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Vortex-antivortex configurations and its stability in a mesoscopic superconducting square
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We solve the Ginzburg-Landau equation for the mesoscopic superconducting thin film of square shape in a
magnetic field for a wide range of Ginzburg-Landau parameters 0.05,keff,`. We focus on the region of the
field where the formation of an antivortex has been reported previously. We found that the phase with the
antivortex exists in the broad range of parameters. When the coherence length decreases the topological phase
transition to the phase with the same total vorticity and a reduced symmetry takes place. The giant vortex with
vorticity m53 is found to be unstable for any field,j/a andkeff*0.1. Reduction ofkeff does not make the
phase with antivortex more stable contrary to the case of a cylindric sample of the type-I superconductor.
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I. INTRODUCTION

Recently it was shown that the influence of boundar
can lead to stabilization of the vortex-antivortex molecules
mesoscopic samples.1 Analysis of the linearized Ginzburg
Landau equation~GLE! has shown that such molecules a
pear at particular values of the external magnetic field
pending on the sample shape and size.2 The solution of the
GLE in the limit of the extreme type-II superconduct
shows that such molecules have a very shallow minimum
the free energy3,4 and are very sensitive to the change of t
sample shape.5

In a square mesoscopic thin film with the total vortici
m53 the symmetric solution with four vortices and one a
tivortex is the solution of the linearized GLE with the lowe
free energy.1 According to Ref. 3, away from theHc2 line the
giant vortex with vorticitym53 is stable and has the lowe
free energy. This implies that a topological phase transit
without changeof the vorticity andwithout a reductionof
the symmetry should take place with the change of the
ternal field and/or the coherence length away from
critical-field line.

It was proposed that in the limitk.1/A2, where the
vortex-antivortex interaction changes sign, vortex-antivor
complexes should be more stable6 for the cylindric sample
shape. For a thin film withleff5l2/d and keff5leff/j,
whered is the thickness of the film,l is the London penetra
tion depth, andj is the superconducting coherence leng
this mechanism should be less effective due to a sma
contribution of the ‘‘magnetic energy’’ to the total free e
ergy.

We performed an extensive study of the region of
phase diagram where the vortex-antivortex phase was p
ously reported for a sample of square shape.1 We focused on
the region 4,a/j,8 andkeff.0.05. We found that the an
tivortex phase is stable in a broad range of parameters.
region of stability of the phase does not depend strongly
the value of the parameterkeff. The energy gain due to th
antivortex formation is much smaller then the energy diff
ence between two phases with different vorticities. The gi
vortex with m53 is unstable for any field,j/a and keff
*0.1. The phase transition to the phase with three separ
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vortices takes place whenj/a is driven away from the
critical-field line. The reduction ofkeff does not stabilize the
antivortex phase for the thin film sample in the contrast
the case of the cylindric sample.6

II. FORMALISM AND SOLUTION

The GLE for the normalized complex order parameterc
5C/C0 , C05Ab/uau, has the following form:

j2S i¹1
2pA

F0
D 2

c2c1cucu250; ~1!

herej5\2/4muau, a and b are the temperature-depende
parameters of the Ginzburg-Landau expansion for the
energy,F0 is the flux quantum,A is the vector potential, and
H5¹3A is the magnetic field. The second GLE equation
the vector potential reads

¹3¹3A52 i
F0

4pl2
~c* ¹c2c¹c* !2

ucu2A

l2
. ~2!

In addition to Eq.~1! we assume the boundary condition f
the superconductor-insulator junction on the sample edg

S i¹1
2pA

F0
D •nc50, ~3!

wheren is a vector normal to the surface of the sample.
As was described in Ref. 3 we introduceN3N discrete

points on the square and rewrite Eq.~1! in the form of the
nonlinear discrete Schro¨dinger equation

(
l

t i¿l,ic i¿l2e~ i!t i,ic i2c i1c iuc iu250, ~4!

where the summation indexl5~61,0!, ~0,61! points toward
the nearest neighbors andt i1 ,i5(jN/a)2exp(ifi1 ,i) and

f i1 ,i52(2p/F0)*
r i

r i1A(r )dr . The boundary conditions ar

included in the discrete nonlinear Schro¨dinger equation as in
©2003 The American Physical Society27-1
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Ref. 3 wherec i50 if i is outside of the sample ande( i)
542d i x,12d i x ,N2d i y,12d i y ,N where i5( i x51, . . . ,N,i y

51, . . . ,N).
After discretization of Eq.~2! we can obtain the exac

expression for the vector potential:

Ai
v5(

n
K~ iÀn!Jn

v , ~5!

where

Ji
v5

F0a

4pleffN
Im@exp~2 if i¿lv ,i!c i* c i¿lv

2exp~2 if iÀlv ,i !c i* c iÀlv
#, ~6!

wherevP$x,y% and lx5(1,0), ly5(0,1), and

K~n!5
N

2p2a
E

0

p

dxdy
cos~nxx!cos~nyy!

A422 cos~x!22 cos~y!
. ~7!

The numerical self-consistent solution of the problem
obtained by iterating the solution of the nonlinear equat
for the order parameter, Eq.~4!, and calculations of the cur
rent and the vector potential, Eqs.~5! and ~6!. We used two
ways of solving Eq.~4!. The first is similar to that reported in
Ref. 3 and corresponds to the iterative solution of the line
ized equation~4!. The second relies on the fact that Eq.~4!

FIG. 1. ~a! The magnitude of the superconductivity order para
eter for (a/j)2535, keff5`, andF55.9F0. ~b! The central region
where the vortices are located in an expanded scale. The positi
the antivortex is indicated by the symbol^ .
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represents the Euler equation for the free-energy functio
with included boundary conditions. Equation~4! was there-
fore solved by the direct minimization of the correspondi
functional using the conjugate-gradient method. Both te
niques gave identical results.

III. RESULTS

The main goal of the paper is to investigate the ph
diagram in the region 4.5,F/F0,6.5 and (a/j)2,60
where the solution with one antivortex and four vortic
~Fig. 1! has been reported. We found that the region of
phase diagram where the symmetry-induced antivortex s
tion has the lowest energy is broader than expected from
solution of the linearized GLE. As is shown in Fig. 2 fo
keff5` the antivortex phase is stable up to (a/j)2;55, de-
pending onF/F0. For a finitekeff this region shifts to the
higher field as (a/j)2 increases~see Fig. 2!.

The interesting behavior is observed when the exter

-

of

FIG. 2. The calculated phase diagram. Different phases
marked with icons schematically indicating the vortex patte
where the solid circle represents a vortex, the open circle repres
an antivortex, and the larger solid circle represents a double vo
The solid symbols and solid lines represent the phase boundarie
keff5` while the open symbols and dotted lines represent the ph
boundaries forkeff51. In the latter case only the phase boundar
of the region with the total vorticity 3 are shown.

FIG. 3. The magnitude of the order parameter around the t
sition where one vortex annihilates with the antivortex as a funct
of (a/j)2 at constant magnetic field.
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field is fixed and (a/j)2 increases. Close to theHc2 the low-
est minimum of the free energy corresponds to the solu
with the vorticity m5421 with the antivortex in the cente
of the square. Present calculations do not confirm the e
tence of the giant-vortex solution withm53 in this region of
the phase diagram as reported previously.3 The difference is
due to the increase of the number of discrete pointsN en-
abling detection of the antivortex. With increase of (a/j)2

away from theHc2 line the phase transition to the multivo
tex state with the same vorticity (m53) and a lower sym-
metry takes place~see Fig. 2!. In general, the free energ
depends on the vorticitym5n12n2 and the total number o
vortices in the system,n5n11n2 . The transition at
(a/j)2;55 andF/F0;5.5 takes place at the constant vo
ticity m53 with the change ofn from 5 to 3. The transition
is therefore not only characterized by an order parameter
also by the change of the number of vortices at the cons
total vorticity m, suggesting that the transition is close to fi
order. This statement is confirmed by the observation

FIG. 4. The magnetic moment of the sample as a function
(a/j)2 at constant magnetic field.

FIG. 5. The vortex-antivortex distance~a! and the magnetic mo
ment of the sample~b! as functions of the parameter 1/keff . In ~a!
error bars represent the grid spacing and the solid line the expo
tial fit discussed in the text.
13452
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above the transition point, (a/j).(a/j)crit , both solutions
with m53 andm5421 coexist~see Figs. 3 and 4!. Since
near the transition the free-energy difference between
phases with the same vorticitym and differentn is small, it is
difficult to determine the phase boundary between pha
with m5421 andm53 accurately. The transition could b
easier observed by calculating the two-component order
rameter hx5*xuc(x,y)u2dxdy, hy5*yuc(x,y)u2dxdy
shown in Fig. 3. The transition point is given by the poi
where the order parameter goes to 0. At the same point
calculated sample magnetization changes slope as is cle
seen from Fig. 4.

Close to theHc2 line the repulsion of vortices from the
boundaries and attraction of the four vortices to the antiv
tex stabilize the phase withm5421 and small vortex-
vortex distances. At smaller value ofj the repulsion from the
boundaries decreases and one vortex annihilates with the
tivortex. As a result, the repulsion between the remain
vortices increases, leading to an increase of the order pa
eter with a further decrease ofj.

Increasing the field up toF/F0510.6 leads to the stabi
lization of the phase with total vorticitym57. Near theHc2
line similar to the phase withm5421 the solution with
eight vortices and one antivortex (m5821) is realized.
When (a/j)2 increases in a complete analogy to the ca
with m5421 the second-order phase transition to the ph

f

n-

FIG. 6. The magnetic field in the film in the case of~a! giant
vortex with m52, ~b! the antivortex solution withm5421, and
~c! three separate vortices withm53. HereH0 is the external mag-
netic field.
7-3
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with seven vortices (m57) and a similar order paramete
takes place. Here, also, both solutions withm5821 and
m57 coexist above (a/j)crit , indicating that the transition
is close to first order. We believe that the situation is qu
general for the case of arbitrarym54l 21 for l
51,2,3, . . . .

At the end we would like to discuss the dependence of
stability of the antivortex phase at smallk. According to the
arguments of Ref. 6, at smallk the vortex-vortex interaction
changes the sign, making the antivortex phase more sta
As a result, the average distance between vortices in
middle of the square increases as well. In order to verify t
conjecture for the thin film sample we plot in Fig. 5 th
vortex-antivortex distancer 0 as a function of 1/keff. The
distance decreases with the decreasingkeff. For keff,0.1 the
distance is smaller than the grid spacinga/N, so we cannot
resolve separate vortices. We find thatr 0}exp(2L/leff) with
L;a. The situation is just opposite to that reported in R
6. We believe that in the case of the thin film of square sh
the reduction ofk does not stabilize the phase with the an
vortex.

It is interesting to note differences between samples
different shapes. For the cylindric shape the giant-vor
phase with any vorticity is always stable close to theHc2
line.7,8 According to the Ref. 6 for the mesoscopic triang
h-

h-

i,
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the giant-vortex state withm52 is metastable and the solu
tion with the antivortex (m5321) is stable. For the case o
the square shape the giant-vortex solution withm53 is
neverstable forkeff*0.1. Forkeff,0.1 the limited grid spa-
tial resolution prevented us from distinguishing the soluti
with the antivortex from the possibly~meta!stable giant-
vortex solution.

Finally, let us discuss the possibility to detect the st
with the antivortex experimentally. Calculation of the ma
netic field in the sample shows that the magnetic field ha
local minimum in the center of the sample also for the gia
vortex solution withm52. The local minimum observed fo
the antivortex state withm5421 is therefore not due to the
antivortex formation~Fig. 6! but due to a particular distribu
tion of the current in the sample. Therefore, imaging of t
magnetic field distribution cannot provide evidence for t
antivortex. The magnetic field for the multivortex solutio
with m53 has 3 well-separated maxima that break the fo
fold rotational symmetry of the sample, allowing a dire
imaging of vortices. Since the antivortex state cannot be
tected directly, the observation of a hysteresis due to
antivortex metastability in the vicinity of the transition lin
from them5421 antivortex state to them53 multivortex
state could suggest that the symmetric phase is indeed
phase with the antivortex.
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