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Linear theory of magnetocrystalline anisotropy in 3d-4f intermetallics:
A generalization to J-mixing compounds

N. Magnani, S. Carretta, E. Liviotti, and G. Amoretti
INFM and Dipartimento di Fisica, Universita` di Parma, Parco Area delle Scienze 7/A, I-43100 Parma, Italy

~Received 16 July 2002; revised manuscript received 7 February 2003; published 14 April 2003!

It is known that the magnetocrystalline anisotropy of a rare-earth–transition-metal intermetallic compound
can be described by means of analytical expressions under the assumptions of the linear theory. These assump-
tions are that the spin-orbit interaction of the considered rare-earth ion is much stronger than the exchange
interaction between the 3d and the 4f sublattices~so that mixing of states with differentJ is not allowed!, and
that the crystal-field potential can be treated as a small perturbation with regards to the mentioned exchange
interaction. In this work, a generalization of the linear theory is proposed for compounds where theJ mixing
cannot be neglected~typically those based on light rare-earths such as Pr, Nd, and especially Sm!. This is done
by applying a suitable unitary transformation to the single-ion Hamiltonian describing the quantum state of the
rare-earth ions, so that an effective description in terms of an isolatedJ multiplet can be retained, while at the
same time theJ-mixing effects are properly accounted for. Analytical expressions have therefore been obtained
for the free energy of light-rare-earth-based magnetic materials and have been applied to interpret available
experimental data on Sm2Co17.

DOI: 10.1103/PhysRevB.67.144411 PACS number~s!: 75.10.Dg, 75.30.Gw, 75.50.Cc
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I. INTRODUCTION AND MOTIVATIONS

Intermetallic compounds based on transition metals~TM!
and light rare earths~RE’s!, such as Sm2Co17 and Nd2Fe14B,
are the basic constituents of the best commercially availa
permanent magnets.1 Although the interplay between the tw
sublattices~RE and TM! often gives rise to a complex an
peculiar phenomenology for these alloys, the basic mec
nisms which generate their properties are well understo
the 3d sublattice provides a high value of the saturation m
netization and a high Curie temperature, so that these m
rials can operate above room temperature~RT! without any
significant loss of performance; conversely, the strong m
netocrystalline anisotropy is provided by the crystal fie
~CF! acting on the 4f electronic shell. Despite that, a com
plete analytical description of these systems is possible o
in a few cases. The linear theory2 allows one to find an
explicit expression for the free energy due to the RE sub
tice, and therefore to calculate analytically any physi
quantity of interest, under two hypotheses:~1! the strength of
the CF potential is small with respect to the 3d-4 f exchange
interaction and~2! the spin-orbit gap between the RE mu
tiplets is large enough that the groundJ multiplet is well
isolated. While the first requirement is often satisfied by
RE-TM compounds of pratical interest, the relatively sm
spin-orbit interaction of light RE ions gives rise to no
negligibleJ-mixing effects. For example, it is known that th
Sm31 ion has a small gap~1435 K! between the ground an
the first excitedJ multiplet. Due to this fact, the strong ex
change field causes states belonging to different spin-o
multiplets to mix heavily, and the contributions of excitedJ
multiplets are no longer negligible.J mixing has attracted the
interest of many authors because it can make it difficult
interpret the CF energy levels of this rare earth, thus affe
ing many physical properties of Sm-based compounds3–5 ~in-
cluding the magnetocrystalline anisotropy of intermetallic
0163-1829/2003/67~14!/144411~8!/$20.00 67 1444
le

a-
d:
-
te-

g-

ly

t-
l

e
l

it

o
t-

-

loys!. Pr31 and Nd31 also presentJ-mixing effects, although
they are not as crucial as in the case of Sm31. The strongJ
mixing makes it necessary to perform numerical calculatio
which, albeit accurate, do not allow a direct comparison
the results with the phenomenological models used by
experimentalists to analyze their data; moreover, the m
convenience in using analytical expressions is that they
low a more detailed physical comprehension of the role
every single parameter in the model.6

In this paper, it will be shown that the linear theory can
modified in order to includeJ-mixing effects, thus allowing
one to obtain analytical expressions which can be rea
compared with available experimental data for exchan
dominated RE-TM systems. The described analytical mo
will be applied to study the temperature dependence of
magnetocrystalline anisotropy of Sm2Co17 and compared
with exact numerical results in order to test its reliability.

II. THE MODEL

The Hamiltonian5 which describes the energy states of t
RE ion in presence of spin-orbit interaction, RE-TM e
change interaction~treated in mean-field approximation!, and
CF potential is~symbols marked with a caret represent o
erators!:

ĤRE5LL̂•Ŝ12mBHex•Ŝ1ĤCF; ~1!

in this expressionL is the spin-orbit coefficient,Hex is the
exchange field, andĤCF is the crystal-field Hamiltonian,
which is expressed by means of tensor operatorsĈq

(k) as7

ĤCF5(
k,q

Bk
qĈq

(k) , ~2!

whereBk
q are the CF parameters. TheLS coupling used in

Eq. ~1! is justified by the fact that we will consider only th
©2003 The American Physical Society11-1
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lowest multiplets of light RE ions such as Pr31, Nd31, and
Sm31, for which this approximation is known to be valid8

The energy spectrum of the system is composed of multip
separated by the isotropic spin-orbit coupling and split by
anisotropic interactions. If the interest is limited to propert
involving only the ground manifold, the system can be d
scribed as aJ multiplet and the HamiltonianĤRE can be
replaced by an effective Hamiltonian

ĤRE
(J)52~gJ21!mBHex• Ĵ1ĤCF

(J) ~3!

written in terms of the total angular momentum operatorĴ,
provided the spin-orbit gap is large compared to the ma
elements of the other interactions. In this frame,ĤCF is re-
placed by

ĤCF
(J)5(

k,q
Bk

qQkĈq
(k)~ Ĵ!, ~4!

whereĈq
(k)( Ĵ)’s are written2 in terms ofĴx , Ĵy , andĴz , and

Qk are the Stevens’ multiplicative factors5 (Q25aJ , Q4
5bJ , andQ65gJ). Note that the Hamiltonians which ca
be used only in the restricted subspace consisting of
ground J multiplet have been labeled with the superscr
(J).

The linear theory of the magnetocrystalline anisotrop2

consists in calculating the first-order contribution to the fr
energy due to the RE ion. First, the RE Hamiltonian~3! is
rewritten in a rotated reference frame in order to align
exchange fieldHex with the z axis; then, the first-order con
tribution to the anisotropy energy are calculated by replac
the operators appearing inĤCF

(J) with their thermal average
taken over the zeroth order eigenstates~those of the
exchange-field Hamiltonian uJ,M &, with EM52ugJ
21umBHexM ). In order to represent these averages in
simple and compact form, generalized Brillouin functio
BJ

k(x) are defined so that

JkBJ
k~x!5^Ĉ0

(k)~ Ĵ!&

5

(
M52J

1J

^J,M uĈ0
(k)~ Ĵ!uJ,M &exp~2EM /kBT!

(
M52J

1J

exp~2EM /kBT!

,

~5!

wherex52JugJ21umBHex/(kBT) andkB is the Boltzmann
constant~notice that̂ Ĉq

(k)( Ĵ)&[0 whenqÞ0). A survey on
the most important properties of these functions is given
Ref. 2.

Unfortunately, in light RE ions the spin-orbit interactio
is relatively weak and the above approximation is not
equate to describe many physical properties of these syst
We propose the use of a perturbative technique reporte
Ref. 9, based on the effective Hamiltonian theory,10,11 in or-
der to include inĤCF

(J) the so far neglectedJ-mixing effects.
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In a recent paper, this approach has been successfully us
study the magnetic anisotropy in single-molecule magnet12

Using as basis vectors the eigenvectors of the spin-o
operatoruaJM&, the Hamiltonian matrixĤRE can be rewrit-
ten as the sum of three terms:

ĤRE5LL̂•Ŝ1Ĥ11Ĥ2 . ~6!

In the above equationĤ1 has nonzero matrix elements on
inside the diagonal blocks and does not connect states
differenta,J ~i.e., differentJ multiplets!, while Ĥ2 is differ-
ent from zero only in the off-diagonal blocks and is the te
responsible forJ mixing. The technique described belo
takes advantage from an unitary transformation, wh
changes the original matrixĤRE into a new one having very
small matrix elements in the off-diagonal blocks. Diagon
elements are modified too, but the advantage of this
proach is noteworthy: in the new basis, states belonging
different multiplets are almost uncoupled and the system
still be described as an effectiveJ multiplet.

As it is formally shown in Ref. 9, it is possible to find a
Hermitian operatorV such that the matrix elements ofĤRE
in the off-diagonal blocks calculated over the transformed
of vectorseiVuaJM& are small enough to be neglected. Th
is equivalent to looking for a transformed Hamiltonian

ĤRE8 5e2 iVĤREe
iV, ~7!

whose matrix elements between states with differenta,J are
much smaller than those ofĤRE. Inside theJ manifolds

^aJMuĤRE8 uaJM8&

5E0aJ1^aJMuĤ1uaJM8&

2 (
a9J9M9

^aJMuĤ2ua9J9M 9&^a9J9M 9uĤ2uaJM8&

E0a9J92E0aJ

~8!

whereE0aJ are the eigenvalues of the spin-orbit operator
In order to illustrate our approach, we first consider t

simple case of a system characterized by an uniaxial cry
field parallel to the exchange fieldHex. Choosing the z axis
parallel to the molecular field and limiting to the seco
order forĤCF, it is

ĤRE5LL̂•Ŝ12mBHexŜz1B2
0Ĉ0

(2) , ~9!

where the spin operatorŜz is the zeroth component of th
rank one irreducible tensor operatorS(1).13 Furthermore, the
groundJ multiplet is assumed to be followed by a first e
cited manifold of total angular momentumJ11, as in the
case of Pr31, Nd31, and Sm31. In fact, by numerical diago-
nalization we found that the average contribution of oth
excited multiplets in the calculation of the ground state e
ergy levels is negligible for our purposes~below 2% for
Sm31, and less than 1% for other rare earths!. Although in
principle it is possible to include the effects of these ma
1-2
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folds in our model, this would lead to complications in th
formalism which are not needed in this case. Employing
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.
~8! and applying the Wigner-Eckart theorem, we can eva
ate the matrix elements ofĤRE8 in the J multiplet:
^JMuĤRE8 uJM8&5E0J1^JMuĤ1uJM8&1
~2mBHex!

2

DSO
(
M9

~21!2J2M2M9^JiS(1)iJ11&2S J 1 J11

2M 0 M 9
D S J11 1 J

2M 9 0 M 8
D

1
2mBHexB2

0

DSO
(
M9

~21!2J2M2M9^JiS(1)iJ11&^JiC(2)iJ11&F S J 1 J11

2M 0 M 9
D S J11 2 J

2M 9 0 M 8
D

1S J 2 J11

2M 0 M 9
D S J11 1 J

2M 9 0 M 8
D G ~10!
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where DSO5E0J112E0J is the spin-orbit gap between th
ground manifold and the first excited manifold, ( ) arej
symbols14 and^i i& are reduced matrix elements. In Eq.~10!

a term quadratic inĤCF has been neglected because in th
intermetallic compounds the strenght of CF potential is g
erally small with respect to the exchange interaction. Si
the two last terms in the preceding equation are divided
DSO, the effects ofJ mixing can be neglected if the tw
considered multiplets are well separated in energy.

Exploiting the angular momentum properties, it is po
sible to express the linear combination of products ofj

symbols appearing in Eq.~10! as matrix elements ofĈq
(k)( Ĵ)

operators; in the present case, apart from constant add
terms which only represent a uniform energy shift, it is

(
M9

~21!2J2M2M9S J 1 J11

2M 0 M 9
D S J11 1 J

2M 9 0 M 8
D

5
2

3~112J!~11J!~312J!
^JMuĈ0

(2)~ Ĵ!uJM8& ~11!

and

(
M9

~21!2J2M2M9F S J 1 J11

2M 0 M 9
D S J11 2 J

2M 9 0 M 8
D

1S J 2 J11

2M 0 M 9
D S J11 1 J

2M 9 0 M 8
D

5
24A3

5AJA21J~3111J112J214J3!
^JMuĈ0

(3)~ Ĵ!uJM8&

2
2J217J16

2
^JMuĈ0

~1!~ Ĵ!uJM8&. ~12!

The effective Hamiltonian then becomes

Ĥ (J)52~gJ21!mBHex• Ĵ1ĤCF
(J)1Ĥmixing , ~13!

where
e
-
e
y

-

ve

Ĥmixing5
~2mBHex!

2

DSO

2

3~112J!~11J!~312J!
Ĉ0

(2)~ Ĵ!

1
2mBHexB2

0

DSO

24A3

5AJA21J~3111J112J214J3!

3F Ĉ0
(3)~ Ĵ!2

2J217J16

2
Ĉ0

~1!~ Ĵ!G . ~14!

The fact that operators of odd order~which are not usually
present! appear in the effective Hamiltonian is not surprisin
in fact, as their coefficients are linear in the exchange fi
Hex, the corresponding spherical operators must be odd
well, so that the necessary invariance under time-revers
guaranteed.10 If the HamiltonianĤRE contains more terms o
if there are several multiplets whose mixing with the grou
manifold cannot be neglected, the procedure is the same
veloped above, but more terms have to be added toĤmixing .

III. EXPLICIT EXPRESSIONS FOR ANISOTROPY
CONSTANTS: THE EFFECTS OF J MIXING

As stated above, one of the main advantages of the lin
theory with respect to numerical calculations is the possi
ity to obtain analytical expressions for the physical quantit
of interest, which can be readily used to analyze experim
tal data. For example, the usual phenomenological exp
sion for the magnetic anisotropy free energy of RE-TM co
pounds with 2:17 stoichiometry is

F5K1sin2u1K2sin4u1K3sin6u1K38sin6u cos 6f.
~15!

In principle, this expression should be written as the sum
infinite terms in sin2nu ~Ref. 15!; however, the series is ofte
truncated up to the sixth order, neglecting anisotropy c
stantsKn with n.3. Kuz’min2 has shown that, in absence o
J mixing and within the framework of the linear theory, E
~15! is the exact expression for the free energy, and has g
analytical expressions for the temperature dependence o
four anisotropy constants. This can be generalized to the
whereJ mixing is not negligible, by analyzing the angula
1-3
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dependence of the free energy calculated in Sec. II; i
found that the higher-order corrections to Eq.~15! are pro-
portional toBJ

7(x) with a small numerical coefficient if the
main hypothesis of the linear theory~i.e., the CF potential
can be regarded as a perturbation with respect to the
change interaction! is applicable. This means that eight-ord
anisotropy constants due toJ-mixing effects are always neg
ligible for all rare earths, and equal to zero in the particu
case of samarium. Equation~15! can then be safely used t
interpret the experimental data for any exchange-domina
intermetallic compound.

Within the framework of the linear theory, the analytic
expressions for the anisotropy constants appearing in
~15! are

K15H 2
3

2
Q2J2BJ

2~x!23A3d2

2mBHex

DSO
@22J3BJ

3~x!

1~2J217J16!JBJ
1~x!#J B2

0

1H 25Q4J4BJ
4~x!220A10d4

2mBHex

DSO
@22J5BJ

5~x!

1~2J2111J115!J3BJ
3~x!#J B4

0

1H 2
21

2
Q6J6BJ

6~x!24A21d6

2mBHex

DSO
@274J7BJ

7~x!

121~2J2115J128!J5BJ
5~x!#J B6

0 , ~16!

K25H 35

8
Q4J4BJ

4~x!135d4A5

2

2mBHex

DSO
@22J5BJ

5~x!

1~2J2111J115!J3BJ
3~x!#J B4

0

1H 189

8
Q6J6BJ

6~x!127d6A21
2mBHex

DSO
@246J7BJ

7~x!

17~2J2115J128!J5BJ
5~x!#J B6

0 , ~17!

K35H 2
231

16
Q6J6BJ

6~x!2
33

2
d6A21

2mBHex

DSO

3@2110J7BJ
7~x!17~2J2115J128!J5BJ

5~x!#J B6
0 ,

~18!

K385HA231

16
Q6J6BJ

6~x!1
3

2
d6A11

2mBHex

DSO
@38J7BJ

7~x!

17~2J2115J128!J5BJ
5~x!#J B6

6 ; ~19!

where
14441
is

x-

r

d

q.

dk52
^JiS(1)iJ11&^JiC(k)iJ11&A2k11

~2k11!A~J11!~2J11!~2J13! )
l 522k

21k

A2J1 l

.

~20!

If the Stevens factorQk does not vanish within the groun
state, it is possible to obtain a simpler expression for thedk
coefficients, which in the case of light rare earths (J5L
2S) is

dk5
QkSA212kk~k11!

~2k11!~2J1k12!~J11!
. ~21!

It is straightforward to show that Eqs.~16!–~19! are reduced
to the corresponding expressions calculated in absenc
J-mixing effects2 by taking the limit forDSO→`; in fact, it
can be noticed that the terms containing even-order gene
ized Brillouin functions are the same as in Ref. 2, whileJ
mixing adds the odd-order terms which are all multiplied
a factormBHex/DSO. Figure 1 shows the temperature depe
dence of the generalized Brillouin functions forJ54; ex-
plicit expressions ofBJ

n(x) for 1<n<7, in terms of elemen-
tary functions, are given in the Appendix. The behavior
high temperatures can be studied by neglecting all the g
eralized Brillouin functions of order higher than th
second;16 in this case,K25K35K3850, and K1 only de-
pends on the CF parameterB2

0:

K152
3

2
Q2B2

0FJ2BJ
2~x!1

3

5

2mBHexS

DSO

J~2J13!

J11
BJ

1~x!G .
~22!

Expanding Eq.~22! in power series and keeping the leadin
terms results in

K15
3~2J13!J

2~J11!
S2Q2B2

0~2mBHex!
2F 1

5DSO
~kBT!21

1
~2J21!

60
~kBT!22G , ~23!

which turns out to be a simple and compact expression
the anisotropy constantK1 in the high-temperature limit.

FIG. 1. Thermal averages of generalized Brillouin functio
BJ

k(x), calculated within the linear theory (J54).
1-4
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IV. THE MAGNETOCRYSTALLINE ANISOTROPY
OF Sm2Co17

In order to show how the free-energy expression deri
in the previous section can be directly compared with exp
mental data, the case of Sm2Co17 will be considered. The
crucial role of J-mixing effects for this compound has a
ready been studied with numerical calculations during
last years;17 in particular, the sixth-order contributions to th
anisotropy within the ground (J55/2) multiplet are zero,
thus the measured basal-plane anisotropy is entirely du
J-mixing effects.17 It will be shown that the model presente
in this paper allows a straightforward determination of t
CF parameters for Sm31 in this compound, and a better com
prehension of their physical role.

Sm2Co17 presents an axial arrangement of the easy m
netization direction~EMD! in the whole temperature rang
from liquid helium to the Curie temperature (TC.1200 K!.
Its anisotropy field~defined as the minimum value of th
applied magnetic field needed to saturate the sample ma
tization! was experimentally measured at differe
temperatures17 by magnetizing the sample towards both t
‘‘hard’’ directions in the basal plane. No magnetic fiel
induced transitions were detected. It is possible to show t
in absence of first-order magnetization proces
~FOMP’s!,18 the anisotropy fieldHA for the two directionsx,
y parallel to the EMD~thereby defined as thez axis! is

HA
(x,y)5

2K114K216K366K38

MS
, ~24!

whereMS is the magnetization value at the saturation. Fr
the measured anisotropy field, it is then possible to deriv

2K114K216K35
HA

(x)1HA
(y)

2
MS ~25!

and

K385
HA

(x)2HA
(y)

12
MS . ~26!

The experimental values of these quantities at different t
peratures were then fitted to their analytical expressions,
culated by means of Eqs.~16!–~19!; it must be noted tha
Q650 for the ground multiplet of Sm31, therefore the value
d6525317/(343731123132321)1/2 had to be calculated
directly using Eq.~20!. The contribution of the cobalt sub
lattice to the free energy was estimated from the anisotr
field measurement of Y2Co17 ~Ref. 19! and subtracted from
Eq. ~25!. The spin-orbit gapDSO was fixed at 1435 K~Ref.
20!. The exchange interaction parameter 2mBHex was fixed
at 360 K~at T50 K!, following the results of inelastic neu
tron scattering experiments;21 the temperature dependence
the exchange field was supposed to be the same as the
magnetization of the material. This is a common procedu
whose applicability was accurately checked by means of
elastic neutron scattering in the case of Sm2Fe17 ~Ref. 25!;
however, in the temperature range which we are intereste
~78–300 K!, the variation of the bulk magnetization is le
14441
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than 4%, so that the decrease of the exchange field valu
not very significant. OnceHex is known, the value of 2K1
14K216K3 calculated within the linear theory does not d
pend on the CF parameterB6

6, while the basal-plane anisot
ropy constantK38 depends only onB6

6. This is a direct, ana-
lytical confirmation of a behavior which was inferred wit
numerical calculations: namely, the value ofK38 calculated
by diagonalization of the entire matrix corresponding to t
J-mixing Hamiltonian~1! is almost independent of the axia
CF parametersBK

0 ~Ref. 17!.
The experimental data were fitted to their correspond

expressions@Eqs. ~25! and ~26!# by freely varying the four
CF parameters. Good results are obtained~Figs. 2 and 3!
with B2

052290630 K, B4
052200670 K, B6

052400
6100 K, andB6

656(8006100) K ~this procedure leaves
the sign ofB6

6 undetermined!. These parameters allow one
interpret the reported magnetic data, and are consistent
those deduced by the analysis of the observed neu
transitions.21 By examining the FOMP diagrams in Ref. 1
it is found that the values of the anisotropy constants ca
lated with these parameters are such that no field-indu

FIG. 2. Comparison between the experimental~diamonds! and
calculated~line! values of 2K114K216K3 for Sm2Co17. Inset:
comparison between theu dependence of the anisotropy free ener
calculated by our analytical approach~continuous line! and by nu-
merical diagonalization of Eq.~1! ~dotted line! at T578 K.

FIG. 3. Temperature dependence of the basal-plane anisot
constantK38 . Diamonds: experimental values. Continuous line: a
lytical calculations~see text!. Dotted line: numerical calculations
~after Ref. 17!.
1-5
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transitions are predicted. This is a crucial requirement, si
in presence of a FOMP Eq.~24! might not be the correc
expression for the saturating magnetic field. Similar valu
of Hex andB2

0, resulting from fitting single-crystal magnet
zation curves, were also reported.22 It must be noted that the
obtained values of the CF parameters are strongly sens
to a variation of the exchange field, as is expected in
class of ferromagnetic compounds for which the excha
interaction is much larger than the CF potential.

We will now test the applicability of the presented pertu
bative approach in the calculation of the energy spec
Table I shows a comparison between the six lowest ene
levels evaluated with the above parameters23 ~without any
external applied field, so that the exchange field is paralle
the easy axisz) in three different ways:~a! by analytical
determination24 of the eigenvalues of Eq.~4! within the
ground multiplet~not includingJ-mixing effects!, ~b! by ana-
lytical determination24 of the eigenvalues of effective Hami
tonian Ĥ (J) @Eq. ~13!#, ~c! by numerical diagonalization o
Eq. ~1! within the 6H5/21

6H7/2 manifolds~exact results!. It
can be noticed that, while neglectingJ mixing leads to an
average deviation of about 10% from the exact numer
values, the analytical approach described in Sec. II acco
for these effects with a residual discrepancy of about 2
This offers a simple way to analyze the results of spec
scopic experiments, such as inelastic neutron scatte
along with other magnetic measurements. The only c
where our analytical model does not improve the result
model ~a! is that of the highest energy level@the fact that
models~a! and~c! give almost the same results is coincide
tial#. The reason for that lies in the use of second or
perturbation theory in Eq.~8!: supposing that the exchang
interaction is dominant with respect to the crystal field, t
leading J-mixing term ~quadratic in the exchange field!
modifies the energy level scheme in such a way that
splitting between the lowest and the highest energy le
cannot be corrected. However, this does not affect the ca
lation of physical quantities, since the above level is ve
high in energy~in our case,.4RT). The considerable effor
of adding more high-order terms in Eq.~8! would give rise to
very cumbersome equations, without improving our resu
nevertheless, it may be worth for the analysis of spec
scopic transitions involving the highest energy level.

TABLE I. Comparison between the lowest energy levels~ex-
pressed in K! of Sm2Co17 calculated with three different ap
proaches:~a! no J mixing, ~b! analytical model~this work!, ~c!
exact numerical results. The last column shows the compositio
the J-mixing eigenstates calculated with model~c!.

model
~a!

model
~b!

model
~c!

eigenstate

0 0 0 0.982u5/2,25/2&10.190u7/2,25/2&
343 295 295 20.967u5/2,23/2&20.256u7/2,23/2&
618 578 568 0.964u5/2,21/2&10.266u7/2,21/2&
875 804 782 20.948u5/2,1/2&20.317u7/2,1/2&
1115 1107 1055 0.949u5/2,3/2&10.317u7/2,3/2&
1285 1304 1287 20.967u5/2,5/2&20.254u7/2,5/2&
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To ensure that the linear approximation is applicable,
axial part of the free energyK1sin2u1K2sin4u1K3sin6u ~Fig.
2, inset! and the basal-plane anisotropy constantK38 ~Fig. 3!
were compared with their values as calculated by numer
diagonalization of Eq.~1!. The results are quite satisfactor
the free energy is reproduced with an average devia
smaller than 2%. The quantity 2K114K216K3 was also
calculated by a numerical approach involving diagonali
tion of the 14314 matrix representingĤRE within the
6H5/21

6H7/2 subspace, and fitted to the experimental d
using the linear theory results as a starting point for the
parameters. These calculations resulted inB2

052220
650 K, B4

0521506100 K, andB6
0524006100 K; this

result confirms the applicability of the linear theory for th
compound.

A comparison of the parameters obtained in the pres
work with those previously reported in the literature is al
possible. Ref. 26 reports a simplified analysis of magne
data for Sm2Co17, obtaining 2mBHex5442 K and B2

05
2208 K; however, the value ofB2

0 is not very precise, due to
the fact that the fourth- and sixth-order CF parameters
neglected andJ-mixing effects are not considered. We pe
formed aJ-mixing linear theory analysis of our anisotrop
data with the constraintB4

05B6
050; however, we found tha

it is impossible to fit the low temperature part of the curve.
Ref. 21, the valueB2

0522806160 K, based on inelastic
neutron scattering measurements, is given for Sm2Co17; this
is in agreement with our results. The obtainedB6

6 parameter
is about twice the numerically estimated value of2410 K
~Ref. 17!; however, this is mostly due to the fact that Ref.
uses a higher value for the exchange field (2mBHex
5442 K). Using this parameter, the linear theory giv
uB6

6u55506100 K; this is in line with the value reported i
Ref. 17, which is affected by an error bar of the same m
nitude. Therefore, the linear theory is proved to be a go
approximation in this case. Moreover, the set of parame
we obtained for Sm31 in this compound is in line with those
derived by fitting the magnetization curves ofR2Co17, with
R5Pr, Nd, Sm, Gd, Tb, Dy, Ho, and Er.22 This fact supports
the validity of our results. A comparison of the CF param
eters in the above compounds with those of other isost
tural intermetallic alloys is not straightforward, since signi
cant variations are induced by changing the TM atom
which cannot be accounted for in a simple way. For exam
the leading crystal-field parametersB2

0 shows a significant
decrease in its absolute value when Mn or Fe atoms su
tute Co in the TM sublattice of Sm2Co17, even changing its
sign from negative to positive when the Fe compositi
reaches about 60%.26 Also the crystal-field parameter
reported27 for Pr2Zn17 ~the Sm compound has not been stu
ied!, resulting from inelastic neutron scattering experimen
show a positive sign for this parameter. Recently, the eff
of the TM sublattice on the crystal-field potential in som
1:12 compounds has been investigated by means of de
functional calculations.28

V. CONCLUSIONS

A generalization of the linear theory for the magnetic a
isotropy of exchange-dominated systems, which takes

of
1-6
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count of possibleJ-mixing effects, has been proposed. A un
tary transformation was applied to the single-ion R
Hamiltonian, which was then rewritten on a reduced basis
this framework, it is possible to takeJ-mixing effects into
account while working on an effective, isolated manifold; t
CF Hamiltonian includes additional operators, some
which are of odd order~and are not usually present!. Some
useful considerations can be made.

~1! The authors of Ref. 6 propose that the linear mode
Sm2Fe17N3 might take J-mixing effects into account by
choosing rescaled effective values for the CF parameters

pearing in the ground-state HamiltonianĤCF
(J) . The model

presented in Sec. II shows that this approach is not form
correct, since it does not take into account the contributi
of the odd-rank terms generated byJ mixing. These contri-
butions have a peculiar temperature behavior which can
be reproduced by varying the coefficients of even-rank

erators, which are the only components ofĤCF
(J) . Moreover,

due to the fact thatQ650 for Sm31, rescaling the CF pa
rametersB2

0 and B4
0 cannot generate sixth-order anisotro

contributions, which can be crucial for compounds such
Sm2Co17 ~for example, the basal-plane anisotropy const
K38 would be zero at all temperatures!. Lastly, diagonaliza-

tion of ĤCF
(J)1Ĥmixing with the right values of the paramete

should reproduce satisfactorily the energy-level scheme
volved in the calculation of the anisotropy constants, wh
the approach described in Ref. 6 cannot do so in cas
strongJ mixing.

~2! The linear model allows to use the phenomenologi
free energy expression~15!, neglecting terms of order highe
then the sixth. Outside the boundaries of the linear the
generation of significant highest-order anisotropy constan
possible,6 but only if the CF potential cannot be regarded
a perturbation with respect to the exchange interaction
this paper it has been shown that theJ mixing cannot gener-
ate, by itself, appreciable terms of order higher than
sixth, and that Eq.~15! remains correct.

~3! Numerical calculations17 allowed to infer that the
presence ofJ-mixing results in a smoothing of the temper
ture dependence ofK38(T), which remains non-negligible a
higher temperatures. An analytical explanation of this f
can now be given; while in absence ofJ-mixing effects the
only contribution toK38 is proportional toBJ

6(x), for Sm31

this constant has the same temperature dependence ofBJ
5(x).

Since the generalized Brillouin functions satisfy t
inequality

BJ
n~x!

BJ
n~`!

.
BJ

m~x!

BJ
m~`!

~27!

if n,m ~see Fig. 1!, the observed behavior can be accoun
for; not only the absolute magnitude, but also the tempe
ture dependence of the anisotropy constants is strongly
fected byJ mixing.
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APPENDIX: ANALYTICAL EXPRESSIONS OF THE
GENERALIZED BRILLOUIN FUNCTIONS

The generalized Brillouin functions can be written in
simple analytical form, with the definition

BJ
n5An~j,h!1Bn~j,h!cothS 2J11

2J
xD ,

where j5(1/2J)coth(x/2J), h51/2J, and An(j,h) and
Bn(j,h) are the polynomial expressions given in th
following:

A1~j,h!5j,

B1~j,h!52~11h!,

A2~j,h!5112h13j2,

B2~j,h!523~11h!j,

A3~j,h!53j@22~241h!h15j2#,

B3~j,h!5~11h!@211h~2213h!215j2#,

A4~j,h!5@124h~211h14h2!

145j2245~221h!hj21105j4#,

B4~j,h!55~11h!j@221h~2419h!221j2#,

A5~j,h!515j„11h$41h@271h~22213h!#%

128j2214h~2413h!j2163j4
…

B5~j,h!52~11h!„11h$41h@21419h~2415h!#%

1105j22210h~2113h!j21945j4
…,

A6~j,h!5†112h@312h~116h!~25116h2!#

1105„21h$81h@2201h~256115h!#%…

3j224725@2112~211h!h#j4110395j6
‡,

B6~j,h!5221~11h!j„11h$41h@2191h~246

175h!#%160j2230h~24115h!j21495j4
…,

A7~j,h!57j$42h†2241h„1101h$6001h@255619h

~2264125h!#%…‡1225„21h$81h@2261h

~268127h!#%…j224455@221h~2415h!#j4

119305j6%,

B7~j,h!5~11h!$211h†261h„411h

3$2041h@24631225h~2617h!#%…‡

2378j22189h$81h@2481h~2112

1225h!#%j2117325@211h~2219h!#

3j42135135j6%.
1-7



H.

te

ev

in

l

r

,

B

s.

-

B

n
with

-

d

e,

e

N. MAGNANI, S. CARRETTA, E. LIVIOTTI, AND G. AMORETTI PHYSICAL REVIEW B67, 144411 ~2003!
1For a review on this class of compounds, see for example K.
Buschow, Rep. Prog. Phys.54, 1123 ~1991!, and references
therein.

2M.D. Kuz’min, Phys. Rev. B46, 8219~1992!.
3K.H.J. Buschow, A.M. van Diepen, and H.W. de Wijn, Solid Sta

Commun.15, 903 ~1974!.
4H.W. de Wijn, A.M. van Diepen, and K.H.J. Buschow, Phys. R

B 7, 524 ~1973!.
5W.E. Wallace, S.G. Sankar, and V.U.S. Rao, inStructure and

Bonding~Springer-Verlag, Berlin, 1977!, Vol. 33.
6M.D. Kuz’min and J.M.D. Coey, Phys. Rev. B50, 12 533~1994!.
7B.G. Wybourne,Spectroscopic Properties of Rare Earths~Inter-

science, New York, 1965!.
8G.H. Dieke, Spectra and Energy Levels of Rare Earth Ions

Crystals~Interscience, New York, 1968!.
9C.P. Slichter, Principles of Magnetic Resonance, 3rd ed.

~Springer-Verlag, Berlin, 1990!.
10Cz. Rudowicz, Magn. Reson. Rev.13, 1 ~1987!; 13, 335 ~1988!.
11J. Mulak and Z. Gajek,The Effective Crystal-Field Potentia

~Elsevier, Amsterdam, 2000!
12E. Liviotti, S. Carretta, and G. Amoretti, J. Chem. Phys.117,

3361 ~2002!.
13B.L. Silver, Irreducible Tensor Methods: an Introduction fo

Chemists~Academic, London, 1976!.
14D.A. Varshalovich, A.N. Moskalev, and V.K. Khersonskii,Quan-

tum Theory of Angular Momentum~World Scientific, Singapore
1988!.
14441
J.

.

15M.D. Kuz’min, Phys. Rev. B51, 8904~1995!.
16M.D. Kuz’min, J. Appl. Phys.92, 6693~2002!.
17N. Magnani, G. Amoretti, A. Paoluzi, and L. Pareti, Phys. Rev.

62, 9453~2000!.
18G. Asti and F. Bolzoni, J. Magn. Magn. Mater.20, 29 ~1980!.
19N. Magnani, G. Amoretti, A. Paoluzi, and L. Pareti, IEEE Tran

Magn.37, 2540~2001!.
20S. Hufner, Optical Spectra of Transparent Rare-Earth Com

pounds~Academic, London, 1978!.
21M.D. Kuz’min, L. Steinbeck, and M. Richter, Phys. Rev. B65,

064409~2002!.
22H. Xiu-feng, J. Han-min, W. Zi-jun, and T.S. Zhao, Phys. Rev.

47, 3248~1993!.
23In order to test the reliability of our model, the similarity betwee

the exact and the approximate energy levels was tested
different sets of parameters, always with positive results.

24In the simple case where allBk
q with qÞ0 are zero and the ex

change is parallel to thez axis, the 636 matrix describing the
ground state of Sm31 is diagonal on theuJ,M & basis, both with

and without addingĤmixing .
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