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Two-dimensional phononic crystals studied using a variational method: Application to lattices
of locally resonant materials

Cécile Goffaux* and Jose´ Sánchez-Dehesa
Departamento de Fı´sica Teo´rica de la Materia Condensada, Universidad Autonoma´ de Madrid, E-28049 Madrid, Spain

~Received 19 October 2002; published 2 April 2003!

A variational method is introduced to study the propagation of elastic waves in two-dimensional periodic
systems. First, it has been applied to a binary system consisting of an array of high-density cylinders in an
epoxy background, where the advantages of the method are pointing out in regard with the well-known
plane-wave expansion formalism. Second, a comprehensive study is performed for the two-dimensional coun-
terpart of the ternary systems recently studied by Liuet al. @Z. Liu et al., Science289, 1734~2000!#. Numeri-
cal simulations predict that subfrequency gaps also appear because of the soft polymer that coats the cylinders.
A simple mechanical model is introduced to give a physical insight of the phenomenon responsible for our
findings.
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I. INTRODUCTION

The last decade has witnessed an increasing interes
the propagation of classical waves in periodic structures.
mous realizations are photonic crystals.1 For these new crys
tals, both theoretical predictions and experiments h
shown the appearance of frequency gaps for the propaga
of electromagnetic waves, which has been used for
achievement of new optical devices.

Quickly, those studies were extended to the propaga
of elastic and acoustic waves in periodic structures mad
materials with different elastic properties, which have be
named phononic crystals~PC’s!.2–7 These new materials ca
be of real interest, since a large contrast between the el
parameters is allowed. For example, systems compose
solid inclusions in a fluid are good candidates in order
obtain large gaps, which can lead to promising applicati
as a wide noise insulation.7–11Besides, their properties in th
transmission bands have been used to build refractive
vices such as lenses and acoustic interferometers.12 On the
other hand, more sophisticated combinations such as fl
infiltrated in a drilled solid13,14 or solid-solid systems15,16

have been demonstrated to produce full phononic band
for ultrasounds.

Several theoretical methods have already been develo
in order to study the elastic response of PC’s. Mostly,
calculations are based on the plane-wave expansion~PWE!
method, in which the wave equations are solved in the F
rier space.17 Nevertheless, PC’s involving media with a larg
contrast in their elastic properties are not easy to treat w
PWE because a large number of plane waves is require
obtain reliable band structures, and unphysical flat freque
bands can appear. Other methods such as mul
scattering10,18–21or the finite-difference algorithms22,23 over-
come those difficulties.

In this work, we present a variational method~VM ! that
offers an alternative procedure to compute the band struc
of PC’s. As a numerical example of its strength, first, w
have analyzed a two-dimensional~2D! system of Au cylin-
ders periodically embedded in epoxy. It will be shown th
0163-1829/2003/67~14!/144301~10!/$20.00 67 1443
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the VM can improve the PWE technique because of its fa
convergence and lower computational times. In regards w
the algorithms based on multiple scattering theory~MST!
and finite difference time domain~FDTD!, these techniques
are more suitable to treat the transmission/reflectance p
lem in finite structures and their comparison with the var
tional approach is out of scope of the present work. Ho
ever, our experience in dealing with those techniques24,25

indicates that the calculations of the phononic band struc
present several drawbacks from the computational poin
view. Thus, the technique based on FDTD requires a v
strong reduction of the discretization steps, while the te
nique based on MST requires a large number of terms in
multipole expansion.

The pioneering work of Liuet al.26 has motivated the
second application of the VM. The authors studied thr
dimensional~3D! PC’s consisting of cubic arrays of coate
spheres~the coating was a thin film of a soft material! im-
mersed in an epoxy matrix. They predicted the appearanc
a gap in a frequency range of two orders of magnitude low
than the one resulted by Bragg scattering. The origin of t
phenomenon has been explained as due to the localized
nances associated with each scattering unit~the coated
spheres!.26,27 Here, we employed the VM to analyze its 2
counterpart, i.e., lattices of coated cylinders in epoxy. Pre
ously, this system has allowed us to describe the resona
features in the transmission spectra through finite structu
as a result of a Fano-like interference phenomenon.29 Our
analysis shows that the properties of the 2D systems
comparable to the 3D structures, though some differences
observed. Finally, a simple mechanical model that u
springs, masses, and pendula has been employed as a
chanical analog that allows the understanding of the mec
nism of band-gap formation as well as its dependence
parameters such as the lattice parameter.

The paper is organized as follows. Section II describes
main ingredients of the VM, which is applied to a bina
system in Sec. III, where a comparison with the results
tained with the PWE is performed. In Sec. IV the system
coated cylinders is solved and discussed in terms of
known results in the 3D counterpart. Section V present
©2003 The American Physical Society01-1
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CÉCILE GOFFAUX AND JOSÉSÁNCHEZ-DEHESA PHYSICAL REVIEW B67, 144301 ~2003!
mechanical analog that allows an intuitive understanding
the previous results and, finally, Sec. VI summarizes
work.

II. THE VARIATIONAL METHOD

The wave propagation in an homogeneous solid can
strongly altered by inserting periodical inclusions of a so
compound with different elastic parameters. The periodic
clusions induce a wave scattering and destructive inter
ences can appear in some frequency ranges, leading to
bidden band gaps. Total reflection is then expected in th
frequency ranges. Moreover, the vectorial character of
elastic displacement induces a strong coupling between
shearing and the longitudinal motions. Therefore, the st
of how the modes propagate in these structures is
straightforward.

For 2D periodic systems, a partial decoupling of the el
tic motion is obtained by assuming that thekW -wave vector of
the incident waves is contained in the plane normal to
cylinder axis, which is taken as thez axis by definition. Thus,
a pure transverse motion is found along this directionuz .
This is decoupled from that taking place in the normal pla
ui ( i 51,2). The equations describing these distinct displa
ments can be expressed in the harmonic approximation

2r~r !v2uz~r !5“•@m~r !“uz~r !#, ~1!

2r~r !v2ui~r !5
]

]xi
@l~r !“•u~r !#1“•@m~r !“ui~r !#

1“•Fm~r !
]

]xi
u~r !G ~ i 51,2!, ~2!

wherer5(x1 ,x2) represents a position vector in the plane
the periodicity,“ is the 2D differential operator,r(r ) is the
mass density distribution, andm(r ) andl(r ) are the space
dependent Lame´ coefficients.

The usual method employed to solve Eqs.~1! and~2! uses
a PWE of the parameters inside the unit cell. Afterwards,
Bloch theorem is used to account for the periodicity of t
crystal. For a set ofng plane waves, the problem is reduce
to a matrix generalized eigenvalue problem. Fast comp
tional routines exist that allow to obtain the eigenmodes
the system by diagonalizing matrices of dimensionng3ng or
2ng32ng according to the case, Eq.~1! or Eq. ~2!, respec-
tively.

A solution of the equivalent problem for fluid system
was previously solved in the direct space.8 Here, the same
strategy is followed, and we formulate its version extend
to the case of elastic composites. Briefly, the method expa
the elastic displacements in a set ofN2 localized basis func-
tions with a functional form that satisfies the Bloch theore

uz~r !5(
,

N2

cz
,(

R
eik•Rf,~r2R!5(

,

N2

cz
,F,~r !, ~3!
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ui~r !5(
,

N2

ci
,(

R
eik•Rf,~r2R!5(

,

N2

ci
,F i~r ! ~ i 51,2!,

~4!

wherek is a 2D wave vector contained in the first Brilloui
Zone ~BZ! of the reciprocal lattice andf,(r ) are the local-
ized basis set. Each function in the set is a product of t
one-dimensional cubic splines~i.e., piecewiseC2-smooth
cubic polynomials,30! which is centered at theN2 nodes of a
2D grid defined in each unit cell of the lattice.

Inserting the expansions of Eqs.~3! and ~4! in Eqs. ~1!
and ~2! and making the projections on each functionf

k
(r ),

the following generalized eigenvalue problem is obtained

G,,kcz
,52v2P,,kcz

, , ~5!

Hi , j
,,kcj

,52v2Si , j
,,kcj

, ~ i , j 51,2;,,k51,N2!. ~6!

This leads to a 2N232N2 matrix problem for the in-plane
motions and aN23N2 problem for the out-plane motions
The matrix elements are

G,,k5E
cell

f
k
~r !“•@m~r !“F

,
~r !#drÄ(

R
eik•Rg,,k, ~7!

P,,k5E
cell

f
k
~r !r~r !F

,
~r !drÄ(

R
eik•Rp,,k, ~8!

Hi , j
,,k5E

cell
f

k
~r !

]

]xi
Fl~r !

]F,~r !

]xj
Gdr

1E
cell

f
k
~r !

]

]xj
Fm~r !

]F,~r !

]xi
Gdr ~9!

1E
cell

f
k
~r !“•@d i j m~r !“F

,
~r !#dr5(

R
eik•Rh,,k,

~10!

Si , j
,,k5E

cell
f

k
~r !d i j r~r !F,~r !dr5(

R
eik•Rs,,k, ~11!

whereg,,k, p,,k, h,,k, ands,,k are elements that can be ca
into integrals involving localized cells in the unit cell locate
at the origin of coordinates. Note that the method is var
tional with respect to theci or cz coefficients. Thus, the
convergence is achieved when a sufficient number of b
functions is employed in Eqs.~3! and ~4!.

As for photonic crystals,1 a variational principle exists
and the solutions can be thought to be the functions
minimize the functionalEf@ui #, Ef@uz#, associated, respec
tively, with the elastic problem describing the in-plane a
out-of-plane motions:
1-2



Ef@uz#5
1
E

cell
m~r !u“uz~r !u2dr

; ~12!
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2 E
cell

r~r !uuz~r !u2dr

Ef@ui #5
1

2

E
cell

l~r !u“•u~r !u2dr1(
i 51

2 E
cell

m~r !FU“ui~r !U2dr1(
j 51

2
]uj~r !

]xi

]ui~r !

]xj
Gdr

E
cell

r~r !uu~r !u2dr
~ i 51,2!. ~13!
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III. RESULTS FOR A BINARY SYSTEM: AU CYLINDERS
IN EPOXY

The parameters that induce the appearance of a ga
binary systems are the filling fraction, the lattice symme
the topology of the scatterers, and the contrast between
tic properties of materials.4,31,32The density contrast plays
fundamental role; inserting very high-density inclusions in
light host ~cermet topology!4 is the more efficient way of
obtaining wide gaps.

Here, as a test example for the VM, we consider an h
agonal lattice of Au cylinders in epoxy. Figure 1 shows t
dispersion relations of the elastic modes corresponding
crystal having a filling fractionf h5p/2A3(d/a)250.79,
whered is the diameter of cylinders anda is the lattice con-
stant. The elastic parameters employed in the calculat
were rgold519 500 kg m23, repo51180 kg m23, cl ,gold
53360 m s21, cl ,epo52535 m s21, ct,gold51239 m s21,
ct,epo51157 m s21. The modes propagating in the plan

FIG. 1. Phononic band structure along the two high-symme
directions of the Brillouin Zone~see inset! for an hexagonal lattice
of Au cylinders embedded in epoxy. The filling fraction is 0.79. T
continuous ~dotted! lines represent the in-plane~out-of-plane!
modes computed with the variational method. The symbols re
sent the results obtained by using a plane-wave expansion me
The shadowed regions define the complete gaps. The frequencv
are given in reduced units,a is the lattice constant, andct,epo is the
transverse velocity inside the epoxy.
14430
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~full lines! as well as those propagating along thez direction
~dotted lines! were computed with the variational method b
employing 32 nodes in each direction of the unit cell. T
results obtained with the PWE method by using a set of 9
PW are represented by the square~in-plane modes! and the
triangular~out-of-plane modes! symbols. A good agreemen
is found between the two methods. A gap separates the
persion curves of the in-plane modes as well of the p
transverse ones. A complete gap, resulting from the supe
sition of the two band structures, settles between the fou
and the fifth bands at a midgap frequency of about 0
reduced units.

The analysis of the band structures in Fig. 1 is straig
forward for the case of pure transverse modesuz because
their dispersion relations are the solution of a simple sca
equation, Eq.~1!. The gaps are the consequence of a destr
tive interference of the wave scattered in the periodic syst
The order of magnitude of the midgap frequencyvg , can be
estimated. Its value should be closer to the frequency wh
the band folding takes place~i.e., at the borders of the firs
BZ!, and this frequency is calculated by using an empty
tice approach. For example, the estimation of the midg
for the transversal modes is made as follows,

vg~M !'ct,epokM5
2pct,epo

A3a
50.57

2pct,epo

a
,

at theM point; ~14!

vg~K !'ct,epokK5
4pct,epo

3a
50.66

2pct,epo

a
,

at theK point, ~15!

wherekM ,K5ukW M ,Ku. The values~in reduced units! roughly
agree with the actual ones resulting from the band-struc
calculation, 0.49 and 0.52 for theM and K points, respec-
tively. This result points out that the gaps created by a Bra
scattering mechanism appear at frequencies related to
lattice periodicity. So, gap openings at very low frequenc
only can be achieved by using very large structures or v
low transverse velocity in the background. For example
gap in the range of few Hertz can be achieved with t
Au/epoxy system by using a lattice parameter of the orde
several hundred meters. Another parameter of interest in c

y
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CÉCILE GOFFAUX AND JOSÉSÁNCHEZ-DEHESA PHYSICAL REVIEW B67, 144301 ~2003!
trolling the band gap is the filling fractionf. Figures 2~a! and
2~b! show, respectively, the band edges of the first gap
its normalized width for the modesuz . These results repre
sent typical behaviors associated with a Bragg gap. Part
larly, a Bragg gap peaks at some intermediate filling fracti
Thus, Fig. 2~b! shows that atf h'0.32 the normalized gap
width is maximum.

FIG. 2. ~a! The edges determining the gap in an hexagonal
tice of Au cylinders in epoxy for several filling fractions (f h). ~b!
The corresponding normalized gap width is (Dv/vg), wherevg is
the midgap frequency.

FIG. 3. Convergence of the lower four in-plane frequencies
both variational~continuous lines! and plane-wave expansion met
ods~dotted lines!. They correspond to the pointsK1 , K2,3 andK4 in
Fig. 1. The top axis representing the number of plane-waves
ployed in the plane-wave calculation is aligned with the numbe
nodes in the bottom axis that produces a matrix having the s
dimension as in the variational method.
14430
d

u-
.

The convergence of the VM and the PWE method
compared in Fig. 3. The behavior of the lower four freque
cies of the in-plane modes at theK point ~points K1 ,K2,3,
andK4 in Fig. 1! is shown as a function of the numberN of
grid points employed along each direction in the unit ce
For the PWE calculations we made a similar study and h
changed the number of plane waves, from 97 to 925. T
two abscissa scales are aligned in such a way that the siz
the matrices are the same in both methods. From Fig. 3
noticeable that the three lower frequencies,K1 and K2,3,
converge similarly in both methods. However, the VM im
proves the convergence of the higher modeK4. This im-
provement can be understood from Fig. 4~a!, which shows
the behavior of the transverse velocityct along the line join-
ing two neighbor cylinders. The PWE method~solid line!
employed 960 functions to reproduce the speed discontin
with some accuracy, while the VM~hollow circles! used 32
nodes. In comparison with the exact behavior~dotted line!,
the result from the PWE method shows the well-know
Gibbs oscillations at the interfaces, which are the origin
the lower convergence at high frequencies. In an oppo
way, the VM that works in the direct space seems to desc
the interfaces more correctly, which justifies its faster co
vergence. Another improvement of the VM comes from t
spatially localized character of the spline basis. This prope
decreases the computational time for various reasons:~i! The
constructions of the matrices in Eqs.~7!–~11! can be per-
formed in two steps; the first one allows to get the comm
part of the matrix elements, which, in the second step,
calculated by multiplying the Bloch factors; and~ii ! the lo-
calized character of the functions leads to sparse matri

t-

r

-
f
e

FIG. 4. ~a!The transverse velocityct(x) along a line joining two
cylinders in a lattice of Au cylinders in epoxy. The coordinate~in
units of the lattice constant,a) begins at the center of one cylinde
and ends at the center of one of its neighbors. The plane-w
representation~continuous line! shows quite important oscillation
near the Au/epoxy interfaces. The variational method~white circles!
presents in a more accurate way the exact interfaces~dotted line!.
~b! The corresponding plot for the case of Au cylinders coated w
polymer in a epoxy host.
1-4
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TWO-DIMENSIONAL PHONONIC CRYSTALS STUDIED . . . PHYSICAL REVIEW B67, 144301 ~2003!
which are solved by designed routines that substantively
duce the diagonalization time.

IV. RESULTS FOR LATTICES OF LOCAL RESONATORS:
COATED CYLINDERS IN EPOXY

Very soft polymers were recently used26 as the coating of
Pb spherical inclusions arranged in a simple cubic lattice
an epoxy host. The very low transverse velocity of the co
ing layer resulted in a strong resonant band structure wi
gap at a frequency of two orders of magnitude lower than
expected one by Bragg scattering. In analogy with elec
magnetic situations in which the dielectric function can
negative, this phenomenon was interpreted as the co
quence of effective negative elastic constants in the rang
frequencies where the subfrequency gaps appear.

Here, we analyzed the effects produced by adding a
layer of soft polymer to the binary 2D-PC studied in Sec.
Thus, we coat Au cylinders with a thin layer of rubber pol
mer, whose elastic parameters arerpol51300 kg m23,
cl ,pol533 m s21, ct,pol55 m s21. In order to compare the
band structures in Fig. 1, we keep the same external ra
for the cylinders and for the same lattice constant. As
ratio between the core radiusr core ~Au cylinder! and the
external radiusr ext ~Au1coating! we use 0.71. Figure 5 pre
sents the band structures corresponding to coated cylin
in an hexagonal lattice.

For sake of comparison and discussion, Fig. 6 presents
results corresponding to the same cylinders arranged
square lattice. In this case, equal external radius and la
parameter produce a slightly lower filling fraction, which
this lattice isf s5p(r ext /a)250.68.

The convergence of the VM has also been analyzed

FIG. 5. ~a! Band structure of the in-plane modes existing in
hexagonal lattice of coated cylinders in epoxy.~b! Band structure of
the corresponding out-of-plane modes. The filling fraction of
lattice is 0.79. The variational calculation employed 40 localiz
functions. The complete flat bands are associated with modes lo
ized in the coating layer~see Fig. 8!.
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compared with the PWE method. The behavior of frequ
cies atK1 , K2,3, andK4 points is presented in Fig. 7 as
function of the basis-set employed. It is shown that bo
methods have a very low convergence in comparison w
the results obtained for binary structures, especially at hig
frequencies. Forty nodes and 1600 plane waves, respecti
are needed in order to guarantee convergence better than
This low convergence is due to the high contrast between

d
al-

FIG. 6. ~a! Band structure of the in-plane modes existing in
square lattice of coated cylinders in epoxy.~b! Band structure of the
corresponding out-of-plane modes. The filling fraction of the latt
is 0.68. The variational calculation employed 40 localized fun
tions. The complete flat bands are associated with modes loca
in the coating layer.

FIG. 7. Study of the convergence of in-plane modes for b
plane-wave and variational methods. Four modes were analyze
theK point of the Brillouin zone, denoted byK1 , K2,3, andK4. The
inset shows a zoom of the total graph in the low-frequency reg
1-5
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CÉCILE GOFFAUX AND JOSÉSÁNCHEZ-DEHESA PHYSICAL REVIEW B67, 144301 ~2003!
elastic parameters of the coating and the other two mater
which requires to introduce a large basis function set in
VM calculations, or equivalently a large number of Four
components in the PWE method. As in the binary case,
VM converges faster at high frequencies, because it re
sents the sharp interfaces more exactly@see Fig. 3~b!#. In the
extreme case of a 2D-PC having one medium of zero tra
versal velocity, as in a fluid, both methods have the sa
numerical problems regarding worse convergence and
physical flat bands appearing in the dispersion relatio
These drawbacks are related to the diagonalization pr
dure, since they do not appear in other numerical algorith

Regarding the band structures shown in Figs. 5 and 6,
it is remarkable the presence of flat bands crossing the c
plete BZ. These flat bands are real bands and they are
verged. They are associated with eigenmodes of the
polymer as it is shown in Fig. 8, where the elastic displa
ments uu(x,y)u associated with the in-plane modes of tw
different flat bands in Fig. 6 are represented. Figures 8~a! and
8~b! plot the modes associated with the flat bands with f
quencies~in reduced units! 0.0032 and 0.027, respectivel
Both are eigenmodes localized inside the polymer coat

FIG. 8. ~a! Modulus of the displacement vectoruu(x,y)u) for the
in-plane modes associated to the first flat band in Fig 6.~b! the same
magnitude calculated for the modes at the second flat band.
axis is given in reduced units (a is the lattice parameter!. In both
cases the displacement occurs inside the polymer layer~see text!.
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The very low transverse velocity of the coating allows f
the modes to propagate at very low frequencies. Flat ba
also appear in binary systems if the cylinders are filled w
a material elastically softer than the matrix, and the ela
vibrations are localized inside the cylinders.23

The most noticeable feature in Figs. 5 and 6 is the app
ance of a complete gap in a frequency region two orders
magnitude lower than the expected one by the Bragg co
tions @see Eqs.~14! and ~15!#. This subfrequency gap is
originated from the resonances arising from the insertion o
soft coating, as was pointed out by Liu and co-workers26,27

studying the 3D systems. On the other hand, the band st
ture is sensitive to the lattice symmetry: the hexagonal lat
shows a symmetric dispersion relation around theG point,
while the square lattice shows a dependency on thekW -wave
vector. Moreover, we found that, for an equivalent fillin
fraction, the size of the subfrequency gaps are larger for
hexagonal case. These two last properties are well-kno
results for gaps having a Bragg origin. Particularly, the lar
gap obtained for the hexagonal lattice is due to the hig
coordination number of the hexagonal lattice that ma
stronger the total interaction between neighbor resonan
Therefore, the band structure of these ternary systems sh
mixed character: it presents subfrequency gaps produce
the localized states existing at the cylinders positions,
these gaps behave in a similar manner as the Bragg ga
one studies their dependence with symmetry due to the w
interaction between the localized states.

In order to support the resonant origin of the subf
quency gaps, we plot in Fig. 9 the dependency onf h of the
band edges determining the lowest gap for the out-of-pl
modes and the resulting normalized gap for the case of
hexagonal lattice. The lattice parametera is kept constant as
well as the ratior ext /r core'1.4; only r ext changes. The be
havior of the band edges is completely different to that ch

he

FIG. 9. ~b! The band edges determining the first gap of t
out-of-plane modes in the hexagonal lattice of coated cylinder
epoxy for several filling fractions (f h). ~b! Behavior of the corre-
sponding normalized gap width resulting from~a!.
1-6
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TWO-DIMENSIONAL PHONONIC CRYSTALS STUDIED . . . PHYSICAL REVIEW B67, 144301 ~2003!
acterizing a Bragg gap~see, for example, Fig. 2!. The upper
panel shows that both edges quickly converge to values
change slowly withf h . This is a signature of their resona
origin. Particularly, the pinning of the bottom edge,vb, is a
consequence of the strong localized character of its ass
ated mode, which consists of a vibration of the Au inn
core. The upper edge,vu, changes slightly due to the mixe
character of its mode, where the epoxy is also involved. T
small changes in frequency are a consequence of the inc
ing resonances’ interaction produced by the decreasing
tance between cylinders.

Figures 10~a! and 10~b! present a further support of th
last conclusion. Figure 10~a! shows the influence of the coa
ing thickness on the frequency edges determining the
subfrequency gap in two different lattices: the hexagonal
the square. The lower edge for the hexagonal~square! lattice
is calculated at theK point (X point!, and the upper edge i
taken at theG point. The lattice constant is the same in bo
lattices and is a constant along the calculations. Notice
both lattices behave similarly. The lower edges are the s

FIG. 10. ~a! Dependence of the coating thickness of the ba
edges determining the lowest subfrequency gap obtained for a
tice of coated cylinders in epoxy. The hexagonal and square lat
are studied.r ext and the lattice parameter are fixed, onlyr core

changes.~b! Behavior of the corresponding normalized gap widt
14430
at

ci-
r

e
as-
is-

st
d

at
e

in both lattices, which indicates its strongly localized ch
acter ~associated to the vibration of the Au core!. On the
other hand, the upper edge in both lattices slightly depe
on the coating thicknesses and the lattice symmetry.
stressed previously, this behavior is due to the mixed ch
acter of the mode atG point, which explains its sensitivity to
f and the lattice symmetry. Also notice that in the absence
Au core (r core50) the subfrequency gap still exists. Finall
Fig. 10~b! shows the behavior of the normalized gap. It
large in the hexagonal lattice because of its higherf. Also,
this plot demonstrated that the presence of a soft mate
guarantees the presence of a subfrequency gap even in b
systems.

It must be stressed that similar phenomenon can ap
under the presence of surface waves on the cylinder units
electromagnetic analog of this effect is the case of surf
plasmons on metallic arrays of cylinders or spheres, wh
the appearence of minigaps in the photonic band struct
has been demonstrated.28

V. A MECHANICAL ANALOG

In many cases, mechanical analogies are helpful in or
to understand the physical mechanisms producing some
tures in the spectra of complicate systems, being these el
or electromagnetic. Thus, in a recent work29 we used a 1D
mechanical model of masses and springs to clarify the or
of the asymmetric peaks observed in the transmission spe
across a finite slab made of coated cylinders. Beautiful
amples of mechanical analogies can be found in m
textbooks.33

Here, we introduce a simple model in order to get a phy
cal insight regarding the gap formation by the presence
localized resonances at the coated cylinders. It is based
model initially described by J.J. Thomson and constructed
J.H. Vincent34 to illustrate Helmholtz’s theory of dispersion
The model consists of a linear chain of massesM and springs
with a stiffness constantKs . Attached to each massM, there
exists a light pendulum~massm and lengthl ), which repre-
sents the localized mode associated with each cylinder in
exact elastic system. Gravity does not act over any of
massesM, because it is assumed that each mass is han
from a long threat suspended from a plank fastened to
ceiling.

The mechanical system previously described has an
lytical solution. The resulting band structure has tw
branches:

d
at-
es
g

v6
2 ~k!5vp

2 M1m

M
12v0

2sin2S ka

2 D6vp
2 M1m

M
A114

v0
4

vp
4 S M

M1mD 2

sin4S ka

2 D14
v0

2

vp
2

M ~M2m!

~M1m!2
sin2S ka

2 D , ~16!

wherek is the wave vector,vp is the eigenfrequency of the pendulum (vp5Ag/,), andv0 is the eigenfrequency of the sprin
(v05AKs /M ). A gap appears between the maximum frequency of the first branchv2 at the zone boundary~i.e., the bottom
edgevb) and the lowest frequency of the second branchv1 at the G point ~the upper edgevu). From Eq.~16!, these
frequencies are
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vb5v2S p

a D5Fvp
2 M1m

M
12v0

22vp
2 M1m

M
A114

v0
4

vp
4 S M

M1mD 2

14
v0

2

vp
2

M ~M2m!

~M1m!2 G 1/2

, ~17!

vu5v1~0!5vpA2~M1m!

M
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Figure 11 shows a schematic representation of the m
~upper panel! and the corresponding dispersion relati
~lower panel! calculated for a given set of parameters. Not
the good qualitative agreement with the exact dispersion
lations of the 2D problem at low frequencies. In this simp
model, the frequencyv0 and the massM are associated with
the background, in which the localized states are embed
vp defines the frequency of the resonant level attached
each cylinder andm defines its vibrating mass. These ma
nitudes can be used as fitting parameters to reproduce
dispersion relations in Figs. 5 and 6.

For example, let us consider the case of the first sub
quency gap for the out-of-plane modes in the hexagonal

FIG. 11. ~top! Schematic representation of the mechani
model employed to simulate the full elastic system of coated cy
ders in epoxy. It consists of a string of masses~M! and springs
~stiffness constantKs). The periodicity is given bya. A pendulum
~of length l and massm) is attached to each massM. ~bottom! The
solid lines represent the dispersion relations of a mechanical sy
defined by the given parameters.vb andvu define, respectively, the
bottom and the upper edges of the gap. The dotted lines repre
the frequency of the pendulumvp and the dispersion relation of th
chain with no pendula attached.
14430
el

e-

d.
to
-
he

e-
t-

tice represented in Fig. 5. First,v0 is determined from the
dispersion relation of uncoated cylinders~see Fig. 1! by fit-
ting the slope of the dispersion relation at low frequenci
since for the linear chainv(k)52v0usin(ka/2)u. We ob-
tainedv0'0.112~in red. units!. The mass of the pendulum
is given bym

L
'rAupr core

2 51531 g m21, where it has been
taken into account that the localized level is associated w
a vibration of the Au core. We work with masses per u
length since we are dealing with a 2D system.vp can be
easily obtained by using the simplifying assumptionv0

@vp , which allows to cast Eq.~17! in vb'A2vp . There-
fore, vp'0.0013 ~red. units!. Finally, the mass ML
'82 g m21 has been fitted to reproducevu . Figure 12~a!
presents the dispersion relations~solid lines! that simulate
the exact 2D system. The dispersion relations for the
coupled systems are also represented~dotted lines! for com-
parison purposes, the flat line gives the levelvp of an iso-
lated localized state~the pendulum!, and the linear curves
starting at the origin give the dispersion relation of the ba
ground~the linear chain!.

In order to test the mechanical model, we have analy

l
-

m

ent

FIG. 12. ~a! Dispersion relation for the out-of-plane mode
shown in Fig. 5 fitted with the mechanical model of Fig. 11.~b!
Behavior of the edges determining the first subfrequency gap in
hexagonal lattice of coated cylinders in epoxy for several latt
constants. The external radius and the core radius are kept
stants. The symbols represent the variational calculation of the
act 2D system, and the solid lines define the results obtained
the model~see text!.
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how vb and vu depend on the lattice parameter. We ha
assumed that the massML in Eq. ~18! scales according to th
volume outside the Au core; i.e.,ML(a)5ML(a0)(A3/2a2

2pr core
2 )/(A3/2a0

22pr core
2 ), where ML(a0) is fitted. Re-

garding the exact 2D system, a set of 60 localized functi
were used in the VM to obtain results fully converged. T
results are shown in Fig. 12~b!. It is observed that both sys
tems, the exact~symbols! and the mechanical analog~solid
line!, behave similarly. First, the bottom edge does n
change with the lattice because it is determined by the
ometry of the local resonator that does not change the ca
lation. And second, the upper edge continuously decreas
agreement with the law predicted by the model@see Eq.
~18!#. The monotic decreasing of the differencevu2vb ,
which gives an estimation of the interaction strength betw
the localized level and the continuum, indicates that the
teraction strength decreases when the distance between
nances increases. In fact, in the limit of isolated resona
a→` ~i.e., whenM@m), vu→vband the gap closes ac
cording to Eq.~18!.

It can be concluded that the mechanical analog emplo
contains the main ingredients to get a physical insight of
mechanism leading to the formation of subfrequency gap
elastic systems consisting of locally resonant units in a m
trix.

VI. CONCLUSION

We have presented a variational method that works in
direct space and allows to compute the band structure
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