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Finite-size effects in the conductance and giant magnetoresistance of FeÕCr and CoÕCu nanowires

Julian Velev and Yia-Chung Chang
Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 6180
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We present theoretical studies of the size dependence of the current perpendicular-to-the-plane ballistic
conductance and giant magnetoresistance~GMR! in Fe/Cr and Co/Cu nanowires within a realistic tight-binding
model. Symmetry properties of the nanowire with respect to transformations of the point groupC4v are
exploited to decompose the problem into several independent parts. This allows us to study mesoscopic-size
nanowires which are experimentally achievable. Our calculations predict substantial reduction in GMR due to
the finite size of the nanowire.
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I. INTRODUCTION

In the decade after the discovery of the giant magneto
sistance~GMR! in Fe/Cr multilayers,1,2 the field has received
a lot of attention.3–7 One of the recent developments in th
field is the study of multilayered nanowires.8–10 These sys-
tems have shown high current-perpendicular-to-the-pl
~CPP! GMR ratios with substantial resistances because
dimension of their cross sections is comparable with th
length ~see Ref. 11!.

The typical magnetic nanowire system is cylindrical w
a diameter as small as 10 nm. The nanowire consists o
ternating magnetic and nonmagnetic slices each of thickn
on the order of 3–20 nm. The total length of the nanowire
on the order of microns. Due to the shape anisothropy,
preferred direction of magnetization is along the axis of
nanowire. Furthermore, the small thickness of the spa
layer allows an interaction between the magnetic lay
which favors ferromagnetic coupling. So the contribution
GMR comes from a relatively small number of surfac
which are antiferromagnetically coupled in the absence o
external magnetic field.

In a previous work,12 we reported studies of GMR in
small Fe/Cr nanowires within a realistic tight-binding mod
Our results showed a diminished value of GMR due to
uneven suppression of the two spin channels which we
tributed to the finite size of the nanowire. In this article w
study the size dependence of GMR for both Fe/Cr and Cu
nanowires with dimensions ranging from the atomic scale
the mesoscopic scale, which was previously unattaina
This is accomplished by exploiting the symmetry of the w
to decompose the problem into several disconnected p
lems for wave functions associated with different symme
types. Furthermore, we introduce a recursive scheme to
vert the Hamiltonian matrix efficiently~see the Appendix!.
This allows us to study supercells that are more than 6 tim
larger than those studied previously.

II. MODEL

The method we use to calculate the conductance has
described in detail elsewhere.13,14 For a multilayer sand-
wiched between two leads at zero temperature, the con
tance is given by15
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Tr@S̃LGR~1,n!S̃RGA~1,n!#, ~1!

whereGR/A(1,n) is the retarded/advanced Green’s functi
~GF! matrix element between the first and last principal la
ers of the sample andS̃5 i (SR2SA) is the imaginary part of
the self-energy associated with the leads. In the calcula
of the conductance, all Green’s functions and self-energ
are evaluated at the Fermi energy.

We model the nanowires with a square supercell wit
the tight-binding~TB! formalism. In order to decouple th
neighboring nanowires, we surround the wire with emp
sites. The supercell is repeated periodically in the plane.
obtained superlattice has a square lattice with lattice cons
L5Na, where a is the bulk lattice constant andN is an
integer, which indicates the size of the supercell.

The wave functions of the system can be written in ter
of linear combinations ofsupercell orbitalsdefined as

uk1gn ,i ,a,Rz&5
1

N (
R̄s

ei (k1gn)•R̄sua,Rs1Si&, ~2!

where k5(kx ,ky) (ukxu,ukyu,p/L) denotes a two-
dimensional~2D! wave vector within the superlattice Bril
louin zone~BZ!, a labels the symmetry type for thesp3d5

orbitals,R̄s denotes the projection of the superlattice latti
vectorRs on the (x,y) plane located atRz , Si label the atom
coordinates in the supercell, andgn5(2p/L)(n1 ,n2) de-
notes the reciprocal lattice vectors of the superlattice that
in the first bulk Brillouin zone (0<n1 ,n2<N).

In the supercell orbital basis, the Hamiltonian matrix e
ment is

Hi j ,ab~k!5(
R̄s

ei (gn1k)•R̄s^a,Si uHub,Rs1Sj&, ~3!

and the Green’s function for the semi-infinite leads is

Gi j ~k!5
1

N2 (
n

ei (gn1k)•(Si2Sj )G~gn1k!. ~4!

Here the labelsa andRz have been omitted for brevity. Du
to translational symmetry, the layer orbitals associated w
©2003 The American Physical Society25-1
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different wave vectorsgn are decoupled in the leads, b
coupled in the nanowire region.

III. REDUCTION VIA SYMMETRIZATION

In the study of conductance and GMR in nanowires
realistic sizes, large supercells are needed. The symmet
the supercell allows substantial reduction of the problem
be achieved using group theory. As the size of the nanow
increases, the supercell BZ becomes so small that a sin
point sampling~chosen to beki50) is sufficient for getting
an accurate result. In this case, there is no phase chan
going from one unit cell to another. Thus, we can exploit
full point-group symmetry of the system. Let us conside
shell of atoms, which are at an equal distance from the c
ter: i.e., the set of orbitals$ua,Si&: uSi u5const%. In Fig. 1~a!,
a symmetric supercell with an odd number of unit cells
shown. The atoms that are equally distant from the ce
form shells that are differently shaded. Figure 1~b! shows a
similar supercell with an even number of unit cells. T
cross section of both bcc and fcc lattices in~001! orientation
is a square lattice which breaks down in only a few topolo
cally different shells. The four topologically different shel
with their symmetry states are shown in Fig. 2. The po
group considered here isC4v , which contains eight element

FIG. 1. Schematic plots of the cross sections of supercells w
C4v point symmetry with an~a! odd number and~b! even number
of unit cells.
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and it has four 1D (A1 , A2 , B1, and B2) and one 2D~E!
irreducible representations.16

Let R label the symmetry operations inC4v . We first
construct the site functions that transform according to
different rows of the different irreducible representatio
~IR’s! of C4v by using the projection operator defined as

P n8n
(n)

5
l n

h (
R

G (n)~R!n8n
* R, ~5!

wherel n is the dimensionality of thenth representation,h the
dimensionality of the group, andG (n)(R)n8n denotes the ma-
trix element of the IR corresponding to group elementR.
Starting with an arbitrary site functionuS& in a given shell,
we then obtain symmetrized shell orbitals given byP nn

(n)uS&.
For multidimensional representations one can obtain
functions transforming according to other rows of the sa
representation by applying the off-diagonal projection ope
tor P n8n

(n) . In our case,E is the only multidimensional repre
sentation, but since the directionsx and y are physically
equivalent, we can consider only part of theE symmetry
~say,x) and the second part will automatically give the sam
result.

Next, we construct symmetrized tight-binding basis fun
tions that transform according to various IR’s ofC4v . The
atomic orbitals are denoted bya5s, x,y,z (p like! or
xy,yz,zx,(x22y2),(3z22r 2) (d like!. These orbitals trans
form according to the various IR’s ofC4v as given in Table I.
The overall linear combination of atomic orbitals~LCAO!,
written as a product of a shell orbital transforming accord
to G (n) and angular part transforming according toG (m),
transforms according to the direct-product representa

th

FIG. 2. Topologically different shells in cross section of the b
~001! supercell.

TABLE I. Symmetry character of the atomic orbitals.

s (x,y) z xy (zx,yz) x22y2 3z22r 2

A1 E A1 B2 E B1 A1
5-2
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G (n)G (m). Since these are representations of the same gr
the direct-product representation must be reducible:

G ( i )G ( j )5(
k

ai jkG (k). ~6!

Using the vector-coupling coefficients17 as given in Table II,
we can then obtain symmetried LCAO in the form

cn
(n)5(

a,i
Ta,i

(n,n)ua,Si&.

Finally, the Hamiltonian is block diagonalized within the b
sis of symmetrized LCAO via the transformation

Hnn5~T(nn)!†
•H•T(nn) ~7!

and we can solve for theA1 , A2 , B1 , B2, andEx symme-
tries separately. The total conductance (G) can be decom-
posed into contributions from various symmetry channels
the form

G5(
n

(
n51

l n

G (nn). ~8!

IV. RESULTS AND DISCUSSIONS

We study the GMR effect in Fe/Cr and Co/Cu nanowir
with size ranging from atomic scale to mesoscopic scale
take advantage of the symmetry, we choose nanowires w
are invariant under fourfold rotations about thez axis. Our
calculations show that for nanowires with cross sect
above a certain sizeNc , the single-k-point (ki50) sampling
in the surface Brillouin zone gives results in very go
agreement with those obtained with zone integration. Be
Nc , we calculate the conductance without utilizing symm
try by integrating over the surface Brillouin zone. For siz
aboveNc , we utilize the point-group symmetry and decom
pose the total conductance into contributions from vario
symmetry channels.

Figure 3~a! shows the conductance versus the size~N! of
the supercell in anN3N Fe~4!/Cr~3!/Fe~4! nanowire ob-
tained using this method. Here the notation Fe~4!/Cr~3!/Fe~4!
stands for a trilayer consisting of 4 ml Fe, 3 ml Cr, and 4
Fe, sandwiched between semi-infinite Cr leads. The cond
tance is normalized with respect to the conductance o
multilayer of the same geometry, which is 0.20~0.88! e2/h
for majority ~minority! in parallel configuration and 0.20
e2/h for either channel in antiparallel configuration. At sma

TABLE II. Multiplication table of the irreducible representa
tions of C4v (A1[G1 , A2[G2 , B1[G3 , B2[G4, andE[G5).

G1 G2 G3 G4 G5

G1 G1 G2 G3 G4 G5

G2 G1 G4 G3 G5

G3 G1 G2 G5

G4 G1 G5

G5 G11G21G31G4
14442
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sizes the conductance of the minority channel is very sm
and it increases steadily throughout as the size increases
majority channel, on the contrary, starts higher and its c
ductance increases fast to about 70% of the multilayer c
ductance after which its slope becomes comparable to
slope of the minority conductance. Figure 3~b! shows the
conductance versus the size of the supercell in anN3N
Co~4!/Cu~3!/Co~4! nanowire. The conductance is normalize
to the conductance of a multilayer of the same geome
which is 1.25~0.61! e2/h for majority ~minority! in parallel
configuration and 0.54e2/h for either channel in antiparalle
configuration. Overall, the behavior is very similar to th
case of Fe/Cr, the difference in behavior between co
sponding spin channels in Fe/Cr and Co/Cu originating fr
the band structure of the nonmagnetic material. In Cr, thd
bands are partially occupied, whereas in Cu, thed bands are
almost filled. Therefore, the transport in Fe/Cr is due to b
s andd electrons while in Co/Cu it is almost entirely froms

FIG. 3. Conductance vs size~N! for N3N ~a! Fe~4!/Cr~3!/Fe~4!
and ~b! Co~4!/Cu~3!/Co~4! nanowires.
5-3
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electrons. Thus, in the conceptually simpler case of Co/
the ‘‘geometrical’’ resistance is proportional to how much t
density of states~DOS! for the s band differs from the bulk.
For that reason, the geometrical resistance is the same fo
channels. In the case of Fe/Cr, the minority and majo
channels are very different. In the minority channel, the c
ductance is predominantly due tos electrons due to thei
high mobility. Thes electron DOS is strongly affected by th
confinement, which causes large band mismatch between
lead and wire. In the majority channel, due to the band m
match and thes-d hybridization, a significant portion of the
conductance comes from thed electrons. Due to their local
ized character, they are much less affected by the confi
ment. As a result the majority conductance increases sha
with the increase of size. For very small sizes, however,
d component DOS is already very close to its bulk count
part. Thus, the main source of geometrical resistance is f
the DOS of thes electrons. This is nicely illustrated by th
change of slope in the majority conductance graph.

GMR versus the size of the supercell in anN3N Fe~4!/
Cr~3!/Fe~4! and Co~4!/Cu~3!/Co~4! nanowires is shown in
Fig. 4. Here the nanowire GMR is normalized with respec
the GMR of a multilayer of the same layer arrangeme
which is 161%~74%! for the Fe/Cr~Co/Cu!. This figure
illustrates the main point in this study: namely, that the va
of the useful property of these multilayered nanowires can
greatly depreciated due to the finite size~for cross sections
larger than a few atoms!. GMR increases slowly with the
size and it is about 65% of the multilayer value in this Fe/
nanowire with diameter more than 7 nm. The maximu
value of GMR we obtained for the Co/Cu nanowire is 62
of the multilayer value. On the other hand, the peak in GM
for atomic-size nanowires~essentially nanocontacts! demon-
strates possibilities for huge GMR ratios. The effect is mu
more pronounced in Co/Cu where the nanowire with a fo
atom cross section shows GMR 20 times larger than the
responding multilayer. The problem of nanocontacts, ho
ever, is beyond of the scope of this study.

FIG. 4. GMR vs size~N! for N3N Fe~4!/Cr~3!/Fe~4! and
~Co~4!/Cu~3!/Co~4! nanowires.
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V. CONCLUSION

We have developed a method to study the ballistic c
ductance in nanowires with atomic-size to medium-size cr
sections. We take full advantage of the point-group symm
try of the system to reduce the computational effort of t
problem for larger cross sections. We find that in this ran
of sizes the ‘‘geometrical’’ resistance, arising from the late
confinement, is the leading source of resistance. The dis
sive s bands are more affected by the confinement. Th
determine the geometrical resistance completely in nan
ires with cross sections larger than few unit cells . The n
dispersived bands are affected by the confinement only
very small sizes. They determine the conductance of
large-band-mismatch channels in whichs-d hybridization is
important. This has important practical consequenc
namely, GMR can be substantially decreased in nanowire
compared to multilayers due to the uneven suppression o
different spin channels. Thus, the effort to make the nano
ires smaller can be counterproductive beyond a certain lim
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APPENDIX RECURSIVE INVERSION

In the Landauer formula for calculating the conductan
all we need is the Green’s function matrix element betwe
the first layer and last principal layer~PL! of the sample. A
PL is defined as a minimum set of atom planes such that
interaction between atomic orbitals located in any two no
adjacent PL’s is zero. One way to obtain it is to construct
Hamiltonian matrix of the sample and partially invert it. Th
method requires storing a matrix, the size of which increa
linearly with the size of the nanowire~if we take into account
the fact that every layer sees only a fixed number of nei
boring layers!. Another way to obtain the GF matrix eleme
is to express it recursively in terms of the Hamiltonian m
trix elements in two adjacent PL’s.

The system can be divided into three parts: the left le
the nanowire slab, and the right lead. The correspond
GF’s are denoted byGL , GS , andGR , respectively. To con-
nect the nanowire slab to the infinite leads, we have to de
TB matrix elements in the interface region. As in typic
empirical TB calculations, we take them to be the arithme
average of the hopping integrals associated with the cons
ent materials on both sides of the interface. The matrix eq
tion for the full GF of the system takes the form

S GL GLS GLR

GSL GS GSR

GRL GRS GR

D 5S E2HL 2HLS 0

2HSL E2HS 2HSR

0 2HRS E2HR

D 21

.

~A1!

If we do the inversion analytically, we can obtain the G
associated with the nanowire slab in terms of the s
energies which take into account the effects of coupling w
the leads,
5-4
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GS5~E2HS2SL2SR!21, ~A2!

where the self-energies have the form

SL5HSLGLHLS ,

SR5HSRGRHRS. ~A3!

We notice that the self-energies are actually small matric
because, by definition, there is overlap only between the
principal layer of the lead and the first principal layer of t
nanowire.

We can invert the matrixAS[E2HS2SL2SR explicitly
written in the form

S A11 A12 0

A21 A22 A23

0 A32 A33

D S G11 G12 G13

G21 G22 G23

G31 G32 G33

D 5S 1 0 0

0 1 0

0 0 1
D ,

~A4!

which is partitioned such thatA115E2H112SL and A33
5E2H332SR contain only matrix elements within one P
~for the end layers of the nanowire! and A22 contains the
matrix elements for the rest of the nanowire. At any giv
time the middle block has to be larger than 1 PL in order
the overlap between the first and the last PL’s to be zero.
GF matrix elementG31 is obtained to be

G315A33
21A32~A222A21A11

21A122A23A33
21A32!

21A21A11
21 .
~A5!

Note also the special structure of the overlap matrices. S
the PL is defined such that it sees only one PL to the left
one to the right, the matricesAi j ( iÞ j ) are mostly zero:
ff,
hy

Re

en

pl.

y
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A125~2H1,2 0 ••• 0! ,

A325~0 ••• 0 2Hn,n21! , ~A6!

whereH1,2 is the overlap matrix element between the fi
and second PL’s of the sample andHn,n21 between the last
one and the one before the last. This implies that we can
the self-energy to absorb the effect of coupling between
middle part of the slab to the end layers recursively, ea
time reducing the size of theA matrix by 2 PL’s. We write,
after n recursive steps,

A(n11)5A22
(n)2SL

(n11)2SR
(n11) , ~A7!

where

SL
(n11)5A21

(n)~A11
(n)!21A12

(n) , ~A8!

SR
(n11)5A23

(n)~A33
(n)!21A32

(n) ~A9!

are the new self-energies. This procedure can continue u
the size of the matrixA(n11) is reduced to a point at which i
cannot be reduced more without introducing overlap betw
the first and the last PL’s. At this point, it is inverted directl
The algorithm can be implemented iteratively by storing t
partial result of the matrix multiplications to the left an
right.

There are several advantages to this approach—first,
does not need to store the Hamiltonian of the whole sam
but only the parts currently needed for the calculation; s
ond, the memory requirements are independent of the len
of the wire; last, all matrix operations are performed
fixed-size matrices.
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