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Decoupling and decommensuration in layered superconductors with columnar defects
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We consider layered superconductors with a flux lattice perpendicular to the layers and random columnar
defects parallel to the magnetic fieldB. We show that the decoupling transition temperatureTd , at which the
Josephson coupling vanishes, is enhanced by columnar defects by an amountdTd /Td;B2. Decoupling by
increasing field can be followed by a reentrant recoupling transition for strong disorder. We also consider a
commensurate component of the columnar density and show that its pinning potential is renormalized to zero
above a critical long-wavelength disorder. This decommnesuration transition may account for a recently ob-
served kink in the melting line.
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The phase diagram of layered superconductors in a m
netic field B perpendicular to the layers is of considerab
interest in view of recent experiments on high-temperat
superconductors.1–4 Columnar defects~CD! induced by
heavy-ion bombardment provide an additional interest
probe.1 In particular, the irreversibility line at low tempera
tures is enhanced,5,6 while within the liquid phase an onset o
enhancedz-axis correlation7–9 was observed. Recent data10

indicate that CD produce a porous vortex matter in wh
ordered vortex crystallites are embedded in the ‘‘pores’’ o
rigid matrix of vortices pinned on the CD. A sharp kink
the melting curve signals an abrupt change from melt
enhanced by the matrix at high fields to a more weakly
hanced melting at lower fields. Theoretical studies on
have shown a ‘‘localization’’ transition within a bose gla
phase.11,12 Recent simulations13 have been interpreted i
terms of a Bragg-Bose glass with positional order which s
in as field increases. Also a ‘‘recoupling’’ crossov
transition14 was studied in the vortex liquid phase.

In the absence of CD, theoretical studies have sho
layer decoupling due to thermal fluctuations15–17 or due to
disorder.17,18At this phase transition, the Josephson coupl
between layers vanishes at long scales, i.e., the critical
rent perpendicular to the layers vanishes and supercond
ing correlations in thez direction ~perpendicular to the lay
ers! become short range. Decoupling involves, in princip
also proliferation of point defects—vacancies and inter
tials ~VI !.19 The flux lattice is present even in the decoupl
phase with thez-axis positional correlations maintained b
magnetic couplings. In the case of point disorder, this ph
would thus still exhibit Bragg-glass-type order without d
locations.

An increase in the critical current at a ‘‘second pea
transition has been interpreted as due to an apparent dis
tinuity in the tilt modulus at decoupling.20 Plasma resonanc
data21,22 have shown a significant jump at this transitio
consistent with the decoupling scenario. Whether this tra
tion is driven by decoupling alone, rather than by a sudd
dislocation proliferation,23 remains to be investigated.

In the present work, we consider the effects of CD with
the flux lattice phase, neglecting VI~whose role is discusse
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below!. We find that the decoupling transition temperatu
Td(B) is enhanced by CD. In particular, for strong disord
the low-field formTd(B);1/B becomesTd(B);B at strong
fields, hence decoupling followed by a reentrant transit
into a coupled state, i.e., recoupling, is possible with incre
ing field. These predictions can test whether the second p
transition is of a decoupling type. We also allow for a fini
component of the CD density, which is commensurate w
the flux lattice, a component that usually needs to be spe
cally prepared.24 We find that long-wavelength disorde
renormalizes the commensurate coupling to zero,
decommensuration, above a critical value of disorder.
propose that the matrix component of the porous vortex m
ter provides a commensurability potential for the embedd
crystallites. At high fields, this enhances the crystallite me
ing temperature, while below the decommensuration tra
tion, the crystallites decouple from the matrix, leading to
weaker enhancement of melting.

We study the classical partition function ofL/d Josephson
coupled layers, whereL→` is the total length in thez di-
rection perpendicular to the layers andd is the interlayer
spacing. The elastic energy of the transverse displacem
fields u(q,k) in the absence of Josephson coupling can
written as25,26

Hel5
1

2L (
k,a

E
q
~c66q

21c44
0 ~k!kz

2!uua~q,k!u2, ~1!

where a replica indexa51,2, . . . ,n is needed below for the
disorder average. The elastic constants are25,26 c44

0 (k)
5t/(8da0

2lab
2 kz

2)ln(11a0
2kz

2/4p) andc665t/(16da0
2), where

k is the wave vector in thez direction, kz5(2/d)sin(kd/2),
t5F0

2d/(4p2lab
2 ), lab is the magnetic penetration lengt

parallel to the layers,a0
2 is the area of the flux lattice uni

cell, andF0 is the flux quantum, i.e.,F05Ba0
2 . Note that

the Josephson coupling induces an additional term inc44,26

as also shown below. The decoupling transition of the p
system~for weak Josephson coupling! is given by16,17
©2003 The American Physical Society05-1
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Td
05

4a0
4

d2 S E
k

dk

c44
0 ~k!

D 21

~2!

and our principal aim is to obtain the correspondingTd in the
presence of correlated disorder.

Consider a distribution of CD whose positions within
layer are random and uncorrelated. Each of the CD ha
radius b0 and their average areal densitynCD is low,
nCDb0

2!1. A flux line has a core of radiusj0 that usually
satisfiesj0,b0. Once a flux line is partially inside a CD,
gains its core energyEc per layer. The pinning potential pe
unit area is thenUpin(r )5(Ec /j0

2)( i p(r2r i) with the sum
on the CD positions andp(r ) is a shape function, e.g
p(r )51 for r ,b0 and vanishes forr .b0. The variance,
neglecting CD overlaps, is, therefore,

Upin~r !Upin~r 8!'Ec
2nCD~b0 /j0!4d2~r2r 8!. ~3!

The average with respect to a flux density involves an ad
tional factor (j0 /a0)4 due to the decomposition of a sharp
peaked flux into harmonics with reciprocal vectors Q. T
replica average at temperatureT is then27

Hdis52(
ab

H 1

L (
k
E d2q

~2p!2
sq2Ldk,0u

a~q,k!ub~2q,2k!

1W(
n,n8

E d2r cos@Q•„un
a~r !2un8

b
~r !…#J Y2T, ~4!

where W5Ec
2nCD(b0 /a0)4 and only the shortest mos

relevant27 Q is retained. The cos term above involves vect
Q and un

a which in the averages below yield̂Q•u&2

5Q2^u21ul
2&/2; whereul is the longitudinal displacemen

that is neglected for now as it has no effect on the decoup
transition. The parameters measures a long-wavelength ra
dom torque coupled to a local bond angle28 g5(]xuy
2]yux)/2, since for transverse modes (“u)254g2.

The long-range Bragg glass properties depend on the
linear cos term in Eq.~4!. If this cos is expanded, it yield
;(ab*d2rua(r ,k50)ub(r ,k50), i.e., a k50 quadratic
term that has no effect on the decoupling transition. It
therefore, essential to treat the Bragg glass nonlinear
properly.

We also allow for a commensurate term of the CD dens
of the form

Hcom52yc~2d/Q2!(
n,a

E d2r cos@Q•un
a~r !#. ~5!

Consider next the Josephson phase, i.e., the relative
perconducting phase of two neighboring layers. Each fl
line can be viewed as a collection of point singularities,
pancake vortices, positioned one on top of the other in c
secutive layers. Around each pancake vortex, the super
ducting phase follows the anglea(r ) that changes by 2p in
a complete rotation. The Josephson phase involves th
nonsingular componentun(r ) and a singular contribution
from pancake vortices. The latter are positioned atRl1ul

n in
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the nth layer and atRl1ul
n11 in the (n11)th layer, where

Rl is the undistorted position of thel th flux line. The total
Josephson phase is then

un~r !1(
l

@a~r2Rl2ul
n!2a~r2Rl2ul

n11!#

'un~r !1(
l

~ul
n2ul

n11!“a~r2Rl !, ~6!

where the expansion is justified in the Bragg glass, since
correlation length in thez direction is @d. We define
~including now the replica index! ba(q,k)
522pdeikd/2ua(q,k)kz /(qa0

2) so that the Josephson pha
is un

a(r )1bn
a(r ). Fluctuations of theun(r ) field involve the

Josephson energy as well as magnetic-field terms,

HJ5
1

2L (
k,a

E d2q

~2p!2
Gf

21~q,k!uua~q,k!u2

2yJ(
n,a

E d2rcos@un
a~r !1bn

a~r !#, ~7!

where29 Gf(q,k)54pd3(lab
221kz

2)/(tq2). The full Hamil-
tonian is thenH5Hel1Hdis1Hcom1HJ .

We proceed to solve this system by the variational meth
allowing for replica symmetry breaking~RSB!.27,30The form
of the variational HamiltonianH0 is obtained by expanding
the cos terms and replacingyJ , yc , and W by variational
parameterszJ , zc , andsab(k), respectively. The Josephso
term involves au,b cross term that is eliminated by a shi
ũa(q,k)5ua(q,k)2ua(q,k)zJ(2pkz /a0

2q) exp(ikd/2)/(Gf
21

1zJ /d). Hence~repeated indices are summed!,

H05
1

2L (
k
E d2q

~2p!2
$Gab

21~q,k!ua~q,k!ub* ~q,k!

1@Gf
21~q,k!1zJ /d#uũa~q,k!u2%, ~8!

Gab
21~q,k!5@c66q

21c44~q,k!kz
21zc#dab

2sL
q2

T
dk,02sab~k!. ~9!

The effect of the nonsingularua is to shift c44
0 (k) of Eq. ~1!

into c44(q,k)

c44~q,k!5c44
0 ~k!1

B2

4p~11lc
2q21lab

2 kz
2!

, ~10!

wherelc
25F0

2/(16p3zJd). Note that the limitlc→` at de-
coupling must be taken beforeq→0.

The variational method minimizes the free energyF0
1^H2H0&0, where the free energyF0 and the average
^•••&0 correspond toH0. This yields
5-2
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sab~k!5~WQ2/2d2T!E
0

L

dzFcoskzexp~2Bab~z!/2!

2dab(
c

exp~2Bac~z!/2!G , ~11!

zJ5yJexpH 2~T/2!E
q,k

F kz
2

q2 S 2pd

a2 D 2S Gf
21~q,k!

Gf
21~q,k!1zJ /d

D 2

3Gaa~q,k!1~Gf
21~q,k!1zJ /d!21G J , ~12!

zc5ycexpH 2~TQ2/4!E
q,k

Gaa~q,k!J , ~13!

where*q,k5*d2qdk/(2p)3 andBab(z) is given by

Bab~z!5TQ2E d2qdk

~2p!3
@Gaa~q,k!2cos~kz!Gab~q,k!#.

Since the disorder isz independent, the off-diagonal term
BaÞb(z) are z independent so thatsaÞb has only ak50
component; hence RSB is present only atk50. It is conve-
nient to defineGc

21(q,k)5(bGab
21(q,k) so that for kÞ0

Gc(q,k)5Gaa(q,k). The RSB solution reduces here to
one-step form,27 henceGc(q,k) can be written with self-
energies in the form

Gc
21~q,k!5c66q

21c44~q,k!kz
21zc1S1~12dk,0!1I ~k!,

~14!

S11zc5~WQ4/16pd2c66!exp~2B1/2!. ~15!

Here,B15TQ2*q,kGc(q,k) is a Debye Waller factor that is
dominated by largeq,k so thatc44

0 (k) can be used to obtain

uB1u&
16pT

t
ln

c66Q
2

~t/8da0
2lab

2 !1S11I ~p/d!1zc

, ~16!

while the functionI (k) satisfies forT!t

I ~k!54pc66~S11zc!E d2q

~2p!2
@~c66q

21zc1S1!21

2Gc~q,k!#. ~17!

Note that fork→0 this yields I (k);uku, while I (k)'S1
1zc for large k, up to logarithmic terms. A condition fo
melting can be estimated by a Lindemann numbercL'0.15
~Ref. 11! so that^un

2(r )/a0
2&5B1/4p2'cL

2 . Hence,t is a
measure of the melting temperature and forT!t, B1 is
small. We note that it is essential to keep the nonsingu
phaseu to obtain the correct structure factorGc(q,k) in
Eq. ~14!.

The decoupling transition is determined by the vanish
of zJ . Equation~ 12! can be written in the form
14050
r

g

zJ5yJexp2
T

2Eq,k
S zJ

d
1FGf~q,k!1S 2pdkz

a0
2q

D 2

3Gc~q,k;zJ50!G21D 21

.

The integral is dominated byk@q so that fork.1/lab the
effect of theu field via Gf(q,k) is negligible fora0

2/8plab
2

!1. The q integration is then dominated byc44
0 (k) ~while

c66 serves as a cutoff! leading to a lnzJ ,

zJ;yJexpH T

8pE dk

2p

~2pd/a0
2!2

c44
0 ~k!1@S11zc1I ~k!#/kz

2
ln zJJ ,

hence,

Td5
4a0

4

d2 S E
k

dk

c44
e f f~k!

D 21

, ~18!

where an effective elastic modulus isc44
e f f(k)5c44

0 (k)1@S1

1zc1I (k)#/kz
2 . The zc term is obvious here by an expan

sion of Hcom, Eq. ~5!. However, theS11I (k) term cannot
be derived by an expansion ofHdis and a full RSB treatmen
is required.S1 acts then aszc and leads to a divergence o
c44

e f f(k) ask→0, as already noted in Ref. 27. Since largek
dominates the integral in Eq.~18!, we useI (k)'S11zc so
that

Td'Td
0F11~S11zc!

8dlab
2 a0

2

t ln~a0 /d!
G , ~19!

whereTd
05ta0

2ln(a0 /d)/(4plab
2 ), from Eq. ~2!, is the transi-

tion temperature in the pure system. SinceQ;1/a0 and W
;a0

24, we have from Eq.~15! S11zc;a0
26. Thus, the

change in Td due to columnar defects isdTd /Td
0;a0

24

;B2, up to lnB terms. From Eqs.~15! and ~19!, we obtain
our first principal result

dTd

Td
0

'
2~4p!3Ec

2nCDb0
4lab

2

t2a0
4ln~a0 /d!

'102S b0

a0
D 4

nCDlab
2 , ~20!

where Ec'0.2t ~Ref. 11!. For strong disorder and stron
fields, the CD can dominate and thenTd;B increases with
B. This allows a reentrant behavior, i.e., for a fixed tempe
ture, asB is increased a decoupling occurs atTd'Td

0;1/B
and then a recoupling would occur at a higher field, assu
ing this field is still below melting.

Next we address the commensurability term, which, u
like the Josephson coupling, depends also on the longitud
ul(q,k) component. We, therefore, add longitudinal ener
terms: first, an elastic energy of the form~ 1! with c66 andc44

0

replaced byc11 and c44
l , respectively;26 and second, the

usual long-wavelength disorder coupled to“•u ~Ref. 27!
which yields the form of the first term of Eq.~4! with s
replaced bysl . Sincesab originates from theW term in Eq.
~4!, S1 andI (k) are common to both longitudinal and tran
verse parts, while the location of the one-step solut
changes by a factorc11/(c111c66). Since c66/c11
5-3
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5a0
2/16plab

2 !1, the effect onS1 is small, yet the structure
factor for the longitudinal modes@analog of Eq.~14!# is sig-
nificantly modified by the sameS1 and I (k).

The equation forzc depends also on thek50 component
of Gaa(q,k) which involves the long-wavelength disord
parameterss, sl . Using inversion methods forGab ~Refs.
27,30!, we obtain our second principal result

zc;ycS zc

S11zc
D 1/2

~zc!
sQ2/(16pc66

2 )1slQ2/(16pc11
2 ). ~21!

Hence, at some criticals, sl @where the powers ofzc on both
sides of Eq.~21! equal#, the commensurability potential i
renormalized to zero. We note that this renormalization
driven byk50 terms, i.e., the same derivation is valid for
2D system with point disorder.31

Long-wavelength disorder can generate dislocations28 at
s.c66

2 a0
2/16p, i.e., below decommensuration. Furthermo

on very long scales, dislocations will be induced by sho
wavelength CD disorder as the system is effectiv
two-dimensional.28,32 We limit our discussion to a Bragg
glass domain that ignores these very long scale effects.

The decoupling description neglects point defects, i.e.,
nucleation of VI. The latter were studied in the absence
Josephson coupling and were shown to be generated by
disorder,19 leading to logarithmically correlated disorder fo
VI . Disordered CD, however, induce only ak50 compo-
nent of disorder which has exponentially decreasing corr
tions ;(q21lab

22)22(q21S1)21, hence, the defect trans
tion is not affected by the CD. The true decoupling, whi
allows for both Josephson phase fluctuations and for p
defects, lies near the above decoupling for not too sm
Josephson coupling.19,29

Finally, we address the data10 on the melting curve show
ing a kink at fieldsBk@Bf . Within the proposed porou
s.

B

14050
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vortex model,10 we suggest that the ‘‘vortex matrix,’’ pinned
by the random CD, forms a commensurate potential. T
lowest harmonic of this potential which couples to the fl
periodicity has wave vectorQ @harmonics withQ8.Q have
a (zc /(zc1S1))Q82/2Q2

factor in Eq. ~21!, forcing a zc50
solution#. Since s is a second-order effect, we considersl

5W/d2;BfB2, hence decommensuration occurs atB
;Bf , the bare proportionality constant being, however, t
small to account for the data. The parameterss,sl are rel-
evant parameters within RG~Ref. 28! so that their renormal-
ized values can be large. The main result is then that ela
ity dominates at largeB, while disorder dominates at lowB,
driving zc→0, in qualitative agreement with the data. W
propose then to search for an additional phase transition
within the solid phase, corresponding to decommensurat
which meets the melting curve atBk .

In conclusion, we have shown that columnar defects
hance the decoupling transition so thatdTd /Td

0;B2. How-
ever, in contrast, the melting temperature involves the sa
ratio within a logarithm@see Eq.~16!#; hence at weak disor
der the enhancement is also;B2, while at strong disorder it
is only a weak lnB effect. TheB2 enhancement at stron
disorder can, therefore, be useful in identifying a decoupl
transition. Furthermore, for strong CD disorder a possibi
of a reentrant transition has been found, i.e., with increas
field, decoupling is followed by recoupling. We have al
studied effects of a commensurate CD density and sho
that its potential vanishes above a critical value of lon
wavelength disorder. This decommensuration transition m
account for the unusual kink in the melting curve data.
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