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Decoupling and decommensuration in layered superconductors with columnar defects
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We consider layered superconductors with a flux lattice perpendicular to the layers and random columnar
defects parallel to the magnetic fieBl We show that the decoupling transition temperafliye at which the
Josephson coupling vanishes, is enhanced by columnar defects by an affigiifi~ B?. Decoupling by
increasing field can be followed by a reentrant recoupling transition for strong disorder. We also consider a
commensurate component of the columnar density and show that its pinning potential is renormalized to zero
above a critical long-wavelength disorder. This decommnesuration transition may account for a recently ob-
served kink in the melting line.
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The phase diagram of layered superconductors in a madpelow). We find that the decoupling transition temperature
netic field B perpendicular to the layers is of considerableT4(B) is enhanced by CD. In particular, for strong disorder,
interest in view of recent experiments on high-temperaturehe low-field formTy(B)~ 1/B becomesT4(B)~B at strong
superconductors.* Columnar defects(CD) induced by fields, hence decoupling followed by a reentrant transition
heavy-ion bombardment provide an additional interestingnto a coupled state, i.e., recoupling, is possible with increas-
probe? In particular, the irreversibility line at low tempera- ing field. These predictions can test whether the second peak
tures is enhancetf while within the liquid phase an onset of transition is of a decoupling type. We also allow for a finite
enhancedz-axis correlatiofi® was observed. Recent ddta component of the CD density, which is commensurate with
indicate that CD produce a porous vortex matter in whichthe flux lattice, a component that usually needs to be specifi-
ordered vortex crystallites are embedded in the “pores” of acally prepared* We find that long-wavelength disorder
rigid matrix of vortices pinned on the CD. A sharp kink in renormalizes the commensurate coupling to zero, i.e.,
the melting curve signals an abrupt change from meltindjecommensuration, above a critical value of disorder. We
enhanced by the matrix at high fields to a more weakly enpropose that the matrix component of the porous vortex mat-
hanced melting at lower fields. Theoretical studies on CDer provides a commensurability potential for the embedded
have shown a *“localization” transition within a bose glass crystallites. At high fields, this enhances the crystallite melt-
phase'"*? Recent simulatiorS have been interpreted in ing temperature, while below the decommensuration transi-
terms of a Bragg-Bose glass with positional order which setsion, the crystallites decouple from the matrix, leading to a
in as field increases. Also a “recoupling” crossover yweaker enhancement of melting.

transitiort* was studied in the vortex liquid phase. We study the classical partition functionlofd Josephson

In the absgnce of CD, theoretical st.ud_|e7s have showRoupled layers, wherk— is the total length in the di-
layer decoupling due to thermal fluctuatiotis” or due to  rection perpendicular to the layers addis the interlayer
disorder."*®At this phase transition, the Josephson couplingspacing. The elastic energy of the transverse displacement

between Iaye_rs vanishes at long scz_iles, i.e., the critical cufie|ds u(g,k) in the absence of Josephson coupling can be
rent perpendicular to the layers vanishes and superconduGfitten a<®:26

ing correlations in the direction (perpendicular to the lay-
ers become short range. Decoupling involves, in principle,
also proliferation of point defects—vacancies and intersti- 1

tials (V1).1° The flux lattice is present even in the decoupled Ho==— 2, f (Cea®+ co(k)k2)|ud(q,k)|?, (h)
phase with thez-axis positional correlations maintained by 2L i@ Jq

magnetic couplings. In the case of point disorder, this phase

would thus still exhibit Bragg-glass-type order without dis-

locations. where a replica indea=1,2, ... n is needed below for the

An increase in the critical current at a “second peak” disorder Za\zlerglge. Th2e elastic constantsz‘r’e?zr% C24(k)
transition has been interpreted as due to an apparent discon-"/ (Sdao)‘abkz)ln(l“L?OkgM”). andces=7/(16day), where
tinuity in the tilt modulus at decouplin®, Plasma resonance K iS tr21e wave vector in the direction, k.= (2/d)sin(kd’2),
dat#1?2 have shown a significant jump at this transition, 7=®50/(4m°\%;), A is the magnetic penetration length
consistent with the decoupling scenario. Whether this transiparallel to the layersaj is the area of the flux lattice unit
tion is driven by decoupling alone, rather than by a suddercell, and®, is the flux quantum, i.eP,=Ba3 . Note that
dislocation proliferatiorf? remains to be investigated. the Josephson coupling induces an additional termyjn?®

In the present work, we consider the effects of CD withinas also shown below. The decoupling transition of the pure
the flux lattice phase, neglecting ivhose role is discussed system(for weak Josephson coupling given by’
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. 4al dk |7t the nth layer and aR,+u'** in the (n+1)th layer, where
d= 5 J 0 ) R, is the undistorted position of thigh flux line. The total

d k Ca4(K)

Josephson phase is then
and our principal aim is to obtain the correspondinRgn the
presence of correlated disorder. N n1

Consider a distribution of CD whose positions within a 0n(r)+2| [a(r=Ri—uj)—a(r—R—u )]
layer are random and uncorrelated. Each of the CD has a
radius by and their average areal density.p is low,
ncpba<1. A flux line has a core of radiug, that usually ”ﬁn(f)ﬂLZ (U =uHVa(r-Ry), (6)
satisfieség<<by. Once a flux line is partially inside a CD, it
gains its core energlf. per layer. The pinning potential per where the expansion is justified in the Bragg glass, since the
unit area is therJ ,in(r) = (E¢/£5)Z;p(r —r;) with the sum  correlation length in thez direction is >d. We define
on the CD positions ang(r) is a shape function, e.g., (including now the replica index  b?(q,k)
p(r)=1. for r<by and V{:mishes for>b,. The variance, :—Zﬂdeikdlzua(q'k)kzl(qa(z)) so that the Josephson phase
neglecting CD overlaps, is, therefore, is 62(r) +b2(r). Fluctuations of thes,(r) field involve the

_— , Josephson energy as well as magnetic-field terms,
Upin(NU pin(r')~EZncp(bo/£0)*°(r=1"). (3

The average with respect to a flux density involves an addi- 1 2q . 5
tional factor ¢,/a,)* due to the decomposition of a sharply Hy=51 : f 5 5 Gt (q,k)|6%(q,k)|
peaked flux into harmonics with reciprocal vectors Q. The @ (2m)
replica average at temperatuFds therf’
—y,3, | dPreog o-+b3(n) ™
; fdzq 2L 5, (. K)UP(— g, — K
Phais ; L ; (2w)2sq (GO0~ wheré® G(q,k)=4md3(\ 2+ k2)/(7g?). The full Hamil-

tonian is thenH=He |+ Hgis+ Heomt Hy -
2 a b We proceed to solve this system by the variational method
+W§’ J’d rcoiQ'(un(r)—un,(r))]] /ZT’ 4) allowing for replica symmetry breakin@RSB).2”-*The form
' of the variational Hamiltoniari, is obtained by expanding
where W= EgnCD(bo/aO)4 and only the shortest most the cos terms and replacing, y., andW by variational
relevant’ Q is retained. The cos term above involves vectorsparameterg;, z., ando,,(K), respectively. The Josephson
Q and U8 which in the averages below yieldQ-u)?  term involves ag,b cross term that is eliminated by a shift
=Q?(u?+u?)/2; whereu, is the longitudinal displacement 2(q,k)= 62(q,k) —u?(q,k)z;(27k,/a3q) exp(kd/2)/(G;*
that is neglected for now as it has no effect on the decoupling-z;/d). Hence(repeated indices are summed
transition. The parametarmeasures a long-wavelength ran-
dom torque coupled to a local bond ar?@leyz(axuy 1 d2q
—dyUy)/2, since for transverse mode¥ ()2=4y2. Ho==— 2, f—{G;bl(q,k)ua(q,k)ub*(q,k)
The long-range Bragg glass properties depend on the non- 2L % J (2m)?

linear cos term in Eq(4). If this cos is expanded, it yields

-1 y: 2
~3 .S d?rud(r,k=0)uP(r,k=0), ie., a k=0 quadratic +[Gr (a,k) +25/d][6%(a.k) [}, ®
term that has no effect on the decoupling transition. It is,
therefore, essential to treat the Bragg glass nonlinearities G (0,K) =[ CeeQ®+ Caa(q, K) K2+ 2] 81,
properly.
We also allow for a commensurate term of the CD density —qu—25 . ©)
of the form T k0™ Tab(K).

The effect of the nonsingula? is to shiftc,(k) of Eq. (1)

_ 2 2 Lud
Heom= yc(Zd/Q )nz,; f d I’COiQ Un(r)]- (5) into C44(q,k)

Consider next the Josephson phase, i.e., the relative su- 2
perconducting phase of two neighboring layers. Each flux Cas(q,K)=c9,(k) + , (10)
line can be viewed as a collection of point singularities, or Am(1+N2Q%+N2K2)

pancake vortices, positioned one on top of the other in con-

secutive layers. Around each pancake vortex, the supercowhere)\§=<I>(2)l(167r3zjd). Note that the limit\ .— o at de-
ducting phase follows the angte(r) that changes by 2 in coupling must be taken befoe—0.

a complete rotation. The Josephson phase involves then a The variational method minimizes the free enerfgy
nonsingular componen#,(r) and a singular contribution +({H—"H,),, where the free energ¥, and the average
from pancake vortices. The latter are positione®gat u;' in (--+)g correspond td,. This yields
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Tap(K)=(WQ?/2d°T) f OLdz coskzexp(—B,,(2)/2)

— 8ap, eXH(—B,d(2)/2)

k2 [ 2md
z;=yexp, —(T/2) =l
ak|g?\ a

X Gaa(0,k) + (G (k) +2;,/d)~*

: (11)

2 2

G H(q.k)
G; Y(q,k)+2z,/d

] : 12

Zc=yc9XP[ —(TQ%4) L kGaa(qvk)} ; 13

where [ = fd?qdk/(27)® andB,p(2) is given by

, [ d*qdk
Bay(2)=TQ f e Cas(@40~coskD G0,

Since the disorder ig independent, the off-diagonal terms

B..:p(2) arez independent so that,., has only ak=0
component; hence RSB is present onlkat0. It is conve-
nient to defineG_ *(q,k)=2,G,.(q,k) so that fork+0
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2mdk, |’
Gt(q,k) + 22

T zZ;
ZJ:yJeXp_ EJ’qk E"‘ q
! 0

-1\ -1

X Gc(q,k;z;=0)

The integral is dominated bl>q so that fork>1/\,;, the
effect of thed field via G(q,k) is negligible fora3/8mA2,
<1. Theq integration is then dominated kgf,(k) (while
Cgg SErves as a cutoffeading to a Irg;,

T [ dk (2md/ad)? |
Zi~VeXPy — | — nz;,
Y 8a) 24 (K +[S1+ze+1(KKE

hence,

_4ag dk | !
Td_?( fk eff(k)) ) (18)

Cas

where an effective elastic modulus d§}'(k) =c,(k) +[3,
+2.+1(k)]/K2. The z, term is obvious here by an expan-
sion of H¢om, EQ. (5). However, thes ;+1(k) term cannot
be derived by an expansion ®fy;s and a full RSB treatment
is required.2; acts then ag, and leads to a divergence of

ceff(k) ask—0, as already noted in Ref. 27. Since laige

Go(q,k)=G,4(q,k). The RSB solution reduces here to a dominates the integral in E418), we usel (k)~X,+2; so

one-step fornt/ henceG.(q,k) can be written with self-
energies in the form

Ggl(q,lo=c66q2+c44(q,k>k§+zc+zl<1—5k,o>+|(k(>, )
14

S+ z2.=(WQ¥16md?ceg)exp(— B, /2). (15

Here,B, =TQ2fq,ch(q,k) is a Debye Waller factor that is
dominated by largeg,k so that024(k) can be used to obtain

167 T CGBQZ
= |

n NG , (16
T (7/8daghsy) + 21+ 1(ar/d)+ 2z,

while the functionl (k) satisfies forT<r

[(Ceed®+2Zc+3q) 1

d?q
a)?

(2
—Gc(g,k)]. 17

Note that fork—0 this yields|(k)~|k|, while I(k)~2,
+2z. for large k, up to logarithmic terms. A condition for
melting can be estimated by a Lindemann numiet0.15
(Ref. 11 so that(u?(r)/a3)=B_/4m?~c?. Hence,r is a
measure of the melting temperature and Tog7, B, is

I(k)=4mCee( %1+ Zc)f

that

8d\2,a3

Td%Tg 1+(21+ Zc)m ,

(19

where T§= raZln(aq/d)/(4m\2,), from Eq. (2), is the transi-

tion temperature in the pure system. Siri@e 1/a, and W
~ag* we have from Eq.(15) 3;+z.~a,° Thus, the
change inTy due to columnar defects i$T4/T5~a,*
~B?2, up to InB terms. From Eqs(15) and(19), we obtain
our first principal result

4

bo
Ncolap. (20

dp

5Ty 2(4m)°EZncpbghl,

T r2agin(ag/d)

where E;~0.27 (Ref. 11. For strong disorder and strong
fields, the CD can dominate and th&g~B increases with
B. This allows a reentrant behavior, i.e., for a fixed tempera-

ture, asB is increased a decoupling occursT@t~Tg~l/B

and then a recoupling would occur at a higher field, assum-
ing this field is still below melting.

Next we address the commensurability term, which, un-
like the Josephson coupling, depends also on the longitudinal
u;(g,k) component. We, therefore, add longitudinal energy

terms: first, an elastic energy of the fofr) with cgg andcg4

replaced bycq; and c'44, respectively’® and second, the
usual long-wavelength disorder coupled You (Ref. 27

small. We note that it is essential to keep the nonsingulawhich yields the form of the first term of Ed4) with s

phase# to obtain the correct structure fact@.(q,k) in
Eq. (14).

replaced bys'. Sinceo,, originates from thaV term in Eq.
(4), %1 andl (k) are common to both longitudinal and trans-

The decoupling transition is determined by the vanishingverse parts, while the location of the one-step solution

of z;. Equation( 12) can be written in the form

changes by a factorcyq/(ci1+Cgg). Since cgg/Cqy
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=a2/16m\2,<1, the effect orS, is small, yet the structure vortex model,’ we suggest that the “vortex matrix,” pinned

factor for the longitudinal modgsinalog of Eq(14)] is sig- by the random CD, forms a commensurate potential. The

nificantly modified by the samE, and ! (k). lowest harmonic of this potential which couples to the flux
The equation foz, depends also on tHe=0 component periodicity has wave vectd [harmonics withQ'>Q have

of Gaa(a,k) which involves the long-wavelength disorder a (z,/(z,+3,))? “2?° factor in Eq.(21), forcing az.=0

parameterss, s'. Using inversion methods foB,, (Refs.  solutior]. Sinces is a second-order effect, we considgr

27,30, we obtain our second principal result =W/d?*~B,B?, hence decommensuration occurs Bt
12 ~B,, the bare proportionality constant being, however, too
Zo~Yo| = (ZC)SQZ/(l&-ngG)+s'Q2/(16wci1). (21) small to account for the data. The parametes are rel-
3a+2 evant parameters within R®Ref. 28 so that their renormal-

ized values can be large. The main result is then that elastic-
ity dominates at larg®, while disorder dominates at lo®,
Sdriving z.—0, in qualitative agreement with the data. We
propose then to search for an additional phase transition line
within the solid phase, corresponding to decommensuration,
which meets the melting curve By .

Hence, at some critical s' [where the powers df, on both
sides of Eq.(21) equal, the commensurability potential is
renormalized to zero. We note that this renormalization i
driven byk=0 terms, i.e., the same derivation is valid for a
2D system with point disordéf.

Long-wavelength disorder can generate dislocaffoas .
s>c§6a§/1677, i.e., below decommensuration. Furthermore, In conclusion, we have shown that columnar defects en-

. . ON 2 _
on very long scales, dislocations will be induced by short—hance. the decoupling transition so thly /Td B. How
ever, in contrast, the melting temperature involves the same

wavelength CD disorder as the system is effectively™" > 7" * . i .

two-dimensionaf®3? We limit our discussion to a Bragg (rjatlor\]/wthlnha Iogarlthnf{sele Eg.(lG%]_,l hence at Wg_ak ?Ijlsor-

glass domain that ignores these very long scale effects. | er the enhancement is alsa”, \g’ lle at strong disorder it
&s only a weak IrB effect. TheB“ enhancement at strong

The decoupling description neglects point defects, i.e., the’ S . :
nucleation of VI. The latter were studied in the absence oflisorder can, therefore, be useful in identifying a decoupling
nsition. Furthermore, for strong CD disorder a possibility

Josephson coupling and were shown to be generated by poipi

disorder'® leading to logarithmically correlated disorder for O! @ reentrant transition has been found, i.e., with increasing
VI . Disordered CD, however, induce onlyke=0 compo- field, decoupling is followed by recoupling. We have also

nent of disorder which has exponentially decreasing correlastlm“_ed effects_ of a commensurate CD__densr[y and shown
tions ~(q2+>\‘b2)‘2(q2+21)‘1 hence. the defect transi- that its potential vanishes above a critical value of long-
a 1 ’

tion is not affected by the CD. The true decoupling WhiChwavelength disorder. This decommensuration transition may

allows for both Josephson phase fluctuations and for poin‘%ccount for the unusual kink in the melting curve data.

defects, lies near the above decoupling for not too small We thank E. Zeldov for valuable discussions. This re-
Josephson coupling:?° search was supported by THE ISRAEL SCIENCE FOUN-

Finally, we address the dafeon the melting curve show- DATION founded by the Israel Academy of Sciences and
ing a kink at fieldsB,>B,. Within the proposed porous Humanities and by a German-Israeli DIP project.
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