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Vortex-antivortex configurations and its stability in a mesoscopic superconducting square
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We solve the Ginzburg-Landau equation for the mesoscopic superconducting thin film of square shape in a
magnetic field for a wide range of Ginzburg-Landau parameters<0«Qp<<. We focus on the region of the
field where the formation of an antivortex has been reported previously. We found that the phase with the
antivortex exists in the broad range of parameters. When the coherence length decreases the topological phase
transition to the phase with the same total vorticity and a reduced symmetry takes place. The giant vortex with
vorticity m=3 is found to be unstable for any field/a and x.#=0.1. Reduction ofk.s does not make the
phase with antivortex more stable contrary to the case of a cylindric sample of the type-l superconductor.
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[. INTRODUCTION vortices takes place whe#é/a is driven away from the
critical-field line. The reduction ok does not stabilize the
Recently it was shown that the influence of boundariesantivortex phase for the thin film sample in the contrast to
can lead to stabilization of the vortex-antivortex molecules inthe case of the cylindric sample.
mesoscopic samplésAnalysis of the linearized Ginzburg-

Landau equgtiorﬁGLE) has shown that such mole_cul_es ap- Il. FORMALISM AND SOLUTION
pear at particular values of the external magnetic field de-
pending on the sample shape and $idée solution of the The GLE for the normalized complex order paramefer

GLE in the limit of the extreme type-ll superconductor =W¥/W¥,, ¥,=+/B/|a|, has the following form:
shows that such molecules have a very shallow minimum in
the free energy and are very sensitive to the change of the 2
sample shapg. 52( iV+—5—
In a square mesoscopic thin film with the total vorticity 0
m=3 the symmetric solution with four vortices and one an-here é=12/4m|a|, o and B are the temperature-dependent
tivortex is the solution of the linearized GLE with the lowest parameters of the Ginzburg-Landau expansion for the free
free energy.According to Ref. 3, away from the, line the  energy,d, is the flux quantuma is the vector potential, and
giant vortex with vorticitym= 3 is stable and has the lowest H=V XA is the magnetic field. The second GLE equation for
free energy. This implies that a topological phase transitionhe vector potential reads
without changeof the vorticity andwithout a reductionof

2

Y=+ Ylyl?=0; (6h)

the symmetry should take place with the change of the ex- o | ]2A
ternal field and/or the coherence length away from the VXVXA=—i 02(¢*V¢— YyVy*) - ——. 2
critical-field line. 4\ A

It was proposed that in the limik=1//2, where the
vortex-antivortex interaction changes sign, vortex-antivorte
complexes should be more stdbfer the cylindric sample
shape. For a thin film withhgg=\2/d and keg=\esi/ &,
whered is the thickness of the film\ is the London penetra-
tion depth, and¢ is the superconducting coherence length,
this mechanism should be less effective due to a smaller
contribution of the “magnetic energy” to the total free en- Wheren is a vector normal to the surface of the sample.
ergy. As was described in Ref. 3 we introdubex N discrete

We performed an extensive study of the region of thepoints on the square and rewrite H@) in the form of the
phase diagram where the vortex-antivortex phase was previtonlinear discrete Schdinger equation
ously reported for a sample of square shpée focused on
the region 4&a/é<8 andk#>0.05. We found that the an- .
tivortex phase is stable in a broad range of parameters. The 2| tiaritfier— €= it il >=0, ()
region of stability of the phase does not depend strongly on
the value of the parametai;. The energy gain due to the where the summation inddx(+1,0), (0,+1) points toward
antivortex formation is much smaller then the energy differ-the nearest neighbors a”dl,i:(fN/a)zeXp@%,i) and

ence between two phases with different vorticities. The giant, N -
vortex with m=3 is unstable for any fieldg/a and kg~ ©iai~ (27 Po)J *A(r)dr. The boundary conditions are

Jn addition to Eq.(1) we assume the boundary condition for
the superconductor-insulator junction on the sample edges:

) 27TA) 3
IV+TO -ny=0, (©)]

i
=0.1. The phase transition to the phase with three separatédcluded in the discrete nonlinear Sctinager equation as in
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Ref. 3 wherey;=0 if i is outside of the sample aneli)
=4— 5ix,l_ (Six N 5iy'1_ 5iy N Where i= (IX: 1, e ,N,iy
=1,...N).

After discretization of Eq.2) we can obtain the exact
expression for the vector potential:

Al= K(i—n)d¥, (5
where
o__Pod , N
Ji —WW[GXR—I%HVJ)% i,
—exp(—iio, )¢ i ], (6)
wherev e {x,y} andl,=(1,0), 1,=(0,1), and
N ™ ) cognyx)cog nyy)
Kn)= szafo dxdy\/4_2 cogx)—2 cosy) @

The numerical self-consistent solution of the problem is
obtained by iterating the solution of the nonlinear equation

for the order parameter, E(4), and calculations of the cur-
rent and the vector potential, Eq$) and (6). We used two
ways of solving Eq(4). The first is similar to that reported in

Ref. 3 and corresponds to the iterative solution of the linear

ized equation4). The second relies on the fact that Ed4)

(@)
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FIG. 1. (a) The magnitude of the superconductivity order param-

eter for @/£)?=35, keg=02c, and® =5.9D,. (b) The central region
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FIG. 2. The calculated phase diagram. Different phases are
marked with icons schematically indicating the vortex pattern
where the solid circle represents a vortex, the open circle represents
an antivortex, and the larger solid circle represents a double vortex.
The solid symbols and solid lines represent the phase boundaries for
k= While the open symbols and dotted lines represent the phase
boundaries fo=1. In the latter case only the phase boundaries
of the region with the total vorticity 3 are shown.

represents the Euler equation for the free-energy functional
with included boundary conditions. Equatiof) was there-
fore solved by the direct minimization of the corresponding
functional using the conjugate-gradient method. Both tech-
nigues gave identical results.

IIl. RESULTS

The main goal of the paper is to investigate the phase
diagram in the region 45d/®,<6.5 and @/£)?<60
where the solution with one antivortex and four vortices
(Fig. D has been reported. We found that the region of the
phase diagram where the symmetry-induced antivortex solu-
tion has the lowest energy is broader than expected from the
solution of the linearized GLE. As is shown in Fig. 2 for
k= the antivortex phase is stable up @ £)?~55, de-
pending on®/d,. For a finite k¢ this region shifts to the
higher field as 4/¢)? increasessee Fig. 2

The interesting behavior is observed when the external
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FIG. 3. The magnitude of the order parameter around the tran-

where the vortices are located in an expanded scale. The position gition where one vortex annihilates with the antivortex as a function

the antivortex is indicated by the symbal.

of (a/£)? at constant magnetic field.
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FIG. 4. The magnetic moment of the sample as a function of
(al€)? at constant magnetic field.

field is fixed and &/£)? increases. Close to thé,, the low-

est minimum of the free energy corresponds to the solution
with the vorticity m=4—1 with the antivortex in the center

of the square. Present calculations do not confirm the exis-
tence of the giant-vortex solution with= 23 in this region of

the phase diagram as reported previodsipe difference is
due to the increase of the number of discrete polhtsn-
abling detection of the antivortex. With increase af &)
away from theH, line the phase transition to the multivor-
tex state with the same vorticityn=3) and a lower sym-
metry takes placésee Fig. 2 In general, the free energy
depends on the vorticitn=n, —n_ and the total number of
vortices in the systempn=n,+n_. The transition at FIG. 6. The magnetic field in the film in the case (@f giant
(a/£)?~55 and®/d,~5.5 takes place at the constant vor- yortex with m=2, (b) the antivortex solution witfim=4—1, and
ticity m=3 with the change of from 5 to 3. The transition (c) three separate vortices with=3. HereH, is the external mag-
is therefore not only characterized by an order parameter, butetic field.

also by the change of the number of vortices at the constant

total vorticity m, suggesting that the transition is close to firstabove the transition pointa(¢)>(a/¢)ci;, both solutions

order. This statement is confirmed by the observation thawith m=3 andm=4-—1 coexist(see Figs. 3 and)4 Since
near the transition the free-energy difference between the

phases with the same vorticitg and differentn is small, it is

025 ' ' ' ' difficult to determine the phase boundary between phases
0.20F ] with m=4—1 andm=3 accurately. The transition could be
015k ] easier observed by calculating the two-component order pa-
w rameter 7= [X|$(x.y)|2dxdy, 7, = [y|s(x.y)|2dxdy
S 010} ] shown in Fig. 3. The transition point is given by the point
005k ] where the order parameter goes to 0. At the same point the
“ra) calculated sample magnetization changes slope as is clearly
0.00 H : : . . seen from Fig. 4.
o 161b) T ] Close to theH, line the repulsion of vortices from the
= 15[ / - boundaries and attraction of the four vortices to the antivor-
‘jg 14r (ale)’=35 . tex stabilize the phase witm=4-1 and small vortex-
= 180 4 D =6.2 - vortex distances. At smaller value éthe repulsion from the
< 12f 8 . boundaries decreases and one vortex annihilates with the an-
@ 11} / ] tivortex. As a result, the repulsion between the remaining
T 10 1 ] vortices increases, leading to an increase of the order param-
0 5 10 15 20 eter with a further decrease 6f
1, Increasing the field up t@/®,=10.6 leads to the stabi-

lization of the phase with total vorticityn="7. Near theH .,
line similar to the phase wittm=4-—1 the solution with

FIG. 5. The vortex-antivortex distan¢a) and the magnetic mo-
ment of the sampléb) as functions of the parameterxlf. In (a) eight vortices and one antivortexn&E8—1) is realized.
error bars represent the grid spacing and the solid line the exponehen (@/&)? increases in a complete analogy to the case
tial fit discussed in the text. with m=4—1 the second-order phase transition to the phase
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with seven vorticesi=7) and a similar order parameter the giant-vortex state witin=2 is metastable and the solu-
takes place. Here, also, both solutions wit=8—1 and tion with the antivortex h=3—1) is stable. For the case of
m=7 coexist aboved/¢).,i;, indicating that the transition the square shape the giant-vortex solution witl=3 is
is close to first order. We believe that the situation is quiteneverstable fork.#=0.1. Fork.4<0.1 the limited grid spa-

general for the case of arbitrarym=41—-1 for | tial resolution prevented us from distinguishing the solution

=123... . with the antivortex from the possiblymetgstable giant-
At the end we would like to discuss the dependence of theortex solution.

stability of the antivortex phase at small According to the Finally, let us discuss the possibility to detect the state

arguments of Ref. 6, at smatlthe vortex-vortex interaction with the antivortex experimentally. Calculation of the mag-
changes the sign, making the antivortex phase more stablaetic field in the sample shows that the magnetic field has a
As a result, the average distance between vortices in thiecal minimum in the center of the sample also for the giant-
middle of the square increases as well. In order to verify thisvortex solution withm=2. The local minimum observed for
conjecture for the thin film sample we plot in Fig. 5 the the antivortex state witm=4—1 is therefore not due to the
vortex-antivortex distance, as a function of M.s. The  antivortex formationFig. 6) but due to a particular distribu-
distance decreases with the decreasipg For x.4<0.1 the tion of the current in the sample. Therefore, imaging of the
distance is smaller than the grid spaciidN, so we cannot magnetic field distribution cannot provide evidence for the
resolve separate vortices. We find thgtexp(—A/\) with  antivortex. The magnetic field for the multivortex solution
A~a. The situation is just opposite to that reported in Ref.with m=3 has 3 well-separated maxima that break the four-
6. We believe that in the case of the thin film of square shapéold rotational symmetry of the sample, allowing a direct
the reduction of« does not stabilize the phase with the anti- imaging of vortices. Since the antivortex state cannot be de-
vortex. tected directly, the observation of a hysteresis due to the

It is interesting to note differences between samples ofintivortex metastability in the vicinity of the transition line
different shapes. For the cylindric shape the giant-vorteXrom them=4—1 antivortex state to then=3 multivortex
phase with any vorticity is always stable close to thg,  state could suggest that the symmetric phase is indeed the
line.”® According to the Ref. 6 for the mesoscopic triangle phase with the antivortex.
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