PHYSICAL REVIEW B 67, 144301 (2003

Two-dimensional phononic crystals studied using a variational method: Application to lattices
of locally resonant materials
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A variational method is introduced to study the propagation of elastic waves in two-dimensional periodic
systems. First, it has been applied to a binary system consisting of an array of high-density cylinders in an
epoxy background, where the advantages of the method are pointing out in regard with the well-known
plane-wave expansion formalism. Second, a comprehensive study is performed for the two-dimensional coun-
terpart of the ternary systems recently studied byétial.[Z. Liu et al, Science289, 1734(2000]. Numeri-
cal simulations predict that subfrequency gaps also appear because of the soft polymer that coats the cylinders.
A simple mechanical model is introduced to give a physical insight of the phenomenon responsible for our
findings.
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[. INTRODUCTION the VM can improve the PWE technique because of its faster
convergence and lower computational times. In regards with
The last decade has witnessed an increasing interest féhe algorithms based on multiple scattering the@WsT)
the propagation of classical waves in periodic structures. Faand finite difference time domaifFDTD), these techniques
mous realizations are photonic crystalor these new crys- are more suitable to treat the transmission/reflectance prob-
talS, both theoretical predictions and experiments hav&m in finite structures and their Compal’ison with the varia-
shown the appearance of frequency gaps for the propagatidiPnal approach is out of scope of the present work. How-

of electromagnetic waves, which has been used for th€Ver, our experience in dealing with those techniftés
achievement of new optical devices. indicates that the calculations of the phononic band structure

Quickly, those studies were extended to the propagatioR,resent several drawbacks from the computational point of

of elastic and acoustic waves in periodic structures made of €W Thus, the technique based on FDTD requires a very

materials with different elastic properties, which have beenStrong reduction of the discretization steps, while the tech-

named phononic crystal®C’s).>~’ These new materials can ﬁﬂﬁﬁ)glzsgg p(;r; é\l/l OSnT requires a large number of terms in the
be of real interest, since a large contrast between the elastic The pioneering work of Liuet al2® has motivated the

parameters is allowed. For example, systems composed Qfc,nq application of the VM. The authors studied three-
solid inclusions in a fluid are good candidates in order 104imensional(3D) PC's consisting of cubic arrays of coated
obtain large gaps, which can lead to promising app"ca“O”%pheres(the coating was a thin film of a soft matepiain-
as a wide noise insulation*! Besides, their properties in the mersed in an epoxy matrix. They predicted the appearance of
transmission bands have been used to build refractive d% gap ina frequency range of two orders of magnitude lower
vices such as lenses and acoustic interferométe® the  than the one resulted by Bragg scattering. The origin of this
other hand, more sophisticated combinations such as fluigshenomenon has been explained as due to the localized reso-
infiltrated in a drilled solid®'* or solid-solid system$®  nances associated with each scattering utlie coated
have been demonstrated to produce full phononic band gagpheres?®?’ Here, we employed the VM to analyze its 2D
for ultrasounds. counterpart, i.e., lattices of coated cylinders in epoxy. Previ-
Several theoretical methods have already been developeulisly, this system has allowed us to describe the resonance
in order to study the elastic response of PC’s. Mostly, theeatures in the transmission spectra through finite structures
calculations are based on the plane-wave expan$tovE) as a result of a Fano-like interference phenométio@ur
method, in which the wave equations are solved in the Fouanalysis shows that the properties of the 2D systems are
rier space”’ Nevertheless, PC’s involving media with a large comparable to the 3D structures, though some differences are
contrast in their elastic properties are not easy to treat wittobserved. Finally, a simple mechanical model that uses
PWE because a large number of plane waves is required &prings, masses, and pendula has been employed as a me-
obtain reliable band structures, and unphysical flat frequencghanical analog that allows the understanding of the mecha-
bands can appear. Other methods such as multipleism of band-gap formation as well as its dependence on
scattering®*®?Lor the finite-difference algorithmi$*3over-  parameters such as the lattice parameter.
come those difficulties. The paper is organized as follows. Section Il describes the
In this work, we present a variational meth@dM) that  main ingredients of the VM, which is applied to a binary
offers an alternative procedure to compute the band structurgystem in Sec. lll, where a comparison with the results ob-
of PC’s. As a numerical example of its strength, first, wetained with the PWE is performed. In Sec. IV the system of
have analyzed a two-dimension@D) system of Au cylin- coated cylinders is solved and discussed in terms of the
ders periodically embedded in epoxy. It will be shown thatknown results in the 3D counterpart. Section V presents a
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mechanical analog that allows an intuitive understanding of N? N?
wgrkprevious results and, finally, Sec. VI summarizes theui(r)=; cf; e‘k‘Rm(r—R):; cloy(r) (i=1,2),
| @

II. THE VARIATIONAL METHOD wherek is a 2D wave vector contained in the first Brillouin

The wave propagation in an homogeneous solid can béone (BZ) of the reciprocal lattice ang,(r) are the local-
strongly altered by inserting periodical inclusions of a solidized basis set. Each function in the set is a product of two
compound with different elastic parameters. The periodic inone-dimensional cubic splines.e., piecewiseC?-smooth
clusions induce a wave scattering and destructive interfeicubic polynomials?) which is centered at thi nodes of a
ences can appear in some frequency ranges, leading to fo#D grid defined in each unit cell of the lattice.
bidden band gaps. Total reflection is then expected in these Inserting the expansions of Eq&) and (4) in Egs. (1)
frequency ranges. Moreover, the vectorial character of th@nd(2) and making the projections on each functigr(r),
elastic displacement induces a strong coupling between thiae following generalized eigenvalue problem is obtained:
shearing and the longitudinal motions. Therefore, the study

of how the modes propagate in these structures is not GOkel = — u2ptke! (5)
straightforward. z z?

For 2D periodic systems, a partial decoupling of the elas-
tic motion is obtained by assuming that tkevave vector of Hifcl=—w?S{fc/ (i,j=126,k=1N?).  (6)

the incident waves is contained in the plane normal to the

cylinder axis, which is taken as tizeaxis by definition. Thus, This leads to a R?x 2N? matrix problem for the in-plane
a pure transverse motion is found along this directign  motions and aN?x N? problem for the out-plane motions.
This is decoupled from that taking place in the normal planeThe matrix elements are

u; (i=1,2). The equations describing these distinct displace-

ments can be expressed in the harmonic approximation by

G'k= fce”¢k(r)V-[M(r)V<1>[(r)]dr=§ e Rt (@)

—p(N@?u (1) =V-[u(r)Vu,r)], (o
P pi= f ¢ (Np(N® (rdr=2, e Rp‘k, ®)
=p(N@?Ui(r) = — [N V-u(n)]+ V-[u(r) Vui(r)] el i
I
+V ’ i=12 2 H“—J 7 I 240y
|mgeun] (=12, @ Hif= | 6050 M0 dr
wherer = (x;,x,) represents a position vector in the plane of +f é (r)i () P (1) dr ©
the periodicity,V is the 2D differential operatop(r) is the cell K 73X X
mass density distribution, ang(r) and\(r) are the space-
dependent Lameoefficients.
The usual method employed to solve E@s.and(2) uses +J DV-T8 w(V® (Nldr= ek-Rptk
a PWE of the parameters inside the unit cell. Afterwards, the cell¢k( VL8,V (1] ; '
Bloch theorem is used to account for the periodicity of the (10

crystal. For a set ofiy plane waves, the problem is reduced
to a matrix generalized eigenvalue problem. Fast computa-
tional routines gxist th:?\t_allow to_ obtain Fhe eigenmodes ogfyyjkz ¢k(r)5ijp(r)®€(r)dr22 glk-Rglk (11)
the system by diagonalizing matrices of dimensigix ng or cell R
2nyX2n4 according to the case, E(l) or Eq. (2), respec-
tively. whereg®¥, p©*, h®k ands®* are elements that can be cast
A solution of the equivalent problem for fluid systems into integrals involving localized cells in the unit cell located
was previously solved in the direct spdcelere, the same at the origin of coordinates. Note that the method is varia-
strategy is followed, and we formulate its version extendedional with respect to thes; or c, coefficients. Thus, the
to the case of elastic composites. Briefly, the method expandsonvergence is achieved when a sufficient number of basis
the elastic displacements in a setf localized basis func- functions is employed in Eq$3) and (4).
tions with a functional form that satisfies the Bloch theorem: As for photonic crystal$, a variational principle exists
and the solutions can be thought to be the functions that
N2 N2 minimize the functionaE¢[u;], E{[u,], associated, respec-
— ¢ ik-R _ ¢ tively, with the elastic problem describing the in-plane and
UA1) ; CZ; e dr=R) ; P, 3 out—())/f—plane motions: P ’ P
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1 Le”M(r)IVUz(r)Fdr

Edu.l=5 ; (12
2
f p(r)|uz(r)|*dr
cell
2 2
au;(r) dui(r
f DIV -u(n)fPdr+ 2, f w0 | ) 2ar+ 3, 00 20 g
1 Jeell i=1 Jecell =1 9% IX; .
Eduil=3 (i=1,2. (13
f p(r)|u(r)|*dr
cell
|
lll. RESULTS FOR A BINARY SYSTEM: AU CYLINDERS (full lines) as well as those propagating along thairection
IN EPOXY (dotted line$ were computed with the variational method by

employing 32 nodes in each direction of the unit cell. The
Iesults obtained with the PWE method by using a set of 960
PW are represented by the squéreplane modesand the

The parameters that induce the appearance of a gap
binary systems are the filling fraction, the lattice symmetry,

the topology of the scatterers, and the contrast between elaﬁi'angular(out-of-plane modessymbols. A good agreement

H : ; 31,32 H
tic properties of m_atena_l‘é. The_densny contrast plays_ 4 js found between the two methods. A gap separates the dis-
fundamental role; inserting very high-density inclusions in a

. 0 - persion curves of the in-plane modes as well of the pure
lcl)%?;i:izsgt \(A?i((ajremge;g)spolog)b is the more efficient way of transverse ones. A complete gap, resulting from the superpo-

Here as a test example for the VM. we consider an heX_sition of the two band structures, settles between the fourth
1o P . - and the fifth bands at a midgap frequency of about 0.60
agonal lattice of Au cylinders in epoxy. Figure 1 shows the

dispersion relations of the elastic modes corresponding to [aeduced units.
P P 9 The analysis of the band structures in Fig. 1 is straight-

crystal having a filling fractionfy, =/ 2.\/§(d/ 2)°=0.79,  torward for the case of pure transverse modesbecause
whered is the diameter of cylinders aralis the lattice con- their dispersion relations are the solution of a simple scalar

stant. The elastic pararr_lgters employed in t_hse calculationgquation' Eq(1). The gaps are the consequence of a destruc-
"i’%rg(aé’gom,:l 19500 k_gzn;35 Pepg=1180 kgng'g Clgold tive interference of the wave scattered in the periodic system.
= _1T557 , _Cll,ep_lqa dms » Cigold= 14 rr]ns 2o ThE order of magnitude of the midgap frequeney, can be
Ctepo™ ms=. e modes propagating In the plane gqimated. Its value should be closer to the frequency where
— the band folding takes pladge., at the borders of the first
1.00 <ﬂ'k4 w}“‘»‘f““i::ﬁ: BZ), and this frequency is calculated by using an empty lat-

Ny *«E\% tice approach. For example, the estimation of the midgaps
- - for the transversal modes is made as follows,
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& 050 Qﬁi’};f = f}ﬁm at theM point; (14)
E K 7

“\Dﬁ.\ 3a
\v/fﬁf at theK point, (19

K r M whereky =Ky /. The values(in reduced unitsroughly
agree with the actual ones resulting from the band-structure

FIG. 1. Phononic band structure along the two high-symmetryc,alcmat'qn' 0.49 an,d 0.52 for thd and K points, respec-
directions of the Brillouin Zonésee insetfor an hexagonal lattice tvely. This result points out that the gaps created by a Bragg
of Au cylinders embedded in epoxy. The filling fraction is 0.79. The SCattering mechanism appear at frequencies related to the
continuous (dotted lines represent the in-planéout-of-plang  lattice per'Od'C'ty_- So, gap openings at very low frequencies
modes computed with the variational method. The symbols repre@nly can be achieved by using very large structures or very
sent the results obtained by using a plane-wave expansion methd@W transverse velocity in the background. For example, a
The shadowed regions define the complete gaps. The frequenciesgap in the range of few Hertz can be achieved with this
are given in reduced units,is the lattice constant, ang ¢, is the ~ Au/epoxy system by using a lattice parameter of the order of
transverse velocity inside the epoxy. several hundred meters. Another parameter of interest in con-

R \ A; 41rc 21cC
D25 "y \ /ﬁ“ﬁ wg(K)~C opdKk = LePO— 0.66 at,epo,

0.00
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FIG. 4. (a)The transverse velocity,(x) along a line joining two

FIG. 2. (a The edges determining the gap in an hexagonal latcylinders in a lattice of Au cylinders in epoxy. The coordinéite
tice of Au cylinders in epoxy for several filling fraction$,). (b)  units of the lattice constan&) begins at the center of one cylinder
The corresponding normalized gap width ¢/ wg), wherewy is and ends at the center of one of its neighbors. The plane-wave
the midgap frequency. representatioricontinuous ling shows quite important oscillations
near the Au/epoxy interfaces. The variational methalite circles
presents in a more accurate way the exact interfédetied ling.
((P) The corresponding plot for the case of Au cylinders coated with
polymer in a epoxy host.

trolling the band gap is the filling fractioh Figures 2a) and
2(b) show, respectively, the band edges of the first gap an
its normalized width for the modas,. These results repre-
sent typical behaviors associated with a Bragg gap. Particu-
larly, a Bragg gap peaks at some intermediate filling fraction
Thus, Fig. Zb) shows that af,~0.32 the normalized gap
width is maximum.

The convergence of the VM and the PWE method are
tompared in Fig. 3. The behavior of the lower four frequen-
cies of the in-plane modes at tlie point (points K ,Kj 3,
andK, in Fig. 1) is shown as a function of the numbirof
grid points employed along each direction in the unit cell.
Number of plane waves For the PWE calculations we made a similar study and have
100 205 400 625 900 changed the number of plane waves, from 97 to 925. The
two abscissa scales are aligned in such a way that the size of
K the matrices are the same in both methods. From Fig. 3 it is
1.05¢ \24 noticeable that the three lower frequencié&s, and K, 3,

I Q.. converge similarly in both methods. However, the VM im-
0.90 proves the convergence of the higher mdtg This im-
provement can be understood from Figa)4 which shows
the behavior of the transverse velocityalong the line join-
ing two neighbor cylinders. The PWE methdgsblid line)

K employed 960 functions to reproduce the speed discontinuity
0.60 0\2: with some accuracy, while the VNhollow circles used 32
- ) e nodes. In comparison with the exact behavidotted ling,
0.45 _o\ T the result from the PWE method shows the well-known
K 6\8\ Gibbs oscillations at the interfaces, which are the origin of
----------- © the lower convergence at high frequencies. In an opposite
10 15 20 25 30 way, the VM that works in the direct space seems to describe
the interfaces more correctly, which justifies its faster con-
vergence. Another improvement of the VM comes from the
FIG. 3. Convergence of the lower four in-plane frequencies forSpatially localized chara(_:ter of_the spline _basis. Thi_s property
both variationalcontinuous linesand plane-wave expansion meth- decreases the computational time for various readorishe
ods(dotted lines. They correspond to the poirks,, K,zandK,in  constructions of the matrices in Eq§)—(11) can be per-
Fig. 1. The top axis representing the number of piane-waves emformed in two steps; the first one allows to get the common
ployed in the plane-wave calculation is aligned with the number ofPart of the matrix elements, which, in the second step, are
nodes in the bottom axis that produces a matrix having the samealculated by multiplying the Bloch factors; aid) the lo-
dimension as in the variational method. calized character of the functions leads to sparse matrices,

Lepo

0.75

wa/21c

Number of nodes (N)
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FIG. 5. (a) Band structure of the in-plane modes existing in an  FIG. 6. (a) Band structure of the in-plane modes existing in a
hexagonal lattice of coated cylinders in epofy. Band structure of  square lattice of coated cylinders in epofy). Band structure of the
the corresponding out-of-plane modes. The filling fraction of thecorresponding out-of-plane modes. The filling fraction of the lattice
lattice is 0.79. The variational calculation employed 40 localizedis 0.68. The variational calculation employed 40 localized func-
functions. The complete flat bands are associated with modes localions. The complete flat bands are associated with modes localized
ized in the coating layefsee Fig. 8 in the coating layer.

which are _solved k_)y d_eS|g_ned routines that substantively rec'ompared with the PWE method. The behavior of frequen-
duce the diagonalization time.

cies atK,, K, 3, andK, points is presented in Fig. 7 as a

function of the basis-set employed. It is shown that both

IV. RESULTS FOR LATTICES OF LOCAL RESONATORS: methods have a very low convergence in comparison with
COATED CYLINDERS IN EPOXY the results obtained for binary structures, especially at higher

Very soft polymers were recently us8ds the coating of frequencies. Forty nodes and 1600 plane waves, respectively,
Pb spherical inclusions arranged in a simple cubic lattice irff€ needed in order to guarantee convergence better than 5%.
an epoxy host. The very low transverse velocity of the coat- Nis low convergence is due to the high contrast between the
ing layer resulted in a strong resonant band structure with a

gap at a frequency of two orders of magnitude lower than the Number of plane waves

expecte_d one b_y Brf_;lgg spattering._ In an_alogy With electro- 100 500 900 1300 1700
magnetic situations in which the dielectric function can be oslt T NP

H H H _ Oro umber ol plane waves
negative, this p_henomen_on was interpreted as the conse [~ K 625 900 1225 1600 2025
guence of effective negative elastic constants in the range of Ve 0.10 —

frequencies where the subfrequency gaps appear.

Here, we analyzed the effects produced by adding a thin
layer of soft polymer to the binary 2D-PC studied in Sec. Il.
Thus, we coat Au cylinders with a thin layer of rubber poly-
mer, whose elastic parameters ayg,=1300 kg m 3,
Clpoi=33ms?, ¢ po=5 ms L In order to compare the
band structures in Fig. 1, we keep the same external radius
for the cylinders and for the same lattice constant. As the
ratio between the core radius,,. (Au cylinden and the
external radius ., (Au+coating we use 0.71. Figure 5 pre-
sents the band structures corresponding to coated cylinders
in an hexagonal lattice.

For sake of comparison and discussion, Fig. 6 presents the
results corresponding to the same cylinders arranged in a

wa/2nc ,
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0.1

K
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K,

0.04
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0.064

7 T
n
K4

ey

o,

— g Q-

0 . .
10 15 20 25 30 35 40 45

Number of nodes (N)

square lattice. In this case, equal external radius and lattice F|G. 7. Study of the convergence of in-plane modes for both
parameter produce a slightly lower filling fraction, which in plane-wave and variational methods. Four modes were analyzed at

this lattice isfq= (r ¢y/a)?>=0.68.

theK point of the Brillouin zone, denoted Y, , K, 3, andK,. The

The convergence of the VM has also been analyzed anishset shows a zoom of the total graph in the low-frequency region.
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FIG. 9. (b) The band edges determining the first gap of the
out-of-plane modes in the hexagonal lattice of coated cylinders in
epoxy for several filling fractionsf(). (b) Behavior of the corre-
sponding normalized gap width resulting frqa).

The very low transverse velocity of the coating allows for
the modes to propagate at very low frequencies. Flat bands
also appear in binary systems if the cylinders are filled with
a material elastically softer than the matrix, and the elastic
vibrations are localized inside the cylindérs.

The most noticeable feature in Figs. 5 and 6 is the appear-
ance of a complete gap in a frequency region two orders of

FIG. 8. (@) Modulus of the displacement vectar(x,y)|) forthe  magnitude lower than the expected one by the Bragg condi-
in-plane modes associated to the first flat band in Figpthe same  tions [see Eqs.(14) and (15)]. This subfrequency gap is
magnitude calculated for the modes at the second flat band. Theriginated from the resonances arising from the insertion of a
axis is given in reduced unitsa(is the lattice parameterin both  soft coating, as was pointed out by Liu and co-work&t5
cases the displacement occurs inside the polymer ksger text studying the 3D systems. On the other hand, the band struc-
ture is sensitive to the lattice symmetry: the hexagonal lattice

elastic parameters of the coating and the other two material§hows & symmetric dispersion relation around kheoint,
which requires to introduce a large basis function set in thevhile the square lattice shows a dependency orktheve
VM calculations, or equivalently a large number of Fourier vector. Moreover, we found that, for an equivalent filling
components in the PWE method. As in the binary case, th&action, the size of the subfrequency gaps are larger for the
VM converges faster at high frequencies, because it reprdiexagonal case. These two last properties are well-known
sents the sharp interfaces more exaftlye Fig. 8)]. Inthe  results for gaps having a Bragg origin. Particularly, the larger
extreme case of a 2D-PC having one medium of zero tranggap obtained for the hexagonal lattice is due to the higher
versal velocity, as in a fluid, both methods have the sameoordination number of the hexagonal lattice that makes
numerical problems regarding worse convergence and urstronger the total interaction between neighbor resonances.
physical flat bands appearing in the dispersion relationsTherefore, the band structure of these ternary systems show a
These drawbacks are related to the diagonalization procewixed character: it presents subfrequency gaps produced by
dure, since they do not appear in other numerical algorithmghe localized states existing at the cylinders positions, but
Regarding the band structures shown in Figs. 5 and 6, ththese gaps behave in a similar manner as the Bragg gaps if
it is remarkable the presence of flat bands crossing the conene studies their dependence with symmetry due to the weak
plete BZ. These flat bands are real bands and they are comteraction between the localized states.
verged. They are associated with eigenmodes of the soft In order to support the resonant origin of the subfre-
polymer as it is shown in Fig. 8, where the elastic displaceqquency gaps, we plot in Fig. 9 the dependencyf prof the
ments|u(x,y)| associated with the in-plane modes of two band edges determining the lowest gap for the out-of-plane
different flat bands in Fig. 6 are represented. Figufesad modes and the resulting normalized gap for the case of the
8(b) plot the modes associated with the flat bands with fre-hexagonal lattice. The lattice parameseis kept constant as
quencies(in reduced units0.0032 and 0.027, respectively. well as the ratiorg,/r ¢core~1.4; Onlyre,; changes. The be-
Both are eigenmodes localized inside the polymer coatinghavior of the band edges is completely different to that char-
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o0.008f (a) Au-poly/Epoxy in both lattices, which indicates its strongly localized char-
@, O\O U -modes acter (associated to the vibration of the Au caor®©n the
o 20081 \ : other hand, the upper edge in both lattices slightly depends
= 0.005 on the coating thicknesses and the lattice symmetry. As
g 0.0041 \'% stressed previously, this behavior is due to the mixed char-
S '\9\9—9/0/3 acter of the mode dt point, which explains its sensitivity to
0.0031 o, f and the lattice symmetry. Also notice that in the absence of
0.001 o—omromoror o Au core (r.ore=0) the subfrequency gap still exists. Finally,
1ol o (b) ---m-- square Fig. 1Qb) shows the behavior of the normalized gap. It is
--..__\ —Oo— hexagonal Iarge in the hexagonal lattice because of its higheklso, _
> 09 "‘~___xo this plot demonstrated that the presence of a soft material
g AN guarantees the presence of a subfrequency gap even in binary
4 osf g systems.
\%\Q It must be stressed that similar phenomenon can appear
0.3 }9f1 under the presence of surface waves on the cylinder units. An
0.92 0.94 0.96 0.8 100 electromagnetic analog of this effect is the case of surface
(r -1 e)/r plasmons on metalllc_ arrays _of cylinders or spheres, where
ext core’ "ext the appearence of minigaps in the photonic band structures

FIG. 10. (a) Dependence of the coating thickness of the bandhaS been demonstratéd

edges determining the lowest subfrequency gap obtained for a lat- V. A MECHANICAL ANALOG
tice of coated cylinders in epoxy. The hexagonal and square lattices '
are studied.rey, and the lattice parameter are fixed, only,.e In many cases, mechanical analogies are helpful in order

changes(b) Behavior of the corresponding normalized gap width. to understand the physical mechanisms producing some fea-
tures in the spectra of complicate systems, being these elastic
or electromagnetic. Thus, in a recent workve used a 1D
mechanical model of masses and springs to clarify the origin
acterizing a Bragg gafsee, for example, Fig.)2The upper of the asymmetric peaks observed in the transmission spectra
panel shows that both edges quickly converge to values thaicross a finite slab made of coated cylinders. Beautiful ex-
change slowly withf,,. This is a signature of their resonant amples of mechanical analogies can be found in many
origin. Particularly, the pinning of the bottom edga,, is a  textbooks®
consequence of the strong localized character of its associ- Here, we introduce a simple model in order to get a physi-
ated mode, which consists of a vibration of the Au innercal insight regarding the gap formation by the presence of
core. The upper edgay,,, changes slightly due to the mixed localized resonances at the coated cylinders. It is based on a
character of its mode, where the epoxy is also involved. Thenodel initially described by J.J. Thomson and constructed by
small changes in frequency are a consequence of the increatH. Vincent” to illustrate Helmholtz’s theory of dispersion.
ing resonances’ interaction produced by the decreasing diSfhe model consists of a linear chain of masskand springs
tance between cylinders. with a stiffness constar,. Attached to each mad4, there
Figures 10a) and 1@b) present a further support of the exists a light pendulunimassm and lengthl), which repre-
last conclusion. Figure 18) shows the influence of the coat- sents the localized mode associated with each cylinder in the
ing thickness on the frequency edges determining the firstxact elastic system. Gravity does not act over any of the
subfrequency gap in two different lattices: the hexagonal anthassedM, because it is assumed that each mass is hanging
the square. The lower edge for the hexagdeglarg lattice  from a long threat suspended from a plank fastened to the
is calculated at th& point (X point), and the upper edge is ceiling.
taken at thd™ point. The lattice constant is the same in both  The mechanical system previously described has an ana-
lattices and is a constant along the calculations. Notice thdytical solution. The resulting band structure has two
both lattices behave similarly. The lower edges are the samieranches:

2
woMM=m) (k_a)
+4w§ (M+m)2$m2 > (16)

M-+m

M+m wg
2 0
M +2w03|n2< ) ®p \/1+4w—;

wherek is the wave vectolp), is the eigenfrequency of the pendulum = Jg/€), andwy is the eigenfrequency of the spring
(wo=+Ks/M). A gap appears between the maximum frequency of the first brancht the zone boundarfy.e., the bottom
edge wp) and the lowest frequency of the second braach at theI" point (the upper edgev,). From Eq.(16), these
frequencies are

w2 (k)= w?

2
)sin4k

M+m
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M+m M+m wg
wg v +2w(2)—w§ M \/1+4

o’
p

1/2
2 w2M(M—m
L Lo M(Mmm)

w5 (M+m)?

B B 2(M+m)
oy=0,(0)=0, - (18

17)

M+m

Figure 11 shows a schematic representation of the modeice represented in Fig. 5. Firshyy is determined from the
(upper pangl and the corresponding dispersion relationdispersion relation of uncoated cylinddgeee Fig. 1 by fit-
(lower panel calculated for a given set of parameters. Noticeting the slope of the dispersion relation at low frequencies,
the good qualitative agreement with the exact dispersion resince for the linear chainw(k)=2wg|sinka2)|. We ob-
lations of the 2D problem at low frequencies. In this simpletained wy~0.112(in red. unit3. The mass of the pendulum
model, the frequency, and the masi/ are associated with is given bymL%pAunrgoreI 1531 gm'%, where it has been

the background, in which the localized states are embeddegen, into account that the localized level is associated with
wp, defines the frequency of the resonant level attached tg \;pration of the Au core. We work with masses per unit
each cylinder anan defines its vibrating mass. These mag- length since we are dealing with a 2D system, can be
nitudes can be used as fitting parameters to reproduce tré%sny obtained by using the simplifying assumptian

dispersion relations in Figs. 5 and 6. ; :
: . >w,, Which allows to cast Eq.17) in wp,~+2w,. There-
For example, let us consider the case of the first subfrefor(:;p ©.~0.0013 (red unit;( T:)inaIIC;b tr\{;wﬁwass M,
, wp=0. . . s

guency gap for the out-of-plane modes in the hexagonal Iat,;82 gm * has been fitted to reproduce, . Figure 12a)

presents the dispersion relatiofsolid lineg that simulate
the exact 2D system. The dispersion relations for the un-
coupled systems are also represertimtted line for com-
parison purposes, the flat line gives the lewgl of an iso-
lated localized statéthe pendulury and the linear curves
starting at the origin give the dispersion relation of the back-
ground(the linear chain

In order to test the mechanical model, we have analyzed

>
o
c
(]
S
(e
[¢)]
| -
L
]
-T 0 T
L e . . —
k/a 20 25 30 35 40
FIG. 11. (top Schematic representation of the mechanical a/rext
model employed to simulate the full elastic system of coated cylin-
ders in epoxy. It consists of a string of mas$®y and springs FIG. 12. (a) Dispersion relation for the out-of-plane modes

(stiffness constark). The periodicity is given by. A pendulum  shown in Fig. 5 fitted with the mechanical model of Fig. 18)

(of lengthl and massn) is attached to each mabs (bottom) The Behavior of the edges determining the first subfrequency gap in the
solid lines represent the dispersion relations of a mechanical systehrexagonal lattice of coated cylinders in epoxy for several lattice
defined by the given parametets, andw, define, respectively, the constants. The external radius and the core radius are kept con-
bottom and the upper edges of the gap. The dotted lines represestants. The symbols represent the variational calculation of the ex-
the frequency of the pendulumy, and the dispersion relation of the act 2D system, and the solid lines define the results obtained with
chain with no pendula attached. the model(see text
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how w, and w, depend on the lattice parameter. We haveelastic crystals with two-dimensional periodicity. Arrays of
assumed that the mab%,_ in Eq. (18) scales according to the gold cylinders displayed in an epoxy host were first studied
volume outside the Au core; i.eM, (a)=M (a)(y3/2a>  to show its advantages in comparison with the plane-wave
— a2,/ (V312a5— mr2,,), where M (ay) is fitted. Re-  expansion method. We concluded that the variational method
garding the exact 2D system, a set of 60 localized functionsonverges faster at high frequencies and it is computationally
were used in the VM to obtain results fully converged. Themore effective. Second, the method were employed to study
results are shown in Fig. 13. It is observed that both sys- lattices of cylinders coated with a polymer tube to demon-
tems, the exactsymbolg and the mechanical analdgolid  strate that these systems allows to decrease the gap fre-
line), behave similarly. First, the bottom edge does notquency by two orders of magnitude. The subfrequency gaps
change with the lattice because it is determined by the geare attributed to resonant phenomena taking place in the cyl-
ometry of the local resonator that does not change the calcuirder units as it was previously shown in the 3D counter-
lation. And second, the upper edge continuously decrease jarts. Finally, we introduced a mechanical analog consisting
agreement with the law predicted by the modflste Eq. of a string of springs, pendula, and masses that allows us to
(18)]. The monotic decreasing of the differenag— wy,, understand the physical mechanism of creation of such sub-
which gives an estimation of the interaction strength betweefrequency gaps, as well as their sensitivity to different pa-
the localized level and the continuum, indicates that the infameters as the lattice periodicity.

teraction strength decreases when the distance between reso-

nances increases. In fact, in the limit of isolated resonaces

a—» (i.e., whenM>m), w,— wpand the gap closes ac- ACKNOWLEDGMENTS
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