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Within the time-dependent Ginzburg-Landau theory, the effects of the superconducting fluctuations on the
transport properties above the critical temperature are characterized by a nonzero imaginary part of the relax-
ation ratey of the order parameter. Here, we evaluateyiior an anisotropic dispersion relation typical of the
high-T. cuprate superconducto(slTS’s), characterized by a proximity to an electronic topological transition
(ETT). We find that Imy abruptly changes sign at the ETT as a function of doping, in agreement with the
universal behavior of the HTS’s. We also find that an increase of the in-plane anisotropy, as is given by a
nonzero value of the next-nearest to nearest hopping ratid/t, increases the value ¢fim y| close to the
ETT, as well as its singular behavior at low temperature, therefore enhancing the effect of superconducting
fluctuations. Such a result is in qualitative agreement with the available data for the excess Hall conductivity
for several cuprates and cuprate superlattices.
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. INTRODUCTION Ao,y has been evaluated within the TDGL thedty,and it
has been shown that a Hall sign reversal takes place below

The appearance of superconducting fluctuations above thg;. The value and sign obo,, strongly depend on the
critical temperaturel . leads to precursor effects of the su- electronic structure of the material under consideration and,
perconducting phase occurring already abdye Due to in particular, on the topology of its Fermi surface. It is well
their short coherence length, the discovery of the high- known thatAo,, arises as a result of an electron-hole asym-
cuprate superconducto$iTS's) made the fluctuation re- metry in the band structuré.Recently, on the basis of the
gime experimentally accessible over a relatively wide tem-general requirement of gauge invariance of the TDGL equa-
perature range abovd..! Superconducting fluctuations tions, it has been shown that the signfof, is determined
manifest themselves in the singular temperature dependenbg dIn T,/dIn u, whereu is the chemical potentidf. More
of thermodynamic properties, such as the specific heat anecently, evidence for a universal behavior of the Hall con-
the susceptibility, and of several transport properfigse  ductivity as a function of doping has been reported in the
Refs. 1 and 2 for recent revieysn particular, the influence cuprate superconductofs.
of superconducting fluctuations on the Ettinghausen effect, Given the relevance of the electronic structure in estab-
the Nernst effect, the thermopower, the electrical conductiviishing the magnitude and sign of the fluctuation Hall effect,
ity, and the Hall conductivity* has been considered within it is of obvious interest to study the effect of fluctuations on
the time-dependent Ginzburg-Land4DGL) theory for a  the transport properties of low-dimensional superconducting
layered superconductor in a magnetic field n€ar A nu-  materials in the proximity of an electronic topological tran-
merical approach within the fluctuation exchan@@&EX)  sition (ETT).2%'819An ETT consists of a change of topology
approximation to the theory of electric transport in the nor-of the Fermi surface and may be induced by doping, as well
mal state of the high-. cuprates has been developed byas by changing the impurity concentration or applying pres-
Yanaseet al>~8 sure or anisotropic stress. In all such cases, one may intro-

The effect of fluctuations on the transport properties of theduce a critical parametez; measuring the proximity to the
high-T. superconductors can contribute to a better underETT occurring az=0. In the case of quasi-two-dimensional
standing of the unconventional properties of their normal(quasi-2D materials, such as the cuprates, the electronic
state. Recent experimental studies of the Nernst effect iband is locally characterized by a hyperboliclike dispersion
underdoped cuprates have demonstrated a sizable Nernst aelation. Therefore, one is particularly interested in the study
efficient in the normal state both at high temperature and irof an ETT of the “neck disruption” kind, according to the
high magnetic field$-* Such findings have been interpreted original classification of LifshitZ°
as an effect of precursor pairing aboVg in the pseudogap Some effects of an ET{namely, the existence of a Van
region, as well as of quantum superconducting fluctuatténs. Hove singularity in the density of statesn the supercon-

In the case of the Hall effect, superconducting fluctuationsiucting properties of the cuprates are well kndWrf* Re-
induce a characteristic deviation from the normal-state temeently, it has been shown also that the effect of the proximity
perature dependence of the Hall conductivity abdyé€Hall ~ to an ETT is richer than having a Van Hove singularity in the
anomaly.®® In particular, the fluctuation Hall conductivity density of states—namely, that the ETT is a specific quantum
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critical point. This leads to the existence of several quantum 2

critical regimes that can explain the observed anomalous}":E fdzr
properties of the high=, cuprates in the normal state.?® ¢

Some of the present authors have recently investigated the

dependence of such effects on some specific material prop- +\7|¢e+1—¢e|2} (]
erties, such as the next-nearest- to nearest-neighbor hopping

ratioc®® and anisotropic streS8.Concerning the normal-state

transport properties of a superconductor, the effect of thevherea andb are the usual GL coefficientsy is the vector
proximity to an ETT has been studied for the thermoelectrigpotential of a magnetic field perpendicular to the layers, and
power in a quasi-2D metHl and for the Nernst and the 7 characterizes the Josephson coupling between adjacent
weak-field Hall effects for both 3D and quasi-2D metls. planes:

In this paper, we will study the anomalous Hall conduc- In Eg. (1), the complex quantity is the relaxation rate of
tivity due to the superconducting fluctuations abdygfor a  the order parameter within the TDGL theory. A nonzero
quasi-2D superconductor close to an ETT. The link betweewalue of Re/ is at the basis of the phenomenon of
TDGL theory and the microscopic theory is provided by theparaconductivity. One finds Rg= 7v/8T at temperaturd,
relaxation ratey of the fluctuating superconducting order wherew is the density of states.
parameter. In particular, a nonzero imaginary part of this Under complex conjugation and inversion of the magnetic
quantity gives rise to a fluctuation contribution to the Hall field in Eq. (1), the equation fors; would be the same as
effect. Here, we will study Iny as a function of the ETT that for ¢, , provided that Imy=0. Thus, a nonzero value of
parametee and temperatur&, both numerically and analyti- |m+y is associated with a breaking of electron-hole
cally, for a realistic band dispersion typical of the hi§h- symmetry*>®The condition Imy+0 then gives rise to fluc-
cuprate compounds. Close to the ETT, ynis characterized tuation effects on the Hall conductivily,the Nernst
by a steep inflection point, surrounded by a minimum and affect;**?°and the thermopowér’
maximum, whose height increases with decreasing tempera- The fluctuation contibution to several transport properties,
ture. In the presence of electron-hole symmetry, we willsuch as paraconductivity, magnetoconductivity, Nernst ef-
show that Imy is an odd function of the ETT parameter fect, and thermopower, have been evaluated under several
and that Imy vanishes and rapidly changes sign at the ETTapproximationssee Ref. 1 for a review From the micro-
point. In the cuprate superconductors, electron-hole symmescopic point of view, the total fluctuation contributionsr,,
try is usually destroyed by a nonzero next-nearest- tqo the Hall conductivityo,, close toT. can be expressed as
nearest-neighbor hopping ratio=t’/t.3® In this case, the the sum of two term&¢
peaks in Imy around the ETT point have unequal heights,
and we will show that their dependence on the hopping pa-

2ie
(Vrﬁ—cA)W

rameterr is in qualitative agreement with the results of sev- e2 N o 1+ 1/a 1

eral fits against the fluctuation Hall conductivity data of vari Aoy = ﬂﬁ —5 (39
- - XY " 16hd ~NF 7 0 3/2 312’

ous cuprates and cuprate superlattices. o 12%6e(0) (1+1/20)% &

The paper is organized as follows. In Sec. Il we will

briefly review the TDGL theory of superconducting fluctua- \

tions and the microscopic results for the direct and indirect |\ e oy 4 e ltat+(l+2a)"?

contribu'_[ions t_o the excess Hall _condL_Jcti\_/'Aery. In Sec. Py T16hd U_)l:lx e— 0 n S 1+ ael 5+ (1+2asl8)Y2|"

Il we will outline the microscopic derivation of and ex- (3b)

plicitly evaluate Imy as a function of the chemical potential

and temperature. We will eventually summarize in Sec. IV.
respectively, related to the Aslamazov-LarifAL) and the

Maki-Thomsor® (MT) contributions. In Egs. (3), ¢
Il. EXCESS HALL CONDUCTIVITY =In(TIT)~(T—Ty/T. is the reduced temperatureq

A phenomenological description of the fluctuation effects=2é2(0)/d’s, d is the interlayer spacingi.(0) is the co-
on the transport properties of a layered superconductor iBerence length along the axis atT=0, 053 refer to the
based on the TDGL equatibn components of the conductivity tensor in the absence of fluc-
tuations,o= m#/8kgT 7, is the MT pair breaking parameter,
with 7, the phase relaxation time of the quasiparticles, and,
=4+ (1 1). (1) finally, B<Im y (Ref. 4. While ¢.(0) andé can be indepen-
Sy (r,t) dently determined by fitting analogo#L +MT) expres-
sions for the paraconductivifythe parameteBIm y can
Here, ¢7,(r,t) is the fluctuating GL order parameter on layer be extracted by comparison with experimental data for the
¢, ¢ is the scalar potential of the electic field, ag,t) is  excess Hall effect®*9-*'Table | lists values of for several
the Langevin force, taking into account for the order paramiayered cuprate superconductors and HTS superlattices. One
eter dynamics. In the case of a layered superconductor, thean immediately observe th# shows a direct correlation
GL functional F within the Lawrence-Doniach modétakes  with T.; i.e., | 8| increases a3, increases, which we will
the form discuss in more detail in Sec. Ill.

J 2ie
—V(EJF %49) Po(r,1)

134525-2



EFFECTS OF PROXIMITY TO AN ELECTRONE . . . PHYSICAL REVIEW B 67, 134525(2003

TABLE 1. Electron-hole asymmetry parametgo~Imy and With the help of standard methotfsthe sum over elec-
critical temperaturd; for several layered cuprates and cuprate su-tronic Matsubara frequencies in E@) is readily evaluated,

perlattices. Tha values ¢ listed here have been obtained from a fit gnd after analytic continuation to the upper complex plane,
of the AL+MT corrections to conductivity and Hall conductivity,

Egs.(3), against data for an excess Hall effect. IIR(k,Q)=— lim II(k,Q+i4), (8)
5—0"
T, [K
o [ A one obtains
YBCO/PBCO(36 A/96 A) 68.68 —0.0003 Ref. 41
YBCO/PBCO(120 A/96 A) 86.33  —0.075 Ref. 41 MR0.0:2,T) = 1 > I(§k+ Q)
YBCO 88.55 -0.17 Ref. 36 20 NE Q+26+i6 2§k+ i 5 S 27T
Bi-2223 105. —-0.38 Ref. 40
(Bi,Pb-2223 109.  —1.  Ref.39 Y TR L) B LS
2 27T 2 27T
lIl. EVALUATION OF Im 3 IN THE PRESENCE 1 i
OF AN ETT ¥ 2 24T
From a microscopic point of view, the TDGL relaxation 11 2 1 £+ Q
ratey in Eq. (1) is related to the static limit of the frequency T T ON4 Or2E1is tanl‘(T
derivative of the retarded polarization operatot as N*% Gt
&k H
JIIR +tam‘(— , 9)
=i lim—=. 4 2T
’ 0—0 Q) ( )

where y(z) here denotes the digamma funcftdand s is a
Before the analytic continuation, the polarization operator igpositive infinitesimal. Performing the frequency derivative

defined askg=A=1) and passing to the static limit, as required by &, one has
: T . . i1 1 &
H(k’lﬂm;z’T):Nq,Een GO(q,iey+iQy) Y= _T/Tf; §k+|5 (ZT : (10
xGO(k—q,~iepy), (5)  Wwhere
wheree, [(,] are fermion[bosor] Matsubara frequencies, 1 1
F(y)= —tanhy — ———. (11
y cosiy
GOk, e)=: (6)
Te— & Figure 1 shows our numerical results for the real and

imaginary parts of the TDGL relaxation rajeas a function
of the ETT parameter over the whole bandwidth, for a
representative value of the temperature parametell /4t
=0.005 and hopping ratias=0—0.384. As anticipated, one
finds that Reyoxv(z), with a logarithmic singularity at
&= —2t(cosk,+ cosky) +4t’ cosk, cosky,—u,  (7) =0 and an asymmetriz dependence in the case-0.

In the electron-hole symmetric case<0), Imvy is an
with t, t" being hopping parameters between nearest anddd function of the ETT parameter, vanishingzat0O—i.e.,
next-nearest neighbors of a square lattice, respectively. Equat the ETT—for all temperatures. Close to the ETT point,
tion (7) has been often employed in order to describe tham vy rapidly changes sign, with two symmetric peaks occur-
highly anisotropic dispersion relation of the cuprates. gor ring very close to the ETT point. The height of these peaks
= u.=—4t’, the Fermi surface defined lB¢=0 has a criti-  decreases with increasing temperatig. 2) and eventually
cal form and undergoes an electronic topological transitiordiverges asT —0 [see Eq.16) below]. Such a behavior, in
(see Refs. 26, 28, and pBelow, we will make use of the particular, implies a sign-changing Hall effect as a function
parameterz=(u— u.)/4t, measuring the distance from the of doping and a large Hall effect close to the ETT. Moreover,
ETT (z=0), and of the hopping ratio=t"/t (0<r<3).33A  the result Imy(z=0)=0 is consistent with the absence of
nonzero value of implies a breaking of electron-hole sym- electron-hole asymmetfy.A similar z dependence has been
metry, with the electron subband width decreasing, and theemonstrated also for the thermoelectric power in the prox-
hole subband width increasing of an equal amount(®&ef.  imity of an ETT3!

29). The density of stateOS) associated with Eq.7) is On the other hand, in the electron-hole asymmetric case
characterized by a logarithmic singularity z260. Such a  (r#0), one in general has Im(z) # —Im y(—z). However,
logarithmic cusp becomes weakly asymmetric aroasd one still recovers a sign-changing kn with Im y vanishing
in the casea #0 (see Appendix A very close to the ETT. Moreover, the two peaks around the

is the Green'’s function for free electrons with dispersion re-
lation &, and the outer sum is performed over thewave
vectorsq in the first Brillouin zone(1BZ). Here, we specifi-
cally have in mind the 2D tight-binding dispersion relation
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FIG. 1. Real parftop panel and imaginary partbottom panelof TDGL relaxation ratey, Eq.(10), as a function of the ETT parameter
z ranging over the whole bandwidth, for fixed temperattre0.005 and hopping ratios=0, 0.032...,0.384, in units such thatt41.
Integration ink space in Eq(10) has been performed via the tetrahedra method, with a mesh of 126 @&ihts in the irreducible wedge
of the 1BZ ands=10 °. The inset in lower panel shows an enlarged view ofyim) close to the ETT. In particular, Im(z) is an odd
function of z in the electron-hole symmetric case<(0, solid ling, with Im y(z=0)=0. Curves corresponding to increasing values of
give rise to more pronounced peaks in jymaround the ETT point.
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FIG. 2. Imy(z) in the
electron-hole symmetric case (
=0), for decreasing temperatures
7 (in units such that ¢=1).
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ETT have increasing heights with increasing hopping ratio be drawn from an analysis of the continuum limit
(Fig. 3. Given that a nonzero value of the hopping ratio [N 1.~ [d?k/(2m)?] of Eq. (10). Making use of the
can be associated with structural distortions in dlieplane  DOS v(z) corresponding to the dispersion relation, Ef).
of the cuprate$® one may conclude that in-plane anisotropy [see Eq(A1) in Appendix A below, for the imaginary part
enhances the fluctuation effects associated to a nonzero valoéthe relaxation rate one obtains
of Imy. Moreover, on the basis of the direct correlation
existing betweerT .., and the hopping ratio,**% it fol- 5 1 (i+2r p(x) _[x—2
lows that the heights of the peaks in ymaround the ETT 16°Im y= g~ Cpeax—7 | 27 dx,
increase with increasing . max across different classes of
cuprates. Such a result is in agreement with the data listed iwhere 7=T/4t. Equation(12) confirms that Imy is an odd
Table | for the excess Hall paramet@rIim y. function of the ETT parameter in the electron-hole sym-

A further justification of the above numerical results canmetric case, a source of asymmetry being provided by a non-

(12

10 T T T T T T T T
5 - -
0
FIG. 3. Peak heights in Im
around the ETT as a function of
Imy(z=0") t_he hopping ratior=t'/t, fgr
5 F Imy(z=0") - - fixed temperaturer=0.005 (in
units such that ¢=1).
a0k T .
_15 1 1 1 1 1 1 1 ;

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
r=t'/t
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zero value of the hopping ratig both through a change of where vo=(4t7?\1—4r?) ! is the density of states in the

the integration limits and through a change in the D@&  isotropic limit. Such a result again confirms that nis a

Appendix A). sign-changing function of doping, with Im<0 in the hole-
Making use of the approximate expression fof the DOS|Jike doping range £>0).

Eq. (A4), and of the asymptotic expansion B{y) in Eq.

(11), IV. CONCLUSIONS

F(y):éyz, ly|=d, We have studied the effect of superconducting fluctua-
tions on the Hall conductivity of a quasi-2D layered super-
_1 conductor close to an electronic topological transition.
=% lyl=d, (13 Within the time-dependent Ginzburg-Landau theory, such an
where d=¥3/2, Eq. (12 can be integrated analytically, effect is due to a nonzero imaginary part of the relaxation
yielding the resul{in units such that %= 1) rate y of the supercondl_Jctlng order parameter. We have
evaluated Imy as a function of the ETT parameterand
1 Inb 7—1 741 temperature, both numerically and analitically, for a
Imy=— — sect‘( )secl’( q_uaS|—2_D d|_sperS|on relgtlon, typical of the cuprates. Such a
2m°z°=1 21 27 dispersion is characterized by a change of topology of the
Fermi surface az=0.
(In(l—zz) In agreement with general theoretical restitsye find
that Imvy is a sign-changing function of the chemical poten-
tial, with Imy=0 at z=0 in the electron-hole symmetric

X
T

1z
zsinh——sinh—| —
T 27wz

z 2d7+z z \? 1 case. Such a result is in qualitative agreement with the uni-
t5d- " 2g, =z T 1 E) R versal behavior exhibited by the Hall anomaly in the
cuprates’
2d7+z As expected, we find that Im increases with decreasing

X | 2d7z+ (4d?72—2%)In

. (14 temperature, with a jumplike structure at the ETT whose
height diverges a§—0 and increases with increasing in-
One qualitatively recovers thiedependence shown in Figs. 1 plane anisotropy, given by a nonzero hopping rati®n the
and 2 for Imy, with Im being an odd function of at any  one hand, the singular behavior developed byyl@at zero
given temperaturer. In particular, Inyy vanishes atz=0, temperature is a fingerprint of quantum criticality &t 0.

2d7—z

where it behaves like On the other hand, the monotonicdependence of the peak
heights in Imy at a finite temperature is in qualitative agree-
1 z ment with the available experimental results forynn sev-
Im y=— % ; (15 eral cuprate and cuprate superlattices, given the direct corre-

lation betweerT ., andr observed for the cupratéd.
for |zZ|]<1, 7<1. Imy is also characterized by two antisym-

metric peaks occurring at==*2dr. In the particle-hole ACKNOWLEDGMENTS
symmetric caser(=0), the height of such peaks diverge in
the limit T—0 as We thank J. V. Alvarez, G. Balestrino, D. V. Livanov, M.
Kiselev, P. Pfeuty, E. Piegari, P. Podio-Guidugli, and D. Zap-
n2 1 palafor useful discussions.
[Im 'ypeall% % ; (16)

APPENDIX A: DOS CLOSE TO THE ETT

The singular behavior of Iny as a function of the ETT criti- IN THE CASE r#0
cal parametez in the limit T—0 is a fingerprint of quantum
criticality.?>=28 In the caser#0, additional terms arising
from Eqg. (A4) make this singular behavior asymmetric on
the two sides of the ETT, as is hinted numerically by Fig. 1
(bottom panel, insgt thus showing that particle-hole asym-
metry enhances the singular behavior of yntlose to the
ETT at low temperature.

For the sake of completeness, we also estimated Im
away from the ETT, in the limitz|/7=|u— u//T>1. The

Here, we will derive a useful asymptotic expansion of the
density of states close to the ETT in the electron-hole asym-
metric case(#0). In the following, we will employ energy
units such that #=1. We start by rewriting the DO%(2)
corresponding to the dispersion relation, Ef, for a square
lattice (see Ref. 44 and references thejeas a function of
the ETT parameter.

derivation of such result is outlined in Appendix B. Here, we (2)= 3 K 1—(z—2r)? A1)
just quote the final result ve= w2 \J1+2r(z—r) 1+2r(z—r)]
4ty 2T (177 WhereK(k) denotes the complete elliptic integral of first

Imy= AT(p— pe) In lw—pel’ kind of modulusk (Ref. 45. In Eq. (A1), the ETT parameter
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ranges as-1+2r<z<1+2r, andv(2) is characterized by wherep,;=K,, p,=k,—m, andm, ,=2/(1*2r) are the ei-

a logarithmic singularity az=0. genvalues of the effectlve mass tensor around the £TT.
In the electron-hole symmetric case<{0), v(z) is an  Here and below, we will make use of energy units such that

even function ofz, with —1<z=<1. When electron-hole 4t=1.

symmetry is broken by a nonzero hopping ratjdhe elec- Our starting point will be again the general expression for

tron subband shrinks, while the hole subband widens of athe retarded polarization operator, E§).. Passing to the new

equal amount 2, and the logarithmic cusp loses its symme- coordinatesx=p,/+4Tm,, y=p,/4Tm,, one obtains

try aroundz=0. In order to extract the asymptotic behavior

of Eq. (Al) aroundz=0 in the case #0, we introduce the o

“electron” and “hole” auxiliary variables z;=2z/(1—2r) HR(O,w;Z,T)Z—vof dx

andz,=—2z/(1+2r), with 0

*» [tanh(s+w)+tanis—w)]
Xfo dy s+iéd ’

(1-2r)z;+(1+2r)z,=0. (A2)
(B2)
Clearly, z;—z and z,— — z in the electron-hole symmetric
case (=0). In terms of these variables, the familiar plot of where s=w+x%2—y?—2{, w=Q/(4T), {=2/(4T), and
the DOS, Eq(A1) (see, e.g., Fig. 2 in Ref. 29can be seen vy=\m;m,/(27?)=(m2\1—4r?) ! is the density of states
as given by the intersection of EGA2) with the surface plot in the isotropic case. According to E@), in order to obtain
of Im y, we will be eventually interested in RE in the limit

w—0. Since the expansion im of the numerator in the
212
Kl \/1+——|.
1+z,+2,

integrand of Eq(B2) gives no contribution linear im, we
1 1
(A3)

72 1—4r? Vi+z,+2,

can just consider

V(Zl 122) =

RelIR(0,0—0:2,T)= —zuof dx
0

While Eq. (A3) is manifestly symmetric under particle-hole ,
conjugation ¢,+2z,), Eq. (A2) is particle-hole symmetric Xfmd tani(w; +Xx“—y?)

only in the limitr=0. 2
Expanding Eq(A3) in terms of the auxiliary variables ,

z,, and expressing the result back in termszofor |z]<1 (B3)

one eventually obtains

0 w +X%—y

wherew;=w—2¢.
Let us now restrict ourselves to the case—T, in which
casew;=w+2|{|>1. The inner integral in Eq(B3) can
(A4)  then be estimated by introducing a cutéf 1, splitting the
integration range in the interval®,a— 6], [a— §,a+ §],
[a+8,%[, with a?=x?+ w;, and replacing the hyperbolic
which is the desired expansion around the ETT, with tangent with its appropriate asymptotic expansion in each
=2r/(1-4r? and b=4\1—4r2. A result close to Eq. interval. One eventually obtains
(A4), although within the context of an excitonic phase, can

(2)~ 2 1 (1 )| P
z —_— —az)in—,
g 1—4r |Z]

be found in Ref. 46. From EqA4), one readily sees that, at 2,2 2
. - E ¢ +X°= 1 1)
lowest order ing, the source of asymmetry in the DOS loga- j dy anf(w; +x"~y") ~
rithmic cusp az=0 comes only from the prefactor, whichis /0 w1+ x—y? 2\/X +twp 4(X + )
linear inz for r #0. (B4)

Making use of such result back in E@B3) and performing

the w derivative as required by E¢4), one has
APPENDIX B: BEHAVIOR OF Im y AWAY

FROM THE ETT

_ oRdIR vo [ 1 5%e?
In the limit |z|/7>1, we may forget about the details of  lim P -5 7 ,
the dispersion relation, provided we retain its main topologi- ©~0 ¢ 0 (x*+2[Z)FF Ax*+2[Z])
cal features. We can therefore expand @jyaround the ETT (BS)
as
where the last integration is trivial. Repeating an anal-
2 P ogous derivation in the case>T, one eventually obtains
gkwi—&—z' (B1) the final result, Eq.(17), to within logarithmic accuracy
2m;  2m, (5%€%/4~1).
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