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Effect of the magnetic resonance on the electronic spectra of high-Tc superconductors
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We explain recent experimental results on the superconducting state spectral function as obtained by angle
resolved photoemission, as well as by tunneling, in high-Tc cuprates. In our model, electrons are coupled to the
resonant spin-fluctuation mode observed in inelastic neutron-scattering experiments, as well as to a gapped
continuum. We show that, although the weight of the resonance is small, its effect on the electron self-energy
is large, and can explain various dispersion anomalies seen in the data. In agreement with the experiment, we
find that these effects are a strong function of doping. We contrast our results to those expected for electrons
coupled to phonons.
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I. INTRODUCTION

Understanding superconductivity in the cuprates is one
the great challenges of physics. Determining the nature
single-particle excitations is of fundamental importance
achieving this goal. Two types of experiments have be
extensively used to study such excitations: angle reso
photoemission spectroscopy~ARPES! and tunneling.

In this paper, which deals with the superconducting st
only, we address the questions, what the spectral prope
of fermionic excitations are, and how their low-energy d
persion is renormalized. We do not directly address the qu
tion of the origin of superconductivity in the cuprate
Rather, we assume that an effective pairing interaction ex
and study the additional effects which coupling to cert
collective excitations present in cuprates have in renorma
ing single-particle properties. The corresponding collect
excitations responsible for such renormalizations are m
directly seen in other types of experiments. One of the
inelastic neutron scattering, gives the most useful inform
tion about both phonons and magnetic excitations in the
ergy range of interest (,100 meV).

Motivated by earlier work,1–7 we have presented in Ref.
a model that describes the ARPES and tunneling spe
Here, we describe details of our calculations, and ext
them by including the effect of the spin-fluctuation co
tinuum. In addition, we address the issue of the doping
pendence of the ARPES spectra. Finally, for comparison,
discuss the effect on the electrons of coupling to a partic
phonon, which was recently suggested to account for
renormalization of the ARPES dispersion in the nodal
gions of the zone.

Our outline is the following: starting in Sec. II from th
information which experiments give about single-partic
properties of low-lying excitations in cuprates, we look for
suitable collective excitation that best fits the data. Then,
develop in Sec. III a model in which the collective mode
identified as the magnetic-resonance observed in inela
neutron-scattering experiments. The results of calculati
using this model are presented in great detail. Finally, in S
IV, we address the question what electron-phonon coup
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contributes to renormalization effects on the dispersion. S
tion V offers a brief summary.

II. EXPERIMENTAL EVIDENCE

A. Angle-resolved photoemission

It has been known for some time that near the (p,0) ~M!
point of the zone, the spectral function in the supercondu
ing state of Bi2Sr2CaCu2O81d shows an anomalous line
shape, the so-called ‘‘peak-dip-hump’’ structure.9–11,4 This
structure was also found recently in YBa2Cu3O72d ,12 and in
Bi2Sr2Ca2Cu3O101d .13,14 For the notation of special point
in the Brillouin zone which we use throughout this paper, s
Fig. 1.

FIG. 1. Notation used for special points in the Brillouin zon
The Fermi surface is shown as a black curve. Equal energy cont
are shown in gray for energies between650 meV. The dispersion
used here was obtained by a six-parameter tight-binding fit to
angle-resolved photoemission dispersion in optimally dop
Bi2Sr2CaCu2O82d .8 The dispersion has a saddle point at theM
point. TheN point corresponds to the node of thed-wave order
parameter in the superconducting state.
©2003 The American Physical Society03-1
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Extensive studies on Bi2Sr2CaCu2O81d as a function of
temperature revealed that this characteristic shape of
spectral function is closely related to the superconduc
state. In the normal state, the ARPES spectral function
broadened strongly in energy, the broadening increasing
underdoping.11 The width of the spectral peak quickly de
creases with decreasing temperature belowTc ,15 and sharp
quasiparticle peaks were identified well belowTc along the
entire Fermi surface.16 When lowering the temperature be
low Tc , the coherent quasiparticle peak grows at the posi
of the leading edge gap, and the incoherent spectral weig
redistributed to higher energy, giving rise to a dip and hu
structure.9,10,4This peak-dip-hump structure is most strong
developed near theM point of the Brillouin zone. The well
defined quasiparticle peaks at low-energies contrasts to
high-energy spectra, which show a broad linewidth t
grows linearly in energy.17,18 This implies that a scattering
channel present in the normal state becomes gapped in
superconducting state.19 The high-energy excitations the
stay broadened, since they involve scattering events ab
the threshold energy. While this explains the existence
sharp quasiparticle peaks, a gap in the bosonic spec
which mediates electron interactions leads only to a w
diplike feature.20 This suggests that the dip feature is inste
due to the interaction of electrons with a sharp~in energy!
bosonic mode. The sharpness implies a strong self-en
effect at an energy equal to the mode energy plus the qu
particle peak energy, giving rise to a spectral dip.5 The fact
that the effects are strongest at theM points implies a mode
momentum close to the (p,p) wave vector.3

More clues are obtained by studying the dispersion of
related self-energy effects. Recent advances in the mom
tum resolution of ARPES have led to a detailed mapping
the spectral lineshape in the high-Tc superconductor
Bi2Sr2CaCu2O81d throughout the Brillouin zone.21,22 The
data indicated a seemingly unrelated effect near thed-wave
node of the superconducting gap, where the dispersion sh
a characteristic ‘‘kink’’ feature: for binding energies less th
the kink energy, the spectra exhibit sharp peaks with
weaker dispersion; beyond this, broad peaks with a stron
dispersion.16,21,22This kink is present at a particular energ
all around the Fermi surface,21 and away from the node, th
dispersion as determined from constant energy spectra~mo-
mentum distribution curves, MDCs! shows anS-like shape in
the vicinity of the kink.23 The similarity between the excita
tion energy where the kink is observed and the dip energ
M, however, suggests that these effects are related.8 Addi-
tionally, the observation that the spectral width for bindi
energies greater than the kink energy is much broader
that for smaller energies16,21,22 is very similar to the differ-
ence in the linewidth between the peak and the hump at
M points. Further experimental studies supported the ide
a unique energy scale involved.22 They found that away from
the node, the kink in the dispersion as determined from c
stant momentum spectra~energy distribution curves, EDCs!
develops into a ‘‘break’’; the two resulting branches are se
rated by an energy gap, and overlap in momentum sp
TowardsM, the break evolves into a pronounced spec
‘‘dip’’ separating the almost dispersionless quasiparti
14450
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branch from the weakly dispersing high-energy branch~the
‘‘hump’’ !. The kink, break, and dip features all occur
roughly the same energy, independent of position in
zone,22 the kink being at a slightly smaller energy than t
break feature.24

The high-energy dispersion is renormalized up to at le
200 meV and does not extrapolate to the Fermi-surf
crossing.21,25This lets us conclude that the continuum part
the bosonic spectrum coupling to the fermionic excitatio
extends to high energies.

Finally, there is an important information contained in t
doping dependence of the self-energy effects. In underdo
compounds, there is a pseudogap betweenTc and T* ;26,11

the pseudogap is maximal near theM point of the Brillouin
zone and is zero at arcs centered at theN points, which
increase with temperature.27 In the pseudogap state abov
Tc , there are low-energy renormalizations in the dispersi
and some trace of the kink feature persists. But in the rec
work by Johnsonet al.,24 it was clearly shown that an add
tional renormalization of the dispersion sets in just atTc .
This indicates that the bosonic spectrum redistributes
spectral weight when entering the superconducting state.
additional low-energy renormalization of the dispersion b
low the kink energy follows an order-parameter-like beha
ior as a function of temperature.24 Arguing that the renormal-
ization near the nodal regions is influenced by the coupl
to the same bosonic mode, which causes the strong
energy effects at theM point of the Brillouin zone, the above
implies that some mode intensity may be present in
pseudogap state already, but there is an abrupt increase i
mode intensity when going from the pseudogap state into
superconducting state, and this increase shows an o
parameter-like behavior as a function of temperature be
Tc .

The energy of the mode, as inferred from the energy se
ration V0 between the peak and the dip, was shown to
crease with underdoping.28 Similarly, the kink energy is
maximal at optimal doping and decreases both with und
doping and overdoping,24 indicating some relationship be
tween the kink at the nodalN point and the peak-dip-hump
structure at theM point. With underdoping, the sharp quas
particle peak moves to higher binding energy, indicating t
the gap increases.28 At the same time, the spectral weightz of
the peak drops28,29 leaving the quantityzDM /kBTc roughly
constant.30 Also, the hump moves to higher binding energ
and loses weight with underdoping.28 This doping evolution
of the quasiparticle peak points to an increasing mode in
sity at the (p,p) wave vector with underdoping. Again
there is a similarity to the nodal direction: the low-ener
renormalization of the dispersion below the kink energy
creases with underdoping,24 consistent with a common origin
of both effects.

B. C-axis tunneling spectroscopy

Unusual spectral dip features in tunneling data
Bi2Sr2CaCu2O82d are found in point contact junctions,31 in
scanning tunneling spectroscopy~STM!,32,33 in break
junctions,34,33 and in intrinsic c-axis tunnel junctions.35 Con-
3-2
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EFFECT OF THE MAGNETIC RESONANCE ON THE . . . PHYSICAL REVIEW B 67, 144503 ~2003!
sistently, these data show a peak feature, usually assign
the maximald-wave superconducting gap, and a hump fe
ture at higher bias, separated from the peak by a pronoun
dip feature. A characteristic of this dip feature in SIN jun
tions is that it occurs asymmetrically around the chemi
potential, usually stronger on the occupied side of
spectrum.31–33 This asymmetry was succesfully explaine
within the theoretical model presented below.8 The dip fea-
ture has been observed in tunneling spectra of the si
Cu-O2 layer compound Tl2Ba2CuO6 as well.36

In order to extract information about the bosonic mo
that would produce a dip feature in the tunneling cond
tance, a systematic study as a function of doping was
formed in break junction tunneling spectroscopy by Zasa
inski et al.37 There, the doping dependence
Bi2Sr2CaCu2O82d of the peak-dip-hump structure was dete
mined over a wide range of doping. It was found that t
dip-peak energy separationV follows Tc asV54.9kBTc . As
expected for an excitonic mode,V approaches but neve
exceeds 2D in the overdoped region, andV/D monotoni-
cally decreases as doping decreases and the supercond
gap increases. The dip feature is found to be strongest
optimal doping. Similar shifts of the dip position with ove
doping were reported prevously by STM.38 Together with the
ARPES results, these studies give a detailed picture a
the doping dependence of the mode energy involved in e
tron interactions in the superconducting state.

III. COUPLING TO THE MAGNETIC-RESONANCE MODE

There have been several theoretical treatments that
signed the anomalous ARPES lineshape near theM point of
the zone to the coupling between spin fluctuations a
electrons.1–6,8 The ‘‘collective mode model’’ proposed b
Norman and Ding5 was suggested to account for the unus
APRES lineshapes by coupling electrons to a dispersion
collective mode. The main motivation for a more detail
study of this model in Ref. 8 was to additionally account f
the dispersion anomalies~kink!, and the isotropy and robus
ness of this characteristic energy scale.22

The minimal set of characteristics for the collective mo
we are interested in follows from the experimental resu
from ARPES and tunneling. The mode is characterized by
energy and its intensity at the (p,p) wave vector~the wave
vector being suggested by the momentum dependence o
strength of the ARPES anomalies!. Its properties from
ARPES and SIS tunneling are as follows. The energy sho
be weakly dependent on momentum, roughly 40 meV in
timally doped cuprates, followTc with doping, and be con-
stant with increasing temperature up toTc . The intensity
should be maximal at the (p,p) wave vector, where it
should increase with underdoping and follow an ord
parameter-like behavior as a function of temperature be
Tc . The mode should be absent in the normal state; a r
nant can be present in the pseudogap state, but an a
increase in intensity should occur atTc with lowering tem-
perature.

A sharp resonance with characteristics fitting those
tracted from ARPES and tunneling measurements was
14450
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served in inelastic neutron-scattering experiments on bila
cuprates in the superconducting state, with an energy nea
meV in optimally doped compounds.39–43 A similar reso-
nance feature at the (p,p) wave vector is observed in un
derdoped YBa2Cu3O61x , but at a reduced energy.44–47 The
resonance was also found in Bi2Sr2CaCu2O81d , both in the
optimally doped43,48 and overdoped48 regime. Recently, the
resonance was discovered in single layer Tl2Ba2CuO6 com-
pound as well.49

To show how well the above criteria fit, we summarize
characteristics: the resonance is narrow in energy and m
netic in origin.40 Its energy width is smaller than the instru
mental resolution~typically less than 10 meV! for optimally
and moderately underdoped materials. Strongly underdo
materials show a small broadening of the order of
meV.50,51 The resonance lies below a gapped continuum,
latter having a signal typically a factor of 30 less than t

maximum atQW at the mode energy.50 The mode energy de
creases with underdoping, and has its maximal value
about 40 meV at optimal doping.44–47 In both underdoped
and overdoped regimes, the resonance energyV res is propor-
tional to Tc , with V res'525.5Tc .50,47,43,51,48

An additional aspect, specific to bilayer materials, is th
it only occurs in the ‘‘odd’’ channel, which connects th
bonding combination of the bilayer bands to the antibond
one.52 The continuum is gapped in both the even and o
scattering channels~the even channel is gapped b
'60 meV, even in the normal state!.53 We will address this
issue further below.

The resonance is strongly peaked at the (p,p) wave vec-
tor. The momentum width of the spin-fluctuation spectrum
minimal at the resonance energy,54,42 where it is~in contrast
to the off-resonant momentum width! only weakly doping
dependent, with a full width of about 0.22 Å21.54–56 This
corresponds to a correlation lengthjs f l of about two lattice
spacings.

A sharp resonance is not observed aboveTc .41,57 On ap-
proachingTc from below, the resonance energy does n
shift towards lower energy,41,42,44but its intensity decrease
towards Tc , following an order-parameter-like
behavior.39,40,42,44,57With underdoping, the intensity atQW

5(p,p) increases from about 1.6mB
2 for YBa2Cu3O7 to

about 2.6mB
2 per unit cell volume for YBa2Cu3O6.5.50,51

There is clearly an abrupt change in resonance intensit
Tc , even in underdoped compounds.

Note that in underdoped materials, an incommensu
response develops below the resonance energy,58 which,
however, never extends to zero energy, but instead the s
trum is limited at low energies by the so-called spin g
Esg .56 This part of the spectrum behaves differently from t
resonance part as a function of doping.55 We will neglect this
~weaker! incommensurate part of the spectrum in this pap

The total spectral weight of the resonance is small a
amounts to about 0.06mB

2 per formula unit at low
temperatures.47,51 We will show below that the smallness o
the weight of the resonance is not an obstacle to achiev
large self-energy effects.
3-3
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A. Theoretical model

We are interested in the renormalizations of the fermio
dispersion due to coupling of electrons to a sharp sp
fluctuation mode at low energies, equal to about 40 meV
less. We will assume that superconducting order is alre
established without coupling to this resonant feature in
spin flucutation spectrum, and thus describe the super
ducting state by an independent order parameterDk . This
order parameter will be chosen to haved-wave symmetry
~here and in the following the unit of length is the lattic
constanta),

Dk5DM~coskx2cosky!/2, ~1!

which takes its maximal valueDM at the M point in the
Brillouin zone. The magnitudeDM will be chosen so that the
calculated peak in the ARPES spectrum at theM point, after
including self-energy effects due to coupling to the spin flu
tuations, fits the position of the spectral peak in experime
ARPES spectra. We stress that we do not specify the or
of the pairing interaction responsible for the order-parame
Dk , but the continuum part of the spin fluctuations is one
the candidates. We also underline that, as our results
show, the spin-fluctuation resonance supports pairing,
does not cause superconductivity in and of itself.

In the model we employ, the retarded Green’s functio
Ge,k

R for fermionic excitations in the superconducting state
a functional of the normal state electronic dispersionjk , the
order-parameterDk , and the self-energies due to coupling
spin fluctuations,Se,k

R ,Fe,k
R . The term ‘‘normal state’’ here

refers to the state at the same temperature, but with
order parameter. We employ a six-parameter tight-binding
for this dispersion, having the form

jk5t01t1

coskx1cosky

2
1t2coskxcosky

1t3

cos 2kx1cos 2ky

2
1t4

cos 2kxcosky1coskxcos 2ky

2

1t5cos 2kxcos 2ky . ~2!

Any set of six independent parameters for the dispersion
termines the parameterst02t5. The six parameters we us
are the positions of theN ~node! andA ~antinode! points in
Fig. 1, parameterized bykGN5ukWN2kWGu and kMA5ukWA

2kW Mu, the band energies at theM andY points,jM andjY ,
the Fermi velocity at theN point, vN5uvW Nu, and the inverse
effective mass along directionM2G at theM point, mM

21 .
Table I summarizes our choices. For reference, the co
sponding t i are ~eV!: t050.0989, t1520.5908, t2
50.0962,t3520.1306,t4520.0507, andt550.0939.

TABLE I. Parameters for the effective dispersionjk .

kGNa kMAa jM jY \vN /a \2/mMa2

0.36A2p 0.18p 234 meV 0.8 eV 0.6 eV 20.2376 eV
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The parameterjY is not known from experiment. We set
to a reasonable value to preserve a dispersion shape si
to that obtained from the band theory. The inverse mas
the M point is known to be negative and small in theM
2G direction, and it was suggested that it could be ze
giving rise to an extended van Hove singularity.59 Here we
chose a finite, moderately small value. As we show, the
verse effective mass will decrease when coupling to the s
fluctuation mode is taken into account, and it is this ren
malized inverse mass which is experimentally observ
Similarly, the value of the Fermi velocity at the node is ch
sen somewhat larger than the experimental value, s
again, one observes the fully renormalized velocity; in o
calculation, self-energy effects renormalize this value to
moderately smaller value observed in the experiment. W
the doping level is varied, the band filling varies (t0
changes!, so that the van Hove singularity at theM point,
jM , will move relative to the chemical potential. Also, th
Fermi crossingkWA moves along theM2Y line. All other
band-structure parameters are expected to be rather ins
tive to the doping level.

The ‘‘normal state’’ dispersionjk , and the order-
parameterDk , are phenomenological quantities, which a
already renormalized by other effects which we do not ne
to specify, but which are assumed to influence the phys
only on an energy scale large compared to the scale of in
est in this paper~50–100 meV!. The self-energies due to
spin-fluctuations will have a part due to the particle-ho
continuum, and another part due to the resonance. We
consider two models, a simple form and an extended fo
In the simple form, we include the effect of the continuu
part of the spin-fluctuation spectrum by a constant renorm
ization of the normal state dispersion and the order par
eter. This model will capture the main physics for energ
below 100 meV, which is dominated by the coupling of t
electrons to the resonant spin-fluctuations. The reason is
following: as we will show below, in this energy range th
imaginary part of the self-energies due to the continuum p
of the spin-fluctuations is zero, and the real part~divided by
e) only varies weakly both in energy and momentum. Th
allows to approximate it by a real constant in that ene
range, and thus include it into the renormalization ofjk and
Dk . For this case, the ‘‘normal state’’ reference is defined
the state with zero order parameter, interacting with a sp
flucutation spectrum having no resonance part and a c
tinuum part identical to that in the superconducting state. T
real, physical normal state will be different because the sp
fluctuation continuum changes when going from the norm
to the superconducting state, leading to an additional re
malization of the dispersion. Thus, in the simple form of t
model, the low-energy dispersion that enters the calculati
will be approximately proportional to the true normal-sta
dispersion, but the proportionality factor will not be unity.

At higher energies, the spin-fluctuation continuum can
excited, and this leads to an additional strong fermio
damping. We will study this effect in an extended mod
which explicitly includes the gapped spin-fluctuation co
tinuum. For this extended model, the ‘‘normal state’’ dispe
sion will have a different renormalization factor as compar
3-4
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EFFECT OF THE MAGNETIC RESONANCE ON THE . . . PHYSICAL REVIEW B 67, 144503 ~2003!
to the simple model above. Specifically, we use for the
tended model the above dispersion scaled by the factor
and shifted back in energy, so thatjM stays at its original
value of234 meV.

We find that all essential features of the self-energy effe
in the superconducting state are obtained using a mini
model with a spin-fluctuation spectrum shown in Fig. 2.

The continuum formally has to be cutoff at high energi
This cutoff only affects the real part of the self-energy, a
variation of the cutoff leads to only a weakly energ
dependent contribution to the renormalization factor, wh
can be absorbed in the dispersionjk as described above. W
discuss the choice of this cutoff later. The retarded Gree
function in spectral representation is given as a function
the self-energies as,

Ge,k
R @Se,k

R ,Fe,k
R #5 (

n56

Ae,k
n

e2Ee,k
n 1 id

, ~3!

Fe,k
R @Se,k

R ,Fe,k
R #5 (

n56

Ce,k
n

e2Ee,k
n 1 id

, ~4!

with excitation energies Ee,k
n and coherence factor

Ae,k
n ,Ce,k

n ,

Ee,k
6 56Aj̄ e,k

2 1uD̄e,ku21dSe,k , ~5!

Ae,k
6 5

1

2
6

j̄ e,k

2Aj̄ e,k
2 1uD̄e,ku2

, ~6!

Ce,k
6 56

D̄e,k

2Aj̄ e,k
2 1uD̄e,ku2

. ~7!

The renormalized dispersion and gap function are given
terms of the diagonal (Se,k

R ) and off-diagonal (Fe,k
R ) in

particle-hole space self-energies, as

FIG. 2. Left: Self-energy for electrons~full lines!. The wavy line
denotes a spin-fluctuation. Right: the model spin-fluctuation sp
trum we used for the wavy line in the Feynman diagram. The m
affects the low-energy fermionic properties. The continuum p
only couples to electrons with higher energies, and is neglecte
the simple form of the model.8 Damping of electrons at energie
above 100 meV is caused by the continuum part, and is include
the extended model, which we also discuss in this paper.
14450
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j̄ e,k5jk1
Se,k

R 1S2e,2k
R

2
, ~8!

D̄e,k5Dk1
Fe,k

R 1F2e,2k
R*

2
, ~9!

dSe,k5
Se,k

R 2S2e,2k
R

2
. ~10!

We will couple electrons to the spin-fluctuation spectru
with a coupling constantg, which we assume to be indepen
dent of energy and momentum. The self-energies for
model are then given in terms of the spectral function of
spin-fluctuations with energyv and momentumqW , Bv,q , by
the expressions~we chose a representation especially w
suited for numerical studies, see Appendix A!

Se,k
R 5(

v,q
rv,e2v

T g2Bv,qGe2v,k2q
R

2T(
en ,q

Gk2q
M ~ i en!g2Dq

M~e2 i en!, ~11!

Fe,k
R 5(

v,q
rv,e2v

T g2Bv,qFe2v,k2q
R

2T(
en ,q

Fk2q
M ~ i en!g2Dq

M~e2 i en!, ~12!

whereGM andDM are the fermionic and bosonic Matsuba
Green’s functions, which are easily expressed in terms of
spectral functionsAe,k

n andBv,q , respectively. The Matsub
ara sums in the second lines of Eqs.~11! and~12! only con-
tribute to the real part of the self-energies. The populat
factor rv,e2v

T is given in terms of Bose~b! and Fermi~f!
population functions as

rv,e2v
T 5bv1 f v2e52b2v2 f e2v . ~13!

We solved these equations numerically using bare Gre
functions Ge,k

R @0,0#, Fe,k
R @0,0# for calculating the self-

energiesSe,k
R andFe,k

R . We show later that feedback effec
give no significant changes within our model.

Although we solve the equations above numerically wi
out further approximations, some general remarks are in
der. The functionrv,e2v

T as a function ofv is at zero tem-
perature nonzero only betweenv50 andv5e, and is equal
to sign(e) in this range. Because the spin-fluctuation sp
trum is gapped by much more than the thermal energy in
superconducting state, we can put for all practical reas
bVres

50. That means that we can neglect thermally exci
modes, and only allow for emission processes at the reso
mode energy. For any gapped spin-fluctuation spectrum w
gapV, the first terms in Eqs.~11! and~12! are negligible in
the range2V,e,V ~apart from temperature smearin
near the value6V). Thus, assuming that the spin
fluctuation spectrum is gapped below the resonance ene
at zero-temperature scattering of electronic excitations is
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M. ESCHRIG AND M. R. NORMAN PHYSICAL REVIEW B67, 144503 ~2003!
allowed in the interval2V res,e,V res . This is an expres-
sion of the fact that at least an energyV res must be spent in
order to emit one spin-fluctuation mode. This is the case
optimally and overdoped cuprates. For strongly underdo
cuprates, scattering is disallowed only in the range2Eg,e
,Eg , whereEg is the spin gap which is smaller thanV res .
Also, as an implication, the renormalization function, det
mined by the real part of the self-energy, is given in t
low-energy range by the second terms of Eqs.~11! and ~12!
only. In the following, we first consider the simple form o
the model, which uses only the mode part of the sp
fluctuation spectrum. After having gained some insight ab
the features caused by the resonance mode, we study
extended model that includes the continuum part as wel

B. Contribution from the spin-fluctuation mode

For a sharp bosonic mode the spectral function is gi
by,

g2Bv,q52g2wq@d~v2V res!2d~v1V res!#, ~14!

where wq is the energy integrated weight of the spi
fluctuation mode, which is assumed to be enhanced at
QW 5(p,p) point. Using the correlation lengthjs f l , we write
it as

wq5
wQ

114js f l
2 S cos2

qx

2
1cos2

qy

2 D . ~15!

We will show below that it is a good approximation to a
sume the mode as perfectly sharp in energy, as correct
due to the finite energy width of the mode are negligib
From neutron-scattering data obtained
Bi2Sr2CaCu2O81d , the energy integrated weight of the res
nance mode was determined as 1.9mB

2 ,43 leading~after di-
viding out the matrix element 2mB

2) to wQ50.95. We fit
ARPES data near optimal doping,8 giving g2wQ50.4 eV2.
This implies that the coupling constant is equal tog
50.65 eV. This is a reliable value as discussed in Ref. 60
Table II, we present our minimal parameter set entering
model ~we only include the parameterjM from the band-
structure tight-binding fit, as the results are insensitive
reasonable variations of the other parameters!, together with
the values we used for optimally doped compounds.

1. Electron Scattering

We first discuss phase space restrictions for electron s
tering in thed-wave superconducting state, and how th
relate to the issue of whether the small relative weight of
resonance part of the spin-fluctuation spectrum leads to c

TABLE II. Minimal parameter set used in the calculations.

DM V res jM js f l g2wQ

35 meV 39 meV 234 meV 2a 0.4 eV2
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parable in magnitude effects as in strong coupling superc
ductors. Using bare Green’s functions, the self-energy at z
temperature can be written as

ImSe,k
R 52(

q
g2wqAk2q

2 d~e1V res1Ek2q!

2(
q

g2wqAk2q
1 d~e2V res2Ek2q!, ~16!

ReSe,k
R 52(

q

g2wq

p
•

e1S 11
V res

Ek2q
D jk2q

~V res1Ek2q!22e2
, ~17!

whereEk5Ajk
21uDku2, Ak

65(16jk /Ek)/2. The sum overqW

extends over the first Brillouin zone for the spin-fluctuati
momentum. For negative energies, only the first sum in
~16! is nonzero. The sum is a weighted average of the
pressionAk2q

2 d(e1V res1Ek2q) with weight factorswq .

For given fermion energiese and momentakW the d function
restricts the allowed spin-fluctuation momentaqW . Similar
zero-temperature formulas hold for the off-diagonal se
energy,

ImFe,k
R 52(

q
g2wqCk2q@d~e2V res2Ek2q!

2d~e1V res1Ek2q!#, ~18!

ReFe,k
R 52(

q

g2wq

p

S 11
V res

Ek2q
DDk2q

~V res1Ek2q!22e2
, ~19!

with Ck5Dk/2Ek .
In Fig. 3, we plot forkW5kW M and for several energies thes

restricted regions inqW space. The corresponding weights f
these regions, given bywq , are maximal atqW 5QW (qx5qy
5p), and decay away from that momentum. For referen
we define the regions inside the black circle, wherewq
.wQ/2, and the white regions, wherewq.wQ/10. The cal-
culations were done for finiteT540 K, and with a broaden-
ing parameterd55 meV in Eq.~3!.

For energies2V res(5239meV),e,0, there is no
phase space available for scattering. Scattering of elect
by the spin-fluctuation mode sets in fore52V res at qW cor-
responding to the wave vectorsqW 5(kW M2kWN) mod (GW ), con-
necting theM point to the nodes (GW denotes a reciproca
lattice vector!. In picture a! of Fig. 3, we show fore5
2(V res1

1
10 DA) the mode wave vectors involved in scatte

ing events. The weight for such events is very small, as
be seen from the fact that these wave vectors are outside
white region. Going further away from the chemical pote
tial with e, the allowed mode wave vector regions increa
as shown in picture~b! for e52(V res1

1
2 DA). When the

special pointe52(V res1DA) is reached (5271.2 meV in
our case!, the arcs ofqW -regions involved in scattering even
3-6
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FIG. 3. The black regions denote the part of the first Brillouin zone of the spin-fluctuation momentumqW which participates in scattering

of electrons with momentumkW M and energye, as indicated above each picture. The amount of scattering events is controlled by the

factor for the resonance modewq , which takes its maximal value (wQ) in the center of the Brillouin zone atQW 5(p,p). Inside the black
circleswq.wQ/2, and inside the white regionwq.wQ/10. For small energies~a! only nodal electrons are scattered. For energies equa
V res1EM ~d! a large region aroundM point of the fermionic zone participates in scattering events. Scattering electrons with this ener
momentum involves spin-fluctuations with maximal weight, and thus almost exhausts the entire weight of the mode part of t
fluctuation spectrum. Pictures~c! and~d! correspond to the special energiesV res1DA andV res1EM , leading to cusp features in the energ
dependence of the imaginary part of the self-energy.
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close at the pointsqW 5(kW M2kWA) mod (GW ), as shown in pic-
ture ~c!, and electrons are scattered strongly between thM
point and theA points. This leads to a cusp~or peak for very
small quasiparticle broadening! in the energy dependence o
the imaginary part of the self-energy at this energy. Go
further in energy, another special point is reached ae
52(V res1EM) ~with EM5AjM

2 1DM
2 ), at which scattering

events between theM points involving spin-fluctuations with
momentumqW 5QW ~and withqW 50W ) are allowed. We show the
corresponding regions inqW space in picture~d!. This picture
is important for understanding the large effect we obta
First, the weight factorwq is large in the patches of phas
space for allowed scattering events aroundQW . Furthermore,
because of the van Hove singularity in the band dispers
these patches have a large area, almost filling the area in
the black circles in Fig. 3. This has as consequence th
large part of the weight of the resonance is exhausted
scattering electrons with energies equal toe52(V res
1EM), which amounts to287.8 meV for our parameter se
Going even further in energy, as shown in picture~e!, the
amount of scattering events quickly decreases. The
which is involved in electron-scattering events is maxim
for energies between 70 meV and 90 meV. For these e
gies, the involved spin-fluctuations are also near theqW -region
where almost all their weight is concentrated. Thus,
strongest renormalization effects will take place in the
ergy range 70–90 meV.

Let us compare this discussion with the case for conv
tional isotropic electron-phonon coupling. In this case,
weight factorswq are constant. The relative amount of ph
non wave vectors involved in scattering events is then eq
to the ratio between the black areas shown in Fig. 3 and
total area of the Brillouin zone. This ratio is for the maxim
case, picture~d!, equal to 5%. That means that only 5%
the total phonon weight contributes to the imaginary part
the self-energy. It is well known that electron phonon co
pling easily leads to renormalization factors of the order o
14450
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In our case, the spin-fluctuation weight of the mode is o
about 5% of the total spin-fluctuation weight, but it is co
centrated in the region inside the black circles in Fig.
Almost the total area inside the black circle contributes in
case of picture~d!, showing that the same amount of only
few percent of the bosonic spectrum is involved as well
spin-fluctuations in high-Tc cuprates as for phonons in con
ventional strong coupling superconductors. Thus, the ren
malization of the fermionic dispersion is expected to be
the same order of magnitude, and our explicit calculatio
confirm this.

In Fig. 4, we show theqW -space areas corresponding
Fig. 3 ~d!, but for electrons near the nodal wave vector.
can be seen, the feature due to the van Hove singula
region is now weighted by a smaller value ofwq . Because of
this, for nodal electrons, the corresponding peak in the s
energy is smaller than for momenta near theM point. It turns
out that for the nodal electrons, the feature at2(V res
1DA) is more pronounced than that at2(V res1EM).

FIG. 4. The same as Fig. 3 d! for a fermionic wave vector at the

nodal point, kW5kWN . Because the allowed region for scatterin
events is outside the region of enhanced spin fluctuations, the
responding cusp feature in the im aginary part of the self-energ
weaker than for electrons with momenta near theM point.
3-7
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M. ESCHRIG AND M. R. NORMAN PHYSICAL REVIEW B67, 144503 ~2003!
2. Renormalization factor and electron lifetime

The self-energy has a characteristic shape as a functio
energy, which is conserved qualitatively for all points in t
Brillouin zone. This is a consequence of the fact that
points are coupled via the spin-fluctuation mode, which ha
finite width in momentum, to all special points in the Bri
louin zone with their corresponding characteristic energ
These special points are the nodalN points, and the van
Hove singularities at theM points and theA points~the latter
is a dispersion maximum in the superconducting state!. Be-
cause the general shape of the energy dependence o
self-energy does not vary much with momentum~although
the overall intensity does!, it is sufficient to discuss the im
portant features in the energy dependence of the self-en
at theM point.

We numerically evaluated the self energy, using a bro
ening parameterd55 meV. In Fig. 5, we show the result
for the renormalization function and electron scattering r
at theM point,

ZM~e!512
RedSM~e!

e
GM~e!52Im dSM~e! ~20!

as a function of energy.
There are three characteristic energies~in addition to tem-

perature, which smears all features bykBT). Region I is
bounded by the resonance energy,V res , and has zero scat
tering rate at zero temperature~this statement is true for elec
trons at any point in the Brillouin zone!. At finite tempera-
ture, a regionkBT around6V res allows for a small amoun
of scattering, even in region I. Because states are occu
near theM point, we will only discuss negative energies
the following. At e52V res , scattering for all electrons in
the Brillouin zone sets in due to coupling to nodal electro
via emission of a spin-fluctuation mode. Absorption pr
cesses are negligible due to the large~compared to tempera

FIG. 5. Renormalization factor at theM point, ZM(e) ~top! and
electron-scattering rate at theM point, GM(e) ~bottom!. The thin
lines denote some characteristic energies:6V res ~dotted!, 6(V res

1DA) ~dashed!, and6(V res1EM) ~dot-dashed!. Electrons at low
temperatures are scattered only if their energy is larger thanV res ,
so that they are able to emit a collective mode excitation. The
rameters used are:T540 K, V res539 meV, DM535 meV.
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ture! mode energy. In region II, a larger and larger ar
around the nodes participates in scattering events,@as can be
seen from pictures~a! and ~b! in Fig. 3#, until finally the
point at the zone boundary with maximal gap,6DA , is
reached@picture~c! in Fig. 3#. This point corresponds in Fig
5 to a cusp feature in the imaginary part of the self-energ
2(V res1DA). The third feature, at2(V res1EM), corre-
sponds to the van Hove singularity at theM point of the
Brillouin zone, which is close to the chemical potential
cuprates@picture ~d! in Fig. 3#. The proximity of this van
Hove singularity leads to a stronger peaked feature in
scattering rate near6(V res1DA) compared to the cas
where this van Hove singularity at theM point is absent. The
renormalization factor is rather constant in region I as a c
sequence of its connection to the imaginary part
Kramers-Kronig relations. The enhancement in regions I a
II compared to unity comes from two step features
6(V res1EM) and at6(V res1DA). Note that the step fea
ture due to the van Hove singularity at theM point contrib-
utes about 50% to the total enhancement. The small feat
at 6V res are due to the finite lifetime of the electrons in
volved in scattering processes as discussed below. The o
of scattering at the emission edge for the spin-fluctuat
mode occurs as a jump if the electrons involved have a fi
spectral width. At even higher energies, corresponding
Fig. 3 ~e!, the scattering due to the spin-fluctuation mo
becomes less effective. Note that the spectral peak of
electrons at6Dk is either in region I or in region II. Thus
quasiparticles near the nodal regions are always sharpe
energy then quasiparticles near the maximal gap regions
overdoped cuprates, the maximal gap is usually smaller t
the mode energy, so that for the broadening of the quasi
ticle peaks, the spin-fluctuation mode is not relevant.

For the following discussion, it is useful to derive a
proximate analytical expressions. At zero temperature, us
Eq. ~17!, we obtain

ZM~e!511(
q

g2wq

p

1

~V res1EkM2q!22e2
. ~21!

The main contribution comes from the regions whereEkM2q

is less than 100 meV. We can estimate those regions by
requirement thatkW M2qW is in the area around theM points
deliminated by60.35p in M2Y direction and by about
0.3p along theM2G direction. Then, replacingDkM2q by

2DM , andEkM2q by EM , we perform theqW -sum over that

area of the functionwq . We denote(qwq over this area by
I 0. For our model we haveI 050.035. Using this approxima
tion, we obtain

ZM~e!'11
g2I 0

p

1

~V res1EM !22e2
1lM

(N)~e!. ~22!

Here,lM
(N)(e) denotes the contributions coming from the r

gions wherekW85kW M2qW is outside of the above range. It i
dominated by contributions wherekW8 is near the nodal re-

a-
3-8
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EFFECT OF THE MAGNETIC RESONANCE ON THE . . . PHYSICAL REVIEW B 67, 144503 ~2003!
gions of the Brillouin zone, thus the relevant spin-fluctuati
momentum isqW 5(kW M2kWN) modGW . The contributionlM

(N) is
smaller than the first term in Eq.~22!, but not negligible.
Because Eq.~22! neglects the dispersion between (V res

1DA) and (V res1EM) near theM point, it should be used
for energies not too close to the region between th
two values. We will make use of this formula below fo
energies neare5EM , where this formula gives a goo
approximation.

3. The quasiparticle scattering rate

For overdoped materials the quasiparticle peak at theM
point is situated below the onset of scattering due to em
sion of spin fluctuations. In this case the width is determin
by other processes, and we model this residual quasipar
width by a parameterd. In Fig. 6, we show the influence o
the renormalization factor and the scattering function of
residual quasiparticle width. We compare the results fod
55 meV with those ford51 meV. For very small quasipar
ticle broadening~full lines! the cusp features in the imag
nary part of the self-energy turn into peaks~which ultimately
evolve into square root singularities for perfectly sharp q
siparticles and resonance!. The second feature to mention
that the scattering rate near the onset points,6V res , is in-
fluenced strongly by the residual quasiparticle width. B
cause this onset region governs the quasiparticle width
underdoped cuprates, as we show later, we study it in
following in more detail. In the lower part of Fig. 6 we sho
as a dotted line the contribution to the electron-scattering
coming from the final states not too close to theM points
~the regions which determinelM

(N) , introduced above! as
compared to the full scattering rate~full line!. It is clearly
seen that the sharp features come from theM point regions,
whereas the nodal regions contribute to the onset of elec
scattering and provide a smooth constant background
higher energies.

FIG. 6. Renormalization factor at theM point, ZM(e) ~top! and
electron-scattering rate at theM point, GM(e) ~bottom!. The picture
compares results for two different residual quasiparticle linewid
d51 meV ~full lines! and d55 meV ~dashed lines!. As dotted
lines the nodal contributions, when restricting the quasiparticle m
menta to the regions outside the area around theM points discussed
in the text, is shown ford51 meV.
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The behavior of the imaginary part of the self-energy n
the onset points,6V res , in Figs. 5 and 6 is determined b
the nodal electrons. For larger residual quasiparticle wid
(d55 meV, dashed lines in Fig. 6! there are states availabl
at the chemical potential~coming e.g., from impurity scatter
ing!, which increase the number of final states for scatter
events. Thus, the onset in Fig. 6 for the electron-scatte
rate is stronger in this case than ford51 meV. For zero
temperature there will be a jump at energy6V res in the
imaginary part of the self-energy, which causes the sm
cusps at the same energy in the renormalization factor~top
panel in Fig. 6!. For d50 the onset is linear in energy.

We will estimate analytically the onset behavior ne
these points for the cased50 now. For this we use Eqs.~10!

and ~16!. We replaceqW by kW82kW , approximatewq by wMN
5wkM2kN

, and linearize the dispersion around the nod

Dk5vW D(kW82kWN), jk5vW N(kW82kWN). HerevW D5]kDk and vW N
5]kjk taken at theN point. For our model, we havevD

5DMsin(kxN)/A2, which is valid near optimal doping.~But
note that for underdoped cuprates,vD was experimentally
shown to be smaller than that value, perhaps scaling w
kBTc instead of withDM .61! Performing thekW8 sum and
summing over all four nodes, we arrive at

ImdSM
(N)~e!52

g2wMN

pvNvD
@ ue1V resuQ~2e2V res!

1ue2V resuQ~e2V res!#. ~23!

Here, theQ function is unity for positive argument and zer
otherwise. Thus, the slope of the scattering rate ae
56V res is given by7g2wMN /pvNvD . For the parameters
in Tables I and II, the magnitude of this slope is equal
9.5wMN /wQ'0.56. Note that Eq.~23! gives a good approxi-
mation of the scattering rate in the intervalV res,ueu
,V res1DA/2. For energies further away from the onset, t
change of the quantityvD ~which goes to zero at theA point!
leads to a stronger increase. Finally, for underdoped cupr
the excitation energy at theM point, EM , is larger than
V res . Then, the quasiparticle linewidth at theM point is
given by 2ImdSM

(N)(2EM)/ZM(2EM). Thus, for under-
doped cuprates it is given by

G̃M5
g2wMN

pvNvD

EM2V res

ZM
~24!

with ZM[ZM(2EM). Near the nodes, on the contrary, th
quasiparticles will stay relatively sharp even in underdop
compounds because the peaks positions are then below
onset energy6V res .

4. The coupling constant and the weight of the spin resonanc

One potential criticism of a model which assigns the o
served anomalies in the dispersion to coupling of electron
the spin-resonance mode is the spectral weight of the r
nance,I 0, which amounts to only a few percent of the loc
moment sum rule.62 Our calculations show that this is not a
obstacle,60 as we obtain a dimensionless coupling constan
order one, as observed experimentally.

:

-
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Here we estimatelM , given byZM(0)21, for the reso-
nance mode. From Eq.~22!, it is equal to

lM'
g2I 0

p
•

1

~V res1EM !2
1lM

(N)~0!. ~25!

Using values for optimal doping~Table II!, the first term in
this sum is equal to 17.44I 0, which amounts to about 0.61~in
our modelI 050.035). This is already a large part of the to
coupling constant, which from Fig. 5 islM'0.9. The con-
tribution 11lM

(N)(e) is shown as dotted line in the upper pa
of Fig. 6.lM

(N) is not negligible, but contributes about 30%
the total coupling constant.

We obtain an analytic formula for the low-energy corre
tion to the renormalization factor due to scattering betwe
nodal points andM points, lM

(N)(e), by a Kramers-Kronig
transform of ImSM

(N)(e), in which only energies up to a cut
off 6(V res1DA) are taken into account, and replacin
ImSM

(N)(e) above this cutoff by a constant~see the dotted
lines in Fig. 6! equal to its value at the cut-off. The result fo
e50 is

lM
(N)~0!'

g2wMN

pvNvD

2

p
lnS 11

DA

V res
D . ~26!

For our parameter set this amounts tolM
(N)(0)'0.21. Note

that lM
(N) increases with decreasingV res .

To summarize, dimensionless coupling constants~compa-
rable to those for strong-coupling electron-phonon syste!
are easily achieved with reasonable parameters by coup
electrons to the spin resonance.

5. Particle hole asymmetric renormalizations

From Eq.~17!, we see that the second term in the nume
tor, proportional tojk2q , affects the band dispersionjk . The
resulting renormalization is given by

j̄ e,k5jk2(
q

g2wq

p

S 11
V res

Ek2q
D jk2q

~V res1Ek2q!22e2
. ~27!

From this formula, it is clear that notable renormalizations
the Fermi surface only take place ifjk2q is not too far from

FIG. 7. Left, the part of the self energy~eV! defining the band
renormalization at theM point as a function of energy, forDM

535 meV, V res539 meV, andg50.65 eV. Right, the quantity

j̄M(e)/(ZM(e)jM) ~filled circles! and 1/ZM(e) ~empty circles! for
e52DM as a function of the coupling constantg.
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~but also not at! the chemical potential. Thus, the large
renormalizations are expected at theM point regions of the
Brillouin zone.

In Fig. 7 ~left!, we show the particle-hole asymmetric pa
of the self-energy as a function ofe for electrons at theM
point of the Brillouin zone. The imaginary part shows a pe
due to the van Hove singularity at theM point, but the cusp
feature due to theA points is missing, because points whe
kW2qW is on the Fermi surface do not contribute to the sum
Eq. ~27!. The real part indicates that the renormalization
the dispersion is confined to energies between2V res2EM
andV res1EM . Using the same approximation procedure
above, we obtain for the renormalization at theM point

j̄M~e!'jMS 12
g2I 0

p

1

EM

V res1EM

~V res1EM !22e2D . ~28!

The first important point is that the renormalization has o
posite sign tojk , thus the band is renormalized towards t
chemical potential. In particular, there is a ‘‘pinning’’ effec
of the van Hove singularity at theM point to the chemical
potential, as long asjM is of the order ofV res . Furthermore,
the renormalization factorZM(e) from Eq. ~22! increases
this effect, asj̄M /ZM defines the quasiparticle dispersion.

In order to quantify this, we show in the right panel
Fig. 7 the relative changes of the dispersio
j̄M(e)/(ZM(e)jM) ~filled circles!, in comparison to the in-
verse renormalization factor 1/ZM(e) ~empty circles!. The
latter would give the band renormalization in the absence
particle hole asymmetric parts in the self-energy. As can
seen in this figure, the band is renormalized towards
chemical potential and even crosses it for large coupling c
stants. For coupling constants near 0.6 eV, the renormal
band is close to the chemical potential. Thus, the dispers
of the peak in ARPES is negligible in theM point regions as
a result of the renormalization of the dispersion. The ren
malization of the band implies an increase in the chem
potential, so as to keep the particle density constant. T
effect would increase the distance between the chemical
tential and the van Hove singularity at theM point, leading
to an equilibrium value in a self-consistency loop. We did n
solve this self-consistency problem, but assumed that
parameter choice is close enough to the self-consistent s
tion to capture the main physics.

6. Off-diagonal self-energy

In order to understand the renormalization of the ord
parameterDk due to coupling to the resonance mode, w
observe from Eq.~19!,

D̄e,k5Dk2(
q

g2wq

p

S 11
V res

Ek2q
DDk2q

~V res1Ek2q!22e2
. ~29!

This formula is very similar to that for the band renorma
ization, except that the order parameter at momentumkW2qW
now determines the renormalization effect. Note that ifwq
3-10



e
ce
i

th
co
w

th

a

f

te
is

h
ou
.
o

id
m
g

th
om

th
.

eter
is a
lf-

our

an
the
lect-
uss
of

the
we

.
ion
p
eV.

e
V

of
n be

t

EFFECT OF THE MAGNETIC RESONANCE ON THE . . . PHYSICAL REVIEW B 67, 144503 ~2003!
were independent ofqW , no renormalization would take plac
due to thed-wave symmetry of the order parameter. Sin
the spin-fluctuation continuum, which we discuss later,
very broad in momentum, the renormalization effects in
off-diagonal components is dominated by the resonance
tribution. As the order parameter vanishes at the node,
concentrate on the renormalization near theM-point region
again. Adopting the approximations as above~note that con-
tributions from the nodal regions cancel because of
d-wave symmetry!, and using Eq.~19!, we arrive at

D̄M~e!

DM
'11

g2I 0

p

1

EM

V res1EM

~V res1EM !22e2
. ~30!

The positive sign is due to the fact thatDM1Q52DM . As a
result of this, there will be a compensating effect when c
culating the quantityD̄M(e)/ZM(e), which determines the
peak position. In Fig. 8~left!, the real and imaginary parts o
the off-diagonal self-energy at theM point are shown. The
imaginary part is relevant only for energies with absolu
value .V res1DA . For smaller energies, the main effect
to increase the magnitude of the order-parameterDk in the
energy range2V res2DA,e,V res1DA . Note that the
self-energy due to coupling to the resonance mode
d-wave symmetry, like the order parameter. Thus, the c
pling to the resonance mode supports superconductivity
order to quantify the amount that the resonance mode c
tributes to the spectral gap, we show in Figs. 8~right! and 9
the quantityD̄M(e)/(ZM(e)DM) @together with 1/ZM(e) for
comparison# as a function of three different parameters:g,
DM , andV res .

As can be seen from these figures, although the renorm
ization factorZM would reduce the order-parameter cons
erably, the off-diagonal contribution to the self energy fro
coupling of electrons to the resonance mode restores the
to its original value. Thus, the resonance contribution to
gap is as big as that from other sources, and starts to d
nate if the coupling constant exceeds about 0.5 eV.

The reason whyD̄M(DM) is so close toZM(DM)DM is
that the additional factor 11V res /EM in Eq. ~30! compared
to Eq. ~22! is approximately canceled by the presence of
additionallM

(N)(DM) in Eq. ~22!. An analogous term in Eq

FIG. 8. Left, the off-diagonal self-energy~eV! at theM point of
the Brillouin zone as a function ofe is shown for coupling constan

g50.65 eV. Right, the quantitiesD̄M(e)/(ZM(e)DM) ~filled
circles! and 1/ZM(e) ~empty circles! are shown fore52DM as a
function of the coupling constantg. Parameters used areDM

535 meV, V res539 meV.
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~30! is missing due to the sign change of the order param
at the node. The degree to which this cancelation holds
surprising numerical result and allows us to avoid a se
consistency loop for the determination ofDM near optimal
doping. Thus, the experimental parameters which enter
calculations are already sufficiently self-consistent.

7. Spectral functions at theM point

In this part, we discuss the spectral line shape, which is
experimentally accessible quantity. The main features of
spectral line shape are captured in the simple model neg
ing the continuum part of the bosonic spectrum. We disc
in the following the influence of the different parameters
the theory on the spectral function,

A~e,kW M !522ImGR~e,kW M ! ~31!

and will discuss changes due to the continuum part of
spin-fluctuation spectrum later. In our numerical studies,
used a broadening parameterd55 meV. This accounts for
processes not covered by scattering by spin fluctuations

In Fig. 10, we present the results for the spectral funct
at theM point of the Brillouin zone for both a perfectly shar
resonance and for a finite width of the resonance of 10 m

FIG. 9. The quantitiesD̄M(e)/@ZM(e)DM# ~filled circles! and
1/ZM(e) ~empty circles! are shown fore52DM as a function of
DM ~left, for g50.65 eV andV res539 meV) andV res ~right, for
g50.65 eV andDM535 meV).

FIG. 10. Spectral functions atM for a perfectly sharp resonanc
~full line! and for a resonance with a finite energy width of 10 me
~dashed line!. Parameters are for optimal doping. The finite width
the mode has very little influence on the ARPES spectra, and ca
neglected for most purposes.
3-11
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M. ESCHRIG AND M. R. NORMAN PHYSICAL REVIEW B67, 144503 ~2003!
It is obvious that the energy width of the resonance has v
little effect on the ARPES spectra, except a slight reduct
of the peak height.

Thus, we will concentrate all our following discussions o
a perfectly sharp resonance mode. The main features of
spectral function is the dip feature at an energy of about
resonance energy relative to the peak. The peak position
2ẼM is renormalized by self-energy effects discussed abo
and is shifted from the bare2EM to be near2DM . The dip
feature is actually spread out over a range of sizeEM
2DA , and it is the onset of this dip feature which defines t
resonance energy,V res . The dip feature is followed by a
hump at higher binding energies, and the position of
hump maximum is very sensitive to the coupling consta
and to damping due to the spin-fluctuation continuum, as
show later. Thus, we concentrate in the following on t
peak-dip structure. Another feature worth mentioning is
asymmetry of theline shapeat positive and negative binding
energies, with a relatively weak dip feature on the unoc
pied side compared to the occupied side.

In Fig. 11 ~left!, the effect of a varying resonance ener
V res ~keeping all other parameters at their values for optim
doping! is shown. The spectral function shows two effec
First, the peak weight is reduced with decreasing mode
ergy. Second, as soon as the quasiparticle excitation en
exceedsV res , strong damping sets in. We can understa
these results in the light of the discussion for the self-ene
As we mentioned above, the scattering rate has a gap e
to V res . Thus, as long as the spectral peak is situated be
that energy, in region I of Figs. 10 and 5, there will be
damping, and the peak width is set by the residual broad
ing due to other processes. If the peak is positioned ab
V res ~region II in Fig. 10!, it feels the self-energy in region I
of Fig. 5, and will be broadened. Because in region II t
self-energy is dominated by scattering processes involv
nodal electrons, the width in this region is set by the ima
nary part of the self-energy divided by the renormalizati
factor, and is given in Eq.~24!. At the same time, for de-
creasing resonance mode energy, the incoherent part o
spectral function grows, taking weight from the quasiparti
peak.

Thus, in Fig. 11, which is forDM535 meV, the quasipar-

FIG. 11. Spectral functions at theM point for varyingV res ~left,
for 10 meV, 20 meV, 30 meV, and 40 meV, from bottom to top, t
thin lines denote the value6DM), and for varyingDM ~right, for 15
meV, 25 meV, 35 meV, 45 meV, 55 meV, and 65 meV from botto
to top, the thin lines denote the value6V res). All other parameters
are kept fixed at their optimal doping values. The spectra are of
for clarity.
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ticle weight increases from the lowest curve~for V res
510 meV) to the uppermost curve~for V res540 meV). Si-
multaneously the broadening decreases. As the onset of
siparticle damping and the loss of the coherent part of
spectrum is a result of a decreasing resonance mode en
relative to the gap, the same effect is expected by increa
the gap keeping the resonance mode energy constant. Th
shown in Fig. 11~right!. In this case, the onset of quasipa
ticle damping is always at the same energyV res539 meV,
but for the lowest curve, corresponding to a small gap of
meV, quasiparticle peaks are well established, whereas
the uppermost curve, corresponding to a large gap of
meV, the quasiparticle peaks are strongly broadened. H
ever, in this case, the weight of the peak is affected o
weakly, as we will discuss below.

Finally, we show in Fig. 12 the influence of increasin
coupling g, and of an increasing distance of the van Ho
singularity from the chemical potential,jM . In both cases,
the hump energy is strongly affected, moving to higher bin
ing energy with increasing coupling and increasingjM . In
the left panel, one can also see that the weight of the pea
strongly reduced with increasing coupling constant. This
not the case with varyingjM , as seen from the right panel in
Fig. 12, and will be discussed in more detail below.

8. The coherent quasiparticle weight of the ARPES spectrum

Although one can define a quasiparticle residue via
renormalization factorZ(e), in light of the experimental
studies, we will in this part study the weight of the quasipa
ticle peak in the ARPES spectrum, determined by nume
cally integrating over the peak region. For strongly renorm
ized spectra, this experimentally motivated quantity w
differ from the first. We note that due to coupling to th
mode, the peak weight is reduced and redistributed to
hump. Because the peak weight in the experimental litera
is often referred to as the ‘‘coherent quasiparticle weigh
we will use the same terminology here.

We consider the spectral function at theM point of the
Brillouin zone. Because the peak is separated from the hu
by a dip that extends from2e152(V res1DA) to 2e25

et

FIG. 12. Spectral functions at theM point for varying coupling
constant~left, g50.1 eV, 0.3 eV, 0.5 eV, 0.7 eV, and 0.9 eV from
top to bottom; thin lines denote6DM) and for varying distance of
the van Hove singularity at theM point from the chemical potentia
~right, for 2jM50 meV, 20 meV, 40 meV, 60 meV, and 100 me
from top to bottom, thin lines denote6DM). All other parameters
are kept fixed at their optimal doping values. The spectra are of
for clarity.
3-12
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EFFECT OF THE MAGNETIC RESONANCE ON THE . . . PHYSICAL REVIEW B 67, 144503 ~2003!
2(Vres1EM), we define as the coherent quasiparticle weig
the quantity

zM52
1

pE2e1

0

deImGM
R ~e!. ~32!

Without interactions between the quasiparticles,z50.5 at the
Fermi surface, because the quasiparticle peaks at6D in BCS
theory each have one half of the total weight; the value
negative energy is somewhat larger than 0.5 at theM point
because it is an occupied state. Coupling of the quasiparti
to the mode reducesz. In Figs. 13 and 14, our numerica
studies are summarized. The results are as follows:~1! zM is
only weakly dependent on the gap and the band structur
the relevant parameter range;~2! zM is proportional to the
mode energyV res , together with the experimental findin
V res}kBTc , this meanszM}kBTc ; ~3! for coupling con-
stants of order the band width or larger,zM}1/(g2wQ), for
smaller coupling constants, 1/zM;A1Bg2wQ with A andB
constants;~4! zM weakly decreases with increasing antife
romagnetic correlation lengthjs f l . We can understand som
of these features using the approximate expression of
~22!. EvaluatingZM(e) at e52EM , and taking into account
the coherence factor at theM point, AM

2[AM
2(2EM), and

the nodal renormalization factorZM
(N)[11lM

(N)(2EM),
gives

zM'
V resAM

2

ZM
(N)V res1

g2I 0

p~V res12EM !

~33!

FIG. 13. The coherent quasiparticle weight as a function ofDM

~left! and jM ~right! for V res539 meV. Although the peak width
changes considerably as a function ofDM , the peak weight is only
weakly dependent onDM andjM .

FIG. 14. The inverse of the coherent quasiparticle weight 1/z is
approximately a linear function ofg2wQ ~left!. Here we have cho-
senV res539 meV andDM535 meV. The right panel shows thatz
is proportional toV res .
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which defines the constantsA andB.
In the underdoped region, whereV res is much smaller

than 2EM , we can approximate further to obtain

zM'
2pEMV resAM

2

g2I 0

. ~34!

Here, we neglected the first term in the denominator of
~33! compared to the second, which is justified whenzM is
small. In the overdoped region, whereg2I 0 decreases and
V res approaches 2Dh ~whereDh is the gap at the hot spots!,
this scaling withV res should break down according to Eq
~33!. Note that experimentally, the relationV res'4.9kBTc
was shown,37 and also the relation

S zMEM

kBTc
D

(exp)

'0.5 ~35!

was experimentally found.30 Thus, our expression Eq.~34!
would be consistent with the experimental finding if wi
dopingEM

2 scaled withg2I 0. Within our theory this experi-
mental finding can be interpreted as an indication that
phenomenological order parameterDk is governed by the
same coupling constantg.

C. Contribution of the spin-fluctuation continuum

At energies higher than that corresponding to the c
tinuum edge of the spin-fluctuation spectrum, addition
broadening due to coupling to that part of the spectrum s
in. Because the continuum extends to electronic energ
(;eV), the introduced scattering rate will increase contin
ously with energy up to electronic energies as well. W
model the continuum part by

g2Bv,q
c 52g2cq@Q~v22Dh!2Q~2v22Dh!#, ~36!

where the gap in the continuum spectrum is given by 2Dh .
This form for the gapped continuum is similar to the gapp
marginal Fermi-liquid spectrum considered earlier by oth
authors.20,5 The momentum dependence takes into acco
the experimentally observed flatter behavior around
(p,p) wave vector at higher energies, and is modeled a

cq5cQS 11~32jc
4!21

1116jc
4S cos4

qx

2
1cos4

qy

2 D 2~32jc
4!21D

~37!

with a correlation lengthjc50.5a compatible with experi-
mental findings. We subtracted a background term, so
the response far away from the (p,p) wave vector is small,
as experimentally observed~we have chosen this backgroun
term so thatcq is zero atqW 50).

For the chosen correlation length, the momentum aver
of cq gives 0.5cQ . The constantcQ can be obtained from the
experimental values for the momentum averaged suscep
ity at 65 meV, which was found to be 6mB

2/ eV for under-
doped YBa2Cu3O72d in the odd channel, and about 3mB

2/eV
in the even channel.51 Dividing out the matrix element 2mB

2 ,
3-13
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FIG. 15. The different contributions to th
renormalization factor~top! and the scattering
rate~bottom! are shown for theM point ~left! and
for the N ~node! point ~right!. Dotted curves are
the contribution from the spin-fluctuation con
tinuum, dashed are the contribution from the sp
fluctuation mode, and full are both contribution
d
e

o

n

de
lu
in

in
e
ed

an
s,
is

t
p

es
lf

h
c
r
T

gh
w
ig
e

ct

or-

us
this
ent
ng

e

gy
the

ove
on-
n-

ner-
al

he
um
of
x-

nel

ond-

k
ven
s
or-
er.
this givescQ'6/eV and 3/eV, respectively. The correspon
ing values near optimal doping should be smaller. We us
our calculationscQ55.6/eV andg50.65 eV. The choice of
this value is motivated by the ARPES measurements on
timally doped Bi2Sr2CaCu2O82d of the high-energy~linear
in excitation energy! part of the momentum linewidth, which
gives GN50.75e.17,18 This coupling includes both the eve
and odd~with respect to the bilayer indices! contributions of
the spin-fluctuations, in contrast to the coupling to the mo
which is present only in the odd channel. Note that our va
for cQ is about a factor 1.6 smaller than neutron-scatter
measurements give for underdoped YBa2Cu3O72d . Because
in optimally doped compounds the intensity of the sp
fluctuation continuum is smaller than in underdoped on
this is a reasonable value for optimal dop
Bi2Sr2CaCu2O82d.

The spin-fluctuation continuum is gapped in the odd ch
nel from zero energy to twice the gap at the ‘‘hot spot
2Dh , which is slightly less than twice the maximal gap. Th
means that additional damping only sets in for energiesueu
.2Dh . This corresponds in optimally doped compounds
about 65 meV. In the even channel, the optical ga
(;60 meV) persists into the normal state.53

The continuum formally has to be cutoff at high energi
This cutoff does not affect the imaginary part of the se
energy, but its choice leaves a real term of the form2Ce at
energies small compared to the cutoff energy scale. T
term, equivalent to a contribution to the renormalization fa
tor which is constant up to the high energies, has to be
garded as an additional phenomenological parameter.
constantC depends on the model one uses for the hi
energy tail of the spin-fluctuation spectrum. Because
model the continuum by a constant, which overweights h
energies, we have chosen a relatively low cutoff of 200 m
14450
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for our model spectrum. Because the constantC is only
weakly ~logarithmically! dependent on the cutoff, the exa
energy of the cutoff is not crucial.

In the simple form of our model, we absorbed the ren
malization from the continuum into the band dispersionjk .
Now we take into account explicitly the continuum, and th
have to start with a band dispersion not renormalized by
contribution. We found that we can reproduce experim
best by rescaling the dispersion from Table I in the followi
way: jk

(new)51.5jk20.5jM . With this choice, the van Hove
singularity at theM point has the same distance from th
chemical potential as before.

In Fig. 15, the continuum contribution to the self-ener
is shown as a dotted line. As can be seen from the figure,
continuum contribution to the scattering rate sets in ab
the structures, which are induced by the mode. It also c
tributes considerably to the renormalization factor. As me
tioned above, the renormalization does not decay up to e
gies of 200 meV, consistent with experiment. At the nod
point, the modification due to the continuum relative to t
mode part is strongest. The importance of the continu
contribution can be seen by noting the strong similarity
the lower right-hand panel of Fig. 15 to self-energies e
tracted from ARPES data along the nodal direction.16,22

Finally, note that in the normal state, the even chan
stays gapped. That means that at theN point, the self-energy
for scattering between bonding bands and between antib
ing bands~but not between bonding and antibonding! is
similar to one half the continuum contribution~dotted line!
in the right panel of Fig. 15. This will induce a weaker kin
feature in the normal state at an energy equal to the e
channel ~optical! gap in the spin susceptibility, which i
around 50–60 meV. Correspondingly, the high-energy ren
malization will be present in the normal state, but weak
n
ly visible.
FIG. 16. Left, dispersion of the spectral intensity and line shape as a function of momentum along theM2Y cut, (ky5p, kx

50, . . .,0.4p in steps of 0.04p from top to bottom!. Right, EDC~circles! and MDC~curve! dispersions from maxima of the curves show
in the left panel. In the EDC dispersion, the low-energy peak and the high-energy hump with the break feature in between is clear
Because the bottom of the normal state dispersion is atjM5234 meV, the MDC shows only a broad maximum atM for high energies.
3-14
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EFFECT OF THE MAGNETIC RESONANCE ON THE . . . PHYSICAL REVIEW B 67, 144503 ~2003!
The difference between the high-energy renormalization
the normal and superconducting states is mainly due to
appearance of a continuum gap in theoddchannel. The low-
energy renormalization is mainly due to the appearance
the mode in the odd channel.

D. Renormalization of EDC and MDC dispersions

In the following, we discuss the dispersion of the spect
line shape through the Brillouin zone and study the cor
sponding EDC~as determined from the spectral maximum
a function of energy! and MDC ~as determined from the
spectral maximum as a function of momentum! dispersions.
We include both the mode and the gapped continuum of
spin-fluctuation spectrum. In Figs. 16–19, we show disp
sions of the ARPES spectra along several selected path
the Brillouin zone. In the left panels of the figures, the inte
sities and spectral line shapes can be followed, and in
right panels, the corresponding dispersions of the pe
maxima and hump maxima in the EDCs are shown as circ
and the maxima in the corresponding MDC dispersions
curves. A general remark concerns the linewidth of the hig
energy features compared to the low-energy features. Du
the strong self-energy damping effects setting in above
dip energy ~Fig. 15!, the hump features are considerab
broader than the peak features for all momenta in the B
louin zone. This holds for both EDC and MDC dispersion
Note that even without taking into account the lifetime e
fects due to the spin-fluctuation continuum, the high-ene
features are much broader in energy than the low-ene
features.8 To account for the experimental MDC linewidth
however, one has to take into account the continu
contribution.

FIG. 17. Left, dispersion of the spectral intensity and line sha
as a function of momentum along theM2G cut (kx50, ky

50.6p, . . . ,p in steps of 0.04p from top to bottom!. Right, EDC
~circles! and MDC ~curve! dispersions from maxima of the curve
shown in the left panel.
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Starting with Fig. 16, we follow the dispersion along a c
going from theM point of the Brillouin zone towards theY
point. The A point corresponds to spectra roughly in th
middle of the set. From the left panel, we see that sh
peaks are restricted to the momentum regions between thM
andA points. The dip structure is maximal at theM point and
much weaker at theA point. The corresponding dispersio
shown in the right panel, reproduces the experimen
findings22 of two almost dispersionless EDC branches, o
for the peak and one for the hump. The MDC follows t
peak branch, then shows a nontrivial variation at energ
within the gap edge. This behavior is discussed in Ref.
The Fermi crossing is only slightly shifted with respect to t
unrenormalized value ofkx50.18p. At higher energies, the
MDC is peaked atM.

Going from theM point in the direction of theG point, the
corresponding dispersion of the ARPES spectra is show
Fig. 17. On the left side, one can see that the intensity
both the peak and the hump is almost unaffected in the
gion between theM point and roughly 0.3p from there in
direction ofG. In this range, the renormalized EDC dispe
sion of the hump is extremely flat, as seen in the right pa
and the peak shows a moderate dispersion, becoming al
flat betweenqy50.9p andqy5p. When going further away
from theM point, the intensity of the peak drops sharply, a
a strong dispersion of the hump sets in. There is a clear b
between the peak and the hump EDC dispersion due to
dip. The MDC along this cut follows the peak near theM
point, but changes over to the hump dispersion at roughly
point where the hump starts to disperse strongly away fr
the chemical potential. In this range, at energies between
meV and 100 meV, the MDC dispersion is almost vertic
with a weakS-like shape. We draw the attention to the fa
that the hump shows a weaklypositivedispersion close to

FIG. 18. Left, dispersion of the spectral intensity and line sha
as a function of momentumky50.6p, kx50, . . .,0.4p in steps of
0.02p from top to bottom. Right, EDC~circles! and MDC ~curve!
dispersions from maxima of the curves shown in the left panel.

e

-

C

e
-
not
FIG. 19. Left, dispersion of the spectral inten
sity and line shape in the nodal direction (G
2Y) as a function of momentumkx5ky

50.25p, . . . ,0.45p in steps of 0.01p from top
to bottom. Right, the corresponding ED
~circles! and MDC ~curve! dispersions. The kink
is most clearly seen in the MDC dispersion. Th
low-energy velocity is roughly half the high
energy one. The high-energy dispersion does
extrapolate to the Fermi-surface crossing.
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M. ESCHRIG AND M. R. NORMAN PHYSICAL REVIEW B67, 144503 ~2003!
the M point, with point of closest approach to the chemic
potential atqy'0.85p. This effect is due to the coupling o
the (p,0) and (0,p) points by self-energy effects, and is
result of the fact that going towardsG from the (p,0) point
means going towardsY from the (0,p) point at the
(p,p)-displaced wave vector. As a result of this, the wea
ening of the self-energy effect along theM2G cut leads to a
minimumin the hump dispersion at theM point. This effect
was experimentally found.28

In Fig. 18, we show our results for a cut parallel to t
M2Y cut shown in Fig. 16, keepingqy50.6p constant. At
low energies, the spectral evolution, seen on the left par
the figure, shows the typical BCS mixing between parti
and hole states. Concentrating on the negative energy p
again two branches are present, the peak branch and
hump branch, separated by a break in the EDC dispers
Both branches now show considerable dispersion, but
overlap in momentum. The MDC dispersion changes fr
the low-energy peak branch to the high-energy hump bra
at roughly the point where the intensity of the peak dro
dramatically. Note that the EDC and MDC dispersions
considerably displaced relative to one another at high e
gies. Also at low energies, the MDC dispersion is stron
near the break region than the EDC dispersion. This ef
increases when the residual width of the quasiparticle p
increases, and when convolution with the experimental re
lution function is taken into account.23

Finally, we discuss the cut along the nodal directio
shown in Fig. 19. For this direction, the gap is zero as
consequence ofd-wave symmetry, and as a result the ED
dispersion should cross the Fermi energy. This is seen in
left panel of the figure. Note the very strong damping of t
spectral peak as soon as it crosses the energy region w
corresponds to the break effect near theM point. Actually,
the damping starts at slightly lower energies, due to the o
of node-node scattering processes at an energyV res , as can
be seen in the left panel of Fig. 19. The velocity renorm
ization for low energies and high energies differs by a fac
of roughly 2, both for EDCs and MDCs, in agreement w
the experiment.22 Finally, we also reproduce the experime
tal fact that the high-energy dispersion does not extrapo
to the Fermi crossing.21,25Again, note some shift between th
EDC and MDC dispersions at high energies due to the
ergy variation of the self-energy.

Clearly, the velocity break~kink! along the nodal direc-
tion and the break between the peak and hump~dip! near the
M point are occurring in the same energy range betwe
2V res2DA and2V res2EM . This is an appealing result o
our theory, because it explains all features in the dispers
anomalies in the Brillouin zone seen by ARPES with
simple model.

E. Tunneling spectra

Knowing the spectral functionA(e,kW ) throughout the
zone, we are able to calculate the tunneling spectra give
tunneling matrix elementTkWpW . For simplicity, we present nu
merical results for the simple model, neglecting the co
tinuum part of the spin-fluctuation spectrum. From the S
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tunneling currentI (V), one obtains the differential conduc
tance,dI/dV. As usual, we neglect the energy dependence
the SIN matrix elementuMkWu252e(pW uTkWpW u2AN(pW ,e), where
AN is the spectral function of the normal metal. The S
tunneling current is then given by

I ~V!5(
kW

uMkWu2E
2`

` de

2p
A~e,kW !$ f ~e!2 f ~e1eV!%.

~38!

We model the tunneling matrix element for two extrem
cases: for incoherent tunneling we assume a constantuMkWu2

5M0
2, whereas for coherent tunneling we useuMkWu2

5 1
4 M1

2(coskx2cosky)
2.63 Coherent tunneling in thec-axis

direction is strongly enhanced for theM points in the Bril-
louin zone compared to the regions near the zone diag
due to the matrix elements.63 Our numerical results for SIN
junctions are shown in Fig. 20~left!. In both cases, we ob
serve a clear asymmetry, with a dip-hump structure on
negative bias side and a very weak feature on the pos
side of the spectrum, as in experiments.32,33 The low-energy
behavior of the tunneling spectrum in the coherent tunne
limit does not show the characteristic linear in energy beh
ior for d wave, because the nodal electrons have suppre
tunneling as a result of the matrix elements. The peak-d
hump features, on the other hand, are not affected by
matrix elements, as they are dominated by theM point
regions which are probed by both coherent and incohe
tunneling.

For an SIS junction, the single-particle tunneling curre
is given in terms of the spectral functions by

I ~V!52e(
kWpW

uTkWpW u2E
2`

` de

2p
A~e,kW !A~e1eV,pW !

3$ f ~e!2 f ~e1eV!%. ~39!

Again we show results for incoherent tunneling (uTkWpW u2

5T0
2) and for coherent tunneling with conserved paral

momentum,uTkWpW u25 1
16 T1

2(coskx2cosky)
4dkWi ,pWi

.63 Our results
are shown in the right panel of Fig. 20.

All structures are symmetric around the chemical pot
tial. The low-energy part of the spectrum is strongly su
pressed in the incoherent tunneling limit already, thus ther

FIG. 20. Differential tunneling conductance for SIN~left! and
SIS ~right! tunnel junctions forT540 K. Units areeMi

2 for SIN
and 2e2Ti

2 for SIS. Results for the coherent~full curves! and inco-
herent~dashed curves! tunneling limits are shown. The paramete
are given in Table II.
3-16
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no big difference to the coherent tunneling limit there.
higher voltages, however, in the coherent tunneling limit,
obtain negative differential conductance. Such an effect
observed recently in optimally doped Bi2Sr2CaCu2O82d
break junctions.37 We also observe negative behavior
higher bias in the coherent tunneling limit, but note that
reality, the tunneling matrix element will have both cohere
and incoherent contributions~especially at higher voltages!,
and thus will be a weighted average of the dashed and
curves in Fig. 20. In this case, most probably only the ne
tive behavior below 100 meV will be observable. We no
that the spin-fluctuation continuum broadens the spec
functions and, as we show below, this leads to a posi
response at higher voltages.

We give approximate expressions for the SIS differen
conductances for zero temperature. In the incoherent lim

I ( incoh)~V!5
eT0

2

p E
2eV

0

deN~e!N~e1eV!. ~40!

In the coherent tunneling limit, the tunneling matrix eleme
very effectively suppresses the nodal regions, thus only
lowing for tunneling near theM point regions. In these re
gions, however, the dispersion is weak, so that we may
proximate the spectral function by its value at theM-point,
AM(e). Then, we obtain in the coherent tunneling limit

I (coh)~V!'
eT1

2

p E
2eV

0

deAM~e!AM~e1eV! ~41!

with T1
25(kWpW uTkWpW u2. Note that two different quantities ar

probed in the two limits. In the incoherent limit, it is th
density of states, and in the coherent limit, it is thespectral
functionat theM point of the Brillouin zone.

It is easy to show by differentiating Eq.~41! that the dif-
ferential conductance can be negative, and furthermore,
approach a negative value for large voltages. The limit
behavior at high voltages in the incoherent tunneling limit
proportional toN(2)N(1), whereN(6) is the density of
states at large positive/negative energies. If in the cohe
tunneling limit the corresponding term proportional toAM
(1)AM(2) is very small, then the main contribution com
from the region where eithere'2DM or e1eV'DM ,
varying within a range of orderDM around these values. It i
easy to show that this contribution is negative. But as soo
incoherent contributions play any role, or ifAM has a con-
siderable incoherent part, then their positive contributio
will dominate at high voltages. Note that for SIN tunnelin
the differential conductance is always positive definite.

F. Self-consistency issues

When going towards underdoping, the spectral funct
deviates considerably from the bare BCS spectrum. S
consistency issues become important then.

Our studies have shown that the quasiparticle peak is
ways reasonably well separated in energy from the hi
energy incoherent part by a dip. By coupling electrons to
spin resonance mode, weight is shifted from the quasipar
peak to the incoherent part which includes the broad hu
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structure. Thus, when calculating the self-energy effects
to this coupling, only the quasiparticle peak part of the sp
trum with its reduced weight will contribute to the sha
self-energy features at energies affecting the quasipar
peak. The incoherent part of the fermionic spectrum, wh
is gapped by roughly the hump energy, will affect the lo
energy quasiparticle properties only in form of an effecti
high-energy renormalization factor, which is constant up
energies comparable to the hump energy. This effec
renormalization adds to that due to coupling of electrons
the spin-fluctuation continuum. Thus, we can concentrate
the renormalization equations following from the set
equations which includes the quasiparticle peak spectrum
reduced weight interacting with the spin-fluctuation mode.
deriving these equations, we make use of the approxim
equations for the renormalization functions derived abov

The quasiparticle part of Green’s function has in this a
proximation at theM point the form

Ge,kM

R 5
1

Z̃M
S ÃM

1

e2ẼM1 i G̃M

1
ÃM

2

e1ẼM1 i G̃M
D , ~42!

Fe,kM

R 5
1

Z̃M
S C̃M

e2ẼM1 idM

2
C̃M

e1ẼM1 idM
D , ~43!

where ẼM5Aj̃M
2 1D̃M

2 and ÃM
65(16 j̃M /ẼM)/2. Here,

ẼM is the measured peak position at theM point, andG̃M is
the quasiparticle peak width. The broadening of the o
diagonal spectra,dM , is reduced compared toG̃M due to
d-wave symmetry. Using the approximative formulas fro
the last sections ate52ẼM , we obtain~with a5g2I 0 /p)

Z̃M511
lM

(N)

Z̃N

1lM
(c)1

a

Z̃MV resẼM

ẼM

V res12ẼM

, ~44!

D̃M5
DM

Z̃M

1
a

Z̃M
2 V resẼM

V res1ẼM

V res12ẼM

D̃M , ~45!

j̃M5
jM

Z̃M

2
a

Z̃M
2 V resẼM

V res1ẼM

V res12ẼM

j̃M , ~46!

where lM
(c) denotes renormalizations due to the sp

fluctuation continuum and the incoherent part of the spec
function, andlM

(N) the contribution coming from the noda
regions~these contributions are renormalized with the no
renormalization factorZ̃N , which is smaller thanZ̃M). The
last two equations merely express the measurable quan
D̃M and j̃M as functions of the bare quantitiesDM andjM .
The first equation can be solved, giving for smallV res and
not too small g2I 0 a quasiparticle weight

}AV res(V res12ẼM). Note that we derived this set of equa
tions for the case whereG̃M is neglected, which describes th
slightly underdoped region. WhenV res becomes comparabl
to G̃M , these equations have to be modified.
3-17
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It should be remarked, though, that using these equat
in the absence of vertex corrections usually give poorer
sults than those presented in this paper using bare Gre
functions.64

G. Bilayer splitting

For bilayer compounds, the dispersion can be split i
bonding~b! and antibonding~a! bands. Accordingly, the self
energy for each band is defined asSk,e

(b) andSk,e
(a) . Similarly,

the spin susceptibility is now a matrix in the bondin
antibonding indices, having elements diagonal (xaa , xbb)
and off-diagonal (xba , xab) in the bonding-antibonding rep
resentation. The components of the spin susceptibility tra
forming even and odd with respect to the plane indices
given by xe5xaa1xbb and xo5xab1xba . For identical
planes, we havexaa5xbb andxab5xba . The measured sus
ceptibility is then given by

x5xecos2
qzd

2
1xosin2

qzd

2
, ~47!

whered is the separation of the layers within a bilayer. If w
write the self-energy for a single layer asx* Ĝ ~the hat de-
notes the 232 particle hole space!, which is a functional of
the spin susceptibilityx and the Gor’kov-Green’s function
Ĝ, then we have formally for the two-layer system

Ŝ (b)5xe* Ĝ(b)1xo* Ĝ(a),

Ŝ (a)5xe* Ĝ(a)1xo* Ĝ(b). ~48!

For the resonance part, which only has axo component, this
means that fermionic excitations of the antibonding band
termine the self-energy for the bonding band and vice ve
The calculations presented in this paper hold for the cas
bilayer systems if we assume identical dispersions for bo
ing and antibonding bands. Even small bilayer splittings
the order of 10 meV or less do not matter, as they do
qualitatively alter the spectral form of the self-energy. F
larger bilayer splittings, the self-energy is larger for t
bonding band, because it is determined by the van H
singularity near the chemical potential in the antibond
band. Thus, stronger renormalizations are expected in
bonding band for this case, which tends to decrease
bonding-antibonding splitting. This effect of reducing the b
layer splitting should be strongest in underdoped co
pounds, where the effect of the resonance mode is stron
In overdoped compounds, the bilayer splitting should be l
affected by spin-fluctuations. Our prediction is that if a b
layer splitting is observed, then the peak-dip-hump struct
should be stronger for the bonding band with the hig
binding-energy peak. This is consistent with the data of R
65. Theonsetof strong fermionic damping should be ind
pendent of the band index, as it is given by scattering to
nodes, and thus occurs at the fixed energyV res .

In this paper, we have elected not to explicitly inclu
bilayer splitting effects in our calculations. The primary re
son is that although all ARPES groups now detect the p
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ence of bilayer splitting for heavily overdoped samples,
various groups disagree on its presence for optimal and
derdoped samples.66 Recently, we have performed calcula
tions including bilayer splitting and are able to reproduce
number of unusual spectral anomalies seen in heavily o
doped ARPES spectra.67 These calculations further confirm
the picture advocated in this paper, in that the spec
anomalies imply a mode which has odd symmetry with
spect to the layer index of the bilayer, a unique property
the magnetic resonance observed by neutrons. For fur
details, the reader is referred to Ref. 67.

H. Doping dependence

In this section, we deal with the doping dependence of
spectral line shape near theM point of the Brillouin zone. As
there are many parameters which change with doping in
ferent ways, it could turn out to be a meaningless task
adjust all of those parameters and at the same time ma
sensible prediction. But, fortunately, all changes with dop
lead to spectral changes which go in the same direction. T
‘‘fortuitous’’ accident allows us to make some general pr
dictions from the theory we use. To see this, we turn again
Figs. 11 and 12. From there we see that the quasipar
weight decreases with decreasingV res /DM , and with in-
creasing coupling constantg2wQ . The quasiparticle scatter
ing rate increases with decreasingV res /DM . And the hump
energy disperses to higher binding energies for increas
coupling constant and increasingjM . Thus, in our model,
going from overdoping to underdoping amounts to a decre
ing quasiparticle weight, an increasing quasiparticle scat
ing rate, and an increasing hump binding energy.

The important parameter, as we see from this study, is
ratio V res /DM , the ratio of the mode energy to the maxim

FIG. 21. In the dark gray shaded region, corresponding to o
doping, quasiparticles peaks are well defined. In the light g
shaded region, corresponding to underdoping, the peak weig
strongly reduced, and an incoherent part due to scattering from
spin-fluctuation mode is dominant. The resonance energy, show
a thick line, is bounded from above by twice the maximal g
energy,V res,2DM , and approaches it on the overdoped side. T
position of optimal doping, at maximalTc andV res , roughly coin-
cides with the point whereDM as a function of doping crosse
V res .
3-18
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EFFECT OF THE MAGNETIC RESONANCE ON THE . . . PHYSICAL REVIEW B 67, 144503 ~2003!
superconductingd-wave gap. We distinct two regions: th
first, whereV res /DM.1, and the second, whereV res /DM
,1. The situation is schematically shown in the phase d
gram in Fig. 21. The curves shown are calculated using
formulas ~we relate Tc to the hole doping level in the
Cu-O2 planes in the usual manner68!

Tc595 K@1282.6~p20.16!2#, ~49!

DM538 meV@129.1~p20.16!#, ~50!

V res540 meV@1282.6~p20.16!2#. ~51!

All these quantities approach zero on the overdoped sid
p50.27. Optimal doping corresponds top50.16. Note that
V res54.9Tc in agreement with Ref. 37. TheDM variation
was based on ARPES data.28,61

As can be seen, the separation between overdoped
underdoped regions roughly coincides with the regio
whereV res.DM andV res,DM , respectively. The dip onse
is given byV res1DA . As DA is about the same asDM , we
have shown in Fig. 21 the line forV res1DM as a dashed
line, which determines the position of the dip fairly acc
rately. The continuum in the spin-fluctuation spectrum o
affects electrons above 2Dh , which is near or above the di
energy. One important observation is that the point of o
mal doping for a Cu-O2 plane roughly corresponds to th
point whereV res /DM51. Thus, region I of Fig. 5 is relevan
to overdoped materials, and region II to underdoped mat
als. Another experimental observation is that this ratio ne
exceeds the value two. This is expected for an excitonic
lective mode below a continuum edge.37

For a quantitative theory of the doping dependence
self-consistency issue becomes important. The coherent
siparticle weight and the quasiparticle linewidth are given

zM'
1

Z̃M
S 1

2
1

u j̃Mu

2ẼM
D , ~52!

G̃M'
g2wMN

p ṽNṽD

ẼM2V res

Z̃M

Q~ẼM2V res!, ~53!

where Z̃M[Z̃M(2ẼM) is the only quantity not available
from experiment. We can eliminate it, to obtain the relati

G̃M'2zMẼM

g2wMN

p ṽNṽD

ẼM2V res

ẼM1u j̃Mu
Q~ẼM2V res!. ~54!

Note that experimentally bothzMẼM and ~possibly! ṽD

scale withkBTc .30,61 So, the quasiparticle width is dom
nated by the differenceẼM2V res . Quasiparticles are shar
at the overdoped side whereẼM,V res , and an onset of
quasiparticle scattering as a function of underdoping ta
place whenẼM5V res . This point is slightly beyond optima
doping.
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IV. COUPLING TO THE ZONE BOUNDARY HALF
BREATHING OPTICAL PHONON

The sharp structure in the dispersion needs an explana
in terms of an almost dispersionless feature which couple
the electrons. Numerous phonons modes are seen in inel
neutron scattering in high-Tc cuprates. Most of them do no
show indications of strong coupling to electrons. Two spec
types of phonons have attracted attention: the Cu-O buck
mode, which is attractive in thed-wave channel,69–71,2,72,73

and the Cu-O breathing mode, which is repulsive in t
d-wave channel.70,71,2,73Typically, the absolute values of th
pairing interactions in theB1g (d-wave! channel for both
types of vibrations are smaller than 0.1 eV, in theA1g
(s-wave! channel about 0.5–1 eV; for spin-fluctuations, t
corresponding numbers are in thed-wave channel 0.5–1 eV
and in thes-wave channel 1–2 eV.73 The total electron-
phonon coupling constant in thes-wave channel amounts t
ls'0.4–0.6,74–77,73 and in the d-wave channel to
ld'0.3.76,77 Thus, phonons are not likely to be responsib
for the high transition temperature.

It was argued recently that strong coupling of electrons
the zone boundary half breathing phonon may be respons
for the anomalies in the dispersion. It is known for som
time that this phonon shows a dispersion, which is stron
renormalized midway between the zone boundary and
zone center when entering the superconducting state. T
findings show that the zone boundary half breathing pho
is affected by superconductivity. It was suggested to be
sponsible for the renormalizations of the dispersion obser
in ARPES.25 This zone boundary half breathing longitudin
optical phonon is a CuuO bond stretching mode with a
energy between 50 and 100 meV. Its dispersion is very str
in the middle of the branch, and it was suggested tha
discontinuity develops there in the metallic state.78 The first
measurements concentrated on lanthanum cuprates, bu
cently YBa2Cu3O72d was also studied.79,80 The displace-
ments involve oscillations of the oxygen atoms in phase
tween the two planes in the bilayer. The results for optima
doped YBa2Cu3O72d are the following: The dispersion o
the zone edge mode in the superconducting state show
‘‘break’’ at (0,p/2) ~and equivalent points!, with an almost
dispersionless branch~at ;55 meV) betweenqW 5(0,p/2)
andqW 5(0,p), and a dispersive branch~68 meV to 72 meV!
betweenqW 5(0,0) andqW 5(0,p/2).78–80 Experimental inves-
tigation showed that the dispersionless branch extends ov
regionp/2,qx,p,20.1p,qy,0.1p ~and analogously for
qx and qy interchanged!.78 The dispersionless branch wa
only observed for bond stretching along thea direction~per-
pendicular to the chains!. The dispersions of the longitudina
bond-stretching phonon branches were found to show no
parent temperature dependence.80 The phonon intensity was
found to show significant temperature dependence be
Tc .79 Phonon weight is transferred from a position halfw
to the zone boundary~in a range between 55 meV and 7
meV! to the zone center~70–75 meV! and the zone bound
ary ~50–55 meV!. This transfer sets in atTc and increases
with decreasing temperature.

The coupling strengthgb(qW ) goes to zero for small mo
mentum transferqW . Furthermore, in the model of Ref. 81, th
coupling vanishes near theqW 5(p,p) point, thus having
3-19
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minimum impact on the electrons near theM point of their
Brillouin zone. This is in stark contrast to the resonan
mode model, and can certainly not explain the effects at
M points. It is, however, possible that they contribute to
renormalization of the nodal dispersion. The maximal co
pling strength was theoretically estimated togb'0.04 eV,73

but in some models is enhanced by vertex corrections.81

In Fig. 22, we point out an important difference to th
magnetic mode. The magnetic mode is peaked aro
(p,p), whereas the spectral density of half breathing p
non is peaked around the points (0,p) and (p,0). Because
for the imaginary part of the self-energy only excitatio
near the Fermi surface are important, there are geom
restrictions for the possible scattering events. In the cas
the magnetic mode, scattering was dominated by proce
connecting theM points of the Brillouin zone, and thes
scattering processes are enhanced by the presence of
Hove singularity close to the chemical potential. In the ca
of the half breathing phonon, theM point electrons are very
ineffectively scattered by these phonons due to the Pauli
clusion principle. The important points here are near
nodal regions for the electrons. Thus, the strongest effects
expected near~but not necessarily at! the nodes, not near th
M points, in contrast to what experiment shows.

It is possible that both processes play a role and domin
in different regions of the Brillouin zone. Phonons wou
then play some role for nodal electrons.

V. CONCLUSIONS

We suggest that the van Hove singularity at theM point of
the Brillouin zone plays an important role in determining t
self-energy effects observed in ARPES and tunneling exp
ments. The picture can be understood as follows: the qu
particle dispersion is fairly flat near theM points of the Bril-
louin zone, with a large effective mass in theM -G direction,
and is close to the chemical potential. Because the c
tinuum part of the spin-fluctuation spectrum is gapped up

FIG. 22. As in Figs. 3~d! and 4, but the white areas now deno
the experimentally determined regions where the dispersionless
breathing zone boundary phonon mode is present. For nodal w
vectors~left! the main self-energy contribution comes from nod
node scattering processes at small energies~near2Vphon). At the
M point ~right! the self-energy effects are negligible due to geom
ric restrictions. Only higher anharmonic terms@with two phonon
processes which add up to a (p,p) wave vector# could contribute at
fermionic wave vectors near theM point.
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energies;70 meV, the scattering at low energies is dom
nated by scattering processes accompanied by emission
spin-fluctuation mode~which lies below the gapped con
tinuum at;40 meV and has a sharp energy!. This coupling
leads to cusps in the energy dependence of the self-ener
the range of 70–80 meV due to the effect of the van Ho
singularities at theM and A points. Because of the finite
width of the spin-fluctuation mode in momentum, there a
traces of these cusps for electrons at all positions near
Fermi surface. Theposition in energyof these cusps are de
termined by electrons near theM and A points only, which
explains the isotropy around the Fermi surface of the ene
scale of 70-80 meV where kink features in the dispersion
observed. Theintensity of this self-energy effect is deter
mined by the intensities of the spin-fluctuation mode at su
momentaqW which connect the electron with momentumkW to
electrons near theM point region. Thus,qW 5(k2W kW M) modulo
(GW ), whereGW is a reciprocal lattice vector. This intensity
large for kW'kW M , but smaller forkW'kWN . This explains the
strong anisotropy of the magnitude of the effect around
Fermi surface.

We recently became aware of an experimental paper
claims no momentum anisotropy in the linewidth for ove
doped compounds.82 This result is actually consistent wit
our picture, in that for overdoped compounds, the spec
peak lies inside the scattering rate gap, which can be ap
ciated from Fig. 21.
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APPENDIX: SELF-ENERGIES

In this appendix, we derive self-energy expressions t
allow us to evaluate the real part of the self-energy anal
cally in several special cases, and have the numerical ad
tage of having eliminated all principal value integrals. T
procedure is a generalization of a method developed
Marsiglio, Schossmann, and Carbotte.83 The self-energy is
given by

Se,k
R 5

i

2
g2(

q,v
~Ge2v,k2q

R Dv,q
K 1Ge2v,k2q

K Dv,q
R !,

~A1!

whereD52x. In equilibrium, the Keldysh components a
given by the simple expressions

Dv,q
K 5~Dv,q

R 2Dv,q
A !coth

v

2T
52 iBv,q~112bv!,

~A2!

Ge,k
K 5~Ge,k

R 2Ge,k
A !tanh

e

2T
52 iAe,k~122 f e!, ~A3!
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whereBv,q andAe,k are the bosonic and fermionic spectr
functions, andbv , f e their corresponding distribution func
tions, respectively. Note, that the Keldysh components
purely imaginary.

In evaluating these integrals, the only numerical comp
cation comes from the real parts ofS due to principal value
integrals. We can eliminate those by using the followi
trick. Note that in equilibrium the identities

(
v

Dv
RGe2v

K 52 i(
v

tanh
e2v

2T
BvGe2v

R

1(
v

~Dv
AGe2v

R 2Dv
RGe2v

A !tanh
e2v

2T
, ~A4!

(
v

Dv
KGe2v

R 52 i(
v

coth
v

2T
Dv

RAe2v

1(
v

~Dv
RGe2v

A 2Dv
AGe2v

R !coth
v

2T
, ~A5!

hold which are easy to check. The convenient feature is
the second lines in Eqs.~A4! and~A5! can be converted into
Matsubara sums by noting thatDv

AGe2v
R is an analytic func-

tion in the lowerv half plane, and analogouslyDv
RGe2v

A

analytic in the upper half plane. Thus,

i

2 (
v

~Dv
AGe2v

R 2Dv
RGe2v

A !tanh
e2v

2T

52T(
en

DM~e2 i en!GM~ i en!, ~A6!

i

2 (
v

~Dv
RGe2v

A 2Dv
AGe2v

R !coth
v

2T

52T(
vm

DM~ ivm!GM~e2 ivm!, ~A7!

whereDM(e2 i en) and GM(e2 ivm) are smooth functions
~except atvm50, which is treated separately, see below!.
So, the self-energy Eq.~A1! has the two alternative equiva
lent forms~the first form was found in Ref. 83!

Se,k
R 5g2F(

v,q
Bv,qrv,e2v

T Ge2v,k2q
R

2T(
en ,q

Gk2q
M ~ i en!Dq

M~e2 i en!G , ~A8!

Se,k
R 5g2F(

v,q
S Dv,q

R rv,e2v
T 2ReD0,q

R T

v DAe2v,k2q

2T (
vmÞ0,q

Gk2q
M ~e2 ivm!Dq

M~ ivm!G , ~A9!

where the population factorrv,e2v
T is given by,
14450
re

-

at

rv,e2v
T 5

1

2 S coth
v

2T
1tanh

e2v

2T D . ~A10!

Note that the terms containing Matsubara sums are pure
quantities.

Let us examine the simple case

Ae,k52pd~e2jk! ~A11!

which gives, using the second expression

Se,k
R 5g2(

q
S De2jk2q ,q

R re2jk2q ,jk2q

T

2ReD0,q
R T

e2jk2q
2T (

vmÞ0

Dq
M~ ivm!

e2 ivm2jk2q
D .

~A12!

Finally, for the case that the bosonic mode has the sim
form

Bv,q52wq@d~v2V!2d~v1V!# ~A13!

the first expression leads to

Se,k
R 5

g2

p (
q

wqFrV,e2V
T Ge2V,k2q

R 2r2V,e1V
T Ge1V,k2q

R

2T(
en

Gk2q
M ~ i en!S 1

e2 i en2V
2

1

e2 i en1V D G
~A14!

The last sum can be performed for the case of Green’s fu
tion of the form

Ge,k
R 5

1

e2jk1 iGk
, ~A15!

Gk
M~ i en!5

1

i en2jk1 iGksign~en!
~A16!

leading to

2T(
en

Gk2q
M ~ i en!S 1

e2 i en2V
2

1

e2 i en1V D
5pReF i

e2V2jk2q1 iGk2q

3H CS 1

2
1 i

e2V

2pT D2CS 1

2
1

Gk2q1 i jk2q

2pT D J
2

i

e1V2jk2q1 iGk2q

3H CS 1

2
1 i

e1V

2pT D2CS 1

2
1

Gk2q1 i jk2q

2pT D J G .
~A17!
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