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Low-temperature static and dynamic behavior of the easy-axis Heisenberg antiferromagnet
on the Kagome lattice
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The antiferromagnetic Heisenberg model with easy-axis exchange anisotropy on the Kagome lattice is
studied by means of Monte Carlo simulations. From equilibrium properties, we find that the values of the
critical exponents associated with the magnetization at the critical tempefatuery with the magnitude of
the anisotropy. On the other hand, the spin-spin autocorrelation functions have a stretched exponential behavior
with a power-law divergence of the relaxation time at a glasslike temperaurd .. From nonequilibrium
dynamics at a fixed temperature bel@y, aging effects are found which obey the same scaling laws as in spin
glasses and polymers.
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I. INTRODUCTION to configurations with uniforniferromagnetigand staggered
(antiferromagneticchiralities, respectively. The structure of
The Kagome spin system has attracted much interest, bothese ground states allows for the formation of collective
theoretically and experimentally. Because the geometry ofero-energy spin rearrangements, called weathervane de-
the lattice consists of corner sharing triangles in a layeffects, that permit the system to explore the ground-state
which surround hexagons, spin systems are highly frustrateghanifold. These excitations involve the continuous rotation
when antiferromagnetic interactions are presentthe case  of the spins on two of the sublattices about the direction
of the nearest-neighbor antiferromagnetic spin-1/2 Isingyefined by the third. The defects may either traverse the en-
model, the ground state is disordered and the spin-spin Cofre |attice (“open” spin folds) as in theq=0 state or form

relation function decays exponentidllgt zero temperature. locali | “l " spin fol in th %
This behavior differs from that which occurs in other peri- (i;?ééfflm?soepes(l:?gos;d spin folds) as in the 6/5 \/§)

odically frustrated 2d Ising lattices such as the triangular an . . . . .

? . : It is known that most quasi-two-dimensional magnetic
fully frustrated square lattices where the correlation funCtlonmaterials exhibit some kind of spin anisotropy which may be
decays as a power lai Frustration also leads to a larger P Py y

macroscopic entropyin the Kagome lattice compared to the °f e easy-axf® or easy-plan@ type. Easy-plane @ mag-
triangular latticé® net§ have attrqcted attention due to the' [')OSSIbll'Ity of a topo-
The classical isotropic Heisenberg antiferromagnet on théPgical Kosterlitz-Thouless phase transition which may ex-
Kagome lattice also has a ground state with macroscopiBiPit glassy behavior different from that found in
degeneracy. Various perturbations such as quantu,ﬁonvennonal site-disordered systefhdhe amount of inter-
fluctuations’® or the addition of other couplings including €st devoted to easy-axis magnetic systems has been consid-
further neighbor interactiond, easy plan¥ or easy-axis erably smaller, especially with regard to the study of dynami-
anisotropy:? and Dzyaloshinski-Moriya interactiod have  cal properties. Kuroda and Miyashita (KM) have
a strong effect on the ground-state manifold. There has bedpreviously studied the Ising-like Heisenberg antiferromagnet
a great deal of controversy about whether magneti®n the Kagome lattice using Monte Carlo methods. They
ordef®*1¥xists in the ground state or if it remains have shown the existence of a phase transition at very low
disordered® Two particular coplanar and ordered states,temperature with an exotic ordered phase which has no spa-
called theq=0 and the (/§>< \/§) configurations, are fa- tial long-ranged order, and hence shares some similarities to
vored by entropy effects and this effect is often referred to aspin glasses. In the present work we study both the equilib-
order by disorder. The latter ordered st&té®is the one that rium and dynamic properties of this model.
is favored or perhaps even a mixed disordered state of both The paper is organized as follows: in Sec. Il we describe
structureg?® the model and our methods of calculation. Section Il de-
A chirality x vector characterizes these ordered configu-scribes the equilibrium properties of the model and the criti-
rations and is defined as the pairwise vector product clockcal exponents deduced from finite-size scaling. Results for
wise around a triangle the spin-spin autocorrelation function are also given in this
section. A good fit is obtained using a functional form which
5 has been used to describd 8pin glass€€ and other com-
= ——[S,X S+ $,X S5+ S5 X Sy, (1)  plex system$®"?°A characteristic timescale diverges with
(3\/§) a power law at a temperature close to the static critical tem-
perature. In Sec. IV, we study the dynamical behavior below
where 1,2,3 label the three sites in the unit cell and fornthe critical temperature. The spin-spin autocorrelation func-
three interpenetrating triangular sublattices. The two orderetdon exhibits aging effects characteristic of glasses. We sum-
states mentioned above are shown in Fig. 1 and correspondarize our results in Sec. V.
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FIG. 1. Isotropic Heisenberg antiferromagnet on the Kagome lat@ehe g=0 state in which the spins on each of the sublattices are
parallel to each other and make an angle of 120° with the spins on the other two sublatti¢estaady/3 % \/3) structure has a larger unit
cell. The+ and — on the triangles indicate the chirality and the circles describe the open and closed spin folds in thg=staimsd
(V3% /3), respectively.

Il. MODEL AND METHODS other localized defects are observed in these snapshots. Fig-

ure 2 shows a typical configuration at very IGwn the case

of A=2. The lower panel shows they components of the

individual spins and the upper panel shows the correspond-

H =JE (S'S[+S/S/+ASS)). (2) ing z component of the magnetization on each upward
=< traingle. A localized defect is observable which corresponds

where &%, a=x,y,7) represents a classical three componentto a triangle with two spins up and one down and zero chiral-

spin of unit magnitude located at each sitef a Kagome ity. Both the magnetization and heat capacity exhibit critical

lattice and the exchange interactions are restricted to neare%?hav_Ior at a f|n|t_e temperaturé, correspond_lng_to_ the
neighbor pairs of sites. The parametér describes the reaking of thez axis gp-down symmetry and is similar to
strength of the exchange anisotropy. We restrict our attentiof{'® 2J ferromagnetidsing model. _ _ o
to the case wherd>1 represents an easy-axis anisotropy. /& employ Monte Carlo methods using a single spin-flip
The limit A—1 corresponds to the isotropic Heisenbergh€at bath algorithm to study lattices containNgpins with
model, whereas the limi— corresponds to an infinite Periodic boundary conditions. The number of spins is related
spin-Ising model. The model has a macroscopic ground-staf@ the number of unit cells a@d=3L?, whereL is the num-
degeneracy for alh=1 with a ground-state energy per site ber of up triangles in the horizontal direction. We have cal-
given by —2(A2+A+1)/(A+1). culated various thermodynamic observables such as the in-
The ground state of the system far-1 corresponds to a ternal energy, the specific heat, tlecomponent of the
configuration, in which the spins on each triangle form amagnetization as well as the associated susceptibility and
distorted 120° planar state with a net nonzero magnetizatioBinder cumulant® Our numerical data are analyzed by using
in the =z direction whose magnitude is related foas finite-size scaling theory and the histogram metfd&*'to
|m? =(A—1/A+1). The local chiralitysx is normal to the extract the critical exponents of this model. A reweighting
plane ofeachtriangle but it does not show any evidence of method is combined with our single spin-flip algorithm in
long-range order. Miyashita and KawamtfrgMK) have order to obtain the observables as continuous functions of
previously studied the same model on the triangular latticemperature nedf.. We first measure the specific heat using
and observed a nontrivial degeneracy related to the rotatiohe MC simulations on a discrete temperature grid and this
of the magnetization vector in Fhe plane of the trlangles._lnsteIO yields an estimate of the temperatligeat which the
contrast to the corner-shared triangles of the Kagome latticgpecific heat is maximum. Using this estimate, the histogram
t_he triangular lattice shares edges and theregs-Q §ub|at? Q4(E) of the number of spin states with energyis con-
tice order atT=0. _There are also ‘two se_quenual finite- giructed from MC runs at the temperatufg over a large
temperature topological phase transitiriS with the lower  ye intervalAt. This procedure allows us to obtain the av-

transiti_on.corresponding to the onset of a power-law decay o rage value of any observalfeas a continuous function of
the chirality. The same degeneracy arguments of MK app'XemperatureT nearT, as follows:

to the Kagome case but at finite temperature this degeneracy

seems to be lifted by an order from disorder effect andzthe

axis is preferred. This could be related to the fact that, in the C(TToYE

Heisenberg limitA=1, the weathervane modes described in (Q)= SeQ(E)Qo(E)e 0 3

Fig. 1 can rotate about any axis whereas for1 these EEQO(E)e‘(Tfl‘Tal)E '

excitations select the axis. Monte Carlo snapshots of the

spin configurations at very low temperatures reveal an exotic

phase for which there is no evidence of long-ranged spatiavhereQ(E) is the microcanonical average of the observable.
order of the individual spin& Both weathervane modes and This method has been used quite succesfully to extract criti-

The model is described by the following Hamiltonian,
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define a meaningful timescale associated with relaxation. In
the aging regimeC(t,t,,) is waiting time dependerit>*Ag-

ing is a general phenomenon which occurs in a wide variety
of off-equilibrium materials, as, for example, glasses. The
phenomenon has been widely studied in disordered systems
such as spin glassé&frustrated systents,and in the phase-
ordering kinetics of the Ising ferromagrfétand is associ-
ated with a slow domain dynamics.

IIl. EQUILIBRIUM PROPERTIES

We have used our MC method to study lattice sites
=6,12,18,24,36,48,60 and have used-3x10° Monte
Carlo step@ICS) for performing our measurements after
discarding the first % 10* MCS to reach thermal equilib-
rium. In the reweighting analysis, it is important to take
as large as possible to have good statistics. We have used
At=1.2x10° to At=2.6x 10° MCS for small and large lat-
tice sizes, respectively. Also, because the energy is continu-
ous, we have used both 10000 and 30000 bins for the his-
tograms in order to check that the size of the bins did not
affect our numerical results. In the results that follow, the
magnitude of the exchange constdris set equal to unity.

The critical temperatur&, can be determined by compar-
ing the reduced Binder cumulant of the magnetizatidp,
=1—(M$/3(M?2)?, for lattices of size. with lattices of size
L'=bL as shown in Fig. @) for the case of the anisotropy
parameterA=2. In the limit of large system sizes, the cu-
mulants should cross at the critical temperattfeand have
a common valudJ, =U*. However, due to finite-size ef-
fects, it is necessary to extrapolate the crossing points to the
limit b—0.%% Our results using the Binder cumulant cross-
ing method® to estimate the critical temperature are pre-
sented in Fig. ®). The points represent the temperatures at
which the order-parameter cumulant fof crosses the cu-
mulant forL=12 orL=15. There is a considerable scatter in

FIG. 2. A Monte Carlo snapshot of the spin configurations atth® data and care must be taken to use only results Wwith

low T for the caseA=2. The lower panel shows they spin plane.

sufficiently large to be in the asymptotic region where a lin-

On each triangle there is one spin in thdirection, but there is no  €ar extrapolation is justified (1/m<2.2). Using this
spatial sublattice order. The upper panel shows the total magnetiz&€thod, the critical temperature is estimated to be
tion on each upward triangle for the same spin configuration. There= 0.077+0.001. This value is slightly lower than that ob-

is a net magnetization in thedirection.

cal exponents of both discréteand continuou€ 32 spin

models.

tained by KM from phenomenological renormalization of the
magnetization, but lies within their error bars. Hysteresis is
observed neither in the order parameter nor in the energy
near the critical region. In addition, no double-peak structure

We have also studied dynamical properties of this modeWas found in the energy histograms and the Binder-energy
by considering the double-time spin-spin autocorrelationrcumulant evaluated atT. yielded the result U*

function

1
Cltt) = | 2 St (t+ty) ). (@)

=0.666665(7) for large., consistent with the valué ex-
pected for a continuous transitidh.

Finite-size scaling results for the order paraméfer, the
first temperature derivative of its Binder cumulant, the sus-
ceptibility y=N/T((M2)—(M)?), and the specific heat are

To measure this quantity at a given temperafliree start  shown in Figs. 4a)—4(d), respectively, on a log-log scale.
from a random configuration at high temperature and rapidlyAccording to the standard theory of finite-size scaling, the
quench to the working temperatufie We then wait for a  equilibrium magnetizatiotM, should obey the relatioM,
time t,, and measure the autocorrelation funct®ft,t,,) for ~ ~L 2" for sufficiently largeL. Figure 4a) shows our re-
subsequent times t. The results are averaged over many rasults of a finite-size scaling analysis for the order parameter
dom initial states. In equilibrium one expedigt,t,) to be  M,. Excluding the smallest two lattice sizés=12 and 15
independent of,,, and it is only in equilibrium that one can from the fitting procedure, we obtained the value of the ex-
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FIG. 3. (a) The order-parameter Binder cumulddi (12<L<60) plotted vsT obtained by optimized reweighting in the case/fof
=2. (b) Estimates forT, plotted vs inverse logarithm of the scale fackorL'/L.

ponent ratioB/v=0.20+0.02 which is significantly larger
than the 2l Ising valuep/v=1/8 . =L¥y((0). In Fig. 4b) we show that this prediction is
The behavior of the reduced Binder cumuldnt at the  obeyed quite well. The value of the static exponentb-
critical point can be used to find the value of the criticaltained using a least-squares fit i3s3/0.98+0.02, which is
exponentv. Finite-size scaling theory predicts at that remarkably close to the two-dimensional Ising value 1.
U, =Uo(tLY") with t=]|1—T/T, and the temperature de- The magnetic susceptibilityy has the scaling formy

rivative of U_ at T, should obey the relatiorJ/(T,)
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44 T T T T T T T
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16 1 a2t ® -
-1.65 I J 4t - J
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A7t . E 3
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c . o} 4
< -
18l ] - os2f " Slope=1/v=0.98 £ 0.02 1
N 3t P -
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FIG. 4. Finite-size scaling dependence of the critical propertie8 fo? (a) The order parametédl, at T, (b) the temperature derivative
of the Binder cumulant associated with, at T, (c) the maximum of the susceptibility™®* and(d) the specific heat maximur@™a*
plotted as a function of on a log-log scale.
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TABLE |. Results for the static critical temperatufe and the 1
exponentsy/v, B/v, andv for various values of the anisotropgy.

A T, ylv Blv v

11 0.036:0.006 1.44-0.07 0.36:0.05 0.97-0.06

15  0.0670.001 1.6%-0.05 0.22-0.04 1.03-0.04

2 0.077:0.001 1.64:0.03 0.20:0.02  0.98-0.02 ooy

3 0.076+0.001 1.66-0.05 0.18-0.03 0.99-0.03

5 0.064+0.002 1.6720.04 0.170.03 1.0x:0.03

8 0.052+0.003 1.6720.04 0.16:0.01 1.09-0.06

14 0.0370.001 1.76:0.05 0.14-0.01 1.02:0.04

20 0.030:0.001 1.730.03 0.13-0.01 1.03-0.04 oo R |
30  0.022:0.002 172004 0.13-002 1.02:0.04 1 10000 100000
~L"", and Fig. 4c) shows a least squares fit to our results ~ **° [,

using this form and we findy/v»=1.64+0.03 which is 8000 [ | 2 ®

smaller than the @ Ising valuey/v=7/4 and also the value
obtained by KM. The specific heat was also calculated, but it s000 |-
is much more difficult to analyze because of the small num- :
ber of points used and the scatter in the data was too large t¢ 5|
extract a reliable estimate far/v. C,,,, should scale in the T 000 | o0
critical region asC"®=C,+aL®”, with C, representing 3000 - N
the regular part. From our fitting proceduf,= 0 yields the I 0z
best straight line for large sizes with slope/v=0.07 3 Ve o1 s oz om o3 om e
+0.04 . Al !

The same analysis has been carried out for other values o ol
the anisotropyA and the results are summarized in Table I. 005 o4 ot oz
The critical temperature increases from zero for small devia- T
tions of A from unity, attaining a maximum nea&~2 and
e s o SOTeeTeramraures, T-04(0), 708 T-00900). 7

) ’ =0.0750) for A=2. The lines are fits to form given in E).

pr_oachesdzlero asin thle Casehofr;[he spln—llﬁ ant_lferrom::ljgnegg) The associated relaxation time as a function the temperature
Ising model. Itis not clear whether or not there is an ordere ogether with a fit to the power-law forit6). The inset shows the

ground state in the limiA—o. The critical exponents are temperature dependence of the expoHE).
plotted as a function of the anisotropy parameéten Fig. 5.
The values of the critical exponen® v and y/v appear to

7000

0.25 0.3 0.35 0.4

FIG. 6. (a) The spin-spin autocorrelation function for various

depend on the value & and approach the usuatZerro-
magnetic Ising values & becomes very large. Both univer-

'8 z oo ;A ¥ ¥ sality and weak universalif§ are violated in this system.
16 F 2 t : : By —— This nonuniversal behavior of Ising-like exponents has also
i Yy ot been reported for a two-dimensional systenXof spins in-
14T i teracting via both ferromagnetic and antiferromagnetic bonds
12 L - in the presence of an applied magnetic field which reduces

. ) . X L3 the symmetryO(2) in spin space t@,.%
Ty ¥ b N * ’ In order to understand the nature of this exotic structure in
08 L BAV=0.125 j more detail, we have also looked at the spin-spin autocorre-
e lation function using equilibrium dynamics at high tempera-
0.6 ] tures, whereC(t,t,) becomes independent df, for t,
04 | >10" As the temperature is reduced, the relaxation of the
I spins becomes slower and deviates from a simple exponen-
02 Pos I I . . _ ] tial form. We fit our data with the following functioff,

0 1
1 10

A fo(t)=

a b(T

S @~ (100, ®)
FIG. 5. Variation of the critical exponents with the anisotrdpy

obtained from the equilibrium properties. The symbols represent thevhere a,b(T),7(T),x(T) are all fitting parameters. As

measured values and the lines indicate the values expected for tis’own in Fig. §a) for A=2, our data are fairly well de-

2d Ising model. scribed by this functional form and we are able to extract the
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TABLE Il. Results obtained from high-temperature equilibrium 0.7
dynamics of the spin-spin correlation functi@t,t,): T is the 065 L @
transition temperature obtained from the equilibrium properfiés,
is the temperature at whioc(t,t,,) first has a nonexponential be-
havior; T is the critical temperature obtained from H@) where 0.55 |
the relaxation time diverge®; is the lowest value of the exponent

06 F

05
b(T) in Eq.(5) nearT, and ¢ is the relaxation time exponentin Eq. 3
(6). 80 45
0.4
A Te Ty T b, ¢ 0as |
1.1 0.036-0.006  0.0320.001 0.050 0.76 15 03l
2 0.077#0.001 0.07#0.002 0.100 0.75 13 0.95
8 0.052-0.003 0.050.001 0.055 085 0.74 ‘
0.2 : : : : :
30  0.022-0.002 0.0220.001 0.026 0.86 0.55 b 10 100 (1000 10000 100000
) ) 1
temperature-dependent relaxation tir@l) and the expo- (b)

nentb(T). The behavior of these parameters is depicted in 0.9 #t tatmm e psman--a-dsumi .oy gggee Vo000 ]
Fig. 6(b). The relaxation timer appears to increase sharply e N S

asT is reduced, and can be fit quite accurately by a power- hs
law divergence of the form 07t

3
T~(T=Ty) % ® S

The glass temperatuig, identified from the power-law di-
vergence of the relaxation time is slightly lower than the o4} A=30
critical temperaturel . obtained from the equilibrium mea-

surements for values oA which are not too large. FoA 031 ]
=2, it seems that there is a decoupling between the local- , . . . . .

spin degrees of freedom and the net magnetization on eact 1 10 100 ;1000 10000 100000
triangle. The composite spin variable ordersTatand the

local-spin variables enter a glassy phas&gat T... At larger _ FIG. 7. Autocorrelation functiorC(t,t,) vs the observation

values ofA the glass temperatufg, approaches the critical time t for different waiting timeg,, from bottom to topt,,=100,
temperatureT,.. As will be shown in the following section, 200; 2000, 10000, 25000, 50 000(a} T=0.04 forA=2 and(b)
T, signifies the onset of aging phenomena, and it is |mposT 0.01 forA=30.

S|ble to define a timescale below this temperature, since the

system is in a frozen glassy state. shows an explicit dependence on both timhgg over a wide

The exponenb(T) is plotted in the inset of Fig.(B). Itis  range of time scales. Aging can be observed in real systems
temperature dependent and lies in the rabgeb<1 for  through different experiments. A typical example is the zero-
Tg<T<T*, whereb;=0.75,T;=0.071, andT*=0.1 for field cooling experiments, in which the sample is cooled in
AZ2 . The nonexponential behavior sets in at temperaturegero field to a subcritical temperature at time0. After a
below T* . The parametex(T) which characterizes the waiting timet,, a small magnetic field is applied and sub-
short-time behavior lies in the range<(T)<0.1 and de- squently the time evolution of the magnetization is recorded.
creases with temperature. A summary of our relaxation relt is often observed that the relaxation becomes slower as the
sults for a few values oA are given in Table II. waiting timet,, is increased.

The relaxation time exponem is also nonuniversal and We have measured the behavior@ft,t,,) as a function
decreases in value for larger valuesfofBoth nonexponen- of the observation time, for different values ot,,, A, and
tial relaxation and a diverging relaxation time are features ofl. We have used 1:610° MCS with a lattice sizé. =36 and
glasse® and this behavior has previously been seen in frusaveraged the results over approximately 100 different trials.
trated systems without disord&r. At high temperature$>T,, we found that the system does
not exhibit aging, since for any value Afthe autocorrelation
functionC(t,t,,) is homogeneous in time and independent of
ty -

In order to further study the dynamics of this model, we In Figs. 1a)—(b) , the behavior of the autocorrelation
have carried out some numerical experiments focused on rédnction clearly confirms the presence of aging in this model
vealing the presence of slow dynamics in conjunction withfor all values ofA>1 at very low temperaturéB<T,. For
history-dependent phenomena which is generally referred ttarge waiting times and<t,,, the correlations are indepen-

s “aging.” These features are most easily found in simula-dent of the waiting time,,. However, fort>t,,, the curves
tions of the two-time autocorrelation functi@(t,t,) which  show an explicit dependence on both times indicating that

IV. OFF-EQUILIBRIUM DYNAMICS
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0.65 T T T T T T T 0.65 T tw=1000f)
° (@ 1,=25000 —-5---
0.6 . t,=50000 -
0.55 |- 0.6 1
05 |
0.55
;? 045 | 5
53 ]
© o4t 05 L
0.35
03 | 045
025 |
02 1 1 1 1 1 1 1 04 : . : . :
.19-05 0.0001 0.001 0.01 0.1 1 10 100 1000 0.0001 0.001 0.01 0.1 1 10 100
t, ()4, (1)
FIG. 8. Autocorrelation functio(t,t,,) vst/t, atT=0.04, for 1 i ' ' j t,=10000 —e—
A=2. ty=25000 ----g----
095 (b 1,=50000 - A
equilibrium has not been attained within the time of the 09 ="
simulation and the correlation falls to 0 for-%. This sce- 085 |
nario has been called weak ergodicity breakihtf The fluc- ~
tuation dissipation theorem holds for short times but is vio- g 08
lated at longer times. 075 |
We have attempted to find an appropriate scaling law for
the aging curves. A knowledge of the scaling form could give 07
some insight into the nature of the underlying dynamical 05 |
process, even if there is no theoretical basis for determining '

the scaling functions. The simplest scenario is naive aging of 06 : : : : : :

the form 1e-05 0.0001 0001  0.01 0.1 1 10 100
¥,
t FIG. 9. Data collapse of the curves shown in Figs) and 1b)
C(t,ty)=f - (7)  atlarge waiting times fofa) T=0.04 andA=2 as a function of the
w

time reduced variablg (t+t,) #—tL #]/(1—u) with ©=0.8

in the region where bothandt,, are large. and(b) T=0.01 andA=30 as a function of/t,,.

In Fig. 8 we showC(t,t,,) as a function ot/t,, to see if
this naive form of scaling holds. Except for the largest valueresults for A=30. This simple scaling has also been ob-
of t,=50000, we observe a departure from naive scalingerved in the 8 Edwards-Anderson spin gla8!"*
with the function C(t,t,) increasing whert>t,, and de-
creasing fort<t,, at fixed values ot/t,, ast,, increases. A
“superaging” behavior as observed in mean-field spin
glasses or the Sherrington Kirkpatri¢gK) modef? could be In this work we have performed a numerical study of the
expected for smaller waiting times, but the fact that the curvawo-dimensional easy-axis Heisenberg antiferromagnet on
for the largest waiting timet,, =50 000, lies below the next the Kagome lattice by computing its static and dynamic
smaller valuet,,= 25 000, could be explained as follows: the properties. From the static properties, we have extracted the
system is in a “subaging” scaling region where the relax-critical temperature and the critical exponents associated
ation of older systems becomes faster when plotted versugith the magnetization, the susceptibility, and the correlation
t/t,, although, when plotted versus the older the system length, respectively. Our result for the critical temperature
appears to exhibit the slower the relaxation. Indeed, as seaybtained from the Binder cumulant method is in agreement
in Fig. Ya), a good collapse in the asymptotic region of thewith that obtained by KMRef. 12 within statistical errors.
largest waiting times is obtained by using a variable used irOn the other hand, our results for the critical exponents in-
glassy polymef§ and recently in a topological spin dicate that this system has a nonuniversal phase transition.
glass?**namely[ (t+t,)* #—t1 #]/(1— ), where in our  Namely, the values of the exponeysand y associated with
case the valugt=0.8<1 is used. This subaging effect has the order parameter and the susceptibility vary with the mag-
not only been observed in glassy polynférsut also in 2i nitude of the easy-axis anisotrogy However,« and v re-
site-disordered spin glass¥s. main unchanged and correspond within errors to tthésihg

For larger values of the anisotropy, our analysis of thevalues and thus weak universality is also violated. Although
largest waiting times shows that simple scaling holds, comthe magnetization indicates a finife,, Monte Carlo snap-
patible with the full aging scenario. Figuré® shows the shots of the individual spins below this temperature do not

V. SUMMARY
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local degree of freedom could be the weathervane mode or
the defect observed in Fig. 2.

Maegawaet al*® have reported an observation of succes-
sive phase transitions in the Kagome systems
RFeg(OH)s(SO,) [ R=NH,4,Na,K]. Susceptibility cusps
are observed at two closely spaced temperatures that are
about 10% of the corresponding Curie Weiss temperatures.
These transitions could be explained in terms of the ordering
of the magnetization on each triangle at the upper tempera-
ture T, followed by a spin freezing of the local spins at the
lower temperaturd .

Below T4, we have found clear evidence for the presence
of aging effects in the autocorrelation function from off-
equilibrium dynamics. The spin-spin autocorrelation function
depends on both times and the dynamics becomes slower for
larger waiting times. An analysis of the autocorrelation func-
tions from scaling forms used in polymer glasses and spin
glasses has shown different behavior. Namely, a subaging
behavior at low values ok is seen where the relaxation time

indicate any long-ranged spatial order. Rather, the individuaPf the system grows more slowly than the waiting timeas

spins appear to be in a frozen state similar to a glass.

observed in @ spin glasse$! polymer glasse®® and struc-

7 .
We have studied the two-time spin-spin correlation func-tural glass] whereas for large values &; a full aging be-
tion, C(t,t,,), at high and low temperatures, respectively. wehavior describes the data well, where the relaxation time of
have found that the high-temperature equilibrium correlatiofn® System scales with its adg as observed in & spin

function is described very well by the functioat™*
x exd — (t/7)°] suggested by Ogiels¥i over the entire time

glasse$%**We are currently extending our investigations of
this system to include the effects of a small applied magnetic

and temperature range. Nonexponential relaxation sets in atli!d on the aging behavior. This will enable us to check

temperatureT* >T.. The relaxation timer increases ac-

cording to a power law and diverges at a temperailye

<T. where a transition to a glassy phase is located. Figure

10 shows our results obtained for the temperatigd g,

whether the fluctuation dissipation theorem is violated and to
study the long-term memory of this model.
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