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Linear theory of magnetocrystalline anisotropy in 3d-4f intermetallics:
A generalization to J-mixing compounds
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It is known that the magnetocrystalline anisotropy of a rare-earth—transition-metal intermetallic compound
can be described by means of analytical expressions under the assumptions of the linear theory. These assump-
tions are that the spin-orbit interaction of the considered rare-earth ion is much stronger than the exchange
interaction between thed3and the 4 sublatticeqso that mixing of states with differedtis not allowed, and
that the crystal-field potential can be treated as a small perturbation with regards to the mentioned exchange
interaction. In this work, a generalization of the linear theory is proposed for compounds whéreikiag
cannot be neglectedypically those based on light rare-earths such as Pr, Nd, and especiallif &mis done
by applying a suitable unitary transformation to the single-ion Hamiltonian describing the quantum state of the
rare-earth ions, so that an effective description in terms of an isolatadtiplet can be retained, while at the
same time thd-mixing effects are properly accounted for. Analytical expressions have therefore been obtained
for the free energy of light-rare-earth-based magnetic materials and have been applied to interpret available
experimental data on Si80;;.
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I. INTRODUCTION AND MOTIVATIONS loys). PP* and N&* also presend-mixing effects, although
they are not as crucial as in the case of*$mThe strongJ

Intermetallic compounds based on transition meffidd)  mixing makes it necessary to perform numerical calculations
and light rare earth&RE’s), such as SpCo;; and NgFe, 4B, which, albeit accurate, do not allow a direct comparison of
are the basic constituents of the best commercially availablthe results with the phenomenological models used by the
permanent magnetsAlthough the interplay between the two experimentalists to analyze their data; moreover, the main
sublattices(RE and TM often gives rise to a complex and convenience in using analytical expressions is that they al-
peculiar phenomenology for these alloys, the basic mechdow a more detailed physical comprehension of the role of
nisms which generate their properties are well understoocvery single parameter in the model.
the 3d sublattice provides a high value of the saturation mag- !N this paper, it will be shown that the linear theory can be
netization and a high Curie temperature, so that these matg20dified in order to includg-mixing effects, thus allowing
rials can operate above room temperat(R&) without any ~ °"€ to obtain analytical expressions which can be readily

P . d with available experimental data for exchange-
significant loss of performance; conversely, the strong mag(_:ompare . )
netocrystalline anisotropy is provided by the crystal fielddom'nated RE-TM systems. The described analytical model

(CF) acting on the 4 electronic shell. Despite that, a com- will be applied to study the temperature dependence of the
lete analytical description of these systems is possible Onlm_agnetocrystallm_e anisotropy of $@0; an_d cor_npf_;\_red

P . . With exact numerical results in order to test its reliability.

in a few cases. The linear thedrallows one to find an

explicit expression for the free energy due to the RE sublat-
tice, and therefore to calculate analytically any physical
quantity of interest, under two hypotheséh: the strength of The Hamiltoniad which describes the energy states of the
the CF potential is small with respect to thd-8f exchange RE ion in presence of spin-orbit interaction, RE-TM ex-
interaction and2) the spin-orbit gap between the RE mul- change interactioftreated in mean-field approximatiprand
tiplets is large enough that the grouddmultiplet is well ~ CF potential is(symbols marked with a caret represent op-
isolated. While the first requirement is often satisfied by theerators:

RE-TM compounds of pratical interest, the relatively small

spin-orbit interaction of light RE ions gives rise to non- Hre=AL-S+2ugHey S+HcE; (1)
negligibleJ-mixing effects. For example, it is known that the , , , ) , . i

SnP* ion has a small gafL435 K) between the ground and " this expressiom\ is the spin-orbit coefficientH,, is the
the first excited) multiplet. Due to this fact, the strong ex- exchange field, and¢r is the crystal-field Hamiltonian,
change field causes states belonging to different spin-orbihich is expressed by means of tensor operatflgi% as
multiplets to mix heavily, and the contributions of excitéd

multiplets are no longer negligibld. mixing has attracted the N~ 2 aA (k)

interest of many authors because it can make it difficult to Her= o BiCq™ 2
interpret the CF energy levels of this rare earth, thus affect- ’

ing many physical properties of Sm-based compotiftdin-  whereB{ are the CF parameters. TheS coupling used in
cluding the magnetocrystalline anisotropy of intermetallic al-Eq. (1) is justified by the fact that we will consider only the

Il. THE MODEL
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lowest multiplets of light RE ions such as®Pr Nd®*, and  In arecent paper, this approach has been successfully used to
S, for which this approximation is known to be vafid. study the magnetic anisotropy in single-molecule magtfets.
The energy spectrum of the system is composed of multiplets Using as basis vectors the eigenvectors of the spin-orbit
separated by the isotropic spin-orbit coupling and split by theoperator] «JM), the Hamiltonian matrid ge can be rewrit-
anisotropic interactions. If the interest is limited to propertiesten as the sum of three terms:

involving only the ground manifold, the system can be de-

scribed as a) multiplet and the HamiltoniarHge can be Hre=AL-S+H +H,. (6)

replaced by an effective Hamiltonian In the above equatioRl; has nonzero matrix elements only

inside the diagonal blocks and does not connect states with
different ,J (i.e., differentd multiplets, while H, is differ-
written in terms of the total angular momentum operator €Nt from zero only in the off-diagonal blocks and is the term
provided the spin-orbit gap is large compared to the matri{€SPonsible forJ mixing. The technique described below
. . . N~ takes advantage from an unitary transformation, which
elements of the other interactions. In this frarki;: is re- o . )
placed by changes the original matrid g into a new one having very
small matrix elements in the off-diagonal blocks. Diagonal
elements are modified too, but the advantage of this ap-
ﬂggzz Bﬁ@kégk)(j), (4) proach is noteworthy: in the new basis, states belonging to
kg different multiplets are almost uncoupled and the system can
still be described as an effectilemultiplet.
As it is formally shown in Ref. 9, it is possible to find an

AR=2(g;— 1) pugHex J+HE 3

whereC{?(J)’s are writterf in terms ofJ,, J,, andJ,, and

0, are the Stevens’ multiplicative factdr§®,=a;, 0, . i -
—j3,, and®g=v,). Note that the Hamiltonians which can _Herm|t|an pperatoﬂ such that the matrix elements bifzg
be used only in the restricted subspace consisting of thi the off-diagonal blocks calculated over the transformed set
. . . iQ) .

ground J muitiplet have been labeled with the superscriptof vectorse™[aJM) are small enough to be neglected. This
Q). is equivalent to looking for a transformed Hamiltonian

The linear theory of the magnetocrystalline anisotfopy
consists in calculating the first-order contribution to the free ﬁ;{E: e“”ﬂREei”, (7)
energy due to the RE ion. First, the RE Hamiltoni@ is . o
rewritten in a rotated reference frame in order to align theVhose matrix elements between states with differgdtare
exchange fieldH,, with the z axis; then, the first-order con- much smaller than those éfge. Inside theJ manifolds
tribution to the anisotropy energy are calculated by replacing
the operators appearing ¢} with their thermal averages (qJM|F%d M)
taken over the zeroth order eigenstatéhose of the

exchange-field Hamiltonian |J,M), with Ey=2|g; =Egat+(aIM|H{|aIM")
—1lugHeM). In order to represent these averages in a N N
simple and compact form, generalized Brillouin functions _ (adM[H,|a"3"M")(a"3"M"[Ho|aIM")

K .
Bj(x) are defined so that W, Eourd”—Eous

®

IB5()=(CH)) . -
whereE,,; are the eigenvalues of the spin-orbit operator.

o ) A In order to illustrate our approach, we first consider the
> (IMICHI)[I.Myexp —Ey /kgT) simple case of a system characterized by an uniaxial crystal
_ M=) field parallel to the exchange field.,. Choosing the z axis
+J ' parallel to the molecular field and limiting to the second
MZ S exp(—Em /kgT) order forHcg, it is
(5) Hre=AL-S+2ugHeS,+B3CE, ©)

wherex=2J|g;,~ 1| ugHe/ (kgT) andkg is the Boltzmann \ynere the spin operatds, is the zeroth component of the
constaninotice tha/C{?(J))=0 wheng#0). A survey on  rank one irreducible tensor opera®.? Furthermore, the
the most important properties of these functions is given ingroundJ multiplet is assumed to be followed by a first ex-
Ref. 2. cited manifold of total angular momentud#1, as in the
Unfortunately, in light RE ions the spin-orbit interaction case of Pt", Nd®*, and Smi*. In fact, by numerical diago-
is relatively weak and the above approximation is not adnalization we found that the average contribution of other
equate to describe many physical properties of these systemsxcited multiplets in the calculation of the ground state en-
We propose the use of a perturbative technique reported igrgy levels is negligible for our purposébelow 2% for
Ref. 9, based on the effective Hamiltonian thet¥y;in or-  SpP*| and less than 1% for other rare eajthslthough in
der to include inH{} the so far neglected-mixing effects.  principle it is possible to include the effects of these mani-
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folds in our model, this would lead to complications in the (8) and applying the Wigner-Eckart theorem, we can evalu-
formalism which are not needed in this case. Employing Egate the matrix elements &&E in the J multiplet:

. . (2ugHed? ) 1 J+1\(J+1 1 J
IMIHEIM ) =Eqy+(IMH [IM") + ————— > (= DZ"MM(J[sB]J+1)2
< | RE| > 0J < | 1| > ASO %( ) <|| || > -M 0 M” -M"” 0 M’
2ugH B9 , 1 J+1\/J+1 2 I
—1)23-M=M"/ 315D 3+ 1 IIC@)I+1
i 2 (D QIS+ DQIC@+ ) | o e o e
J 2 J+1\/J+1 1 o
- 1
-M 0 M"/{-M" 0 M’ (10
[
where Ago=Eq;.1—Eg; is the spin-orbit gap between the (2ugHey? 2

ground manifold and the first excited manifold, () arp 3  Hmixing= UE)
symbols* and(|| ||) are reduced matrix elements. In Eg0) Aso  3(L+2N)(1+)(3+20)"
a term quadratic im:ICF has been neglected because in these Z,uBHeXBg —4\/5
intermetallic compounds the strenght of CF potential is gen- ] 2 3
erally small with respect to the exchange interaction. Since Aso 5\ 2+ I3+ 1L+ 12%+4J%
the two last terms in the preceding equation are divided by . 23%4+73+6. .
Aso, the effects of] mixing can be neglected if the two X Cé”(J)—TCg (I |- (14)
considered multiplets are well separated in energy.

Exploiting the angular momentum properties, it is pos-The fact that operators of odd ordavhich are not usually
sible to express the linear combination of products ¢f 3 presentappear in the effective Hamiltonian is not surprising;

symbols appearing in E¢10) as matrix elements dt(k)(J) in fact, as their coefficients are linear in the exchange field

operators; in the present case, apart from constant additidex. the corresponding spherical operators must be odd as
terms which only represent a uniform energy shift, it is well, so that the necessary invariance under time-reversal is

guaranteed® If the HamiltonianH g contains more terms or

03 1 J+1\/J+1 1 J if there are several multiplets whose mixing with the ground
2 (—1)2-M-M ( “M o M"/\=m" o M’) manifold cannot be neglected, the procedure is the same de-
M veloped above, but more terms have to be addd%lntgmg.
2 PR
— (2) '
3(1+23)(1+J)(3+2J) (IMICE(DIIM?) (1D lll. EXPLICIT EXPRESSIONS FOR ANISOTROPY
and CONSTANTS: THE EFFECTS OF J MIXING
As stated above, one of the main advantages of the linear
A3 1 J+1\/(J+1 2 theory with respect to numerical calculations is the possibil-
E (—1H-M=M ( “M 0o M J/\=M" 0 WM™ ,) ity to obtain analytical expressions for the physical quantities
MN . . . .
of interest, which can be readily used to analyze experimen-
tal data. For example, the usual phenomenological expres-
n Joo2 J+J+1 1 ) sion for the magnetic anisotropy free energy of RE-TM com-
-M 0 M"/\-M" 0 M’ pounds with 2:17 stoichiometry is
_43 F =K ,Sir? 6+ Ksin* 0+ K3sin® 6+ K sin® 6 cos 6.
= (IM|CP(I)|am") (15
5IV2+3(3+ 113+ 1232+ 433) o , , _
In principle, this expression should be written as the sum of
2J°+7J+6 AD),4 infinite terms in siA"@ (Ref. 19; however, the series is often
- TUWCO (D[IM7). (12 truncated up to the sixth order, neglecting anisotropy con-
stantsK , with n>3. Kuz'min? has shown that, in absence of
The effective Hamiltonian then becomes J mixing and within the framework of the linear theory, Eq.
(15) is the exact expression for the free energy, and has given
HO=2(g;— 1) ugHex I+ HE+ gmixing, (13)  analytical expressions for the temperature dependence of the
four anisotropy constants. This can be generalized to the case
where whereJ mixing is not negligible, by analyzing the angular
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dependence of the free energy calculated in Sec. II; it is
found that the higher-order corrections to Efj5) are pro-
portional toB}(x) with a small numerical coefficient if the
main hypothesis of the linear theofie., the CF potential
can be regarded as a perturbation with respect to the ex-
change interactions applicable. This means that eight-order
anisotropy constants due demixing effects are always neg-
ligible for all rare earths, and equal to zero in the particular
case of samarium. Equatidt5) can then be safely used to
interpret the experimental data for any exchange-dominated
intermetallic compound.

Within the framework of the linear theory, the analytical
expressions for the anisotropy constants appearing in Eq.

—

5 (x)
7(0)

B
B;

<
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0 0.5 1 1.5

1/x

(15) are

3
~ 50,383 ~3135, “B ex

Ky = [-23°B3(x)

+(232+7J+6)JB}(x)]JBg

MB ex

—50,4J*B(x)—20y105, [ 23°B3(x)

+(232+113+ 15)J3B§’(x)]} BY

+ —2—®GJ6BG(X) 44215, “B ex[ 743'B1(x)
+21(23%+ 15J+28)J533(x)]]Bg, (16)
Kzz[%5®4J4B§(x)+3554\[22’23 & 235B5(x)
+(2J2+11J+15)J3B§(x)])82
1—89®6J BS(X)+ 270621~ 2ugH ex[ 463°B(x)
+7(23%+ 151+ 28)J5B§(x)]] BY, (17)

2u5H
®6JGBJ(X)——56\/—1 Felex
SO

X[—11Q7Bj(x)+ 7(232+ 150+ 28)J5B§(x)]} BY,

(18)
5= JZ_ 0s3°B5() + 5 56J_1 ”‘B ex[sal Bj(x)
+7(23%+ 15J+28)J553(x)]}|36; (19

where

FIG. 1. Thermal averages of generalized Brillouin functions
B‘j(x), calculated within the linear theond€4).

IS+ 1)(ICMI+1) V2K
o= — 2+K

(2k+1)\(I+1)( 20+1)(23+3) H \/2J+I
(20)

If the Stevens facto®, does not vanish within the ground
state, it is possible to obtain a simpler expression fordhe
coefficients, which in the case of light rare earthk=_
—-9) is

0,521k k(k+1)

(2k+1)(2J+k+2)(J+1)°

&= (21

It is straightforward to show that Eq6L6)—(19) are reduced

to the corresponding expressions calculated in absence of
J-mixing effectg by taking the limit forAgo—; in fact, it

can be noticed that the terms containing even-order general-
ized Brillouin functions are the same as in Ref. 2, whille
mixing adds the odd-order terms which are all multiplied by
a factorugH e,/ Agp. Figure 1 shows the temperature depen-
dence of the generalized Brillouin functions fé=4; ex-
plicit expressions oBj(x) for 1<n<7, in terms of elemen-
tary functions, are given in the Appendix. The behavior at
high temperatures can be studied by neglecting all the gen-
eralized Brillouin functions of order higher than the
second® in this caseK,=K;=K4=0, andK, only de-
pends on the CF parametBE:

3 2ugHeS J(2J+3)

__>6.89 32 °
K, ®2B J?B2(x )+ A 371

%(x)]

(22)
Expanding Eq(22) in power series and keeping the leading
terms results in

3(2J+3)J
20+

(2J-1) ~
T(kBT) 2},

$°0,B 2(2MBHex)2{ (kBT) !

(23

which turns out to be a simple and compact expression for
the anisotropy constai€; in the high-temperature limit.
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IV. THE MAGNETOCRYSTALLINE ANISOTROPY
OF Sm,Co;,

. . 250 4
In order to show how the free-energy expression derived

in the previous section can be directly compared with experi-

mental data, the case of $80p;; will be considered. The

crucial role of J-mixing effects for this compound has al-

ready been studied with numerical calculations during the

last years? in particular, the sixth-order contributions to the

anisotropy within the groundJ&5/2) multiplet are zero, S

thus the measured basal-plane anisotropy is entirely due to 0 b tdegrees)

J-mixing effectst’ It will be shown that the model presented 0 50 100 150 200 250 300

in this paper allows a straightforward determination of the T (K)

CF parameters for St in this compound, and a better com-

prehension of their physical role. FIG. 2. _Comparison between the experimerithhmond$ and
Sm,Co,, presents an axial arrangement of the easy magcalculat_ed(llne) values of XK;+4K,+6K; for _SrrbCOH. Inset:

netization directionEMD) in the whole temperature range comparison between thfe_dependence of t_he anlsqtropy free energy

from liquid helium to the Curie temperaturd {=1200 K). calculated by our analytical approafntinuous ling and by nu-

Its anisotropy field(defined as the minimum value of the merical diagonalization of Eq(1) (dotted ling at T=78 K.

applied magnetic field needed to saturate the sample magn

tization was experimentally measured at different S .

temperaturéd by magnetizing the sample towards both the"0t Very significant. Oncéde, is known, the value of B,

“hard” directions in the basal plane. No magnetic field- +4K,+ 6K; calculated within thg linear theory does nqt de-

induced transitions were detected. It is possible to show thaPend on the CF parametB§, wh|Ie6the basal-plane anisot-

in absence of first-order magnetization processe§oPy constanK; depends only omg. This is a direct, ana-

(FOMP’s),*® the anisotropy fieldH , for the two directions, lytical confirmation of a behavior which was inferred with

S (K/fw)

200

150 A

80

+4K 46K

F(Kiffw)

100

404

2K,

Fh_an 4%, so that the decrease of the exchange field value is

y parallel to the EMD(thereby defined as theaxis) is numerical calculations: namely, the value K% calculated
by diagonalization of the entire matrix corresponding to the
xy) 2K, +4K,+ 6Kz 6Ky J-mixing Hamiltonian(1) is almost independent of the axial
HA™'= Mg , (24 CF parameter8? (Ref. 17.

The experimental data were fitted to their corresponding
whereMg is the magnetization value at the saturation. FromexpressiongEqgs. (25) and (26)] by freely varying the four
the measured anisotropy field, it is then possible to derive CF parameters. Good results are obtaiifEiys. 2 and 3
with B9=-290+30 K, BJ=-200+70K, BZ=-400
+100 K, and Bg: +(800+100) K (this procedure leaves
the sign ofBS undetermined These parameters allow one to
interpret the reported magnetic data, and are consistent with
those deduced by the analysis of the observed neutron
HO0_ ) transitions?! By examining the FOMP diagrams in Ref. 18,
Ké:u S (26)  itis found that the values of the anisotropy constants calcu-
12 lated with these parameters are such that no field-induced

HY+HY

2Ky + 4K, +6Kg=—"—

Ms (29

and

The experimental values of these quantities at different tem-
peratures were then fitted to their analytical expressions, cal- 7
culated by means of Eq$16)—(19); it must be noted that
®4=0 for the ground multiplet of SAT, therefore the value

8= —5X 17/(3*X 7x 112X 13?x 21)? had to be calculated
directly using Eq.(20). The contribution of the cobalt sub-
lattice to the free energy was estimated from the anisotropy
field measurement of YCo,; (Ref. 19 and subtracted from

Eq. (25. The spin-orbit gap\ 5o was fixed at 1435 KRef.

20). The exchange interaction parameterg® ., was fixed

at 360 K(at T=0 K), following the results of inelastic neu-
tron scattering experiment$the temperature dependence of
the exchange field was supposed to be the same as the bulk
magnetization of the material. This is a common procedure,
whose applicability was accurately checked by means of in- FIG. 3. Temperature dependence of the basal-plane anisotropy
elastic neutron scattering in the case of $m; (Ref. 25;  constanK}. Diamonds: experimental values. Continuous line: ana-
however, in the temperature range which we are interested iigtical calculations(see text Dotted line: numerical calculations
(78—-300 K, the variation of the bulk magnetization is less (after Ref. 17.

K's (K/fu)

T (K)
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TABLE |. Comparison between the lowest energy leviz- To ensure that the linear approximation is applicable, the
pressed in K of SmCo; calculated with three different ap- axial part of the free energy; sin?6+K,sin'6+K;sin°g (Fig.
proaches:(a) no J mixing, (b) analytical model(this work), (c) 2, inse} and the basal-plane anisotropy constéht(Fig. 3)
exact numerical results. The last column shows the composition ofyere compared with their values as calculated by numerical

the J-mixing eigenstates calculated with model. diagonalization of Eq(1). The results are quite satisfactory:
the free energy is reproduced with an average deviation
model model model eigenstate smaller than 2%. The quantityk2 +4K,+6K; was also
€Y (b) (0 calculated by a numerical approach involving diagonaliza-
0 0 0 0.9825/2,— 5/2)+0.1907/2,— 5/2) tgon ofethe 14<14 matrix re_presenting:| re Within the
343 295 205  —0.9675/2,— 3/2)— 0.2567/2,— 3/2) Hsot "Hyjp subspace, and fitted to the experimental data
618 578 568 0.965/2,— 1/2) + 0.2667/2,— 1/2) using the linear theory results as a starting point for the CF

parameters. These calculations resulted B3=—220
+50 K, B)=—150+100 K, andB3=—400+100 K; this
result confirms the applicability of the linear theory for this
compound.

A co_mparison of t_he parameters _obtaine_d in the present
transitions are predicted. This is a crucial requirement, sinc&ork with those previously reported in the literature is also
in presence of a FOMP Eq24) might not be the correct possible. Ref. 26 report_s a simplified analysis of moagnetlc
expression for the saturating magnetic field. Similar valueglata for SmCo,;, obtaining %“_BHex: 442 K and By=
of He, andBY, resulting from fitting single-crystal magneti- —208 K; however, the value @ is not very precise, due to
zation curves, were also report®dt must be noted that the the fact that the fourth- and sixth-order CF parameters are
obtained values of the CF parameters are strongly sensitiJf9lected and-mixing effects are not considered. We per-
to a variation of the exchange field, as is expected in thi ormed aJ-mixing linear theory analysis of our anisotropy

: 20 _p0_An.
class of ferromagnetic compounds for which the exchang z_atag with the cons.traer4— Bg=0; however, we found that
interaction is much larger than the CF potential. it is impossible to fit the low temperature part of the curve. In

0_ _ - .
We will now test the applicability of the presented pertur- Ref. 21, the vglueBz— 280160 .K' .based on mela;uc
neutron scattering measurements, is given fopSop,; this

bative approach in the calculation of the energy spectra. - ith its. The obtai
Table | shows a comparison between the six lowest energ In agreement with our results. The o talr&gjparameter
s about twice the numerically estimated value-e#110 K

levels evaluated with the above parametéfsvithout any . L

external applied field, so that the exchange field is parallel t(SRef' 19, h_owever, this is mostly due to the fac_t that Ref. 17
the easy axigz) in three different ways{a) by analytical lises a hlghgr vallue for the exchar)ge erld,uéE-lex‘
determinatiof® of the eigenvalues of Eq) within the _242 K). Usmg.thl_s parameter, the linear theory gives
ground multipletnot includingd-mixing effects, (b) by ana- |Be| =550= 100 K; this is in line with the value reported in
lytical determinatioR® of the eigenvalues of effective Hamil- R€f- 17, which is affected by an error bar of the same mag-
nitude. Therefore, the linear theory is proved to be a good

té)n'a; H 'th'[E?H (16?2']’ (JS)“It-)ly nume.rflclzél dlago?allzaflor}tof approximation in this case. Moreover, the set of parameters
g. (1) within the "Hg>+ °Hyy, manifolds(exact resulfs we obtained for S/ in this compound is in line with those
can be noticed that, while neglectidgmixing leads to an F

875 804 782  —0.9485/2,1/2—0.3177/2,1/2
1115 1107 1055 0.945/2,3/3 +0.3177/2,3/2
1285 1304 1287  —0.9675/2,5/2—0.2547/2,5/2

o . _derived by fitting the magnetization curvesR§Co,;, with
average deviation of about 10% from the exact numerica y g g RICO

) JUE =Pr, Nd, Sm, Gd, Tb, Dy, Ho, and E%This fact supports
values, the analytical approach described in Sec. Il accoun fe validity of our results. A comparison of the CF param-

I I I 0,
for these effects with a residual discrepancy of about 2A)eters in the above compounds with those of other isostruc-

This .offers a _S|mple way to ane_llyze the resuilts of sPeCt.roiural intermetallic alloys is not straightforward, since signifi-

%ant variations are induced by changing the TM atoms,
hich cannot be accounted for in a simple way. For example,
the leading crystal-field parametel@ shows a significant
decrease in its absolute value when Mn or Fe atoms substi-
jute Co in the TM sublattice of Sj0,7, even changing its
sign from negative to positive when the Fe composition
reaches about 60%. Also the crystal-field parameters
reported’ for Pr,Zn,; (the Sm compound has not been stud-
modifies the energy level scheme in such a way that théehdg;lvrzsgg';%Jéc’;?g'r??L?S:%?Snsg:;%]e?g?ttsgggn(:‘l);p?r:gn:frfg‘:’:’t
spliting between the lowest and the highest energy Ieve?f the TM sublattice on the crystal-field potential in some

cannot be corrected. However, this does not affect the calc 12 ds has b . iaated b ¢ densit
lation of physical quantities, since the above level is very:" compounds has Seen investigated by means ot density
functional calculationé

high in energy(in our case>4RT). The considerable effort
of adding more high-order terms in E@) would give rise to
very cumbersome equations, without improving our results;

nevertheless, it may be worth for the analysis of spectro- A generalization of the linear theory for the magnetic an-
scopic transitions involving the highest energy level. isotropy of exchange-dominated systems, which takes ac-

where our analytical model does not improve the result o
model (a) is that of the highest energy levghe fact that

models(a) and(c) give almost the same results is coinciden-
tial]. The reason for that lies in the use of second orde
perturbation theory in Eq@8): supposing that the exchange
interaction is dominant with respect to the crystal field, the
leading J-mixing term (quadratic in the exchange figld

V. CONCLUSIONS
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count of possibleg-mixing effects, has been proposed. Auni-  APPENDIX: ANALYTICAL EXPRESSIONS OF THE
tary transformation was applied to the single-ion RE GENERALIZED BRILLOUIN FUNCTIONS
Hamiltonian, which was then rewritten on a reduced basis; in
this framework, it is possible to také&mixing effects into
account while working on an effective, isolated manifold; the
CF Hamiltonian includes additional operators, some of . 2J+1
which are of odd ordetand are not usually presenSome BJ:An(§,77)+Bn(§,77)COﬂ‘< 53 X
useful considerations can be made.

(1) The authors of Ref. 6 propose that the linear model inwhere £=(1/2J)coth(/2J), .77:1/231 a'_"'d An(§vﬂ) gnd
SmyFeNs might take J-mixing effects into account by Bn(é,7) are the polynomial expressions given in the
choosing rescaled effective values for the CF parameters af2/loWing:

The generalized Brillouin functions can be written in a
simple analytical form, with the definition

pearing in the ground-state Hamiltoniaht. The model AL(E ) =&,
presented in Sec. Il shows that this approach is not formally

correct, since it does not take into account the contributions Bi(&,n)=—(1+7n),
of the odd-rank terms generated Bymixing. These contri-

butions have a peculiar temperature behavior which cannot Ax(£,m)=1+29+38,

be reproduced by varying the coefficients of even-rank op-

. ~ B.(&,m)=—3(1+ n)é,
erators, which are the only componentsHff}. Moreover, 2(&.7) (¢

due to the fact tha®s=0 for Sn?*, rescaling the CF pa- As(€,7)=3E2—(—4+ ) p+5¢]

0 O . . 1 1
rametersB; and B, cannot generate sixth-order anisotropy
contributions, which can be crucial for compounds such as Bs(&,7)=(1+ n)[—1+ n(—2+375)—15?],
Sm,Co,; (for example, the basal-plane anisotropy constant )
K4 would be zero at all temperatujed.astly, diagonaliza- A& m)=[1—4n(—1+7n+4n°)
tion of HS2+ H ixing With the right values of the parameters +45£2— 45(— 2+ ) nE2+ 10584,

should reproduce satisfactorily the energy-level scheme in-
volved in the calculation of the anisotropy constants, while B4(&,7)=5(1+ n) & — 2+ p(—4+975)—21£2],
the approach described in Ref. 6 cannot do so in case of
strongJ mixing. As(&,m)=156(1+ {4+ 5[ — 7+ n(—22+37)]}

(2) The linear model allows to use the phenomenological +2882— 147(— 4+ 37) E2+63¢%)
free energy expressidi5), neglecting terms of order higher
then the sixth. Outside the boundaries of the linear theory, B(¢, 7)=—(1+ 7)(1+ {4+ [ —14+979(—4+57)]}
generation of significant highest-order anisotropy constant is
possible® but only if the CF potential cannot be regarded as +105¢%—210p( — 1+ 37) £+ 9457,
a perturbation with respect to the exchange interaction; in

— _ 2
this paper it has been shown that theixing cannot gener- ~ 6(¢: 7)=[1+29[3+27(1+67)(-5+1677)]

ate, by itself, appreciable terms of order higher than the +1052+ n{8+ y[ — 20+ »(—56+157)]1})
sixth, and that Eq(15) remains correct.
(3) Numerical calculation€ allowed to infer that the X E2— 4729 — 1+ 2(— 1+ n) p]&*+ 1039%°],

presence of-mixing results in a smoothing of the tempera-

ture dependence &€4(T), which remains non-negligible at  Be(£,7)=—211+ 7)&(1+ n{4+ y[—19+ n(—46
higher temperatures. An analytical explanation of this fact +75 4 60£2—30m(— 4+ 157 £2+ 495¢4
can now be given; while in absence #Mmixing effects the i+ 60¢ 4 "¢ 50,

only contribution toK} is proportional toBS(x), for Snt* As(&,m)=TE4— n[— 24+ n(110+ {600+ [ — 556+ 97
this constant has the same temperature dependerﬁﬁx)f.

Since the generalized Brillouin functions satisfy the (—264+257)]})]+ 2252+ 7{8+ 5[ — 26+ n
inequality (—68+27n) ))&~ 4455 — 2+ p(—4+57) ¢’
+1930%9},

Bj(x) _BJ(X)
—>—

B7(&m)=(1+n{—1+ 9[- 6+ (41
Bg(oo) BT(O@) 27 (&) =1+ {1+ 9[—6+ @41+

X {204+ [ — 463+ 2257(— 6+ 77)]P)]

if n<m (see Fig. ], the observed behavior can be accounted —378:2—1897{8+ 5[ — 48+ n(— 112

for; not only the absolute magnitude, but also the tempera- +2257) 112+ 17325 — 1+ (— 2+ 97)]
ture dependence of the anisotropy constants is strongly af-
fected byJ mixing. X £4—13513%5}.
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