
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 67, 140201~R! ~2003!
Low-temperature saturation of variable-range hopping and delocalization of electron states
by entanglement with phonons in two dimensions
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We investigate low-temperature transport properties in a two-dimensional electronic system coupled with
phonons. It is found that some of the localized states will be delocalized by the entanglement with phonons
even when the temperature approaches the absolute zero. The distribution of phonons near the zero temperature
is departed from the Boson distribution because the entangled states are preferred from the energy point of
view. This leads to the low-temperature saturation of the variable-range hopping of electrons and the existence
of a metal-like behavior in two dimensions.
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The metal-insulator transition in two-dimensional~2D!
systems has been of great interest in the past two deca
Within the standard scaling theory, all carriers are localiz
in the absence of an external magnetic field.1 Seven years
ago, metallic behavior was observed in metal-oxid
semiconductor field-effect transitor.2 Although the origin of
this phenomenon is still in controversy, one school
thought believes that it is related to a crossover from
quantum to classical transport.3–8 Thus, the understanding o
this phenomenon will shed light on the bridge connect
classical and quantum physics and may introduce new c
cept on the transport in low dimensions. One mechan
leading to the transition from quantum to classical behav
is the inelastic scattering of electrons by phonons or ot
bosonic excitations, which eliminates the quantum cohere
of electron wave functions. In early years the phono
assisted transport of electrons has been studied by man
thors. In his pioneering work, Mott has proposed variab
range hopping~VRH! model describing finite conductance
amorphous semiconductors at finite temperatures.9 In this
model the hoppings between quantum-mechanically lo
ized states are assisted by phonons. Other authors have
retically studied the delocalization effect of phonons in d
ordered systems.10–13 This effect, however, has been show
to vanish at the zero temperature due to the usage of the
thermal distribution for free phonons in these studies. I
believed that at zero temperature the metal-insulator tra
tion is still related to a quantum transition, and the 2D s
tems should have zero conductance in this sense. In V
model, the classical-like processes connected with inela
scattering vanish when approaching zero temperature, l
ing the theT21/3 divergence of the logarithmic resistance
two dimensions. Recently, the vanishing of classical-like
havior at zero temperature is questioned experimentally
the observations of the low-temperature saturation of
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dephasing.14 A theoretical calculation on quantum dot ha
shown that the inelastic scattering for the electron can
vanish at zero temperature, leading to the saturation of
dephasing. This implies that the combined electron-pho
states, rather than the separated ones, are in equilibrium
the thermal bath.15 In this paper, a 2D electronic system
coupled with phonons is studied. We focus on the deloc
ization effect of phonons at the zero temperature. Accord
to the Heisenberg uncertainty principle, the entanglemen
electron and phonon states lowers the energy of the c
bined system. From this the VRH theory is extended to
case of temperature approaching the absolute zero by re
ing the Bose distribution for free phonons with the therm
statistics of the coupled electron-phonon system. We ar
that such kind of phonon-assisted mechanism can also s
rate at very low temperatures, leading to the metal-like
havior.

At the beginning, let us consider a model Hamiltoni
that describes the coupling between electrons and phono
a 2D disordered system,

H5(
i

e ici
†ci1(

^ i , j &
~ci

†cj1H.c.!1(
i ,q

gi ,qci
†ci~aq

†1aq!

1(
q

\vqS aq
†aq1

1

2D , ~1!

whereci and ci
† are electronic annihilated and creation o

erators for electrons at sitei, e i is the random site energ
uniformly distributed between2w/2 andw/2, aq

† andaq are
annihilated and creation operators for phonons of modeq,
\vq is energy of a phonon in modeq, andgi ,q is the cou-
pling strength between electron at sitei and phonon of mode
q which is randomly distributed between 0 andq. Here the
second term describes the nearest-neighbor hopping of
©2003 The American Physical Society01-1
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electrons and the hopping integral is set to be in the ene
units. We assume that only a fraction of the phonon mo
has enough coupling strength with electrons, and the num
of these modesM is proportional to the area of the system
M5aN2, with a being a constant andN the linear size of
the system.

In this paper we restrict ourselves to the study of
electron-phonon coupling and the correlation between e
trons is ignored, thus, we only consider the motion of o
electron on a lattice. A full quantum-mechanical descript
of a state in Hamiltonian~1! is a linear combination of basi
wave functions consisting of an electron state and a num
of phonons:

uC&5(
i ,D

Ci ,Duf i& ^ )
qPD

aq
†u0&, ~2!

where uf i& is the electron orbital on sitei, D is a set of
phonon numbers withmq being the number in theqth mode
for q ranging from 1 toM, u0& is the state with zero phonon
andCi ,D is the corresponding coefficient. It is interesting
note that by this description the Hilbert space for the mot
of a single electron is extended fromN3N dimensions in the
case without the electron-phonon interaction toN3N3(m
11)aN3N dimensions, if we only include at mostm phonons
for each mode (mq<m for all setsD). This is a tremendous
increase of the effective dimensions of the system e
thoughgi ,q , a, andm are small, and may lead to the viola
tion of the conclusion of the scaling theory in Ref. 1. T
Hilbert space consists of a large number of planes, eac
which corresponds to a specific set of the phonon sta
Among them the basic plane is the one with zero phonon
which the site energies are the original values given bye i in
Hamiltonian ~1!. For the other planes the site energies
increased by an amount of the energies of the correspon
phonons. This increase of site energies may weaken the
fect of tunneling paths provided by these planes. Howe
this effect still cannot be neglected if there is a small fract
of phonon modes which has low energies and is stron
coupled with electrons.

To illustrate this effect, we use the standard transfer m
trix method~TMM ! to study the delocalization of the elec
tronic states on a 2D disordered system via the coupling w
phonons. To simplify the calculation, we only include
most one phonon for each mode, and the phonon indu
hoppings between different sites are ignored. We calcu
the rescaled localization lengthlN /N wherelN is the local-
ization length of a strip with widthN and lengthL, much
larger thanN. The number of phonon modes involved in th
calculation isaN2, corresponding to the number of modes
an N3N square. Thus, the obtained rescaled localizat
length corresponds to the conductance of the square sys
In the TMM calculation we project the input and output am
plitudes of the wave function to the basic plane with ze
phonon, although there are many planes with nonz
phonons in the intermediate states. This procedure gua
tees that the incoming and outgoing electrons are from an
the zero-temperature reservoirs. In Fig. 1, we plot the s
dependence of the rescaled localization length for differ
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strengths of disorderW. It is obvious that there appear stat
for which the rescaled localization length is increased w
the system size. This behavior could be regarded as meta
like. However, with this calculation we could not determine
sharp point of the transition, as there is not a value ofWc ,
for which the rescaled localization length is size independ
~fixed point!. This implies the failure of the use of the sta
dard TMM, since the increase of the effective dimensio
with the sizeN is rather nonregular, and the processes
volved are in fact not quantum mechanical. Nevertheless,
trend of the delocalization is evidently shown from this c
culation. This trend occurs at the zero temperature. The
neling paths in planes corresponding to nonzero phonons
be considered as ‘‘virtual processes,’’ which have effect ev
at the zero temperature. Especially, if\v!W, the paths with
nonzero phonons can always provide tunneling probab
for the originally localized states.

A more suitable description for these processes is so
type of the classical treatments, such as the VRH mode
the percolation theory. However, as mentioned above, in
previous VRH model the effect of phonons vanishes at
zero temperature. This is because the number of phonon
zero if the phonon system is regarded as in equilibrium w
the thermal bath. This is true only if the energy of the to
system of electron and phonons is exactly equal to the s
of the electron energy and the phonon energy. In this case
statistical distribution function is the product of those of t
subsystems.16 The situation will be changed when the co
pling between the subsystems alters the energy of the
system from the sum of the subsystems. In this case
energies of the subsystems are no longer meaningful qu
ties which can be used in the ensemble averaging. The
quantity which can be used is the total energy. In a simp
situation let us consider an electron at a single energy le
coupled with a phonon mode of energy\v and the coupling
strength isg. If the energy change is considered as far as
the second order ofg, the phonon number at temperatureT is

FIG. 1. Rescaled localization length as a function of the sys
size. The parameters are the following:g50.2, the energy of elec-
tron is 0.1, the density of relevant phonon modes is described
a51/16, and the phonon energy is\v50.2.
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p~v,T!5

exp~2b\v!

@12exp~2b\v!#2
1

g2

\2v2
exp~bg2/\v!

exp~bg2/\v!211
1

12exp~2b\v!

.

~3!

Here,b51/kT with k being the Boltzmann constant. It ca
be seen that the phonon number saturates tog2/\2v2 at low
temperature which is different from the usual Bose distrib
tion. On the other hand, forkT@g2/\v, the thermal fluctua-
tions smear out the energy difference caused by the coup
the phonon number becomes the same as that of the ph
subsystem. Of course, in a real world there are many pho
modes coupled to many electron states, and the comb
states become more entangled and complicated.

In Fig. 2, we compare the above equation with numeri
results by diagonalizing the Hamiltonian. The electron s
system is a 10310 square lattice with on-site disorder an
nearest-neighboring hopping. The maximum number
phonons in the state\v is considered up toM, M516,32.
This will limit the statistically averaged phonon numberp,
leading to a finite value ofp in the numerical results even a
the limit of v50 which corresponds to a complete softeni
of the lattice. During the calculations, it is found that t
strength of the on-site disorder in the electron plane has l
effect on the average phonon number. So we takew50 as
default in all calculations. It seems that the result from
approximation in Eq.~3! tends to overestimate the phono
number compared to numerical results whenv is small.
However, it does indicate the basic fact that the coupl
with the electron system will excite more phonons than t
from the ordinary Bose statistics for an isolated phonon s
tem in equilibrium with the bath and, especially, the avera
phonon number saturates to a finite value in approaching
zero temperature. So, for simplicity we will use this appro
mate result in the next stage.

In the VRH model the electron can be transferred fro
one localized state to another localized state with the as

FIG. 2. The distribution of phononsp as a function ofv. The
parameters arew50, g50.1, andkT50.1.
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tance of phonons. This can produce a finite conductance e
though all the states of electrons are localized. According
Mott, the VRH process takes place in a lattice with the f
lowing Hamiltonian:

HVRH5(
m

jmnm , ~4!

where indexm denotes a localized state,jm is the corre-
sponding energy, andnm50,1 is the occupation of electron
in this state. The probability of transferring an electron fro
a localized statem to another localized statem8, Pmm8 , is
obviously proportional to the number of the availab
phonons, but exponentially decays with the distance betw
the localization centers of statesm andm8 denoted asr mm8 .
This consideration leads to the following expression:9

Pmm8} expS 2
2r mm8

l D p~Emm8 ,T!, ~5!

where l is the average localization length of the electr
states andEmm8 is the energy difference between statesm
andm8, assumed to be the same as the energy of the m
ated phonon. In the Mott theoryPmm8 vanishes at zero tem
perature, since from the ordinary Bose distribution the nu
ber of phonons is zero. However, this probability should
finite at zero temperature if we calculate it from the pu
quantum mechanics of the electron system, since
electron-phonon coupling produces nondiagonal elements
states$m%. A straightforward perturbation estimation from
the coupling in Hamiltonian~1! gives Pmm8}@g2/(\2v
1Emm8)

2#exp(22rmm8 /l). This coincides with Eq.~5! at T
→0 if p(Emm8 ,T) is replaced with Eq.~3!. Thus, it is rea-
sonable to replace the Bose distribution with the phon
number in the composite electron-phonon states so that
VRH theory can be generalized to the low-temperature
strong electron-phonon coupling limit.

The resistivity of the system is proportional to the inver
of the maximum probability with respect to the variation
r mm8 , and the energy differenceEmm8 is approximated by

FIG. 3. Resistivity as a function of the temperature. The para
eters arel51 andr50.6.
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Emm85
1

rr mm8
2 , ~6!

wherer is a quantity proportional to the density of states
electrons. In Fig. 3, we plot the temperature dependenc
the resistivity obtained from the above consideration. It c
be seen that there exist states with finite resistivity at z
temperature. For these states the resistivity is almost s
rated at low temperatures. If the scattering effects of
thermal excitations are included, the metalliclike behavior
the temperature dependence could be expected in this
gime. On the other hand, the transition probabilities betw
localized states are randomly distributed. Among them
states with transition probabilities larger than a cert
threshold can be connected to form clusters that are sim
to those in classical percolation models. In this sense
percolation models may also be suitable for the descrip
of the metal-insulator transition in such systems.
a
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In summary, we have investigated the effect of t
electron-phonon coupling on the transport of electrons in
disordered systems at very low temperatures. The deloca
tion effect of phonons, which has been studied in the cas
finite temperatures in earlier works,9–13 is investigated in the
case of temperature approaching the absolute zero. Du
the redistribution of the phonon number in the compos
states of electron and phonons, the VRH theory is modifi
at the low-temperature limit, and the saturation of the VR
probabilities can produce a finite value of the resistivity
the zero temperature and the metalliclike behavior of
system, which cannot be accounted for by the theory of
quantum metal-insulator transition.
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