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Gilbert damping in magnetic multilayers
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We study the enhancement of the ferromagnetic relaxation rate in thin films due to the adjacent normal-metal
layers. Using linear-response theory, we derive the dissipative torque produced by thes-d exchange interaction
at the ferromagnet–normal-metal interface. For a slow precession, the enhancement of the Gilbert damping
constant is proportional to the square of thes-d exchange constant times the zero-frequency limit of the
frequency derivative of the local dynamic spin susceptibility of the normal metal at the interface. Electron-
electron interactions increase the relaxation rate by the Stoner factor squared. We attribute the large anisotropic
enhancements of the relaxation rate observed recently in multilayers containing palladium to this mechanism.
For free electrons, the present theory compares favorably with recent spin-pumping results of Tserkovnyak
et al. @Phys. Rev. Lett.88, 117601~2002!#.
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I. INTRODUCTION

Ferromagnetic multilayers have attracted much atten
recently because of their applications in spintronics a
high-density magnetic recording devices. The present pa
is concerned with magnetic relaxation in a ferromagne
film ~F! imbedded between nonmagnetic metallic layers (N).
In particular, we study the enhancement of the Gilbert dam
ing in N/F/N sandwiches as compared with that of a sin
ferromagnetic film. The Gilbert damping constantG is de-
fined by the Landau-Lifshitz-Gilbert~LLG! equation of
motion1,2 as

1

ugu
]M

]t
52@M3He f f#1

G

g2Ms
2 S M3

]M

]t D , ~1!

where M is the magnetization vector,Ms is the saturation
magnetization, andHe f f is the effective field which is given
by He f f52]E/]M whereE is the Gibbs free energy. Th
gyromagnetic ratiog is a negative quantity2gmB /\ where
g is the spectroscopic splitting factor, andmB is the Bohr
magneton. The second term on the right-hand side of Eq~1!
represents the dissipative torque, the magnitude of whic
proportional toG. The LLG equation describes well both th
static and the dynamic properties of ultrathin ferromagne
films and theN/F/N sandwiches~for a review see Ref. 3!.
The experimental and theoretical aspects of spin relaxa
in multilayers are covered in Ref. 4.

The present investigation was motivated by the sem
work of Berger5 and by the experiments6–8 inspired by his
paper. He considers a bilayerF1 /N/F2 in which the ferro-
magnetF1 acts a spin polarizer of the conduction electro
The spin transfer between this electron and the preces
ferromagnetF2 gives rise to the relaxation torque. Cons
quently, there is an enhanced electron-magnon scatte
caused by the isotropics-d exchange at theF/N interface.
Being a surface effect, the enhancement of the Gilbert c
stant is presented asd21 where d is the thickness of the
0163-1829/2003/67~14!/144418~12!/$20.00 67 1444
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ferromagnetic film. This unique feature is observed on
double ferromagnetic layer structures.6,7 Also, the additional
ferromagnetic relaxation~FMR! linewidth for permalloy–
normal-metal sandwiches shows thisd dependence.8 It
should be mentioned that already in 1987 a study of the F
linewidth showed an appreciable increase in the Gilb
damping with decreasing thickness of the Fe ultrathin fil
grown on bulk Ag~001! substrates.9

A similar trend is seen in ferromagnetic films that are
contact with an antiferromagnetic layer. For instance, S
ecklein et al.10 studied FMR of permalloy thin films ex
change coupled to antiferromagnetic iron-manganese fil
The measured linewidth is proportional tod21. The mecha-
nism of the broadening is attributed to the dispersion of
exchange bias and anisotropy.10 Breaking of the antiferro-
magnetic order into a random domain pattern due to s
face roughness is conjectured to provide the source of
dispersion.

More recently, McMichaelet al.11 studied the FMR line-
width of thin films deposited on antiferromagnetic NiO
Compared to the uncoupled ferromagnetic films, t
exchange-coupled films exhibit an additional linewidth th
increases several times as the magnetization is rotated
the perpendicular to the in-plane direction. To explain t
result, McMichaelet al.11 invoked the two-magnon mode
Owing to the fluctuations of surface magnetic interactio
the uniform spin-wave mode excited by the FMR is allow
to decay into the continuum of other short-wave modes t
are degenerate with the FMR mode. As the magnetiza
orientation goes from the in-plane to the perpendicular dir
tion, the spin-wave manifold moves towards higher frequ
cies such that the number of short-wave modes degenera
the FMR mode decreases. A decrease of the decay rate
sues, in qualitative agreement with the angular depende
of the linewidth. Arias and Mills@12# developed a detailed
theory of the two-magnon contribution to the linewidth a
resonance field shift of FMR in ultrathin films. Assumin
surface defects in the form of bumps and pits, they deriv
©2003 The American Physical Society18-1
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the scattering matrix elements to be due to fluctuations of
Zeeman, dipolar, and surface anisotropy energies. It turns
that surface anisotropy yields a dominant contribution to
matrix element. Since it is generated at the surface, the
trix element exhibits ad21 dependence on the film thicknes
This implies ad22 dependence for the FMR linewidth—a
important signature of the two-magnon mechanism in ul
thin films. Azevedoet al.13 measured the FMR linewidth an
resonance field shift in thin films of NiFe deposited on a
substrate as a function of the film thickness. Their data
consistent with thed22 prediction of the two-magnon theor
of Arias and Mills.12 Subsequently, Rezendeet al.14 used
FMR and Brillouin light scattering to study the spin-wav
damping in NiFe/NiO sputtered on Si substrate. They fou
a dramatic~20-fold! increase of the damping compared to t
Ni/Fe films on a Si substrate studied in Ref. 13. As a funct
of film thickness, the damping is again found in good agr
ment with thed22 dependence. Rezendeet al.14 explained
these results using an adaptation of the two-magnon mod12

in which the main source of scattering is fluctuations of
exchange coupling due to surface roughness.

Another signature of the two-magnon model of Ref. 12
the dependence of the linewidth on the microwave f
quency. Referring to Fig. 4 of Ref. 12, we see that this
pendence is nonlinear. In the experimentally relevant
quency range ~10–40 GHz!, the linewidth can be
approximated by a straight line. Subsequent extrapolatio
zero frequency yields a ‘‘zero-field offset.’’ Thus the zer
field linewidth is a measure of the strength of the mechan
of Arias and Mills.12 This signature has been seen in a rec
FMR study15 of the crystalline Cr/Fe/GaAs ultrathin-film
structure grown by molecular-beam epitaxy. Above 10 GH
the in-plane FMR linewidth is linearly dependent on the m
crowave frequency with an appreciable zero-frequency
set. Also the dependence of the linewidth on the angle
tween the magnetization and the plane of the film
consistent with the two-magnon model. Specifically, t
FMR linewidth decreases more than three times upon go
from the in-plane to the perpendicular orientation of t
magnetization.

Since our concern is experimental evidence of Gilb
damping due tos-d exchange at theF/N interface,5 we need
to examine the extent to which the two-magnon mechan
is present in the structures investigated in Refs. 6–8. Le
first consider the dependence of the FMR linewidth upon
angle between the magnetization and the plane of the fi
Mizukami et al.8 studied this dependence for a permall
film sandwiched between two platinum cap layers and fou
that the linewidth does not change as the magnetization
tates from the in-plane to the perpendicular direction. For
permalloy film sandwiched between copper layers, there
decrease of the linewidth seen upon such a rotation, howe
there is a negligible change of the linewidth with the thic
ness of the film. For the double ferromagnetic layer, Heinr
et al.7 found an additional linewidth that is 10% lower as t
magnetization goes from the in-plane to the perpendic
direction. It should be noted that such a small decrease c
be associated with crystalline anisotropy in the film rath
than present evidence for the two-magnon mechanism. A
14441
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the dependence of the linewidth on the frequency is lin
with a negligible zero-frequency offset. Thus, the angu
dependence of the linewidth observed in Refs. 6 and 8 c
trasts with the prediction of the two-magnon model.10,11

What remains is to mention the dependence of the linew
on the thickness of the ferromagnetic film. Except for t
thicknesses of less than a characteristic coherence len5

the linewidth data of Refs. 6–8 can be fitted with ad21

dependence in contrast with thed22 prediction of the two-
magnon model.11 Presumably, another mechanism for t
FMR linewidth, related to the theory of Berger,5 is at work
for ferromagnetic films in contact with a nonmagnetic met

A mechanism for additional Gilbert damping inN/F/N
structures has been recently proposed by Tserkovn
et al.16 These authors calculate the spin current pump
through theN-F contact by the precession of the magnetiz
tion vectorM(t). The theory is based on extending the sc
tering approach of parametric charge pumping by Brouwe17

to spin pumping.
Like the theory of Berger,5 the additional damping of Ref

16 scales inversely with the thickness of the ferromagn
film, indicating that only theF/N interface is involved. How-
ever, the expression for excessG, which we callG8, differs
considerably from that of Ref. 5. In particular,G8 vanishes
with vanishings-d exchange splitting. An attractive featur
of this theory is that it linksG8 to the transport properties o
the interface. Due to exchange polarization of theF/N con-
tact, the reflection~r! and transmission~t! coefficients at the
interface depend on the orientation of the conductio
electron spin with respect to the magnetization direction
the ferromagnet. The formula forG8 involves differences
such asDr 5r ↑2r ↓. Interestingly, similar quantities play
role in the theory of interlayer magnetic coupling propos
by Bruno.18 For instance, the Ruderman-Kittel-Kasuy
Yosida ~RKKY ! coupling19 between two-dimensional layer
can be obtained by calculating the interlayer coupling ene
in terms of the reflection coefficientsr ↑ andr ↓ of the layers.
These coefficients are obtained by solving a simple prob
of scattering byd-function potential. In the limit of weak
exchange splitting~compared to the Fermi energy!, the de-
rived interlayer coupling agrees with the RKKY result
Yafet.20

These considerations prompt us to take another look at
theory of enhanced relaxation in multilayers. The fact th
RKKY theory18 involves transport properties at the interfa
similar to the spin pump theory ofG8 Ref. 16 suggests that
suitable generalization of RKKY theory to time-depende
magnetizationM(t) may unravel the needed dissipativ
torque of Eq.~1!. We note that the standard approach
RKKY coupling is to use a linear-response theory,19,21 and
calculate the conduction-electron spin density induced by
contact exchange potential. In applications to interlayer c
pling between ferromagnetic layers with time-independ
magnetization vectors, it is the static spin susceptibility
the electron gas which determines the coupling. In
present paper, we consider a response to a slowly var
time-dependents-d exchange potential.

Owing to the dissipative part of the spin susceptibility, t
spin density induced by the precession ofM(t) will have a
8-2
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GILBERT DAMPING IN MAGNETIC MULTILAYERS PHYSICAL REVIEW B 67, 144418 ~2003!
component that is out of phase withM(t). Hence, such a
component will have a time-dependence given bydM/dt.

It is instructive to invoke the analogy to radiation dam
ing of a charged particle in classical electrodynamics.22 Thus,
we put the dissipative torque of Eq.~1! in correspondence
with the radiation reaction force acting on the particle. T
first term of Eq. ~1! corresponds to the external force.
view of this analogy, we rewrite the dissipative torque
terms of a reaction fieldHr ,

G8

g2Ms
2 FM3

dM

dt G52@M3Hr
(d)#, ~2!

where Hr
(d) represents the dissipative part ofHr . For the

N/F/N system shown in Fig. 1, we find the reaction fie
~see Appendix A!

Hr~ t !5
2Ja

gd
^s~x50,t !&, ~3!

whereJ is thes-d exchange coupling constant,a is of order
of the lattice constant, andd is the width of the ferromag-
netic film. The quantitŷ s(x50,t)& is the spin density in-
duced at theF/N interface by thes-d exchange interaction
(x being the distance from the interface!. The expression~3!
is quite general in the sense that it can be used for b
ballistic and diffusive cases. In the present paper we con
ourselves to the ballistic case and calculate the induced
density using linear-response theory.21

Assuming a slow precession ofM(t), we find two contri-
butions. One is proportional toM(t) with a coefficient given
by the real part of the local spin susceptibility at zero f
quency. If the spin susceptibility is anisotropic, this te
leads to an anisotropic shift of the FMR frequency. For is
tropic susceptibility, the quantity on the right-hand side
Eq. ~3! is a vector parallel toM(t) and the corresponding
torque~2! vanishes.

The second contribution tôs(x50,t)& is proportional to
dM/dt. The coefficient of proportionality is the frequenc
derivative of the imaginary part of the susceptibility taken
v50. Like the real part, this quantity is generally anis

FIG. 1. A trilayer consisting of normal metals~N! adjacent to a
ferromagnetic film~F! of thicknessd. The s-d interaction generat-
ing the spin densitys is assumed to take place in contact layers
thicknessa of the order of the lattice constant.
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tropic. According to Eq.~2!, it produces a dissipative torqu
leading to an anisotropicG8. Explicit evaluation of this term
for an isotropic noninteracting electron gas yields a form
for G8 which compares favorably with the spin pump theo
of Tserkovnyaket al.16

The proposed formulation allows us to incorporate int
actions between the electrons in theN region. The general-
ized Hartree-Fock approximation shows that theq,
v-dependent spin susceptibility of the interacting electr
gas is enhanced compared to the free-electron case.21 Using
these results, we find that the part ofHr that contributes to
the FMR frequency shift is enhanced by the Stoner facto

SE5@12UN~eF!#21, ~4!

where U is the screened intra-atomic Coulomb interacti
andN(eF) is the electron density of states, per atom, at
Fermi level.21 On the other hand, we find thatG8 is en-
hanced by a factor ofSE

2 . The Stoner enhancement
thought to be large in metals such as palladium and platin
Recent results using multilayers with Pd layers as a spa
show a significant enhancement of interface damping ex
iting a fourfold anisotropy in keeping with the prese
theory.23

This paper is organized as follows. In Sec. II we deri
the spin density induced by a two-dimensional layer of p
cessing spins, and the corresponding reaction field. Sec
III focuses on the dissipative part of the reaction field, a
the excess dampingG8 for an isotropic electron gas. An
expression forG8 in a free-electron model is derived for th
N/F/N structure withN layers of both infinite and finite
thicknesses. The enhancement ofG8 due to electron-electron
interactions is considered within the generalized Hartr
Fock approximation. In Sec. IV we establish a relation b
tween the spin-pumping theory of Ref. 16 and our fre
electron result forG8. The role of spin sink in theories o
Gilbert damping is discussed in Sec. V. The reaction field
the N/F/N structure is derived in Appendix A. The role o
spin relaxation in the theory ofG8 is considered in Appendix
B. In Appendix C we derive the criterion for the validity o
the slow precession approximation.

II. DYNAMIC RKKY

We consider a two-dimensional layer of aligned spins i
bedded in a normal metal. Notice that a similar model w
used by Yafet20 to calculate the interlayer coupling for tim
independent magnetizations. Here we take into account
time-dependence of the precessing magnetization.

Our task is to derive the conduction-electron spin dens
induced by thes-d exchange interaction taking place at th
magnetic layer. The Hamiltonian of the conduction electro
is

Ĥ5Ĥ02J (
i

sheetE d3rS( i )~ t !• ŝ„r )d3~r2r i !, ~5!

where Ĥ0 represents the Hamiltonian of the conductions
electrons in the absence of the interaction with spins of thd
electrons of the ferromagnetic layer. As in the theory of tim

f

8-3
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E. ŠIMÁ NEK AND B. HEINRICH PHYSICAL REVIEW B 67, 144418 ~2003!
independent RKKY interaction,19,20Ĥ0 corresponds to an in
finite three-dimensional homogeneous Fermi gas. The
ond term in Eq.~5! is thes-d exchange interaction, with th
spins of the ferromagnetic sheet consisting of a single ato
layer. J is thes-d exchange coupling constant,S( i )(t) is the
classical spin at the locationr i , and ŝ(r) is the spin-density
operator for the conduction electrons.

For a uniform precession of aligned spins, we have

S( i )~ t !5
V

g
M~ t !, ~6!

whereV is the volume of the unit cell.
The second term of Eq.~5! acts as a time-dependent pe

turbation that will be treated using linear-response theor21

Thus, the expectation value of them component of the in-
duced spin density is

^sm~r,t !&5J (
i

sheetE d3r 8E
2`

`

dt8xmn~rt,r8t8!

3Sn
( i )~ t8!d3~r82r i !, ~7!

where

xmn~rt,r8t8!5
i

\
Q~ t2t8!^@ ŝm~r,t !,ŝn~r8,t8!#& ~8!

is the retarded spin-correlation function~susceptibility!,21

with Q(t2t8) the unit step function.
Now, we evaluate the right-hand side of Eq.~7! assuming

a slow precession. In Appendix C we derive a condition
the validity of this assumption. We note that the spin-16 and
charge17 pumping theories also require a slow precession
ensure adiabatic evolution of the ground state.

Performing ther8 integration, and applying the commuta
tion law for the convolution, Eq.~7! reads

^sm~r,t !&5J (
i

sheetE
2`

`

dt8Sn
( i )~ t2t8!xmn~r,r i ,t8!. ~9!

For slow precession, we write

Sn
( i )~ t2t8!.Sn

( i )~ t !2t8
dSn

( i )~ t !

dt
. ~10!

Introducing this expansion into Eq.~9!, we obtain with
use of Eq.~6!

^sm~r,t !&.
JV

g
lim
v→0

FM n~ t ! (
i

sheet

xmn~r,r i ;v!

2
]M n~ t !

]t (
i

sheet
] Im xmn~r,r i ,v!

]v G , ~11!

where

xmn~r,r i ,v!5E
2`

`

dteivtxmn~r,r i ,t !. ~12!
14441
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We note that the second term on the right-hand side of
~11! follows by letting the derivative of the real part of th
susceptibility, with respect tov, equal zero atv50. This is
consistent with the reality condition, implying that the re
part of the susceptibility is an even function ofv. The first
term on the right-hand side of Eq.~11! corresponds to the
static RKKY result of Yafet.20 The second term is the dy
namic generalization of RKKY for a slowly precessing ma
netization.

For an infinite medium, the sheet sums in Eq.~11! can be
evaluated by invoking translational invariance, and Four
transformingxmn(r,r i ,v) to q space.18 Thus, we define a
generic sum

Xmn~r,v!5 (
i

sheet

xmn~r,r i ,v!

5E d3q

~2p!3 (
i

sheet

exp@ iq•~r2r i !#xmn~q,v!,

~13!

from which both terms of Eq.~11! can be deduced.
To perform theq integral on the right-hands side of th

equation, we set

q5qi1q' , ~14!

whereqi is confined to the sheet, andq' is perpendicular to
the sheet. For a square sheet of areaL2, we have

E d3q

~2p!3
5E d2qi

~2p!2E dq'

2p
5

1

L2 (
qi

E dq'

2p
. ~15!

Assuming a continuous distribution of spins, the sh
sum in Eq.~13! is given by

(
i

sheet

exp@2 i ~qi1q'!•r i #5Nsdqi,0
, ~16!

whereNs is number of spins in the sheet. Using Eqs.~14!–
~16!, the right-hand side of Eq.~13! is evaluated, with the
result

Xmn~r,v!5
Ns

L2E dq'

2p
exp~ iq'•r!xmn~q' ,v!

5nsE dq'

2p
exp~ iq'x!xmn~q' ,v!, ~17!

wherens5Ns /L2 is the sheet density. Owing to the symm
try of the model, the quantityXmn(r,v) depends only on the
distancex from the sheet.

Also, the induced spin density is a function ofx. Using
Eqs.~11!, ~13!, and~17!, we obtain
8-4
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^sm~x,t !&5
JV

g
lim
v→0

FXmn~x,v!M n~ t !

2
] Im Xmn~x,v!

]v

dMn~ t !

dt G . ~18!

Using this result and Eq.~17! in Eq. ~3!, them component
of the reaction field is

Hr ,m~ t !.
2J2Vans

g2d
lim
v→0

F E
2`

` dq

2p
xmn~q,v!M n~ t !

2
]

]vE2`

` dq

2p
Im xmn~q,v!

dMn~ t !

dt G . ~19!

The first term on the right-hand side of this equation contr
utes to the torque@M3He f f# only if xmn is anisotropic. In
this case an anisotropic shift of the FMR frequency ensu
On the other hand, the second term contributes to the d
pative torque that is nonvanishing for both isotropic and
isotropic susceptibility.

III. GILBERT DAMPING

In what follows, we consider the dissipative torque for
isotropic electron gas. Thus,xmn(q,v)5x(q,v)dmn , and
the dissipative part of the reaction fieldHr

(d) is according to
Eq. ~19! given by

Hr
(d)~ t !.2

2J2Vans

g2d
lim
v→0

F ]

]vE2`

` dq

2p
Im x~q,v!GdM~ t !

dt
.

~20!

Introducing this result in the right-hand side of Eq.~2!, we
obtain the damping enhancement constantG8,

G8.2J2VnsMs
2S a

dD lim
v→0

F ]

]vE2`

` dq

2p
Im x~q,v!G .

~21!

A. Independent electrons

First, we evaluate the expression~21! by disregarding the
electron-electron interaction in theN regions. However, a
finite splittingD of the↑- and↓-spin bands is assumed. Th
external magnetic field of the FMR experiment is one sou
of this splitting. For a system of infinite size, this splittin
establishes a lower cutoff on the wave vectorq. As shown
below, this cutoff is essential for preventing the logarithm
divergence of Eq.~21!. Due to the spin splitting, the susce
tibility develops some anisotropy. Since transverse com
nents of the reaction field~19! contribute to the dissipative
torque, we need to use in Eq.~21! the transverse
susceptibility21

xT
(0)~q,v!5

\2

4 E d3k

~2p!3

f k1q↓2 f k↑
\v2ek1q↓1ek↑1 ih

, ~22!

where
14441
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ek1q↓2ek↑.
\2k•q

m
1D. ~23!

Expanding the Fermi functions, we have

f k1q↓2 f k↑.
] f

]ek
S \2k.q

m
1D D . ~24!

Using Eqs.~23! and ~24!, the imaginary part of Eq.~22!
becomes

Im xT
(0)~q,v!.

2\2

16p E
0

`

dkk2
] f

]ek

3E
0

p

du sinuS D1
\2k•q

m D
3dS \v2D2

\2k•q

m D , ~25!

where we used polar coordinates to perform thek integra-
tion. Performing first the integration over the polar angleu,
we have

E
0

p

du sinuS D1
\2k•q

m D dS \v2D2
\2k.q

m D
5

mv

\kq
QS k2

u\v2Dum

\2q
D . ~26!

Introducing this result into Eq.~25!, and converting thek
integral toek integration, we obtain atT50

Im xT
(0)~q,v!5

m2v

16p\qE0

`

ded~e2eF!

3QSA2me

\2
2

u\v2Dum

\2q
D

5
m2v

16p\q
QS kF2

u\v2Dum

\2q
D . ~27!

The unit step function on the right-hand side of this equ
tion equals 1 forq.q1, and is zero forq,q1, where

q15
u\v2Dum

\2kF

. ~28!

Thus, q1 acts as a lower cutoff in theq integral of
Im x(q,v). Since u\v2Du!eF , the upper cutoff is given
by q2'2kF . We then get using Eq.~27!

E
2`

` dq

2p
Im xT

(0)~q,v!'
m2v

16p2\
E

q1

q2dq

q
5

m2v

16p2\
ln

4eF

u\v2Du
.

~29!

Introducing this result into Eq.~21!, we obtain
8-5
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G8.
~JMsam!2

8p2\d
ln

4eF

D
, ~30!

where we assumed a cubic lattice to writeVnsa5a2.
Strictly speaking,G8 in this equation is not a simple Gilbe
damping since its strength depends on the applied magn
field, but it is a weak dependence.

Let us now examine the validity of the slow precessi
approximation~10! that was used to derive Eq.~30!. In Ap-
pendix C we show that the term in Eq.~10! that is second
order int8 can be neglected when the FMR frequencyv r and
the gapD satisfy the condition

\v r

2D ln
4eF

D

!1. ~31!

For clean and infinitely thickN layers, the external mag
netic field of the FMR experiment is the only source of t
gapD in the present formulation. However, as shown in S
IV, if we go beyond linear-response theory, an effective g
of orderJsd is obtained as a result of static spin polarizati
of the electron gas. Restricting ourselves to linear respo
we haveD5gmBH. The magnetic field used by Mizukamiet
al.8 ranges from 1 to 14 kOe as its orientation varies from
in-plane to the perpendicular direction. Consequently,D/\
ranges from 3.531010 s21 to 48.531010 s21. The preces-
sional frequency,v r.631010 s21, actually exceedsD/\ for
the in-plane orientation of the external field. According to
simple intuitive argument that the precessional freque
must be much smaller than the lowest excitation energy
the fermion system,D/\, one would expect that the slow
precession approximation fails for this orientation of t
field. However, owing to the factor 2 ln 4eF /D, the inequality
~31! is well satisfied over the entire range of the field. Taki
eF.7 eV, as appropriate for copper, the left-hand side
Eq. ~31! ranges from 631022 to 531023 as the field varies
from 1 to 14 kOe.

It is interesting that spin relaxation of the conduction ele
trons can provide an effective gap and a finite cutoff len
even in the limit of infinitely thickN layers. As shown in
Appendix B, the resulting cutoff length isq1

21'vFts where
ts is the spin-relaxation time. The corresponding value of
effective gap isDe f f'\/ts . The same quantity determine
the linewidth of the electron paramagnetic resonance of c
duction electrons. Its magnitude is presumably not neglig
in comparison with the magnetic splittinggmBH.

In real samples, the gap is dominated by the effect of
finite thicknessD of the normal layers. As shown in the ne
subsection, the boundary conditions at the outer surface
the sandwich yield a cutoffq1'D21. The corresponding
energy gap is

D'\q1vF'
\vF

D
. ~32!

We see that this gap becomes comparable with\v r when
D'vF /v r . For vF'108 cm s21, andv r'631010 s21, the
corresponding value ofD is 1.631023 cm. The thickness of
14441
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theN layers in real samples is usually 1023 smaller than this
value, ensuring that the condition for slow precession is w
satisfied.

B. Finite normal layers

We consider a ferromagnetic sheet imbedded between
N layers each of thicknessD. Strictly speaking, in a finite
system, the translational invariance invoked in the evalua
of the sheet sum~13! is broken. This complicates the calcu
lation of the induced spin density. Nevertheless, a simplifi
approximate evaluation ofXmn(x,v) can be carried out ifx
.0. In this case, the translational invariance is restored
cally since the boundary atx5D plays a small role. The
boundary condition~BC! at x5D is taken in the form

^sm~x,t !&ux5D50. ~33!

This condition follows from assuming that there is an infin
potential step at the normal-metal–vacuum boundary. Th
theN-electron wave functions are forced to equal zero at
boundary and so does the magnetization density. Apply
this BC to Eq.~18!, the finite-D version of Eq.~17! reads

Xmn~x,v!.
ns

D (
n51

nmax

cos~qnx!xmn~qn ,v!, ~34!

whereqn5p(n21/2)/D, andnmax.D/a since it is the lat-
tice spacing which determines the highest value ofqn . In
view of this, Eq.~21! is changed to

G8.
2a

dD
J2VnsMs

2 lim
v→0

F ]

]v (
n51

nmax

Im x~qn ,v!G . ~35!

For noninteracting electrons without spin splitting, we ha

(
n51

nmax

Im x~qn ,v!.
m2v

16p\ (
n51

nmax

qn
21 . ~36!

For D/a@1, we use the definition of the Euler constantgE
.1.78 to obtain

(
n51

nmax

qn
21'

D

p
ln~4gEnmax!. ~37!

Using Eqs.~35!–~37!, we obtain

G8'
~JMsam!2

8p2\d
ln~D/a!. ~38!

As expected, the boundary conditions in a finite slab impl
cutoff q1'D21.

We now make an order-of-magnitude estimate of Eq.~38!
for an iron film of thicknessd5D510a where a54
31028 cm. The constantJ can be estimated by relating it t
the atomic exchange integralJsd ,

J'
2JsdV

\2
. ~39!
8-6



b-

y
pi

s
ze
ld

-

ta

m

in

ne

ue
t
-

em

g
,
ee
is

rbit

to
n

is
f a

in-
on

w a
ng
f a

ther
in

ce-
ly-
d

ed,

ti-

ity

,
ad-

nd
he

-
ns.
e

tion

GILBERT DAMPING IN MAGNETIC MULTILAYERS PHYSICAL REVIEW B 67, 144418 ~2003!
TakingJsd50.1 eV andMs51.73103 G, Eq.~38! yields
G8'108 s21. This agrees with the interface damping o
served recently in the double-layer structure by Urbanet al.6

It should be pointed out that the second ferromagnetic la
in this experiment plays a crucial role in establishing the s
sink needed to prevent spin accumulation in theN layers~see
Sec. V.!

C. Electron-electron interactions

We now calculateG8 by taking into account interaction
between electrons in the normal metal. The generali
Hartree-Fock approximation for the Hubbard model yie
the following expression for the transverse susceptibility:24

xT~q,v!5
xT

(0)~q,v!

12ŨxT
(0)~q,v!

, ~40!

whereŨ54VU/\2, andU is the screened intra-atomic Cou
lomb energy. Using this formula, we have

lim
v→0

]

]v
@ Im xT~q,v!#

5@12ŨxT
(0)~q,0!#22 lim

v→0

]

]v
@ Im xT

(0)~q,v!#.

~41!

To simplify the evaluation of theq integral of this quan-
tity, we take advantage of the weak dependence of the s
susceptibility onq for q,qF , and make the approximation

xT
(0)~q,0!'xT

(0)~0,0!5
\2

4V
N~eF!, ~42!

whereN(eF) is the density of states, per atom, at the Fer
energy. Using Eqs.~41! and ~42! in Eq. ~35!, we obtain the
enhancement,G8, for interacting electrons in finite-N layers,

G8'
~JMsamSE!2

8p2\d
ln~D/a!, ~43!

whereSE is the Stoner factor defined in Eq.~4!. An estimate
of this factor for palladium and platinum can be made us
the giant magnetic moments of dissolved 3d atoms.25 We use
the fact that the giant moment is proportional to the Sto
factor of the host. In this way, we findSE for palladium and
platinum equal to 10 and 6, respectively. Thus, large val
of G8 are expected for sandwiches containing Pd and P
normal layers. Mizukamiet al.8 measured the Gilbert damp
ing constant inN/F/N sandwiches, withF as a thin film of a
permalloy ~Py!. These measurements show thatG8 for the
Pd/Py/Pd system is well above that for the Cu/Py/Cu syst
However, it is about twice as small asG8 for the Pt/Py/Pt.
On the other hand, assuming all other parameters unchan
Eq. ~43! impliesG8 that is (10/6)2 times larger for Pd. Thus
we have to deal with a net factor of 5 discrepancy betw
the experiment8 and our theory. One possible explanation
that other parameters in Eq.~43!, such asJ, have larger val-
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ues in Pt. Another possibility is the suppression ofG8 by
spin accumulation in the normal layers. Since the spin-o
coupling constant of Pt is larger~by a factor of 3! than that
for Pd, the spin-lattice relaxation rate in Pt is, according
the theory of Elliot,26 an order-of-magnitude stronger tha
that in Pd. As pointed out by Tserkovnyaket al.,16 spin-
accumulation takes place when the spin relaxation rate
small. This is presumably responsible for the absence o
measurableG8 in Cu/Py/Cu system.8

More convincing evidence for Stoner enhancement of
terface damping comes from the recent FMR studies
20Au/40Fe/40Au/3Pd/@Fe/Pd#5/14Fe/GaAs(001) samples.23

Compared to a single-layer structure, these samples sho
G8 that is enhanced by a factor of 4 and exhibits a stro
fourfold in-plane anisotropy. Apparently, the presence o
second Fe layer provides an efficient spin sink. ThusG8 is
determined by the exchange-enhanced susceptibility ra
than the bottleneck due to a weak spin-lattice relaxation
the N layers.

We now digress, for a moment, to consider the enhan
ment of the FMR frequency shift due to interactions. App
ing Eq. ~40! to the static anisotropic susceptibility, an
making the approximation ~42!, we have xmn(q,0)
'SExmn

(0)(q,0). Using this result in Eq.~19!, we see that the
frequency shift for the interacting electrons isSE times that
for the independent electrons. This prediction could be us
in conjunction with the data for the anisotropicG8, to clarify
experimentally the role of interactions in the FMR of mul
layers.

IV. RELATION TO SPIN-PUMPING THEORY

We now show that for free electrons there is a similar
between our formula~30! for G8 and the spin-pumping
theory of Tserkovnyaket al.16 According to these authors
the excess damping produced by pumping of spins into
jacentN layers isG85gMsa8 where

a85
gLmB@Ar

(L)1Ar
(R)#

4pMsL
2d

, ~44!

wheregL is the Lande´ factor,mB is the Bohr magneton, and
Ar

(L) and Ar
(R) are the interface parameters for the left a

right N layers, respectively. In terms of the elements of t
232 scattering matrix, for a symmetricN/F/N sandwich,
these parameters are

Ar
(L)5Ar

(R)5Ar5
1

2 (
mn

$ur mn
↑ 2r mn

↓ u21utmn8↑ 2tmn8↓ u2%,

~45!

where (r mn
↑ ,r mn

↓ ) and (tmn
↑ ,tmn

↓ ) are the reflection and trans
mission coefficients for electrons with up and down spi
The expression~45! is to be evaluated with the transvers
modes (m,n) taken at the Fermi energy.

Following Bruno,18 we consider the scattering ofN elec-
trons by a ferromagnetic monolayer. Due to the conserva
8-7
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of transverse momentum,r mn5r mdmn , wherer m5r 0(k'),
andk' is the component of the electron wave vector perp
dicular to the monolayer.

The reflection coefficientsr 0(k') are found by solving
the one-dimensional scattering problem for the potential

v~x!5v0d~x!, ~46!

wherev0 is given by the interface coupling constantJ, and
by the magnitude of the atomic spinS of the ferromagnet

v056
\

2
JSns , ~47!

where the (1,2) signs correspond to the (↓,↑) electron
spins, respectively.

The reflection coefficients for this problem are18

r 0
↑5

2 ib

k'1 ib
, ~48!

r 0
↓5

ib

k'2 ib

where

b5
mv0

\2
. ~49!

The transmission coefficients are27

t0
↑5

ik'

ik'2b
, ~50!

t0
↓5

ik'

ik'1b
.

Equations~48! and ~50! imply

ur 0
↑2r 0

↓ueF

2 5ut0
↑2t0

↓ueF

2 5
4b2~kF

22ki
2!

~kF
22ki

21b2!2
, ~51!

where we applied the identity (ki
21k'

2 )eF
5kF

2 . Using this
result, the transverse-mode sum~45! becomes a sum over th
in-plane wave vectorski . Converting theki sum to a two-
dimensional integral, we have

Ar.
L2

2pE0

kF
dkiki

4b2~kF
22ki

2!

~kF
22ki

21b2!2
. ~52!

Evaluating this integral, we getAr.(L2b2/p)F(b) where

F~b!. ln
kF

21b2

b2
2

kF
2

kF
21b2

. ~53!

Inserting Eqs.~52! and ~53! into Eq. ~44! and expressingb
with use of Eqs.~47! and ~49!, we obtain

a8.
g~mSJns!

2

8p2\Msd
F~b!. ~54!
14441
-
We can bring this result closer to the form of our Eq.~30! by
letting ns5a22 andMs5gSa23, yielding

gS2ns
25

Ms
2a2

g
. ~55!

Furthermore, assumingb!kF , the functionF(b) can be
approximated by

F~b!'2 ln
kF

1.65b
'2 ln

eF

Jsd
. ~56!

From Eqs.~54!–~56! we have

G85gMsa8'
~JMsam!2

4p2\d
ln

eF

Jsd
. ~57!

This equation shows a remarkable similarity with the expr
sion ~30!. Note, however, that the logarithmic terms do n
match. If we consider an infinite system, and ignore the c
off due to the magnetic length~32!, the gapD vanishes, and
Eq. ~30! becomes logarithmically divergent. On the oth
hand, Eq.~57! shows that there is an effective gapD'Jsd
corresponding to a finite cutoffq1'kF(Jsd /eF). Thus, the
spin-pumping theory is divergence-free even for an infin
system.

The presence of an effective gap,D'Jsd , in the spin-
pumping theory is presumably linked to the fact that, in co
trast to linear-response theory, it is of infinite order in t
coupling constantJ. This is seen in Eq.~54! whereF(b) is a
nonlinear function ofb given in Eq.~53!. This kind of non-
linearity is generic in the scattering approach to transp
@see Eq.~51!#. In fact, Bruno18 derives an exact expressio
for the static RKKY coupling that goes beyond the linea
response result of Yafet.20

We now show that an effective gap of orderJsd can be
obtained in the framework of the present theory if the stro
static RKKY spin polarization of theN layers induced by the
longitudinal ferromagnetic magnetization is included at t
outset. To analyze thex dependence of this polarization, w
use Eq.~11!. For staticMz , we obtain with use of Eq.~6!

^sz~x!&'JSz (
i

sheet

x~x,r i ,v50!, ~58!

where x is a fixed vector of lengthx perpendicular to the
ferromagnetic sheet. ForD5`, and a continuous distribu
tion of the ferromagnetic moments, the sheet sum on
right-hand side of Eq.~58! becomes

(
i

sheet

x~x,r i !'2pnsE
0

`

dri r ix~x2r i !. ~59!

Using the three-dimensional RKKY range function for
point source,19 and making a substitutionr5x2r i , we ob-
tain from Eqs.~58! and ~59!
8-8
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^sz~x!&'
JSznsm

4p2 E
x

` dr

r 3
@sin~2kFr !22kFr cos~2kFr !#.

~60!

Using integration by parts, thex dependence of the in
duced spin density takes the form of the range function
rived by Yafet:20

^sz~x!&'
JSznsmkF

2

2p2 Fp

2
2Si~X!2

cosX

X
1

sinX

X2 G ,

~61!

whereX52kFr , andSi(X) is the sine integral. In contras
with the diverging three-dimensional range function for
point source,19 the pseudo one-dimensional function in E
~61! converges forx→0 to a finite value

^sz~x50!&'
JSznsmkF

2

4p
. ~62!

We are interested in the effective spin splitting which
responsible for this spin density. In a homogeneous elec
gas of densityn, with the spin splittingD, there is a uniform
spin density

^sz&5
3\nD

16eF
. ~63!

If sz(x) decayed slowly on the scale of the Fermi wav
length, it would be a good approximation to calculateG8
from the susceptibility of a homogeneous electron gas wi
spin splitting obtained by equating the spin densities~62! and
~63!. In this way we get a maximum spin splittingDmax
given by

Dmax'
4JeFSznsmkF

2

3p\n
;4pJsd . ~64!

Actually, the decay ofsz(x) is neither slow nor fast on
the scale of the Fermi wavelength. Expanding the rig
hand side of Eq.~61! for small X, we see that̂ sz(x)&
;^sz(0)&(120.8kFx). Hence, the spin density drops to
zero value at a distance of about one Fermi wavelength f
the ferromagnetic sheet. Exact calculation of the local
namic susceptibility in an electron gas with such an inhom
geneity is a formidable task. Instead we argue, similar to S
III B, that the local susceptibility atx.0 is little influenced
by the regions ofx@kF

21 . Hence, it can be estimated usin
an effective gap that is less thanDmax, and to an order-of-
magnitude accuracy given byJsd . Using this gap in Eq.~30!,
we obtain a formula forG8 which compares favorably with
the spin-pumping result~57!.

V. DISCUSSION

Our numerical estimate ofG8 based on Eq.~38! suggests
that a substantial enhancement of the FMR linewidth, tha
independent of the atomic numberZ, should be observed in
N/F/N systems. In contrast, the data of Mizukamiet al.8 on
14441
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trilayers containing permalloy films show a strong depe
dence ofG8 on Z. In fact, for Cu, which has the smallestZ of
the N metals studied, there is a complete absence o
1/d-dependentG8. Tserkovnyaket al.16 proposed that it is
the spin accumulation in theN layer that is responsible fo
such a suppression of the ferromagnetic relaxation in
copper layer. Note that the theory of spin pumping assum
at the outset that the spin system in theN layer is kept in
thermal equilibrium during the precession. For that o
needs an efficient spin-sink mechanism. The data of Re
indicate that spin-lattice relaxation via spin-orbit coupling26

provides the required spin sink. In fact, metals with largeZ
exhibit generally larger measured values ofG8. This trend is
in agreement with the fact that the spin-lattice relaxation r
scales asZ4.28 In a recent paper, Tserkovnyaket al.29 studied
the role of spin accumulation in magnetization dynamics
F/N and N/F/N multilayers. By taking into account the
backflow of the spin current, the original idea16 of relaxation
suppression by spin accumulation in theN layers is given a
firm theoretical foundation.

Also the theory ofG8, presented in Sec. III, assumes th
the electron spins in theN layers are in thermal equilibrium
This can be established either by the spin-lattice relaxatio
the bulk or by surface relaxation. One way to include the
effects into the reaction field of Eq.~3! is to calculate the
quantity Šs(0,t)& using the Bloch equation with diffusion.30

This equation is to be solved with the BC that allows t
electron spin to be flipped upon collision with the surfac
Such a BC has been proposed by Dyson.30 In terms of the
spin densitŷ s& this so-called ‘‘evaporation’’ BC reads

]^s&
]x

5
3p

4L
^s&, ~65!

wherep is the probability that the spin flip will take plac
upon reflection from the boundary, andL is the mean free
path in the bulk. Due to surface irregularities and param
netic surface impurities, the probabilityp can be large
enough to provide the necessary spin sink even for lay
with small bulk disorder.

Alternatively, the spin density and the reaction field c
be obtained from the time-dependent 232 matrix kinetic
equations driven by precessing magnetization of
ferromagnet.31 Such an approach is inspired by the work
Kambersky´ 32 on intrinsic damping due to spin-orbit cou
pling in bulk ferromagnets. This work invokes the idea of
‘‘breathing Fermi surface:’’ The chemical potential varies
response to the time-dependent perturbation. However,
distribution of the electrons does not respond instantaneo
to the perturbation. There is a time lag characterized b
relaxation timet. In Ref. 23 we apply this idea to the case
dynamic interlayer exchange coupling. In this case it is
spacer electrons which are affected by the spin-depen
potential at the interfaces, and the time variation of this p
tential is due to the precession of the ferromagnetic mom
Thus, the relevant relaxation time is the transverse sp
relaxation timetspin . The resulting effective damping field
8-9



le
6
la
d
t
e
e

th

en
o
th
rr
or
en

n

rg

to

-
e

ce

is

he

g-

te
s

ve

s
.
ick
l
t

s
y

tive

e
lax
e

s
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is, like Eq.~20!, proportional todM(t)/dt, implying Gilbert
damping. However, distinct from Eq.~20!, it is also propor-
tional to tspin .

This brings us to question. Whether there is a system
which the ballistic theory of the present paper is applicab
We believe that the double-layer structure studied in Ref.
a good example of such a system. Here, the precessing
F1 deposits spin current into theN spacer and the secon
layer F2 acts as an absorber of the transverse componen
the spin current—thus providing an effective spin sink. D
tailed analysis of this mechanism has been presented in b
tiful papers by Stiles and Zangwill.33,34 These authors
showed that there is an oscillatory, power-law, decay of
transmitted transverse-spin current that is caused both
cancellations due to a distribution of precessional frequ
cies and the rotation of the spin of the incoming spin up
reflection. Consequently, almost complete cancellation of
transverse spin takes place after propagation into the fe
magnet by a few lattice constants. This finding also supp
our assumption that the excitation of transverse compon
of ^s(x,t)&, via s-d exchange, is confined to theN/F inter-
face layer~see Appendix A!.

Since our results for the Gilbert damping constantG8 are
based on aT50 theory, whereas the FMR studies are do
at finite temperatures, it is important to have an estimate
the temperature region over which Eqs.~30! and ~38! are
valid. By considering thermal excitation across the ene
gapD, the criterion of validity iskBT!D. For N layers of
infinite thickness, G8 is given by Eq. ~30! where D
5gmBH. For the external magnetic field ranging from 1
10 kOe, the temperatureT5D/kB ranges from 0.2 K to 2 K.
On the other hand, forN layers of finite thicknessD, the
energy gap is given by Eq.~32!. Taking D5100kF

21 , vF

5108 cm s21, and kF5108 cm21, the corresponding tem
peratureT5D/kB is 800 K. It should be pointed out that th
expression~57!, derived from spin-pumping theory,16 in-
volves an effective gapD'Jsd . For Jsd'1 eV, the corre-
sponding temperatureD/kB is of order 104 K.
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APPENDIX A: DERIVATION OF EQ. „3…

We consider a trilayer shown in Fig. 1, and derive t
reaction field from the torque equation

@M f~ t !3Hr~ t !#5T~ t !, ~A1!

whereM f(t) is the net magnetic moment of the ferroma
netic film, andT(t) is the torque due to thes-d interaction.
In what follows, we assume that this torque is contribu
only by thes-d interaction with the outmost magnetic plane
As pointed out by Bruno and Chappert,36 this assumption is
substantiated experimentally by the fact that the obser
14441
to
.

is
yer

of
-
au-

e
by
-

n
e
o-
ts
ts

e
of

y

s

it

d
.

d

interlayer exchange coupling inF/N/F systems is roughly
independent of the thickness of the ferromagnetic layers~see
also Ref. 4!. Theoretical understanding of this fact stem
from the work of Stiles and Zangwill34 discussed in Sec. V
Since only interface regions contribute to the torque, we p
a magnetic atom in the planex50, and consider the loca
magnetic field H( i )(t) acting on its magnetic momen
M( i )(t). Using Eq.~5!, the expectation value of thes-d ex-
change energy of this atom is2JS( i )(t)•^s(0,t)&. If we write
this quantity as2M( i )(t)•H( i )(t), whereM( i )(t)5gS( i )(t),
the local magnetic field is

H( i )~ t !5
J

g
^s~0,t !&. ~A2!

For a square film of areaL2, the number of interface atoms i
L2/a2. Thus, using Eq.~A2!, the net torque contributed b
both interfaces is

T5
2L2J

a2g
@M( i )~ t !3Šs~0,t !&]. ~A3!

Noting that the net magnetic moment of the film isM f
5M( i )L2d/a3 and using Eq.~A3! in Eq. ~A1! yields Eq.~3!.
A similar approach has been used to deduce the effec
field in ultrathin layers in the presence of interfaces@see Eq.
~1.6! in Ref. 3!.

APPENDIX B:
SPIN RELAXATION AND INFRARED CUTOFF

To include spin relaxation into the theory ofG8, we start
from Eq. ~22! and replace the infinitesimal quantityh by G
5\/ts , where ts is the spin-relaxation time. Thus, th
electron-hole pairs with flipped spin are assumed to re
with a frequencyG/\. A similar assumption has been mad
in the theory of magnon relaxation vias-d interaction.35

Moreover, we neglect the splittingD. Making these change
in Eqs.~22!–~24!, we obtain

Im xT~q,v!'2
\2G

16p2E0

`

dkk2
] f

]ek
I ~k,q!, ~B1!

where

I ~k,q!5E
0

p

du sinu
\2kq cosu/m

~\v2\2kq cosu/m!21G2
.

~B2!

Expanding the integrand to orderv, the u integration
yields

I ~k,q!5
2\v

G2x
F tan21x2

x

11x2G , ~B3!

wherex5\2kq/(Gm). Using Eq.~B3!, the k integration in
Eq. ~B1! yields atT50
8-10
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Im xT~q,v!'
m2v

8p2\q
F tan21~vFtsq!2

vFtsq

11~vFtsq!2G .

~B4!

Consistent with Eq. ~27!, this expression is equal t
m2v/(16p\q) in the limit ts→`. The evaluation of theq
integral of this expression is done by approximating tan21x
by px/2 for x,1, and byp/2 for x.1. For eF@G, we
obtain

E
2q2

q2 dq

2p
Im xT~q,v!'

m2v

16p2\
ln~vFtsq2!. ~B5!

Introducing this result into Eq.~21!, the damping en-
hancement in the presence of spin relaxation is given by

G8'
~JMsam!2

8p2\d
ln

q2

q1
, ~B6!

whereq1'(vFts)
21 is the infrared cutoff mentioned at th

end of Sec. III A.

APPENDIX C:
VALIDITY OF SLOW PRECESSION APPROXIMATION

To find the criterion for validity of the approximation use
in Eq. ~10! we expandSn

( i )(t2t8) up to second order int8,

Sn
( i )~ t2t8!.Sn

( i )~ t !2t8
dSn

( i )~ t !

dt
1

t82

2

d2Sn
( i )~ t !

dt2
. ~C1!

Introducing this expansion into Eq.~9!, we obtain an induced
spin density that is given by Eq.~11!, plus a term^sm

(2)(t)&
generated by thet82 term in Eq.~C1!. For the component
say,m5x, we have
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