suggested that it could be zero,
giving rise to an extended van Hove singularity-ere we
A. Theoretical model chose a finite, moderately small value. As we show, the in-
) ) o .. verse effective mass will decrease when coupling to the spin-
We are interested in the renormalizations of the fermionigy,ctyation mode is taken into account. and it is this renor-
dispersion due to coupling of electrons to a sharp spinggjized inverse mass which is experimentally observed.
fluctuation mode at low energies, equal to about 40 meV OSimilarly, the value of the Fermi velocity at the node is cho-
less. We will assume that superconducting order is alreadya, somewhat larger than the experimental value, since
es.tabhshed ywthout coupling to this resongnt feature in theagain, one observes the fully renormalized velocity; in our
spin flucutation spectrum, and thus describe the supercory|cylation, self-energy effects renormalize this value to the
ducting state by an independent order paramater This  pogerately smaller value observed in the experiment. When
order parameter will be chosen to haslevave symmetry he doping level is varied, the band filling varies, (
(here and in the following the unit of length is the lattice changey so that the van Hove singularity at tihé point
constania), &, will move relative to the chemical potential. Also, the

Fermi crossinngA moves along theM —Y line. All other
band-structure parameters are expected to be rather insensi-
tive to the doping level.

The “normal state” dispersioné,, and the order-

0.36/27 0.187 —34meV 0.8eV 0.6eV —0.2376 eV

Ax=Ay(cosk,—cosky)/2, (1)

which takes its maximal valud,, at the M point in the
Brillouin zone. The magnituda,, will be chosen so that the . . .
calculated peak in the ARPES spectrum attheoint, after ~Parameterd,, are phenomenological quantities, which are
including self-energy effects due to coupling to the spin fluc-alréady renormalized by other effects which we do not need
tuations, fits the position of the spectral peak in experimental® SPECify, but which are assumed to influence the physics
ARPES spectra. We stress that we do not specify the origi@"ly On an energy scale large compared to the scale of inter-
of the pairing interaction responsible for the order-parametefSt N this paper50-100 meV. The self-energies due to
Ay, but the continuum part of the spin fluctuations is one ofSmeﬂUCtu"’ltlons will have a part due to the parUcIe-hoIQ
the candidates. We also underline that, as our results wiffontinuum, and another part due to the resonance. We will

show, the spin-fluctuation resonance supports pairing, bufonsider two models, a simple form and an extended form.
does not cause superconductivity in and of itself. In the simple form, we include the effect of the continuum

In the model we employ, the retarded Green's functionda't of the spin-fluctuation spectrum by a constant renormal-
sz for fermionic excitations in the superconducting state is'ztatr'o_rr_h?f t:]e dn?rvrCiﬁl staierdfrp])erfrsrl]o?nanr? t?e ?r?ernp?r{i:lm-
a functional of the normal state electronic dispersipn the eter. s moce capture the main physics for energies

order-parameted, , and the self-energies due to coupling to below 100 meV, which is do_mlnated b_y the coupling of _the
- . R R B i electrons to the resonant spin-fluctuations. The reason is the
spin fluctuations ¢\ ,® .. The term “normal state” here

. following: as we will show below, in this energy range the
refers to the state at the same temperature, but W'th Zen ?naginary part of the self-energies due to the continuum part
order.par.amete.r. We emp'oy a six-parameter tight-binding f't)f the spin-fluctuations is zero, and the real gdivided by
for this dispersion, having the form €) only varies weakly both in energy and momentum. This
allows to approximate it by a real constant in that energy
range, and thus include it into the renormalizatiorépfand
Ay . For this case, the “normal state” reference is defined as
the state with zero order parameter, interacting with a spin-
5 4 flucutation spectrum having no resonance part and a con-
2 2 tinuum part identical to that in the superconducting state. The
+ 15008 Z,COS X, . 7 ][leal, ph.ysical n(_)rmal state will be diﬁerept because the spin-
uctuation continuum changes when going from the normal

Any set of six independent parameters for the dispersion de© the superconducting state, leading to an additional renor-
termines the parametets—ts. The six parameters we use Malization of the dispersion. Thus, in the simple form of the
are the positions of th&l (node andA (antinode points in ~ model, the low-energy dispersion that enters the calculations

; ; I D i will be approximately proportional to the true normal-state
Fig. 1, parameterized bykry=|ky—Kr| and kya=|ka dispersion, but the proportionality factor will not be unity.

cosk, + cosk,
E=totty — +t,cosk,cosk,

cos X, +cos X, cos Xk,cosk, + cosk,cos Xk,
+1

—kl, th? band. energies at _tM andY points, £y ar_‘de' At higher energies, the spin-fluctuation continuum can be
the Fermi velocity at thé&\ point, vy=|vy|, and the inverse excited, and this leads to an additional strong fermionic
effective mass along directiodl —I" at theM point, my,*.  damping. We will study this effect in an extended model

Table | summarizes our choices. For reference, the correxhich explicitly includes the gapped spin-fluctuation con-
sponding t; are (eV): t,=0.0989, t;=-0.5908, t, tinuum. For this extended model, the “normal state” disper-
=0.0962,t;=—0.1306,t,= —0.0507, and5=0.0939. sion will have a different renormalization factor as compared
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| — SRASR,
Bw,q Imode fe,k:§k+ #, 8
o (I)R q)R*
A=A+ —_E_, 9
' 2
I\ continuum ' 5 _Esk_zse,—k (10)
Q.. 24, ¢ ok 2

We will couple electrons to the spin-fluctuation spectrum
denotes a spin-fluctuation. Right: the model spin-fluctuation spec W'th a coupling constarg, which we assume to be indepen-
trum we used for the wavy line in the Feynman diagram. The modéjent of energy and momentum. The self-energies for our
affects the low-energy fermionic properties. The continuum partmOdeI are then given in terms of the SpeCtral function of the
only couples to electrons with higher energies, and is neglected igpin-fluctuations with energy and momentuny, B,, q» by

the simple form of the modé&.Damping of electrons at energies the expressiongwe chose a representation especially well
above 100 meV is caused by the continuum part, and is included isuited for numerical studies, see Appendix A

the extended model, which we also discuss in this paper.

FIG. 2. Left: Self-energy for electrorifull lines). The wavy line

R _ T 2

to the simple model above. Specifically, we use for the ex- Eka_w% Poe-0d Bo Gf w.k=g
tended model the above dispersion scaled by the factor 1.5
and shifted back in energy, so t stays at its original . .
value of —34 meV. ¥ " stay J _ngq Gy 4(i€n)g’Dy'(e—iey), (1)

We find that all essential features of the self-energy effects
in the superconducting state are obtained using a minimal
model with a spin-fluctuation spectrum shown in Fig. 2. € k_E Pw - wng FE w,k—q

The continuum formally has to be cutoff at high energies.
This cutoff only affects the real part of the self-energy, and
variation of the cutoff leads to only a weakly energy- ~TY Fi(i€)g?DY (e—iey), (12)
dependent contribution to the renormalization factor, which cnd
can be absorbed in the dispersig§nas described above. We whereGM andDM are the fermionic and bosonic Matsubara
discuss the choice of this cutoff later. The retarded Green'&reen’s functions, which are easily expressed in terms of the
function in spectral representation is given as a function ogpectral functiong\” v andB, 4, respectively. The Matsub-
the self-energies as, ara sums in the second lines of E¢kl) and(12) only con-
tribute to the real part of the self-energies. The population
factor p;l;’e_w is given in terms of Bosgb) and Fermi(f)

SR, ek 3 - -
k[ =, Evk+|5 population functions as
pw,57w:bw+fwfe:_bfw_f57w- (13)
FRISR OR 1= V—Ek (4)  We solved these equations numerically using bare Green's
v== e—E/ +i6 functions GRk[O 0], FEk[O'O] for calculating the self-

energ|es.25k and(IDE’ . We show later that feedback effects

with excitation energiesE’, and coherence factors . ek o
: give no significant changes within our model.

ekr=eks Although we solve the equations above numerically with-
. — out further approximations, some general remarks are in or-
Eex=* VEKT AWl *+ 0% k. (5 der. The functiorp], ,_,, as a function ofw is at zero tem-
. perature nonzero only between=0 andw= ¢, and is equal
1 Eek to sign(e) in this range. Because the spin-fluctuation spec-
f,k=— i—’_, (6)  trum is gapped by much more than the thermal energy in the
2 2y 5,(4—|Aek|2 superconducting state, we can put for all practical reasons
bﬂres=0. That means that we can neglect thermally excited
KE ‘ modes, and only allow for emission processes at the resonant
C§k= ) (7) mode energy. For any gapped spin-fluctuation spectrum with
2\/§EVK+ |Acil? gap(}, the first terms in Eq9.11) and(12) are negligible in

the range— Q) <e<() (apart from temperature smearing
The renormalized dlsperS|on and gap function are given imear the value+(). Thus, assuming that the spin-
terms of the dlagonaIE( ) and off-diagonal ([)Ek) in  fluctuation spectrum is gapped below the resonance energy,
particle-hole space self- energles as at zero-temperature scattering of electronic excitations is dis-
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TABLE Il. Minimal parameter set used in the calculations. parable in magnitude effects as in strong coupling supercon-
; ductors. Using bare Green’s functions, the self-energy at zero
Ay Qres & &sti g°Wq temperature can be written as
35 meV 39 meV —34 meV 2a 0.4 e¥

ImsR, =— % 9WAqO(€+ Qe+ Ex_g)

allowed in the interval-Q,.,<e<,.s. This is an expres-
sion of the fact that at least an ene@y,s must be spent in _E g2Wqu+_q5(6_Qres_ Ev_q), (16)
order to emit one spin-fluctuation mode. This is the case for q

optimally and overdoped cuprates. For strongly underdoped

cuprates, scattering is disallowed only in the rargg,<e

<Eg, Where_Eg is th_e spin gap Which_is s_maller th_&nes. R g
Also, as an implication, the renormalization function, deter- ReX = —2
mined by the real part of the self-energy, is given in the q

low-energy range by the second terms of E44) and(12) [N 12 AT —(1+ =
only. In the following, we first consider the simple form of wheref, = & +[Ayl%, A =(1* £/Ey/2. The sum oveq

the model. which uses only the mode part of the Spin_extends over the first Brillouin zone for the spin-fluctuation

fluctuation spectrum. After having gained some insight abou omentum. For negative energies, only the first sum in Eq.
P : 99 9 El6) is nonzero. The sum is a weighted average of the ex-
the features caused by the resonance mode, we study the

extended model that includes the continuum part as well.

QI’ES
5 e+(1+ L
Wq Ek—q q

L (17)
™ (Qrest Ek—q)2_52

pressionAy_,6(e+ Qs+ Ei—q) With weight factorswy.
For given fermion energies and moment the & function

B. Contribution from the spin-fluctuation mode restricts the allowed spin-fluctuation momerﬁa Similar

) .. . zero-temperature formulas hold for the off-diagonal self-
For a sharp bosonic mode the spectral function is givernergy,

by,
ngw,QZZQZWq[ (0= Qes) =@+ Qed)], (14 Imq)sk: _Eq: gZWqu,q[ﬁ(e—QreS— Ex—q)
where Wq is the energy integrated weight of the spin- — 8(e+ Qrest Ex_o)], (18)
fluctuation mode, which is assumed to be enhanced at the
@z(w,w) point. Using the correlation lengtfys;, we write Qres
it as 2 1+ )Akq
R 9"Wq E—q
RedR, = —., (19
Wq a T (Qres"'Equ) —€

w

= 15
d (13 with C,=A/2E,.
In Fig. 3, we plot fork= Ky, and for several energies these

restricted regions i space. The corresponding weights for

1+ 4§§f,( co§% + co§%)

We will show below that it is a good approximation to as- : ) _ I
sume the mode as perfectly sharp in energy, as correctiorid€S€ regions, given by, are maximal ag=Q (a,=0dy

due to the finite energy width of the mode are negligible.= 7). and decay away from that momentum. For reference,
From neutron-scattering data obtained onWe define the regions inside the black circle, whevg
Bi,Sr,CaCuOg, 5, the energy integrated weight of the reso- ~Wo/2, and the white regions, where,>wq/10. The cal-
nance mode was determined as 3, leading (after di- culations were done for finité=40 K, and with a broaden-

viding out the matrix element ,42§) to wo=0.95. We fit ing paramete®=5 meV in Eq.(3).

ARPES data near optimal dopifiggiving gwo=0.4 e\2, For energies — (o= —39meVj<e<0, there is no
This implies that the coupling constant is equal o phase spf';\ce avallallble for scatterllng. Scattering oj electrons
=0.65 eV. This is a reliable value as discussed in Ref. 60. Iy the spin-fluctuation mode sets in fer- — (¢ atq cor-
Table 1, we present our minimal parameter set entering theesponding to the wave vectays= (ky —ky) mod (G), con-
model (we only include the parametefy, from the band- necting theM point to the nodes@ denotes a reciprocal
structure tight-binding fit, as the results are insensitive tdattice vectoy. In picture a of Fig. 3, we show fore=

reasonable variations of the other parametdagether with  — () .+ A ,) the mode wave vectors involved in scatter-
the values we used for optimally doped compounds. ing events. The weight for such events is very small, as can
be seen from the fact that these wave vectors are outside the
1. Electron Scattering white region. Going further away from the chemical poten-

We first discuss phase space restrictions for electron scafia! With e, the allowed mode wave vecti)r regions increase,
tering in thed-wave superconducting state, and how they@S shown in picturgb) for e=—(Qest32A4). When the
relate to the issue of whether the small relative weight of theéSPecial pointe=—(Q s+ A ) is reached £ —71.2 meV in
resonance part of the spin-fluctuation spectrum leads to conmur casg the arcs ofg-regions involved in scattering events
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) e=—(Q,+A,/10) e=—( mlq+A4/2) e=—(Q 44, e=—(Q_+E,) e=—2(Q _+E,)
a) b) ) e)

e [\ Z \ / ] i '

= O F O - > O (e

|/ | - I _

O . 1 .
0 1 2

q,/m

FIG. 3. The black regions denote the part of the first Brillouin zone of the spin-fluctuation momgnitich participates in scattering
of electrons with momenturky, and energye, as indicated above each picture. The amount of scattering events is controlled by the form
factor for the resonance mode,, which takes its maximal valueag) in the center of the Brillouin zone &= (=, ). Inside the black
circleswy>wg/2, and inside the white region,>wgq/10. For small energie@) only nodal electrons are scattered. For energies equal to
O,.st+Ey (d) a large region arounil point of the fermionic zone participates in scattering events. Scattering electrons with this energy and
momentum involves spin-fluctuations with maximal weight, and thus almost exhausts the entire weight of the mode part of the spin-
fluctuation spectrum. Picturés) and(d) correspond to the special energ{es.+ A, andQ .+ Ey , leading to cusp features in the energy
dependence of the imaginary part of the self-energy.

close at the pointg=(ky —ka) mod (G), as shown in pic- In our case, the spin-fluctuation weight of the mode is only
ture (c), and electrons are scattered strongly betweerMhe about 5% of the total spin-fluctuation weight, but it is con-
point and theA points. This leads to a cuspr peak for very  centrated in the region inside the black circles in Fig. 3.
small quasiparticle broadenin@ the energy dependence of Ajmost the total area inside the black circle contributes in the
the imaginary part of the self-energy at this energy. Goingease of picturdd), showing that the same amount of only a
further in energy, another special point is reachedeat few percent of the bosonic spectrum is involved as well for
=~ (QrestEn) (With Ey= &y +A}y), at which scattering  spin-fluctuations in higi¥, cuprates as for phonons in con-
events between thé points involving spin-fluctuations with - yentional strong coupling superconductors. Thus, the renor-
momentumg = Q (and withq=0) are allowed. We show the malization of the fermionic dispersion is expected to be of
corresponding regions ig space in picturéd). This picture  the same order of magnitude, and our explicit calculations
is important for understanding the large effect we obtain.confirm this.

First, the weight factow, is large in the Patches of phase  |n Fig. 4, we show thej-space areas corresponding to
space for allowed scattering events aro@dFurthermore, Fig. 3 (d), but for electrons near the nodal wave vector. As
because of the van Hove singularity in the band dispersiorcan be seen, the feature due to the van Hove singularity
these patches have a large area, almost filling the area insigggion is now weighted by a smaller valuevef. Because of
the black circles in Fig. 3. This has as consequence that s, for nodal electrons, the corresponding peak in the self-
large part of the weight of the resonance is exhausted fognergy is smaller than for momenta near Kh@oint. It turns
scattering electrons with energies equal &= — (s out that for the nodal electrons, the feature -a{(,es

+Ey), which amounts te-87.8 meV for our parameter set. +A,) is more pronounced than that at(Q,es+ Epy).
Going even further in energy, as shown in pictieg, the

amount of scattering events quickly decreases. The area e=—(Q_+E,)
which is involved in electron-scattering events is maximal 2 —g—M
for energies between 70 meV and 90 meV. For these ener-

gies, the involved spin-fluctuations are also near&hegion B
where almost all their weight is concentrated. Thus, the .1
strongest renormalization effects will take place in the en- O
ergy range 70—90 meV.

Let us compare this discussion with the case for conven-

tional isotropic electron-phonon coupling. In this case, the 0
weight factorsw, are constant. The relative amount of pho- O 1 2
non wave vectors involved in scattering events is then equal qx/ T

to the ratio between the black areas shown in Fig. 3 and the

total area of the Brillouin zone. This ratio is for the maximal FIG. 4. The same as Fig. 3 tbr a fermionic wave vector at the
case, picturgd), equal to 5%. That means that only 5% of nodal point, k=Kky. Because the allowed region for scattering
the total phonon weight contributes to the imaginary part ofevents is outside the region of enhanced spin fluctuations, the cor-
the self-energy. It is well known that electron phonon cou-responding cusp feature in the im aginary part of the self-energy is
pling easily leads to renormalization factors of the order of 2weaker than for electrons with momenta near ¥hgoint.
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ture) mode energy. In region Il, a larger and larger area
around the nodes participates in scattering evéasscan be
seen from picturega) and (b) in Fig. 3], until finally the
point at the zone boundary with maximal gapA,, is
reachedpicture(c) in Fig. 3]. This point corresponds in Fig.
5 to a cusp feature in the imaginary part of the self-energy at
—(QrestAp). The third feature, at-(Q,est+Ey), corre-
sponds to the van Hove singularity at thé point of the
Brillouin zone, which is close to the chemical potential in
cuprateg|picture (d) in Fig. 3]. The proximity of this van
Hove singularity leads to a stronger peaked feature in the
scattering rate neart({,.s+A,) compared to the case
: where this van Hove singularity at tiv point is absent. The
e [eV] renormalization factor is rather constant in region | as a con-
sequence of its connection to the imaginary part via
FIG. 5. Renormalization factor at thé point, Zy,(€) (top) and  Kramers-Kronig relations. The enhancement in regions | and
electron-scattering rate at ti point, I'yy(e) (bottom). The thin Il compared to unity comes from two step features at
lines denote some characteristic energie$) ¢ (dotted, = (Qes  +(Q,0s+ Ey) and at+(Q,.s+A,). Note that the step fea-
+A,) (dashegl and = (Qcs+Ey) (dot-dashejl Electrons at low  ture due to the van Hove singularity at thepoint contrib-
temperatures are scattered only if their energy is larger €han,  utes about 50% to the total enhancement. The small features
so that they are able to emit a collective mode excitation. The pagt +0,.s are due to the finite lifetime of the electrons in-
rameters used ard=40 K, Qes=39 meV, Ay =35 meV. volved in scattering processes as discussed below. The onset
of scattering at the emission edge for the spin-fluctuation
mode occurs as a jump if the electrons involved have a finite
The self-energy has a characteristic shape as a function §pectral width. At even higher energies, corresponding to
energy, which is conserved qualitatively for all points in theFig. 3 (e), the scattering due to the spin-fluctuation mode
Brillouin zone. This is a consequence of the fact that alloecomes less effective. Note that the spectral peak of the
points are coupled via the spin-fluctuation mode, which has &lectrons at- A, is either in region | or in region Il. Thus,
finite width in momentum, to all special points in the Bril- quasiparticles near the nodal regions are always sharper in
louin zone with their corresponding characteristic energiesenergy then quasiparticles near the maximal gap regions. In
These special points are the noddlpoints, and the van overdoped cuprates, the maximal gap is usually smaller than
Hove singularities at th# points and the points(the latter ~ the mode energy, so that for the broadening of the quasipar-
is a dispersion maximum in the superconducting stde- ticle peaks, the spin-fluctuation mode is not relevant.
cause the general shape of the energy dependence of theFor the following discussion, it is useful to derive ap-
self-energy does not vary much with momentgathough  proximate analytical expressions. At zero temperature, using
the overall intensity do@sit is sufficient to discuss the im- EQ. (17), we obtain
portant features in the energy dependence of the self-energy
at theM point. 1
We numerically evaluated the self energy, using a broad- Zy(e)=1+ E 5 . (21
ening paramete6=5 meV. In Fig. 5, we show the results T (Qfes+ Exu- a) — €
for the renormalization function and electron scattering rate
at theM point, The main contribution comes from the regions whege _
is less than 100 meV. We can estimate those regions by the

RedZy(e€) requirement thaky, —q is in the area around thil points
Zm(€)=1- € Tu(e)=—ImoZu(e) 20 yeliminated by+0.357 in M—Y direction and by about
0.37 along theM —T" direction. Then, replacinng_q by

2. Renormalization factor and electron lifetime

as a function of energy. -
There are three Ch%acteristic enerdiasaddition to tem- —Aw, andEy,_q by Ey, we perform theg-sum over that

perature, which smears all features kyT). Region | is area of the functiow,. We denoteX w, over this area by

bounded by the resonance enerfly,., and has zero scat- |o- For our model we havi,=0.035. Using this approxima-

tering rate at zero temperatutbis statement is true for elec- tion, we obtain

trons at any point in the Brillouin zoneAt finite tempera-

ture, a regiorkgT around= (). allows for a small amount g%l 1 N

of scattering, even in region |. Because states are occupied ~ Zm(€)~1+— > 2+)\§v|)(€)- (22

near theM point, we will only discuss negative energies in (QrestEn) "~ €

the following. At e= — (s, Scattering for all electrons in

the Bnlloumgzone sets |r;ecSJIue to coup%mg to nodal electrons Here, )‘(N)(e) denotes the contributions coming from the re-

via emission of a spin-fluctuation mode. Absorption pro-gions wherek’ =ky—q is outside of the above range. It is

cesses are negligible due to the latgempared to tempera- dominated by contributions wheil¢ is near the nodal re-
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The behavior of the imaginary part of the self-energy near
the onset pointsi ()¢, In Figs. 5 and 6 is determined by
the nodal electrons. For larger residual quasiparticle widths
(6=5 meV, dashed lines in Fig,) 8here are states available
at the chemical potentigtoming e.g., from impurity scatter-

} : } ing), which increase the number of final states for scattering
0.3 | — &=t mev ] events. Thus, the onset in Fig. 6 for the electron-scattering

——- 8=5meV

= o mev ool rate is stronger in this case than fé=1 meV. For zero
2 02 temperature there will be a jump at energy),.s in the
@; 0.1 imaginary part of the self-energy, which causes the small
~ cusps at the same energy in the renormalization facoqr

0.2 panel in Fig. 6. For =0 the onset is linear in energy.
(meV] ' We will estimate analytically the onset behavior near
€ these points for the case=0 now. For this we use Eq&L0)

FIG. 6. Renormalization factor at té point, Zy (€) (top) and  and(16). We replaceﬁ by k' —K, approximatewg by wyy
electron-scattering rate at the point, I'y(¢) (bottom. The picture — =w and linearize the dispersion around the nodes,
compares results for two different residual quasiparticle I|neW|dths:Ak=JA(|z, —IZN), §k=5N(E' —EN)- HereJA=(9kAk and JN

8=1 meV (full lines) and 6=5 meV (dashed lines As dotted .
lines the nodal contributions, when restricting the quasiparticle mo- diéi taken at theN point. For our model, we have,

menta to the regions outside the area aroundvitmoints discussed = Aysinfk/V2, which is valid near optimal dopingBut

in the text, is shown fo=1 meV. note that for underdoped cuprates, was experimentally
shown to be smaller than that value, perhaps scaling with

gions of the Brillouin zone, thus the relevant spin-fluctuationksT. instead of withAy .%%) Performing thek’ sum and

momentum igj= (Ky —Ky) modG. The contribution\{\) is ~ summing over all four nodes, we arrive at

smaller than the first term in Eq22), but not negligible. 92w

Because Eq(22) neglects the dispersion betweefd,fs IMSSM (€)= — ——N[|e+ Qe O(— e— Qo)
+A,) and Qs+ Ey) near theM point, it should be used TUNUA

for energies not too close to the region between these +]e—Qred O(e— Qed) 1. (23)

two values. We will make use of this formula below for L ) .
energies near=E,,, where this formula gives a good Here, t_he@ function is unity for positive argument and zero
approximation. otherwise. Thus, the slope of the scattering rate eat

=+,q IS given by ¥ g?wy\/7uNv, . For the parameters
in Tables | and Il, the magnitude of this slope is equal to
9.5wyy/Wo=~0.56. Note that EQ23) gives a good approxi-

For overdoped materials the quasiparticle peak atMhe mation of the scattering rate in the intervél ..<|e|
point is situated below the onset of scattering due to emis<() ..+ AA/2. For energies further away from the onset, the
sion of spin fluctuations. In this case the width is determinecthange of the quantity, (which goes to zero at th& point)
by other processes, and we model this residual quasiparticleads to a stronger increase. Finally, for underdoped cuprates
width by a parameteé. In Fig. 6, we show the influence on the excitation energy at th®l point, Ey, is larger than
the renormalization factor and the scattering function of the), ... Then, the quasiparticle linewidth at thé point is
residual quasiparticle width. We compare the resultsdor given by —|m52,(\}|“)(—EM)/ZM(—EM)_ Thus, for under-
=5 meV with those fols=1 meV. For very small quasipar- doped cuprates it is given by
ticle broadening(full lines) the cusp features in the imagi-
nary part of the self-energy turn into peakehich ultimately - gZWMN Em—Qres
evolve into square root singularities for perfectly sharp qua- I'v= ToNvs Ly (24)
siparticles and resonancdhe second feature to mention is
that the scattering rate near the onset point§) s, is in-  With Zu=Zy(—Ewn). Near the nodes, on the contrary, the
fluenced strongly by the residual quasiparticle width. Be-Quasiparticles will stay relatively sharp even in underdoped
cause this onset region governs the quasiparticle width i§ompounds because the peaks positions are then below the
underdoped cuprates, as we show later, we study it in th@NSet energy- (..
following in more detail. In the lower part of Fig. 6 we show
as a dotted line the contribution to the electron-scattering rat
coming from the final states not too close to tMepoints One potential criticism of a model which assigns the ob-
(the regions which determina(}, introduced aboveas served anomalies in the dispersion to coupling of electrons to
compared to the full scattering rateull line). It is clearly  the spin-resonance mode is the spectral weight of the reso-
seen that the sharp features come fromNheoint regions, nance,l 5, which amounts to only a few percent of the local
whereas the nodal regions contribute to the onset of electromoment sum rulé? Our calculations show that this is not an
scattering and provide a smooth constant background atbstaclé®® as we obtain a dimensionless coupling constant of
higher energies. order one, as observed experimentally.

3. The quasiparticle scattering rate

& The coupling constant and the weight of the spin resonance
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FIG. 7. Left, the part of the self enerdgV) defining the band
renormalization at theéVl point as a function of energy, fak
=35 meV, Q,.s=39 meV, andg=0.65 eV. Right, the quantity
En(e)(Zy(e)&y) (filled circles and 1Z,,(e) (empty circle$ for
e=—A,, as a function of the coupling constamt

Here we estimate.,, given byZ,,(0)—1, for the reso-
nance mode. From E@22), it is equal to

2)

g7lo

T (QrestEn)?

Y +A{"(0). (25)

Using values for optimal dopingrable lI), the first term in
this sum is equal to 17.4¢, which amounts to about 0.8l
our modell ;=0.035). This is already a large part of the total
coupling constant, which from Fig. 5 ¥, ~0.9. The con-
tribution 1+ A {)’(¢) is shown as dotted line in the upper part

of Fig. 6.A{\V is not negligible, but contributes about 30% to Fig.

the total coupling constant.
We obtain an analytic formula for the low-energy correc-

PHYSICAL REVIEW B67, 144503 (2003

(but also not gtthe chemical potential. Thus, the largest
renormalizations are expected at tklepoint regions of the
Brillouin zone.

In Fig. 7 (left), we show the particle-hole asymmetric part
of the self-energy as a function affor electrons at thév
point of the Brillouin zone. The imaginary part shows a peak
due to the van Hove singularity at tiv point, but the cusp
feature due to thé points is missing, because points where
k—q is on the Fermi surface do not contribute to the sum in
Eqg. (27). The real part indicates that the renormalization of
the dispersion is confined to energies betweef.— Ey,
andQ),.s+ Ey . Using the same approximation procedure as
above, we obtain for the renormalization at tepoint

gzloi Qres‘l'EM
T Em (QrestEn)?— €]

EM(E)%fm 1- (28

The first important point is that the renormalization has op-
posite sign to,, thus the band is renormalized towards the
chemical potential. In particular, there is a “pinning” effect
of the van Hove singularity at thil point to the chemical
potential, as long a&,, is of the order of), .. Furthermore,
the renormalization factoZy(e) from Eq. (22) increases
this effect, asty, /Zy, defines the quasiparticle dispersion.

In order to quantify this, we show in the right panel of
7 the relative changes of the dispersion,
Ev(e)(Zu(e)éy) (filled circles, in comparison to the in-
verse renormalization factor Zy,(e) (empty circle. The

tion to the renormalization factor due to scattering betweeratter would give the band renormalization in the absence of

nodal points andvl points, A{}’(€), by a Kramers-Kronig
transform of IrrEf\,’,\')(e), in which only energies up to a cut-
off =(Q,.stA,) are taken into account, and replacing
Im3{(\)(€) above this cutoff by a constarisee the dotted
lines in Fig. 6 equal to its value at the cut-off. The result for
e=0is

AA>
Qres .

For our parameter set this amounts)\tﬁ')(O)~0.Zl. Note
that)\fv’l\‘) increases with decreasiy,¢s.

To summarize, dimensionless coupling constéotsnpa-
rable to those for strong-coupling electron-phonon system
are easily achieved with reasonable parameters by coupli
electrons to the spin resonance.

QZWMN 2
—— —In

i (0)~
TUNUA T

( 1+ (26)

5. Particle hole asymmetric renormalizations

From Eq.(17), we see that the second term in the numera
tor, proportional tc€,_, affects the band dispersidp. The
resulting renormalization is given by

Qres.)
1+ — &
Ek—q gk q

_ gzw0|
ée,kzgk_z .
(Qrest B q)2_ €

q a

(27)

particle hole asymmetric parts in the self-energy. As can be
seen in this figure, the band is renormalized towards the
chemical potential and even crosses it for large coupling con-
stants. For coupling constants near 0.6 eV, the renormalized
band is close to the chemical potential. Thus, the dispersion
of the peak in ARPES is negligible in th\d point regions as
a result of the renormalization of the dispersion. The renor-
malization of the band implies an increase in the chemical
potential, so as to keep the particle density constant. This
effect would increase the distance between the chemical po-
tential and the van Hove singularity at the point, leading
to an equilibrium value in a self-consistency loop. We did not
solve this self-consistency problem, but assumed that our
arameter choice is close enough to the self-consistent solu-

nt(\'[]on to capture the main physics.

6. Off-diagonal self-energy
In order to understand the renormalization of the order-

parameterA, due to coupling to the resonance mode, we

observe from Eq(19),

Qres)
1+ — A
gZWq Ek—q k q

T (Qpest Equ)z_ €

A=A (29)

q

This formula is very similar to that for the band renormal-

From this formula, it is clear that notable renormalizations ofization, except that the order parameter at momerkung

the Fermi surface only take placegf is not too far from

now determines the renormalization effect. Note thatjf
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FIG. 8. Left, the off-diagonal self-enerdgV) at theM point of

the Brillouin zone as a function af is shown for coupling constant FIG. 9. The quantitiesiy(e)/[Zu(€)Ay] (filled circles and

1/Z\,(€) (empty circleg are shown fore=—A\, as a function of

g=0.65eV. Right, the quantitiesKM(e)/(ZM(e)AM) (filled Ay (left, for g=0.65 eV andQ,..=39 meV) andQ,; (right, for
circles and 1Zy,(e) (empty circle$ are shown fore=—Ay as a g=0.65 eV andA,, =35 meV).

function of the coupling constany. Parameters used arg,

=35 meV, res=39 meV. (30) is missing due to the sign change of the order parameter

R at the node. The degree to which this cancelation holds is a
were independent af, no renormalization would take place surprising numerical result and allows us to avoid a self-
due to thed-wave symmetry of the order parameter. Sinceconsistency loop for the determination Af, near optimal
the spin-fluctuation continuum, which we discuss later, isjoping. Thus, the experimental parameters which enter our
very broad in momentum, the renormalization effects in thecalculations are already sufficiently self-consistent.
off-diagonal components is dominated by the resonance con-
tribution. As the order parameter vanishes at the node, we 7. Spectral functions at théM point
concentrate on the renormalization near Mgoint region ) , . L
again. Adopting the approximations as abdmete that con- In t.hIS part, we dlscgss the sp(_actral line shape, which is an
tributions from the nodal regions cancel because of thé-:xperlme.ntally accessible quantity. The main features of the
d-wave symmetry, and using Eq(19), we arrive at _spectral Ilne. shape are captured in the simple model ngglect—

ing the continuum part of the bosonic spectrum. We discuss
in the following the influence of the different parameters of

A 2
Au(e) 1+ 970 i QrestEwm (30) the theory on the spectral function,

Ay 7 Epm (Qres-l-EM)z—ezl

> -
The positive sign is due to the fact thafy,o=—Ay. As a AleKy) = =2ImG(e.ku) (31)

result of this, there will be a compensating effect when cal—and will discuss changes due to the continuum part of the

culating the quantityAy(€)/Zy(e), which determines the gpin-fluctuation spectrum later. In our numerical studies, we
peak position. In Fig. 8left), the real and imaginary parts of ,ged a broadening paramet&r5 meV. This accounts for
the off-diagonal self-energy at thd point are shown. The processes not covered by scattering by spin fluctuations.
imaginary part is relevant only for energies with absolute |4 Fig. 10, we present the results for the spectral function
value > et Ap. For smaller energies, the main effect is gt them point of the Brillouin zone for both a perfectly sharp

to increase the magnitude of the order-paramatein the  resonance and for a finite width of the resonance of 10 meV.
energy range—O,.s— Ap<e<Q,.st+Ax. Note that the

self-energy due to coupling to the resonance mode has 150 - .
d-wave symmetry, like the order parameter. Thus, the cou- : —— 50-0meV
pling to the resonance mode supports superconductivity. In
order to quantify the amount that the resonance mode con-

tributes to the spectral gap, we show in Figgright) and 9 100 ¢
the quantityKM(e)/(ZM(e)AM) [together with 1Z,,(€) for =
comparison as a function of three different parametegs: <
AM, anereS. 50

As can be seen from these figures, although the renormal-
ization factorZ,, would reduce the order-parameter consid-
erably, the off-diagonal contribution to the self energy from /
coupling of electrons to the resonance mode restores the gap 0 - ‘
to its original value. Thus, the resonance contribution to the -0.2 =01 0 0.1 02
gap is as big as that from other sources, and starts to domi- e[eV]
nate if the coupllng_constanF exceeds about 0.5 V. ) FIG. 10. Spectral functions &t for a perfectly sharp resonance

The reason whyAy(Ay) is so close taZy(Aw)Am IS (full line) and for a resonance with a finite energy width of 10 meV
that the additional factor £(¢s/Ey, in Eq. (30) compared  (dashed ling Parameters are for optimal doping. The finite width of
to Eq.(22) is approximately canceled by the presence of thehe mode has very little influence on the ARPES spectra, and can be
additional)\,(\}l“)(AM) in Eq. (22). An analogous term in Eq. neglected for most purposes.
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FIG. 11. Spectral functions at ti\é point for varyingQ),. (left, FIG. 12. Spectral functions at thé point for varying coupling

for 10 meV, 20 meV, 30 meV, and 40 meV, from bottom to top, the constant(left, g=0.1 eV, 0.3 eV, 0.5 eV, 0.7 eV, and 0.9 eV from

thin lines denote the value A\,), and for varyingA  (right, for 15  top to bottom; thin lines denote A,) and for varying distance of

meV, 25 meV, 35 meV, 45 meV, 55 meV, and 65 meV from bottomthe van Hove singularity at thel point from the chemical potential

to top, the thin lines denote the valde(), o). All other parameters  (right, for — &, =0 meV, 20 meV, 40 meV, 60 meV, and 100 meV

are kept fixed at their optimal doping values. The spectra are offsétom top to bottom, thin lines denote Ay,). All other parameters

for clarity. are kept fixed at their optimal doping values. The spectra are offset
for clarity.

It is obvious that the energy width of the resonance has very

I(;t]:clte;] : f;eecatkor? etig?]t,.ARPES spectra, except a slight reduct|or1icle weight increases from the lowest cur¢r Q.

Thus, we will concentrate all our following discussions on _ 10 meV) to the uppermost curdtor ();es=40 meV). Si-

a perfectly sharp resonance mode. The main features of IHEUIt?n?O%SIV th_e broag?ﬂ'n? decr?at\ﬁes. Ahs the tonsett Off ?hua—
spectral function is the dip feature at an energy of about thg'Particie damping an € loss of the conerent part ot the

resonance energy relative to the peak. The peak position a§pec_trum s a result of a decreasmg resonance mc_)de energy
~ relative to the gap, the same effect is expected by increasing

—Ew is renormalized by self-energy effects discussed abovene gap keeping the resonance mode energy constant. This is
and is shifted from the bare Ey, to be near—Ay . The dip o in Fig. 11(right). In this case, the onset of quasipar-
feature is actually spread out over a range of &g cle damping is always at the same enefljy.= 39 meV,
—Aa, anditis the onset of this dip feature which defines they ¢ for the lowest curve, corresponding to a small gap of 15
resonance energy).s. The dip feature is followed by a mey quasiparticle peaks are well established, whereas for
hump at h_|gher plndmg energies, and the position of thgne uppermost curve, corresponding to a large gap of 65
hump maximum is very sensitive to the coupling constaniney the quasiparticle peaks are strongly broadened. How-
and to damping due to the spin-fluctuation continuum, as Weyer in this case, the weight of the peak is affected only
show later. Thus, we concentrate in the following on theweakly, as we will discuss below.
peak-dip structure. Another feature worth mentioning is the Finally, we show in Fig. 12 the influence of increasing
asymmetry of thdine shapeat positive and negative binding coupling g, and of an increasing distance of the van Hove
energies, with a relatively weak dip feature on the unoccugingyiarity from the chemical potentiag,, . In both cases,
pied side compared to the occupied side. the hump energy is strongly affected, moving to higher bind-
In Fig. 11 (left), the effect of a varying resonance eNergY ing energy with increasing coupling and increastg. In
(¢ (keeping all other parameters at their values for optimalyg |eft panel, one can also see that the weight of the peak is
doping is shown. The spectral function shows two effects.gyrongly reduced with increasing coupling constant. This is
First, the peak weight is reduced with decreasing mode ensq; the case with varying, , as seen from the right panel in

ergy. Second, as soon as the quasiparticle excitation energyy 12, and will be discussed in more detail below.
exceeds(),.s, strong damping sets in. We can understand '

these results in the light of the discussion for the self-energy.
As we mentioned above, the scattering rate has a gap equa
to Q... Thus, as long as the spectral peak is situated below Although one can define a quasiparticle residue via the
that energy, in region | of Figs. 10 and 5, there will be norenormalization factorZ(e), in light of the experimental
damping, and the peak width is set by the residual broaderstudies, we will in this part study the weight of the quasipar-
ing due to other processes. If the peak is positioned aboviicle peak in the ARPES spectrum, determined by numeri-
Q.5 (region Il'in Fig. 10, it feels the self-energy in region Il cally integrating over the peak region. For strongly renormal-
of Fig. 5, and will be broadened. Because in region Il theized spectra, this experimentally motivated quantity will
self-energy is dominated by scattering processes involvingliffer from the first. We note that due to coupling to the
nodal electrons, the width in this region is set by the imagi-mode, the peak weight is reduced and redistributed to the
nary part of the self-energy divided by the renormalizationhump. Because the peak weight in the experimental literature
factor, and is given in Eq(24). At the same time, for de- is often referred to as the “coherent quasiparticle weight,”
creasing resonance mode energy, the incoherent part of thee will use the same terminology here.
spectral function grows, taking weight from the quasiparticle We consider the spectral function at thMe point of the
peak. Brillouin zone. Because the peak is separated from the hump
Thus, in Fig. 11, which is foA,, =35 meV, the quasipar- by a dip that extends from-e;=—(Q,estAp) 10 —€,=

?. The coherent quasiparticle weight of the ARPES spectrum
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0.4 0.4 which defines the constanésandB.
In the underdoped region, whefe,.s is much smaller
03[ seeeeee, .. 03 than 2,,, we can approximate further to obtain
N 0.2 N 0.2 _
2TEMQresAn
0.1 0.1 m~ 9l ' (34)
0
0 ———, 000 80 60 w0 30 o Here, we neglected the first term in the denominator of Eq.
Ave g, (33) compared to the second, which is justified wigpis

small. In the overdoped region, wheggl, decreases and
FIG. 13. The coherent quasiparticle weight as a functioA gf 0, approaches &, (whereA,, is the gap at the hot spots
(left) and &y (right) for es=39 meV. Although the peak width  this scaling withQ),. should break down according to Eq.
changes considerably as a function’qf, the peak weight is only  (33) Note that experimentally, the relatidd,s~4.%gT,
weakly dependent oy and £y . was showr?/ and also the relation

—(QestEn), we define as the coherent quasiparticle weight 7 E
the quantity il ~0.5 (35
kgTe
1 o (exp)
Zy=— —f delmG(e). (32)  was experimentally fountf. Thus, our expression Eq34)
Tl -a would be consistent with the experimental finding if with

Without interactions between the quasiparticles0.5 atthe ~ doping Efy scaled withg?l,. Within our theory this experi-
Fermi surface, because the quasiparticle peakstain BCS  mental finding can be interpreted as an indication that the
theory each have one half of the total weight; the value aphenomenological order paramet& is governed by the
negative energy is somewhat larger than 0.5 atMhpoint ~ Same coupling constagt

because it is an occupied state. Coupling of the quasiparticles

to the mode reduces In Figs. 13 and 14, our numerical C. Contribution of the spin-fluctuation continuum

studies are summarized. The results are as folldlysz,, is

only weakly dependent on the gap and the band structure i{i]n
the relevant parameter rang®) z,, is proportional to the
mode energ\),.s, together with the experimental finding
Q,esxkgTe, this meanszy,«kgT.; (3) for coupling con-
stants of order the band width or Iargeg,,ocl/(gsz), for
smaller coupling constants,zl{~ A+ Bgsz with A andB
constantsj4) z,, weakly decreases with increasing antifer-
romagnetic correlatio_n lengthy; . We can understan_d some ngi,q: ZQZCq[®(w— 2A1)—O(—w—2A,)], (36

of these features using the approximate expression of Eq. ) ) o

(22). EvaluatingZy,(€) ate= —Ey,, and taking into account wh_ere the gap in the continuum spectrum Is given ty, 2
the coherence factor at thd point, Ay =Ay(—Ey), and This form for the gapped continuum is similar to the gapped

the nodal renormalization factoz(M=1+\N(=E,,), marginal Fermi-liquid spectrum considered earllier by other
M u(—Bw) authors?%® The momentum dependence takes into account

At energies higher than that corresponding to the con-
uum edge of the spin-fluctuation spectrum, additional
broadening due to coupling to that part of the spectrum sets
in. Because the continuum extends to electronic energies
(~eV), the introduced scattering rate will increase continu-
ously with energy up to electronic energies as well. We
model the continuum part by

gives the experimentally observed flatter behavior around the
Ny (7r,7) wave vector at higher energies, and is modeled as
Zy~ 92l (33 L+ (32691
N+ + B B
ZW'Qest o 2E Cq=Cq o o (3D
1+16¢ coé‘—x+co§—y)
30 0.4 6 2 2
(37)
0.3 . . . . .
20 with a correlation lengthé,=0.5a compatible with experi-
N N 0.2 mental findings. We subtracted a background term, so that
0 the response far away from ther () wave vector is small,
0.1 as experimentally observédie have chosen this background
. . term so that, is zero atq=0).
0 o2 3 4 0 10 20 3 40 For the chosen correlation length, the momentum average
g s of ¢4 gives 0.8 . The constant can be obtained from the

FIG. 14. The inverse of the coherent quasiparticle weighisl/ experimental values for the momentum averaged susceptibil-

approximately a linear function af?wq, (left). Here we have cho- ity at 65 meV, which was found to be£f/ eV for under-
sen(),.=39 meV andA,,=35 meV. The right panel shows that ~doped YBaCu;O;_ 5 in the odd channel, and aboutd/eV
is proportional tof),es. in the even channél Dividing out the matrix element 23,
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FIG. 15. The different contributions to the
renormalization factor(top) and the scattering
rate (bottom) are shown for théM point (left) and
for the N (node point (right). Dotted curves are
the contribution from the spin-fluctuation con-
tinuum, dashed are the contribution from the spin
fluctuation mode, and full are both contributions.

€[meV] e[meV]

this givesco~6/eV and 3/eV, respectively. The correspond-for our model spectrum. Because the const@nts only
ing values near optimal doping should be smaller. We use itwveakly (logarithmically dependent on the cutoff, the exact
our calculationso=>5.6/eV andg=0.65 eV. The choice of energy of the cutoff is not crucial.
this value is motivated by the ARPES measurements on op- In the simple form of our model, we absorbed the renor-
timally doped BjSr,CaCyOg_ 5 of the high-energylinear  malization from the continuum into the band dispersign
in excitation energypart of the momentum linewidth, which  Now we take into account explicitly the continuum, and thus
givesT'y=0.75.1"18 This coupling includes both the even have to start with a band dispersion not renormalized by this
and odd(with respect to the bilayer indicesontributions of  contribution. We found that we can reproduce experiment
the spin-fluctuations, in contrast to the coupling to the modebest by rescaling the dispersion from Table | in the following
which is present only in the odd channel. Note that our valuevay: £"®"=1.5¢,—0.5¢, . With this choice, the van Hove
for cq is about a factor 1.6 smaller than neutron-scatteringsingularity at theM point has the same distance from the
measurements give for underdoped ¥B&0O;_5. Because chemical potential as before.
in optimally doped compounds the intensity of the spin- In Fig. 15, the continuum contribution to the self-energy
fluctuation continuum is smaller than in underdoped onesis shown as a dotted line. As can be seen from the figure, the
this is a reasonable value for optimal dopedcontinuum contribution to the scattering rate sets in above
Bi,SrL,CaCyOg_ ;. the structures, which are induced by the mode. It also con-
The spin-fluctuation continuum is gapped in the odd chantributes considerably to the renormalization factor. As men-
nel from zero energy to twice the gap at the “hot spots,”tioned above, the renormalization does not decay up to ener-
2A,,, which is slightly less than twice the maximal gap. This gies of 200 meV, consistent with experiment. At the nodal
means that additional damping only sets in for energé¢s point, the modification due to the continuum relative to the
>2A, . This corresponds in optimally doped compounds tomode part is strongest. The importance of the continuum
about 65 meV. In the even channel, the optical gap contribution can be seen by noting the strong similarity of
(~60 meV) persists into the normal stafe. the lower right-hand panel of Fig. 15 to self-energies ex-
The continuum formally has to be cutoff at high energies.tracted from ARPES data along the nodal directidff
This cutoff does not affect the imaginary part of the self- Finally, note that in the normal state, the even channel
energy, but its choice leaves a real term of the foriGe at  stays gapped. That means that atkhpoint, the self-energy
energies small compared to the cutoff energy scale. Thifor scattering between bonding bands and between antibond-
term, equivalent to a contribution to the renormalization fac-ing bands(but not between bonding and antibonding
tor which is constant up to the high energies, has to be resimilar to one half the continuum contributiddotted line
garded as an additional phenomenological parameter. ThHa the right panel of Fig. 15. This will induce a weaker kink
constantC depends on the model one uses for the highfeature in the normal state at an energy equal to the even
energy tail of the spin-fluctuation spectrum. Because wehannel (optical) gap in the spin susceptibility, which is
model the continuum by a constant, which overweights higharound 50—60 meV. Correspondingly, the high-energy renor-
energies, we have chosen a relatively low cutoff of 200 me\Mmalization will be present in the normal state, but weaker.

600 0
%00 ~0.05 gm%

-0.1 50606600000000000000000000000

e[eV]

-0.15
100 S

e

02 =e1 0 01 02 “o 0.1 0.2 03
eleV] k/n

FIG. 16. Left, dispersion of the spectral intensity and line shape as a function of momentum aloNg—tifecut, (k,=, Kk
=0, ...,0.47 in steps of 0.04 from top to botton. Right, EDC(circles and MDC (curve dispersions from maxima of the curves shown
in the left panel. In the EDC dispersion, the low-energy peak and the high-energy hump with the break feature in between is clearly visible.
Because the bottom of the normal state dispersion &,at —34 meV, the MDC shows only a broad maximumhtfor high energies.
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FIG. 17. Left, dispersion of the spectral intensity and line shape FIG. 18. Left, dispersion of the spectral intensity and line shape
as a function of momentum along the—T' cut (k=0, k, as a function of momentumy_:o.ew, kx_: 0,...,0.47 in steps of
=0.6m, ..., ar in steps of 0.04 from top to botton. Right, EDC ~ 0.02m from top to bottom. Right, EDCcircles and MDC (curve
(circles and MDC (curve dispersions from maxima of the curves dispersions from maxima of the curves shown in the left panel.
shown in the left panel.

Starting with Fig. 16, we follow the dispersion along a cut

The difference between the high-energy renormalization irgoing from theM point of the Brillouin zone towards thg
the normal and superconducting states is mainly due to thRoint. The A point corresponds to spectra roughly in the
appearance of a continuum gap in thad channel. The low- middle of the set. From the left panel, we see that sharp

energy renormalization is mainly due to the appearance dpeaks are restricted to the momentum regions betweel the
the mode in the odd channel. andA points. The dip structure is maximal at thepoint and

much weaker at thé\ point. The corresponding dispersion,
shown in the right panel, reproduces the experimental
findings? of two almost dispersionless EDC branches, one
In the following, we discuss the dispersion of the spectralfor the peak and one for the hump. The MDC follows the
line shape through the Brillouin zone and study the correpeak branch, then shows a nontrivial variation at energies
sponding EDQas determined from the spectral maximum aswithin the gap edge. This behavior is discussed in Ref. 23.
a function of energy and MDC (as determined from the The Fermi crossing is only slightly shifted with respect to the
spectral maximum as a function of momenjudispersions. unrenormalized value df,=0.18m. At higher energies, the
We include both the mode and the gapped continuum of th#IDC is peaked aM.
spin-fluctuation spectrum. In Figs. 16—19, we show disper- Going from theM point in the direction of thé" point, the
sions of the ARPES spectra along several selected paths @orresponding dispersion of the ARPES spectra is shown in
the Brillouin zone. In the left panels of the figures, the inten-Fig. 17. On the left side, one can see that the intensity of
sities and spectral line shapes can be followed, and in thboth the peak and the hump is almost unaffected in the re-
right panels, the corresponding dispersions of the pealgion between thévl point and roughly 0.3 from there in
maxima and hump maxima in the EDCs are shown as circleglirection ofI". In this range, the renormalized EDC disper-
and the maxima in the corresponding MDC dispersions asion of the hump is extremely flat, as seen in the right panel,
curves. A general remark concerns the linewidth of the highand the peak shows a moderate dispersion, becoming almost
energy features compared to the low-energy features. Due ftat betweerg,=0.97 andq, = 7. When going further away
the strong self-energy damping effects setting in above th&om theM point, the intensity of the peak drops sharply, and
dip energy (Fig. 15, the hump features are considerably a strong dispersion of the hump sets in. There is a clear break
broader than the peak features for all momenta in the Brilbetween the peak and the hump EDC dispersion due to the
louin zone. This holds for both EDC and MDC dispersions.dip. The MDC along this cut follows the peak near tkle
Note that even without taking into account the lifetime ef- point, but changes over to the hump dispersion at roughly the
fects due to the spin-fluctuation continuum, the high-energyoint where the hump starts to disperse strongly away from
features are much broader in energy than the low-energihe chemical potential. In this range, at energies between 70
feature To account for the experimental MDC linewidth, meV and 100 meV, the MDC dispersion is almost vertical,
however, one has to take into account the continuunwith a weakSlike shape. We draw the attention to the fact
contribution. that the hump shows a weakppositive dispersion close to

D. Renormalization of EDC and MDC dispersions

500

FIG. 19. Left, dispersion of the spectral inten-
sity and line shape in the nodal directiof’ (
—Y) as a function of momentumk,=k,
=0.25m, ...,0.457 in steps of 0.04 from top
to bottom. Right, the corresponding EDC
(circles and MDC (curve dispersions. The kink
is most clearly seen in the MDC dispersion. The
low-energy velocity is roughly half the high-
energy one. The high-energy dispersion does not
extrapolate to the Fermi-surface crossing.

400 |

< mf

100
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the M point, with point of closest approach to the chemical 2 40
potential atq,~0.85r. This effect is due to the coupling of
the (7,0) and (O7r) points by self-energy effects, and is a
result of the fact that going towards from the (,0) point

1.5

incoherent
unneling 20

2
incoherent
= \ tunneling
L~

1

Psin(€)
Psis(€)

means going towardsy from the (Ozr) point at the NaaY v
(m,)-displaced wave vector. As a result of this, the weak- 05 S

ening of the self-energy effect along the—1I" cut leads to a . funneling - Hmnslog.
minimumin the hump dispersion at tHd point. This effect -02 -0 S[c;v] 01 02 -02 -01 E[ZV] 01 02

was experimentally fountf

In Fig. 18, we _shoyv our result_s foi a cut parallel to the FIG. 20. Differential tunneling conductance for Slift) and
M-—Y cut _shown in Fig. 16, keeP'”gy—O-Gﬂ constant. At SIS (right) tunnel junctions forT=40 K. Units areeMi2 for SIN
low energies, the spectral evolution, seen on the left part of 4 22T2 for SIS. Results for the coherefftll curves and inco-

the figure, shows the typical BCS mixing between particlenerent(dashed curvésunneling limits are shown. The parameters
and hole states. Concentrating on the negative energy partse given in Table II.

again two branches are present, the peak branch and the

hump branch, separated by a break in the EDC dispersiofunneling current (V), one obtains the differential conduc-
Both bra_mches now show con3|der§1ble d_|sperS|on, but stilance di/dV. As usual, we neglect the energy dependence of
overlap in momentum. The MDC dispersion changes fro he SIN matrix elementM 12|2=2€E,3|T125|2AN(5,6), where

the low-energy peak branch to the high-energy hump branc is the spectral function of the normal metal. The SIN
at roughly the point where the intensity of the peak dmpstu’\;meling current is then given by '

dramatically. Note that the EDC and MDC dispersions are
considerably displaced relative to one another at high ener- % de R
gies. Also at low energies, the MDC dispersion is stronger I(V)=Z |M,;|2f 2—A(6,k){f(e)—f(e+ eV)}.
near the break region than the EDC dispersion. This effect k —wem
increases when the residual width of the quasiparticle peak (38)
increases, and when convolution with the experimental resople model the tunneling matrix element for two extreme
lution function is taken into accoufi. cases: for incoherent tunneling we assume a coniaglf
Finally, we discuss the cut along the nodal direction,:Mg’ whereas for coherent tunneling we us$i |2
shown in Fig. 19. For this direction, the gap is zero as a:%Mi(coskx—cosky)2.63 Coherent tunneling in the-axis
consequence ad-wave symmetry, and as a result the EDC girection is strongly enhanced for thé points in the Bril-
dispersion should cross the Fermi energy. This is seen in thg ;in zone compared to the regions near the zone diagonal
left panel of the figure. Note the very strong damping of they e tg the matrix elemenf&.0ur numerical results for SIN
spectral peak as soon as it crosses the energy region whi?u ctions are shown in Fig. 20eft). In both cases, we ob-
corresponds to the break effect near Mepoint. Actually, sene 5 clear asymmetry, with a dip-hump structure on the
the damping starts at slightly lower energies, due to the O”S%gative bias side and a very weak feature on the positive
of node-node scattering processes at an enfiigy, as can gjge of the spectrum, as in experimefita: The low-energy
be seen in the left panel of Fig. 19. The velocity renormal-pepayior of the tunneling spectrum in the coherent tunneling
ization for low energies and high energies differs by a factofjjmit qoes not show the characteristic linear in energy behav-
of roughly 2, bgth_fOf EDCs and MDCs, in agreement with o ¢4 4 wave, because the nodal electrons have suppressed
the experiment? Finally, we also reproduce the experimen- tunneling as a result of the matrix elements. The peak-dip-
tal fact that the high-energy dispersion does not extrapolatﬁump features, on the other hand, are not affected by the
to the Fermi crossing-**Again, note some shift between the o elements, as they are dominated by Mepoint

EDC and MDC dispersions at high energies due to the ensegions which are probed by both coherent and incoherent
ergy variation of the self-energy. tunneling.

_ Clearly, the velocity breakkink) along the nodal direc- For an SIS junction, the single-particle tunneling current
tion and the break between the peak and hidip) near the ;g given in terms of the spectral functions by
M point are occurring in the same energy range between

—Qes— Ap and—Q,.s— Ey . This is an appealing result of » de . -

our theory, because it explains all features in the dispersion |(V)=2€Z |T125|2f ZA(f,k)A(fJr eVv,p)
anomalies in the Brillouin zone seen by ARPES with a kp -

simple model. X{f(e)—f(e+eV)}. (39)

Again we show results for incoherent tunnelin{;le‘gl2
=T(2)) and for coherent tunneling with conserved parallel

Knowing the spectral functiomA(e,k) throughout the ~momentum|Tg; 2=rlesTi(COSkx—COSky)A%,5“-63 Our results
zone, we are able to calculate the tunneling spectra given are shown in the right panel of Fig. 20.

tunneling matrix elementy;. For simplicity, we present nu- All structures are symmetric around the chemical poten-
merical results for the simple model, neglecting the con+ial. The low-energy part of the spectrum is strongly sup-
tinuum part of the spin-fluctuation spectrum. From the SINpressed in the incoherent tunneling limit already, thus there is

E. Tunneling spectra
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no big difference to the coherent tunneling limit there. Atstructure. Thus, when calculating the self-energy effects due
higher voltages, however, in the coherent tunneling limit, weto this coupling, only the quasiparticle peak part of the spec-
obtain negative differential conductance. Such an effect wasum with its reduced weight will contribute to the sharp
observed recently in optimally doped ,Br,CaCyOg_s  self-energy features at energies affecting the quasiparticle
break junctions$’ We also observe negative behavior atpeak. The incoherent part of the fermionic spectrum, which
higher bias in the coherent tunneling limit, but note that inis gapped by roughly the hump energy, will affect the low-
reality, the tunneling matrix element will have both coherentenergy quasiparticle properties only in form of an effective
and incoherent contribution@specially at higher voltaggs high-energy renormalization factor, which is constant up to
and thus will be a weighted average of the dashed and fuknergies comparable to the hump energy. This effective
curves in Fig. 20. In this case, most probably only the negarenormalization adds to that due to coupling of electrons to
tive behavior below 100 meV will be observable. We notethe spin-fluctuation continuum. Thus, we can concentrate on
that the spin-fluctuation continuum broadens the spectrghe renormalization equations following from the set of
functions and, as we show below, this leads to a positiveequations which includes the quasiparticle peak spectrum of
response at higher voltages. reduced weight interacting with the spin-fluctuation mode. In
We give approximate expressions for the SIS differentialderiving these equations, we make use of the approximate
conductances for zero temperature. In the incoherent limit, equations for the renormalization functions derived above.

, The quasiparticle part of Green'’s function has in this ap-

incoh eTy (0 proximation at theM point the form
| (incon) (\/y = 7f deN(e)N(e+eV). (40)
—eV ~ ~
) .1 A, Ay

In the coherent tunneling limit, the tunneling matrix element Ge,kM: 5 == t—=——="1| (42

. . ZM E_EM+|FM 6+EM+IFM
very effectively suppresses the nodal regions, thus only al-
lowing for tunneling near thél point regions. In these re- - -
gions, however, the dispersion is weak, so that we may ap- ER 1 Cwm B Cwm 43
proximate the spectral function by its value at tepoint, M7\ e—EBy+idy e+Eytidy)

An(€). Then, we obtain in the coherent tunneling limit
5 where Ey= V&, +A2 and Ay=(1*¢y/Ey)/2. Here,
|(coh)(V)~e_T1J'O deAy(e)Ay(eteV)  (41) Ey is the measured peak position at tepoint, andl"y is
T J-ev the quasiparticle peak width. The broadening of the off-

diagonal spectragy,, is reduced compared t6,, due to
d-wave symmetry. Using the approximative formulas from

the last sections at= —E,,, we obtain(with a=g?ly/m)

with Tizz,;,; T,;,3|2. Note that two different quantities are
probed in the two limits. In the incoherent limit, it is the
density of states, and in the coherent limit, it is gpectral
functionat theM point of the Brillouin zone.

It is easy to show by differentiating E¢41) that the dif-

~ )\Sl\‘) o EM
Zy=1+ = +\{§+2

ferential conductance can be negative, and furthermore, can Zn ZuQresEnm Qrest 2By 49
approach a negative value for large voltages. The limiting

behavior at high voltages in the incoherent tunneling limit is ~

proportional toN(—)N(+), whereN(=*) is the density of Zsz_M+~ @ _ Qrest EM A, (45)
states at large positive/negative energies. If in the coherent Zv 230 Em Qrest 2En

tunneling limit the corresponding term proportional Ag,

(+)Am(—) is very small, then the main contribution comes ~ &y o Q.+ _

from the region where eithee~—A, or e+eV~A,, MEm s, res M, (46)
varying within a range of ordek,, around these values. It is Zy  ZyLlresEm Qrest 2En

easy to show that this contribution is negative. But as soon ash © lizati h .
incoherent contributions play any role, orAf, has a con- Where Ay’ denotes renormalizations due to the spin-
siderable incoherent part, then their positive contributiondluctuation con%:\‘r;uum and the incoherent part of the spectral
will dominate at high voltages. Note that for SIN tunneling, function, and\y” the contribution coming from the nodal
the differential conductance is always positive definite. regions(these contributions are renormalized with the nodal
renormalization factoZ,, which is smaller tharZy,). The

_ _ ~ last two equations merely express the measurable quantities
When going towards underdoping, the spectral funcnon&M and%, as functions of the bare quantitids, and &y, .

deviates considerably from the bare BCS spectrum. Selfrpe first equation can be solved, giving for sm@ll, and
consistency issues become important then. not too small g%, a quasiparticle weight
Our studies have shown that the quasiparticle peak is al- \/Q Q BV N h derived thi f i
ways reasonably well separated in energy from the high-olc res(Qrest 2Ew). ~ot§t atwe derive .t IS setg equa
energy incoherent part by a dip. By coupling electrons to thdions for the case wheté, is neglected, which describes the
spin resonance mode, weight is shifted from the quasiparticlglightly underdoped region. Whe, s becomes comparable

peak to the incoherent part which includes the broad humpo Ty, , these equations have to be modified.

F. Self-consistency issues
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It should be remarked, though, that using these equations 100 ;
in the absence of vertex corrections usually give poorer re- I Aj
sults than those presented in this paper using bare Green's 3 80 |-~~~
functions®* % ‘

. - o 60 N
G. Bilayer splitting =

For bilayer compounds, the dispersion can be split into g 40
bonding(b) and antibondinga) bands. Accordingly, the self- = 5
energy for each band is defined 3 and>{?) . Similarly, < 20 e oped
the spin susceptibility is now a matrix in the bonding- = Y I A — =

. . e . . = e T
antibonding indices, having elements diagongh{, xpb) 0 %= =
and off-diagonal gpa, xap) in the bonding-antibonding rep- 0.05 0.1 0.15 0.2 0.25
resentation. The components of the spin susceptibility trans- p

forming even and odd with respect to the plane indices are
given by xe= Xxaat Xob @Nd Xo=Xapt Xpa- FOr identical
planes, we havg ,,= xbp @Nd xap= Xpa- 1he measured sus-
ceptibility is then given by

FIG. 21. In the dark gray shaded region, corresponding to over-
doping, quasiparticles peaks are well defined. In the light gray
shaded region, corresponding to underdoping, the peak weight is
strongly reduced, and an incoherent part due to scattering from the
spin-fluctuation mode is dominant. The resonance energy, shown as
(47) a thick line, is bounded from above by twice the maximal gap
energy,Q),s<2A,,, and approaches it on the overdoped side. The
) . o . position of optimal doping, at maximdl. and{},.s, roughly coin-
whered is the separation of the layers within a bilayer. If we ¢iges with the point where\,, as a function of doping crosses
write the self-energy for a single layer g8 G (the hat de- Q.
notes the X 2 particle hole spagewhich is a functional of

the spin susceptibilityy and the Gor'kov-Green’s function ence of bilayer splitting for heavily overdoped samples, the

d d
X= Xecosz% + Xosinzq% ,

G, then we have formally for the two-layer system various groups disagree on its presence for optimal and un-
derdoped samplé$.Recently, we have performed calcula-

SO= ) *GO) + ) *G@), tions including bilayer splitting and are able to reproduce a

number of unusual spectral anomalies seen in heavily over-
ﬁ(a):Xiecé(a)_{_X;é(b). (48) doped ARPES spectFé.These calculations further confirm

the picture advocated in this paper, in that the spectral

For the resonance part, which only hagacomponent, this anomalies imply a mode which has odd symmetry with re-
means that fermionic excitations of the antibonding band despect to the layer index of the bilayer, a unique property of
termine the self-energy for the bonding band and vice versdhe magnetic resonance observed by neutrons. For further
The calculations presented in this paper hold for the case dietails, the reader is referred to Ref. 67.
bilayer systems if we assume identical dispersions for bond-
ing and antibonding bands. Even small bilayer splittings of
the order of 10 meV or less do not matter, as they do not
qualitatively alter the spectral form of the self-energy. For In this section, we deal with the doping dependence of the
larger bilayer splittings, the self-energy is larger for thespectral line shape near tepoint of the Brillouin zone. As
bonding band, because it is determined by the van Hovéhere are many parameters which change with doping in dif-
singularity near the chemical potential in the antibondingferent ways, it could turn out to be a meaningless task to
band. Thus, stronger renormalizations are expected in thadjust all of those parameters and at the same time make a
bonding band for this case, which tends to decrease thgensible prediction. But, fortunately, all changes with doping
bonding-antibonding splitting. This effect of reducing the bi- lead to spectral changes which go in the same direction. This
layer splitting should be strongest in underdoped com-fortuitous” accident allows us to make some general pre-
pounds, where the effect of the resonance mode is strongeslictions from the theory we use. To see this, we turn again to
In overdoped compounds, the bilayer splitting should be les&igs. 11 and 12. From there we see that the quasiparticle
affected by spin-fluctuations. Our prediction is that if a bi- weight decreases with decreasiflyos/Ay,, and with in-
layer splitting is observed, then the peak-dip-hump structurereasing coupling constagtsz. The quasiparticle scatter-
should be stronger for the bonding band with the higheiing rate increases with decreasifig../A), . And the hump
binding-energy peak. This is consistent with the data of Refenergy disperses to higher binding energies for increasing
65. Theonsetof strong fermionic damping should be inde- coupling constant and increasiig, . Thus, in our model,
pendent of the band index, as it is given by scattering to thgoing from overdoping to underdoping amounts to a decreas-
nodes, and thus occurs at the fixed eneflyy;. ing quasiparticle weight, an increasing quasiparticle scatter-
In this paper, we have elected not to explicitly includeing rate, and an increasing hump binding energy.
bilayer splitting effects in our calculations. The primary rea- The important parameter, as we see from this study, is the
son is that although all ARPES groups now detect the presratio (),.5/Ay, the ratio of the mode energy to the maximal

H. Doping dependence
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superconductingl-wave gap. We distinct two regions: the IV. COUPLING TO THE ZONE BOUNDARY HALF
first, whereQ,.s/Ay>1, and the second, wheke, /Ay BREATHING OPTICAL PHONON

<1 Therltuzan?_r:s schemaﬂr(]:ally shown Im :he ghas_e d'ﬁ' The sharp structure in the dispersion needs an explanation
gram in Fig. 21. The curves shown are calculated using th, tarms of an almost dispersionless feature which couples to
formulas (we relate T, to the hole doping level in the he glectrons. Numerous phonons modes are seen in inelastic

Cu-O, planes in the usual maniiér neutron scattering in higfi; cuprates. Most of them do not
show indications of strong coupling to electrons. Two special
T.=95 K[1-82.6p—0.16?], (49)  types of phonons have attracted attention: the Cu-O buckling
mode, which is attractive in thé-wave channef®—"%27273
Ay=38 meV1-9.1p—0.16], (50) and the Cu-O breathing mode, which is repulsive in the

d-wave channel®’123Typically, the absolute values of the
pairing interactions in the8,, (d-wave) channel for both
types of vibrations are smaller than 0.1 eV, in thAg

-wave channel about 0.5-1 eV; for spin-fluctuations, the

All these qua_ntities approach zero on the overdoped side é%rresponding numbers are in tbevave channel 0.5-1 eV
p=0.27. Optimal doping corresponds pe-0.16. Note that 5 i theswave channel 1-2 €% The total electron-

(Qes=4.9T in agreement Vg{th Ref. 37. Thay variation  phonon couelin constant in thewave channel amounts to
was based on ARPES ddfa _ Ae~0.4-0.6/4"""" and in the d-wave channel to

As can be seen, the separation between overdoped aRd~0.3757" Thus, phonons are not likely to be responsible
underdoped regions roughly coincides with the regiongor the high transition temperature.
whereQ) o> Ay and()es<Ay, respectively. The dip onset |t was argued recently that strong coupling of electrons to
is given byQ s+ Ax. As A, is about the same asy, we  the zone boundary half breathing phonon may be responsible
have shown in Fig. 21 the line fd,.st+ A as a dashed for the anomalies in the dispersion. It is known for some
line, which determines the position of the dip fairly accu-time that this phonon shows a dispersion, which is strongly
rately. The continuum in the spin-fluctuation spectrum onlyrenormalized midway between the zone boundary and the
affects electrons aboveAR, , which is near or above the dip zone center when entering the superconducting state. These
energy. One important observation is that the point of optifindings show that the zone boundary half breathing phonon
mal doping for a Cu-@ plane roughly corresponds to the is affected by superconductivity. It was suggested to be re-
point whereQ, /Ay =1. Thus, region | of Fig. 5 is relevant SPonsible ;gr the renormalizations of the dispersion observed
to overdoped materials, and region Il to underdoped materi? ARPES:” This zone boundary half breathing longitudinal

als. Another experimental observation is that this ratio nevePPtical phonon is a Gu-O bond stretching mode with an
exceeds the value two. This is expected for an excitonic col€N€rgy between 50 and 100 meV. lts dispersion is very strong
lective mode below a continuum edde in the middle of the branch, and it was suggested that a

o . iscontinuity develops there in the metallic stét@.he first
For a quantitative theory of t.he doping dependence th easurements concentrated on lanthanum cuprates, but re-
self-consistency issue becomes important. The coherent qu@éntly YB&Cu,0 was also studie@®® The displace
-6 . -

siparticle weight and the quasiparticle linewidth are given by,

Q,6s=40 me1—82.6p—0.1672]. (51)

ents involve oscillations of the oxygen atoms in phase be-
tween the two planes in the bilayer. The results for optimally

1 (1 [&l doped YBaCu;O,_; are the following: The dispersion of
ZM~2_ §+ E , (52 the zone edge mode in the superconducting state shows a
M M “break” at (0,7/2) (and equivalent poinjswith an almost
) _ dispersionless branckat ~55 meV) betweerﬁz(o,q-rIZ)
T~ 9"Wwun EM_Qres® E. 0 andﬁ=(0,7-r), and a dispersive bran¢b8 meV to 72 meYy
M~ T = < ~ ( M res)i (53) -> = 78-80 H H
ToNUA L betweenq=(0,0) andq=(0,7/2). Experimental inves-

tigation showed that the dispersionless branch extends over a

where Zy,=Z(—Ey) is the only quantity not available regionm/2<qy<m,—0.17r<q,<0.17 (and analogously for

. - : . : - 78 , -
from experiment. We can eliminate it, to obtain the relation dx and gy interchangefi™ The dispersionless branch was
only observed for bond stretching along theirection (per-

) ~ pendicular to the chainsThe dispersions of the longitudinal
= o = 9WmN Em—Qres = _ bond-stretching phonon branches were found to show no ap-
Fy~2zyEy—=—==—"—=—0(Ey— Q. (59 i X X
moNUs Em+[Eul parent temperature dependefic@he phonon intensity was
found to show significant temperature dependence below
_ ~ L~ T..”® Phonon weight is transferred from a position halfway
Note that ex%(ggmentally botay Ey and (possibly vt the zone boundargin a range between 55 meV and 70
scale withkgT,.%*%" So, the quasiparticle width is domi- me\) to the zone centef70—75 meV and the zone bound-
nated by the differencg&y —(),es. Quasiparticles are sharp ary (50-55 meV. This transfer sets in & and increases

at the overdoped side whefgy <, and an onset of With decreasing temperature.
quasiparticle scattering as a function of underdoping takes The coupling strengtly,(q) goes to zero for small mo-

place wherEy =,.s. This point is slightly beyond optimal mentum transfeq. Furthermgre, in the model of Ref. 81, the
doping. coupling vanishes near thg@=(w,7) point, thus having
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l e energies~70 meV, the scattering at low energies is domi-
N i nated by scattering processes accompanied by emission of a
ﬁ’ N / spin-fluctuation modgwhich lies below the gapped con-
la tinuum at~40 meV and has a sharp energyhis coupling
/ leads to cusps in the energy dependence of the self-energy in
the range of 70—80 meV due to the effect of the van Hove
g / N singularities at theM and A points. Because of the finite
y . / \ width of the spin-fluctuation mode in momentum, there are
: B traces of these cusps for electrons at all positions near the
2 Fermi surface. Th@osition in energyf these cusps are de-
q/n q,/m termined by electrons near tt\é and A points only, which
explains the isotropy around the Fermi surface of the energy
FIG. 22. As in Figs. &) and 4, but the white areas now denote scale of 70-80 meV where kink features in the dispersion are
the experimentally determined regions where the dispersionless hatfoserved. Theantensity of this self-energy effect is deter-
breathing zone boundary phonon mode is present. For nodal wavgined by the intensities of the spin-fluctuation mode at such

vectors(left) the main self-energy contribution comes from node- momentaﬁ which connect the electron with momentiio

node scattering processes at small ener@iear — (), At the . . o aaty
M point (right) the self-energy effects are negligible due to geomet_elgctrons near thil point region. Thusg = (k—ky) modulo

fic restrictions. Only higher anharmonic tersith two phonon  (G), whereG is a reciprocal lattice vector. This intensity is
processes which add up to &,(r) wave vecto} could contribute at  |arge fork~ky,, but smaller fork~ky. This explains the

fermionic wave vectors near tié point. strong anisotropy of the magnitude of the effect around the
- _ _ _ Fermi surface.
minimum impact on the electrons near thepoint of their We recently became aware of an experimental paper that

Brillouin zone. This is in stark contrast to the resonanceclaims no momentum anisotropy in the linewidth for over-
mode model, and can certainly not explain the effects at thgoped compound®. This result is actually consistent with
M points. It is, however, possible that they contribute to thepur picture, in that for overdoped compounds, the spectral
renormalization of the nodal dispersion. The maximal coupeak lies inside the scattering rate gap, which can be appre-
pling strength was theoretically estimatedgig~0.04 eV/®  ciated from Fig. 21.
but in some models is enhanced by vertex correctidns.

In Fig. 22, we point out an important difference to the ACKNOWLEDGMENTS
magnetic mode. The magnetic mode is peaked around

(7). wheres the spectal densiy ofhalfbreathing phoc 12 V21K 15 2 D07 e KEnel id s Salce,
non is peaked around the points 4),and (7,0). Because P 9 P

for the imaginary part of the self-energy only excitationsdata’ and John Zasac!zm;h concerning tu.nnellng data. We
near the Fermi surface are important, there are geometr cknowledge communications with Steve Kivelson and Hae-

restrictions for the possible scattering events. In the case Oltzﬁsn\?vofﬁ?/\,/:snguhdg:?el ddgc?ﬁes'ansswgz A;Tg;iﬁf;“é’#:fv'
the magnetic mode, scattering was dominated by process PP y - 2 DEP 9

connecting theM points of the Brillouin zone, and these Oifice of Science, under Contract No. W-31-109-ENG-38.

scattering processes are enhanced by the presence of a van APPENDIX: SELF-ENERGIES
Hove singularity close to the chemical potential. In the case
of the half breathing phonon, thé point electrons are very In this appendix, we derive self-energy expressions that

ineffectively scattered by these phonons due to the Pauli exallow us to evaluate the real part of the self-energy analyti-
clusion principle. The important points here are near thecally in several special cases, and have the numerical advan-
nodal regions for the electrons. Thus, the strongest effects atage of having eliminated all principal value integrals. The
expected neafbut not necessarily athe nodes, not near the procedure is a generalization of a method developed by
M points, in contrast to what experiment shows. Marsiglio, Schossmann, and CarbdtteThe self-energy is

It is possible that both processes play a role and dominatgiven by
in different regions of the Brillouin zone. Phonons would i
then play some role for nodal electrons. Eskzigzqgw (G?—w,k—qu) q+GE—w,k—qD5,q)’

(A1)

) ) ) whereD = — y. In equilibrium, the Keldysh components are

We suggest that the van Hove singularity at kh@oint of given by the simple expressions
the Brillouin zone plays an important role in determining the
self-energy effects observed in ARPES and tunneling experi- K _  ~R A 0
ments. The picture can be understood as follows: the quasi- Dw,q_(Dw,q_Dw,q)COthz_T_ —iB,q(1+2b,),
particle dispersion is fairly flat near th@ points of the Bril- (A2)
louin zone, with a large effective mass in thkeI" direction,
and is close to the chemical potential. Because the con-
tinuum part of the spin-fluctuation spectrum is gapped up to

V. CONCLUSIONS

GX, = (GR, — GA )tanhe = —iA. (1-2f.), (A3
ek e,k e,k I’ﬁ_ | E,k( e)! ( )
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whereB,, 4 andA,  are the bosonic and fermionic spectral

functions, ando,,, f. their corresponding distribution func- Poew= COth2—+tan (A10)

tions, respectively. Note, that the Keldysh components are

purely imaginary. Note that the terms containing Matsubara sums are pure real
In evaluating these integrals, the only numerical compli-quantities.

cation comes from the real parts Bfdue to principal value Let us examine the simple case

integrals. We can eliminate those by using the following

trick. Note that in equilibrium the identities A =2mo(e— &) (A11)

e—w which gives, using the second expression
> DGL =i tanho—B,G{ ,

R
+2 (DAGR__—DRGA )tanhez_—_l_w, (A4) Foo 2 o b
Dy (i )
oo e—iwm—Ex—q)
(A12)

RAA AR 1) Finally, for the case that the bosonic mode has the simple
+§ (D3GZ,~DLGE ooty (AS) o

R T
—Rd:)o,q e_gk—q -

> DSGF,=-iS cothDRA, ,

hold which are easy to check. The convenient feature is that Bu.g=2Wg[ (0~ Q)= d(w+Q)] (A13)
the second lines in Eq§A4) and(A5) can be converted into

: . . the first expression leads to
Matsubara sums by noting thet’GF__ is an analytic func- P

tion in the lowerw half plane, and analogous®RG” 92
analytic in the upper half plane. Thus, EEk— > W phe 0GR o q— P a.craCR ok q
q
i €e—w 1 1
5 2 (DJGY,,~DiGE  tanho— - M (i -
2% 2T T?ﬂ Gicallen| T ma "m0
. . Al4
=-T2, DM(e—ie,)GM(iey), (A6) (AL4)
€n

The last sum can be performed for the case of Green'’s func-
tion of the form

i 1)
> > (DSG?W_DQGEQW)COI% 1
[0) R —
Gk g ity (A15)
=—T> DMiwm)GM(e—iwpy), (A7) )
" Gl(ie)= e (A16)
whereDM(e—ie¢,) and GM(e—iw,,) are smooth functions ten— & iTsignien)

(except atw,=0, which is treated separately, see below |eading to
So, the self-energy EqA1) has the two alternative equiva-

lent forms(the first form was found in Ref. 83 1 1

—ien—Q_e—ien-l—Q

-TX G&”quen)(e
Ee k_ [qu Bw,qu),e—wGs—w,k—q

|
:WR%G—Q—fkqﬁ-iqu

=T GY (i D =i A8
2, Cedielbyesien], (A9 1 €0 (1 Ty qtideq
XV s+im—|-V| s+ ———
2 27T 2 27T
T .
ek_gz[wq ( qp;ru,e—w_Rdjg,qZ)Ae—w,k—q _ |
E+Q_§k,q+irk,q
-7 G&”_q<e—iwm>Dy<iwm>}, (A9) 1, et0) (1 Degtidicg
om0 S PR o i :
where the population factquye_w is given by, (A17)
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