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Role of nonpairwise interactions on phonon thermal transport
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In this paper, the phonon system for a perfect silicon lattice is obtained by means of a model considering a
phenomenological potential that includes both two- and three-body contributions. Phonon dispersions are
discussed, and anharmonic contributions to the phonon Hamiltonian are evaluated. The model is compared
with a model involving a pairwise potential, previously used by the author in the calculation of silicon thermal
conductivity. The equation of motion is solved for both models, obtaining phonon dispersions practically
indistinguishable and in good agreement with the experimental data. The role of nonpairwise interactions in
phonon-phonon-scattering processes, relevant for the calculation of thermal conductivity, is then discussed.
The thermal conductivity obtained with the present model including two- and three-body interactions has a
good agreement with the experimental data, better than the one previously achieved with the model involving
a central potential.
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[. INTRODUCTION conductivity is that a pairwise potential can be inaccurate in
the determination of a phonon system and a phonon anhar-
To obtain the phonon system of a lattice, the first step is tanonicity. An approach to determine the thermal transport
solve the equation of atomic motion, deriving the forces actwith a many-body potential, notwithstanding the complexity
ing on the lattice sites from potential-ener@y) functions of ~ of the problem, is presented here.
the particle coordinates. A model of the lattice is then neces- The comparison of the phonon frequencies, extracted by
sary with the potentiaV(rq, ... ry) depending on thé&l-  means of equation of the motion with two different potentials
lattice site positions. For certain materials, the choice of thépairwise and many body shows that the dispersion rela-
interatomic functionV required in dynamic simulations is tions are practically indistinguishable and in good agreement
still an open problem that calls for a large fraction of theWith experimental data. The phonon-phonon-scattering
activity done in the condensed-matter physics_ prObab”itieS with a nonpairWise interaction are then esti-
Fitting the potential on experimental data, with a param-mated and the thermal conductivity for a silicon sample
etrization of the functions that appear in its analytical form,evaluated.
allows to design a phonon system suitable to discuss, for Itis then possible to give an answer to the problem of the
instance, mechanical and thermal properties of the materialole and accuracy of the pairwise potential in the model of a
One of the more complex tasks is the determination of thé®honon system.
phonon thermal conductivity in a perfect lattice or in a lattice
with defects(pointwise or extended defegtAssuming the
phonon distribution to obey the Boltzmann equation, the de-
viation from the equilibrium distribution caused by a thermal
gradient can be obtained by means of several approaches to Assuming the lattice behavior to be controlled by an in-
solve the transport problefisee, for instance Ref)1 teratomic potential depending on the coordinates of the
The major problem that one faces in the calculation ofatomic sites, the simplest analytical form that can be used is
thermal resistance is the determination of phonon-scattering sum of pairwise terms, with the energy of a pair depending
probabilities. Usually, the probability rates are considerecdbn their relative distance, that iv,-j=V(|rij|), wherer;; is
within a relaxation-time approximatidn? often assuming a the vector joining the two lattice points at thandj sites.
continuum hypothesigsuch as Debye and Einstein models Many-body forms have been proposed, for instance, the
for acoustic- and optical-phonon branchesn this frame-  Keating potential, widely used to study elastic and static
work, the interatomic potential turns out to be inessential forproperties of covalent semiconductors and applied to the in-
the development of calculations. vestigation of defect vibrational modes in diamondlike
As proposed in Ref. 7, an iterative approach to the Bolt-crystals!®!! The Stillinger-Weber potential was the first at-
zmann equation allows us to handle a realistic atomic modetempt to construct a potential for silictrbased on two-body
considering in a rigorous way the three-phonon scatteringnd three-body terms, and depending on the site distances
processes and the phonon scattering from lattice defects. Tled angle®) between adjacent lattice bonds with a vertex at
iterative approach was applied to rare-gas crystals and tthe lattice site. The structure of the potential favors the con-
diamondlike structure$C,Si and G&®° where a pairwise figuration where coé=—3, that is, a structure with angles as
potential was introduced to obtain phonon dispersions andlose as possible to that found in the diamondlike tetrahedral
three-phonon—scattering probabilities. structure.
A strong criticism to this iterative evaluation of thermal  The Stillinger-Weber potential gives a fairly realistic de-

II. PHONON SYSTEM
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scription of crystalline silicon. A modified form was tested in and the vibrationalharmonic and anharmoniproperties of
lattice-dynamics calculations in germanidfrHowever, the the real lattice. The model of the solid with a discrete reticu-
built-in tetrahedral bias of the potential creates problems irar lattice and a pair potential proposed in Ref. 9 gave good
the evaluation of energies of nontetrahedral polytypes foungghonon-dispersion relations and reliable information on the
under pressur& The family of potentials developed by Ter- weight of the various scattering mechanisms contributing to
soff are based on bond orders, where the strength of a bortlermal resistance; in particular, it was possible to evaluate
between two atoms depends on the local environrrent. the role of optical phonons in the scattering processes as a

The problem of the choice of the potential was not sofunction of temperature.
relevant in the study of thermal conductivity, since the usual However, the choice of a pair potential to obtain the pho-
approach to the thermal transport determination was throughon system can be open to criticism. It is then necessary to
the time-relaxation approximation. Now, we have at our disface the problem of the thermal conductivity estimation in
posal a different approach, an iterative drtbat takes into  the framework of a more general potential, including non-
account the true lattice, and works with phonon dispersiongairwise interactions.
and phonon-phonon interactions elaborated from a potential Here, the subject of the paper is to develop an approach
function. Therefore, the problem of the type of potential usedable to manage the phonon system with nonpairwise interac-
in the thermal conductivity calculation becomes relevant. tions and to discuss its anharmonicity.

Assuming a diamondlike lattice, let us denote by index Let us now introduce the new phonon assembly, where
the lattice site at one of the two positions of the basis in &he pairwise potential is replaced by a many-body potential,
generic cell. Assuming a central potent\{r), wherer is  having in mind the well-known Stillinger-Weber and Tersoff
the interatomic distance, and calling the displacement of forms, that is, introducing in the potential energy a three-
atomi from its average positioR; in the vibrating lattice, body interaction, with an explicit dependence on angj|e
one can expand in terms of the displacements the functiohetween bonds$-j andi-k with vertexi. The potential as-

V(r)=V(|ri]):* sumes the following analytic form:
dv 1 d?v Vij(rip)=[afy(rij) +bifo(ri) Ifc(rij), 5
Vij= 5 d(rij 1)+ 5~ ld(rrip*+ . (D) o e
dR 2 d(R?) where
where r;=R;+ 79— R— =R+ 5—», R=|R;|, and 2.1

d(rij-ri;) is the square of the distance variation due to the
displacement field. In this way, one obtains the following

expression for the second-order term of the potential energy
of interaction between andj atoms: with Z the site coordination numbef; andf, are suitable

functions depending on the site distancesis a cutoff func-
2)_ 1 5 tion truncating the potential at a point between the nearest-
Vij _E{F[ﬂj_ n]-[— ]+ B[Ry (g~ )], (2 neighbor(nn) and next-nearest-neighbémnn) distances for
the diamondlike lattice, as in the Stillinger-Weber and Ter-
where soff potentials. Developing the potential with respect to dis-
tancesr;;, ry. and angled;;, and retaining only the low-

bij= > b(rj Fic,0(cosb ) fo(ripfe(ri),  (6)
k#i,j

F=E d_V B= ii l d_V &) order terms, one obtains
R dR’ RdAR|RdR]
2
The coefficientd” and B depend on the equilibrium lattice V. = N d(ri-ri)+ E IV [d(ri-r;)]?
site distance. The force acting on sitean be obtained by DRy T 2 Ry Y
the total potential energy®=3,V{?) of the reticular cen-
:ﬁ(ras;cocr?sequently the equation of motion can be written in +2k %d[g(aijk)]"’ o @

. ) where derivatives are evaluated at lattice equilibrium posi-
Ma=-V,V :; {U'(m— ) +BRj- (g~ m)Rj} tions. The functiorg(#;;) is taken with the same structure
(4) appearing in the Stillinger-Weber potential:

whereM is the atomic mass. _ _ 9(6ij) = (cosbyj+ 1) (8)
An elementary excitation of the crystal in the harmonic
approximation will be represented by a phonon with waveThe first and the second terms in E@) have been already
vectorq, polarization indexp, and polarization vectog, . found in Eq.(2), since they refer to distance variations and
The phonon frequency will be indicated ly,,. The repre- are coming from the central part of the potential. The third
sentation here used for calculations can be found in Ref. 9 derm in Eq.(7) now describes the role of an angular variation
in Ref. 1. when the lattice moves from the equilibrium position. The
The aim of the work reported in Ref. 9 was to solve thevariationd[g(6;;)] is due to the displacement field of three
phonon Boltzmann equatiéhfor a solid having the structure adjacent lattice positionsy, .17, and n. As we shall see
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experimental data, and are exactly the terms disappearing
from the development of Eq10), where in the denominator
it is considered thaltr;;||ri| =R

The equation of motion becomes

M;h:_VmVi:F; (ﬂj_m)+B; Rij- (7= m)Rj

8

+ gRi- (m—m)Ry;

—
=}
2

j#FI k#iL]

8 8
+§Rij'(77]—M)Rik+§Rik‘(ﬂj_m)Rik

8
+§Rik'(77j_77|)Rij} (12

FIG. 1. Vectorsj; ,rix ,Rjj ,Rii join the actual positions and the with a new coupling constant

equilibrium positions of the lattice sitesy;, 77;, 7 represent the

lattice displacement field at thej, andk sites. Note the angle with — 1 9V

a vertex in the sité it is changing according to the atomic position == g @ (13
variations. The equilibrium position is giving a value @)s

=-1/3.

If only nn lattice site interactions are included, only three

later, the third term gives harmonic and anharmonic contri-Coupllng constant¥', B, ands, are involved in the equation

butions to the potential interaction of motion. . . . N
To handle the calculation in an .eas wav. the notation Before solving the equation and investigating the role of
y way, the new terms appearing in EG.2), let us remember that in

- m=dy; m—m=dy (9) Eqg. (12) on]y harmonic contributions have been cqns!dered.
Anharmonic terms also come from the angular variation but

is used. Vectors;; ,rix,Rij ,Rix, 7,1, , 7 are shown in Fig.  they are not shown in Eq11): obviously, they must be
1. The angle with a vertex in siiechanges according to the involved in the thermal conductivity calculations. Other an-
atomic position variations around the equilibrium position harmonic contributions can come from the mixed variation

cost=—1/3. d[rij-rij]d[cosaijk+1/3]2, but they are terms of the fourth
An obvious definition of cosine is order, usually not considered in the evaluation of thermal
(R0 (R 0) transport.
C0S03= ij T O ik T Qik (10 The new harmonic contributions can be easily inserted in

the framework of the calculation previously used in Ref. 9.

LM

. . . . The equation of motion is transformed into a linear homoge-
If in this formula, the denomlnatdr_rij||rik| is put equal to agg system of equations of the form

R?, terms that are relevant to obtain a proper phonon disper-

sion evaluation are lost. 6

The \_/ariation_due to the angular chardjgy( 0;;) ] at the E aa;sngF;Zea:O, (14)
harmonic order is then given by B=1
RAd[g(aijk)] where o is the phonon reduced frequency aeg are the
—(d R+ (di - R)2+2(d - R ) (e - R spatial co_mp_onents of the polarization vector re_lated to the
(dj- Ri)™+ (i Ryj) "+ 2(dhj - Risd (die- Rj) two atomic sites of the cell basithree for each site of the
+2/3(djj - Rij) (dij - Riy) +2/3(dij - Rjj) (di - Rij ) basig. The coefficients of the Hermitian matré,; for the

central potential are given in Table | of Ref. 9, here called

+2/3(di- Rir) (dj - Rire) + 2/3(di- Rig) (i Ryj) ag'g . These coefficients must be modified to include the con-

+1/9(d;; - R; )2+ 1/9(diy - Ry )2 tribution of the angular variations. The matrix coefficients
b become
+2/9(d;; - Rij) (dik - Rig) - (12)
_ -old
In Eq. (11) there are two terms of the formR(-d;;)? up= g5 T bagp, (15

=[Rij-(n;— 7)]? already found in Eq(2), meaning a re- ith

distribution of energy among the various contributions. TheV!t

last three terms in Eq11) are the most relevant terms to . .

obtain transverse-acoustic modes in good agreement with the Pap=&1Ngpt M5 for a=1,2,3 andp=1,2,3;
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FIG. 2. Lattice sites around the lattice positioon which the
sumsX~ in Eq. (17) are evaluated to obtain functiohs™ and P~
mixing coordinates of,j, andk sites. When the sum is denoted by
=7, the sites to consider are denoted by dots, and when the sum i
X7, the sites are crosses.

Dap= glN;’B’ +EM ;’B’ for «=4,5,6 and=4,5,6; FIG. 3. Theoretical phonon-dispersion cur¢esntinuous lines

for silicon, in comparison with experimental dgRefs. 21 and 22
The phonon dispersions obtained by the present calculation are rep-
resented by continuous lines, and those already proposed in Ref. 9
and used to calculate the thermal conductivity of Si by dotted lines.

bap=E1P g+ £2Q, 5 for a=1,2,3 andp=456;

bap=E&1P s+ £2Q, 5 for =456 andB=1,2,3; The values of parameters used for calculations are shown in Table 1.
(16)

with ¢'=a—3;8'=B-3, and Table I. The calculation done here needs only two parameters

instead of the four used for the model with the central po-

NE =S +(X +1)<x +E) tential. In fact, in the present work, the interaction between
ap ta=o [\ MB= o nnn sites is assumed to be zero: it can be thought that the nnn

interactions are included to a certain extent in the angular

1 1 variation, where three atoms are involved and two of them

M§B=Z - 2 - Xtaii (Xt’ﬁi§>a are at the nnn site distance.
t/#t

In Fig. 3, it is possible to see that the agreement of the
present calculation with the experimental dispersion data is
. 1 1 , : . : ,
| X5 || XepE S | XX - Q) good for optical branches. A little discrepancy is observed

2 2 for the longitudinal phonon dispersion at poirXsand L of
the Brilloiun zone.
* + + 1 1 . It is interesting to compare the roles of the various terms
. - - +— rpE—= . . . . . . .
Qap Et t,zt (Xm_2>(xt B z)exmxt ). (17 in equation of motion. As shown in Table I, in the new cal-

] o ) ] culation, one of the old parametdrgB can be put equal to
Herex, are vectors identifying four lattice points around the ;4.4 since its role is played by the new param&eiin the

lattice site under consideration, shown in Fig. 2: where the.. <o \vhereI'/B and = were both equal to zero, the

X L .
sum 1S denoEed bE. , the sites are those denoted by dOts’transverse—acoustic modes disappear. The nnn terms of the
and for theX ™ the sites to be considered are crosses. Func-

tionsN* andP~ are mixing coordinates gfandk sites. The er S%elavr\gtgbflieiin;:?hsptotfguilér?c;\r/\”:j?s Cgfsf:(lncr:e;ﬁh:rt])gund-
coefficients in Eq(21) are ' | p p

ary of the Brillouin zone, giving a better longitudinal mode

in X andL. In fact, if we consider the pairwise potential with
(18  only nn interactions, that is, with coefficienBs andI''/B

equal to zero, the longitudinal modes turn out to be practi-

The parameter,B, and=E can be used to fit the phonon- cally indistinguishable from the logitudinal modes of the

dispersion curves solving E¢L4) with the experimental data present model.

in Fig. 3, the phonon dispersions obtained by the present A ast comment must be devoted to the rolegefandé, -
calculation(continuous linesare shown in comparison with used in theb, , coefficients. As previously mentioned, in
those(dotted line$ already proposed in Ref. 9 and used to considering the angular variation, the denominator in Eq.
determine the thermal conductivity of Si with the central (10) is assumed to be dependent on the displacement field. If
potential. The figure also reports the experimental datdhe denominator were put equal®3, &; turns to be equal to
(diamond$.21?? A good agreement is obtained for both setszero. Inserting in the dynamical matrgg=0 and, for in-

of curves. The value of the parameters involved in thestance,&,=32 E/9B*, the transverse acoustid@A)-mode
present calculation and in the previous one are shown ihas a frequency much lower than the observed experimental

P§ﬁ:2t *

t/#t

. 32E _8
; 52—38—* 1+=5]-

. * —
; B*=B 5
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value. In particular, the TA frequency at the pokiton the  played by the displacement field is almost the same, the sum
Brillouin zone is strongly reduced, passing from 6.0 of these six terms is introduced in E3Q.9) estimating a new
x10'% 1 to 1.5x10'% 1, contribution of the form

IIl. ANHARMONICITY AND THERMAL CONDUCTIVITY (219+ 413+ 2)[Rij- (= ) 1L (o — m) - (g — ;) ]. o1

The third-order contribution to the interaction energy be- .
tween the two reticular centers iaandj sites, coming from 1 he same for terméA7)—~(A12), giving
a pairwise potential was previously given in Ref. 9, and it is

(5/9+11/3+ 10)[Ry; - (13— ;) I°. (22)
Vi(-3):EA[R” (g~ 73+ }B [Rij- (m—m)] Instead of Eq(19), the following equation is used to evalu-
6 2 ate the phonon-scattering probability:
X[ (=) - (g —p) ], (19
LOom=m)- (o= on) @ 1(3eB 1287 vB .
where Vii==% 8R2+?§? [Rij-(m—m)]
1 dj{1d[1dV
= | | = 1 3227
AR GR RdR(R dR } 20 5 B+3§v8>

In the evaluation of the angular variation, to obtain the X[Rij- (g~ )L — m)- (g — )] 23

phonon-dispersion relations, the development was stopped in
Eq. (10) to the harmonic contributions: anharmonic terms area factor 1/2 is inserted to avoid summing two times the same
of course present and give further contributions\/tﬁﬁ), contribution. For v=E/B=0.04, the first coefficient
modifying the scattering matrix of the three-phonon pro-changes by 12% and the second by 30%: the variations are
cesses. The terms of the third order, coming from the develsmall enough to justify the use of EqR1) and (22). It is
opment of Eq.(10), have the same structure as those of inthen easy to insert them in the iterative numerical procedure
Eq. (19), but contain vector®;, and (mp— ;) too. The full  for the calculation of thermal conductivity, the phonon
list of all the terms is given in the Appendix. Among these system here obtained with the two- and three-body interac-
contributions, Eqs(Al) and (A7) are of the same form as tions, and the anharmonicity described in E2p).
those of appearing in E¢19), and are going to renormalize  For the evaluation ofk proposed in the present paper,
the A and B coefficients. only three parameters are necessary: two of therBY are
No other contributions at the third-order can come from aevaluated from the phonon-dispersion data, that is indepen-
further development of the interaction energy. dent of the value of thermal conductivity, and the third is the
A lot of new third-order terms then appear: let us estimateanharmonic parameter. The low number of parameters is
their weight in the thermal transport of the material. due to the fact that only nn site interactions are considered,
In the numerical analysis, it is useful to introduce thewhereas in the previous calculatidfiour harmonic and two
adimensional anharmonic parameter- —8R”A/3B, de-  anharmonic parametetse’ were being used, with nnn sites
scribing the ratio betweeA andB. Using the experimental involved, too. Under the approximation given in this section,
data of the Groeisen constant, as done in Ref. 9 an estimateéne thermal conductivity for silicon is here evaluated in a
of the parametek is possible, obtaining a value 26 in  temperature range betwe& K and 250 K. In Fig. 4, the
silicon. results of the present calculation with the anharmonicity
All the new terms of the third order, Eq&A1)—(A12), are  given by Eq.(23) are shown. The upper continuous curve
multiplied by the factoE that is evaluated from the phonon- represents the thermal conductivity evaluated for an isotopi-
dispersion experimental data. Introducing the adimensionaally pure silicon crystal, whereas the lower curve shows the
ratio v=E/B, we have a new anharmonic parametethat  behavior of a sample with the natural isotopic composition.
is completely known: its value is very low<0.04). Due to  The value ofe is assumed to be 22, to have a good agree-
this fact, and assuming that in terntd1)—(A6) the role  ment at 250 K, between the theoretical calculation and the
experimental data in the case of an isotopically pure silicon
TABLE |. Values of the coefficients describing the interaction sample.
between nearest neighbors and next-nearest neighbors Relaxation-time approximation is avoided for the three-
(B,I'/B,I"'/B,B") for the model with a pairwise potential and val- phonon scatterings, but is introduced for boundary scattering
ues of the coefficients for the nearest-neighbor interaction in the,?n the form of r,=L/s,, whereL represents the character-
model with two- and three-body interactior,E/B). The values istic length in tﬁe sarr?pl@ ands, is the velocity of sound
of B andB’ are given in units of 1¥gcm 2s 2. for a phonon with polarizétion irgdqx
The role of the isotope effect is considered here, as in Ref.
9. The isotope effect on the thermal conductivity is due to
(two body) 2.2 45<10°2 0.06 —0.0075 0.00 point defects, with a mass difference in the lattice position
(two body and three body2.4 0.0 000 00 0.04 Where the defect is placed, giving a scattering probability
rate of a phonomp into a phonomy’p’ of the form

B B’ rre r''s EI/B
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FIG. 4. Thermal conductivity as a function of the temperature

for silicon, obtained with scattering probabilities coming from Eq.
(23). The upper continuous curve represents the thermal conducti

V_
ity evaluated for an isotopically pure silicon crystal, whereas the
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only three(two harmonic and one anharmonigarameters
inserted in calculations, instead of six used with the central
potential.

As a conclusion, the paper shows that pairwise and non-
pairwise potentials give the same phonon dispersions, but the
number of parameters required to fit the experimental data is
one-half for the model with a non-pairwise potential. In the
thermal conductivity evaluation, the renormalization of the
anharmonic coefficienté23), used in the phonon-phonon-
scattering probability, is able to give a better agreement with
experimental data, in the case of isotopically pure and natu-
ral silicon. Then, the use of a nonpairwise potential can give,
for certain materials, an improvement in the thermal conduc-
tivity evaluation.
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APPENDIX

Terms of the third order, coming from the development of
Eqg. (10) are

VA(Rj; - dij)(d;; - dij), (A1)

lower curve shows the behavior of a sample with a natural isotopic

composition.. The experimental data are obt.a?r?ed from Refs. 2.3—25. ARy, - dik)(dij .dij), (A2)
The dotted lines represent thermal conductivities evaluated with the
central potential as in Ref. 8. 1/3( Rik'dij)(dij . dij)' (A3)
o m[AM\2 1 V(R - diy)(d; - dii), (A4)
2\ M | N2
2/3(Rjj - dij ) (dij - di), (A5)
X 8(wgp— 0grp )N (1+NS, ), 24
(ap = @qrp) Mgl ap) 24 2(Ryj - diy) (dij - di), (A6)
where AM is the mass variation andgp the equilibrium 3
phonon distribution. If the defects are assumed to be present —13(Rjj-dij)”, (A7)
in a fractionf,; of the crystal sites, there will b f; centers 2
producing an elastic scattering. These defects are moreover —S/9(R;; - dij) “(Rik- di), (A8)
considered statistically distributed in both sites of the lattice 2
basis. —5/3(R;j - dij) “(Rjj - dig), (A9)
The agreement with experimental d&t&°is good. B RY
It is now possible to compare the results of the present SIA(Rij - dij)"(Ric- i), (AL0)
calculations with the data obtained in the previous péper, —2(R;i-di) ARy - ) (A11)
analyzing a phonon system with a central potential. In Ref. 8, 1Tk AT
the theoretical thermal conductivity at temperatures higher —2(Ry;-di)%(Rig- i), (A12)
than 100 K seems to deviate from the experimental data, and '
in both casegpure silicon and silicon with isotopic defegts —2(Ryj - dij) (Ri- di ) (Ry; - dig), (A13)
it is lower than the experimental data. Here, we can see a
better agreement with the experimental data, obtained with —4(Rjj- dij) (Rik- dij ) (Ryj - i) (A14)
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