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Effects of proximity to an electronic topological transition on normal-state transport properties
of the high-Tc superconductors
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Within the time-dependent Ginzburg-Landau theory, the effects of the superconducting fluctuations on the
transport properties above the critical temperature are characterized by a nonzero imaginary part of the relax-
ation rateg of the order parameter. Here, we evaluate Img for an anisotropic dispersion relation typical of the
high-Tc cuprate superconductors~HTS’s!, characterized by a proximity to an electronic topological transition
~ETT!. We find that Img abruptly changes sign at the ETT as a function of doping, in agreement with the
universal behavior of the HTS’s. We also find that an increase of the in-plane anisotropy, as is given by a
nonzero value of the next-nearest to nearest hopping ratior 5t8/t, increases the value ofuIm gu close to the
ETT, as well as its singular behavior at low temperature, therefore enhancing the effect of superconducting
fluctuations. Such a result is in qualitative agreement with the available data for the excess Hall conductivity
for several cuprates and cuprate superlattices.
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I. INTRODUCTION

The appearance of superconducting fluctuations above
critical temperatureTc leads to precursor effects of the s
perconducting phase occurring already aboveTc . Due to
their short coherence length, the discovery of the highTc

cuprate superconductors~HTS’s! made the fluctuation re
gime experimentally accessible over a relatively wide te
perature range aboveTc .1 Superconducting fluctuation
manifest themselves in the singular temperature depend
of thermodynamic properties, such as the specific heat
the susceptibility, and of several transport properties~see
Refs. 1 and 2 for recent reviews!. In particular, the influence
of superconducting fluctuations on the Ettinghausen effe3

the Nernst effect, the thermopower, the electrical conduc
ity, and the Hall conductivity4 has been considered withi
the time-dependent Ginzburg-Landau~TDGL! theory for a
layered superconductor in a magnetic field nearTc . A nu-
merical approach within the fluctuation exchange~FLEX!
approximation to the theory of electric transport in the n
mal state of the high-Tc cuprates has been developed
Yanaseet al.5–8

The effect of fluctuations on the transport properties of
high-Tc superconductors can contribute to a better und
standing of the unconventional properties of their norm
state. Recent experimental studies of the Nernst effec
underdoped cuprates have demonstrated a sizable Nern
efficient in the normal state both at high temperature and
high magnetic fields.9–11 Such findings have been interprete
as an effect of precursor pairing aboveTc in the pseudogap
region, as well as of quantum superconducting fluctuation12

In the case of the Hall effect, superconducting fluctuatio
induce a characteristic deviation from the normal-state te
perature dependence of the Hall conductivity aboveTc ~Hall
anomaly!.13 In particular, the fluctuation Hall conductivity
0163-1829/2003/67~13!/134525~8!/$20.00 67 1345
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Dsxy has been evaluated within the TDGL theory,14,4 and it
has been shown that a Hall sign reversal takes place be
Tc . The value and sign ofDsxy strongly depend on the
electronic structure of the material under consideration a
in particular, on the topology of its Fermi surface. It is we
known thatDsxy arises as a result of an electron-hole asy
metry in the band structure.15 Recently, on the basis of th
general requirement of gauge invariance of the TDGL eq
tions, it has been shown that the sign ofDsxy is determined
by ] ln Tc /] ln m, wherem is the chemical potential.16 More
recently, evidence for a universal behavior of the Hall co
ductivity as a function of doping has been reported in
cuprate superconductors.17

Given the relevance of the electronic structure in est
lishing the magnitude and sign of the fluctuation Hall effe
it is of obvious interest to study the effect of fluctuations
the transport properties of low-dimensional superconduc
materials in the proximity of an electronic topological tra
sition ~ETT!.20,18,19An ETT consists of a change of topolog
of the Fermi surface and may be induced by doping, as w
as by changing the impurity concentration or applying pr
sure or anisotropic stress. In all such cases, one may in
duce a critical parameterz, measuring the proximity to the
ETT occurring atz50. In the case of quasi-two-dimension
~quasi-2D! materials, such as the cuprates, the electro
band is locally characterized by a hyperboliclike dispers
relation. Therefore, one is particularly interested in the stu
of an ETT of the ‘‘neck disruption’’ kind, according to th
original classification of Lifshitz.20

Some effects of an ETT~namely, the existence of a Va
Hove singularity in the density of states! on the supercon-
ducting properties of the cuprates are well known.21–24 Re-
cently, it has been shown also that the effect of the proxim
to an ETT is richer than having a Van Hove singularity in t
density of states—namely, that the ETT is a specific quan
©2003 The American Physical Society25-1
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critical point. This leads to the existence of several quant
critical regimes that can explain the observed anomal
properties of the high-Tc cuprates in the normal state.25–28

Some of the present authors have recently investigated
dependence of such effects on some specific material p
erties, such as the next-nearest- to nearest-neighbor hop
ratio29 and anisotropic stress.30 Concerning the normal-stat
transport properties of a superconductor, the effect of
proximity to an ETT has been studied for the thermoelec
power in a quasi-2D metal31 and for the Nernst and th
weak-field Hall effects for both 3D and quasi-2D metals.32

In this paper, we will study the anomalous Hall condu
tivity due to the superconducting fluctuations aboveTc for a
quasi-2D superconductor close to an ETT. The link betw
TDGL theory and the microscopic theory is provided by t
relaxation rateg of the fluctuating superconducting ord
parameter. In particular, a nonzero imaginary part of t
quantity gives rise to a fluctuation contribution to the H
effect. Here, we will study Img as a function of the ETT
parameterz and temperatureT, both numerically and analyti
cally, for a realistic band dispersion typical of the high-Tc
cuprate compounds. Close to the ETT, Img is characterized
by a steep inflection point, surrounded by a minimum an
maximum, whose height increases with decreasing temp
ture. In the presence of electron-hole symmetry, we w
show that Img is an odd function of the ETT parameterz
and that Img vanishes and rapidly changes sign at the E
point. In the cuprate superconductors, electron-hole sym
try is usually destroyed by a nonzero next-nearest-
nearest-neighbor hopping ratior 5t8/t.33 In this case, the
peaks in Img around the ETT point have unequal heigh
and we will show that their dependence on the hopping
rameterr is in qualitative agreement with the results of se
eral fits against the fluctuation Hall conductivity data of va
ous cuprates and cuprate superlattices.

The paper is organized as follows. In Sec. II we w
briefly review the TDGL theory of superconducting fluctu
tions and the microscopic results for the direct and indir
contributions to the excess Hall conductivityDsxy . In Sec.
III we will outline the microscopic derivation ofg and ex-
plicitly evaluate Img as a function of the chemical potenti
and temperature. We will eventually summarize in Sec. I

II. EXCESS HALL CONDUCTIVITY

A phenomenological description of the fluctuation effe
on the transport properties of a layered superconducto
based on the TDGL equation1

2gS ]

]t
1

2ie

\c
w Dc,~r ,t !5

dF
dc,* ~r ,t !

1z~r ,t !. ~1!

Here,c,(r ,t) is the fluctuating GL order parameter on lay
,, w is the scalar potential of the electic field, andz(r ,t) is
the Langevin force, taking into account for the order para
eter dynamics. In the case of a layered superconductor
GL functionalF within the Lawrence-Doniach model34 takes
the form
13452
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F5(
,
E d2r Fauc,u21

1

2
buc,u41

\2

4mUS ¹i2
2ie

\c
Ai Dc,U2

1Juc,112c,u2G , ~2!

wherea andb are the usual GL coefficients,Ai is the vector
potential of a magnetic field perpendicular to the layers, a
J characterizes the Josephson coupling between adja
planes.1

In Eq. ~1!, the complex quantityg is the relaxation rate of
the order parameter within the TDGL theory. A nonze
value of Reg is at the basis of the phenomenon
paraconductivity.1 One finds Reg5pn/8T at temperatureT,
wheren is the density of states.

Under complex conjugation and inversion of the magne
field in Eq. ~1!, the equation forc,* would be the same a
that forc, , provided that Img50. Thus, a nonzero value o
Im g is associated with a breaking of electron-ho
symmetry.15,16The condition ImgÞ0 then gives rise to fluc-
tuation effects on the Hall conductivity,4 the Nernst
effect,4,32,35and the thermopower.4,31

The fluctuation contibution to several transport properti
such as paraconductivity, magnetoconductivity, Nernst
fect, and thermopower, have been evaluated under sev
approximations~see Ref. 1 for a review!. From the micro-
scopic point of view, the total fluctuation contributionsDsxy
to the Hall conductivitysxy close toTc can be expressed a
the sum of two terms:36

Dsxy
AL5

e2

16\d

sxy
N

sxx
N

b
pd

72jc~0!

111/a

~111/2a!3/2

1

«3/2
, ~3a!

Dsxy
MT5

e2

16\d

sxy
N

sxx
N

4

«2d
lnF«

d

11a1~112a!1/2

11a«/d1~112a«/d!1/2G ,

~3b!

respectively, related to the Aslamazov-Larkin37 ~AL ! and the
Maki-Thomson38 ~MT! contributions. In Eqs. ~3!, «
5 ln(T/Tc)'(T2Tc)/Tc is the reduced temperature,a
52jc

2(0)/d2«, d is the interlayer spacing,jc(0) is the co-
herence length along thec axis at T50, sab

N refer to the
components of the conductivity tensor in the absence of fl
tuations,d5p\/8kBTtf is the MT pair breaking paramete
with tf the phase relaxation time of the quasiparticles, a
finally, b}Im g ~Ref. 4!. While jc(0) andd can be indepen-
dently determined by fitting analogous~AL1MT! expres-
sions for the paraconductivity,4 the parameterb}Im g can
be extracted by comparison with experimental data for
excess Hall effect.36,39–41Table I lists values ofb for several
layered cuprate superconductors and HTS superlattices.
can immediately observe thatb shows a direct correlation
with Tc ; i.e., ubu increases asTc increases, which we will
discuss in more detail in Sec. III.
5-2



n
y

r i

,

re

n

an
qu
th
r

io

e

-
th

e,

ve

nd

nt,
ur-
ks

on
er,
of
n
ox-

ase

the

su
fit
,

EFFECTS OF PROXIMITY TO AN ELECTRONIC . . . PHYSICAL REVIEW B 67, 134525 ~2003!
III. EVALUATION OF Im g IN THE PRESENCE
OF AN ETT

From a microscopic point of view, the TDGL relaxatio
rateg in Eq. ~1! is related to the static limit of the frequenc
derivative of the retarded polarization operator as1

g5 i lim
V→0

]PR

]V
. ~4!

Before the analytic continuation, the polarization operato
defined as (kB5\51)

P~k,iVm ;z,T!5
T

N (
q,en

G(0)~q,i en1 iVm!

3G(0)~k2q,2 i en!, ~5!

whereen @Vm# are fermion@boson# Matsubara frequencies

G(0)~k,e!5
1

i e2jk
~6!

is the Green’s function for free electrons with dispersion
lation jk , and the outer sum is performed over theN wave
vectorsq in the first Brillouin zone~1BZ!. Here, we specifi-
cally have in mind the 2D tight-binding dispersion relatio

jk522t~coskx1cosky!14t8 coskx cosky2m, ~7!

with t, t8 being hopping parameters between nearest
next-nearest neighbors of a square lattice, respectively. E
tion ~7! has been often employed in order to describe
highly anisotropic dispersion relation of the cuprates. Fom
5mc524t8, the Fermi surface defined byjk50 has a criti-
cal form and undergoes an electronic topological transit
~see Refs. 26, 28, and 29!. Below, we will make use of the
parametersz5(m2mc)/4t, measuring the distance from th
ETT (z50), and of the hopping ratior 5t8/t (0,r , 1

2 ).33A
nonzero value ofr implies a breaking of electron-hole sym
metry, with the electron subband width decreasing, and
hole subband width increasing of an equal amount 8rt ~Ref.
29!. The density of states~DOS! associated with Eq.~7! is
characterized by a logarithmic singularity atz50. Such a
logarithmic cusp becomes weakly asymmetric aroundz50
in the caserÞ0 ~see Appendix A!.

TABLE I. Electron-hole asymmetry parameterb}Im g and
critical temperatureTc for several layered cuprates and cuprate
perlattices. Tha values ofb listed here have been obtained from a
of the AL1MT corrections to conductivity and Hall conductivity
Eqs.~3!, against data for an excess Hall effect.

Tc @K# b

YBCO/PBCO~36 Å/96 Å! 68.68 20.0003 Ref. 41
YBCO/PBCO~120 Å/96 Å! 86.33 20.075 Ref. 41
YBCO 88.55 20.17 Ref. 36
Bi-2223 105. 20.38 Ref. 40
~Bi,Pb!-2223 109. 21. Ref. 39
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With the help of standard methods,42 the sum over elec-
tronic Matsubara frequencies in Eq.~5! is readily evaluated,
and after analytic continuation to the upper complex plan

PR~k,V!52 lim
d→01

P~k,V1 id!, ~8!

one obtains

PR~0,V;z,T!5
i

2p

1

N (
k

1

V12jk1 id FcS 1

2
1

i ~jk1V!

2pT D
2cS 1

2
2

i ~jk1V!

2pT D1cS 1

2
1

i jk

2pTD
2cS 1

2
2

i jk

2pTD G
52

1

2

1

N (
k

1

V12jk1 id F tanhS jk1V

2T D
1tanhS jk

2TD G , ~9!

wherec(z) here denotes the digamma function43 andd is a
positive infinitesimal. Performing the frequency derivati
and passing to the static limit, as required by Eq.~4!, one has

g5
i

8T

1

N (
k

1

jk1 id
FS jk

2TD , ~10!

where

F~y!5
1

y
tanhy2

1

cosh2y
. ~11!

Figure 1 shows our numerical results for the real a
imaginary parts of the TDGL relaxation rateg as a function
of the ETT parameterz over the whole bandwidth, for a
representative value of the temperature parametert5T/4t
50.005 and hopping ratiosr 5020.384. As anticipated, one
finds that Reg}n(z), with a logarithmic singularity atz
50 and an asymmetricz dependence in the caserÞ0.

In the electron-hole symmetric case (r 50), Img is an
odd function of the ETT parameter, vanishing atz50—i.e.,
at the ETT—for all temperatures. Close to the ETT poi
Im g rapidly changes sign, with two symmetric peaks occ
ring very close to the ETT point. The height of these pea
decreases with increasing temperature~Fig. 2! and eventually
diverges asT→0 @see Eq.~16! below#. Such a behavior, in
particular, implies a sign-changing Hall effect as a functi
of doping and a large Hall effect close to the ETT. Moreov
the result Img(z50)50 is consistent with the absence
electron-hole asymmetry.15 A similar z dependence has bee
demonstrated also for the thermoelectric power in the pr
imity of an ETT.31

On the other hand, in the electron-hole asymmetric c
(rÞ0), one in general has Img(z)Þ2Im g(2z). However,
one still recovers a sign-changing Img, with Im g vanishing
very close to the ETT. Moreover, the two peaks around

-

5-3
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FIG. 1. Real part~top panel! and imaginary part~bottom panel! of TDGL relaxation rateg, Eq. ~10!, as a function of the ETT paramete
z ranging over the whole bandwidth, for fixed temperaturet50.005 and hopping ratiosr 50, 0.032, . . . ,0.384, in units such that 4t51.
Integration ink space in Eq.~10! has been performed via the tetrahedra method, with a mesh of 125 751k points in the irreducible wedge
of the 1BZ andd51026. The inset in lower panel shows an enlarged view of Img(z) close to the ETT. In particular, Img(z) is an odd
function of z in the electron-hole symmetric case (r 50, solid line!, with Im g(z50)50. Curves corresponding to increasing values or
give rise to more pronounced peaks in Img around the ETT point.
134525-4
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FIG. 2. Img(z) in the
electron-hole symmetric case (r
50), for decreasing temperature
t ~in units such that 4t51).
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ETT have increasing heights with increasing hopping ratir
~Fig. 3!. Given that a nonzero value of the hopping ratior
can be associated with structural distortions in theab plane
of the cuprates,30 one may conclude that in-plane anisotro
enhances the fluctuation effects associated to a nonzero v
of Im g. Moreover, on the basis of the direct correlati
existing betweenTc,max and the hopping ratior,33,29 it fol-
lows that the heights of the peaks in Img around the ETT
increase with increasingTc,max across different classes o
cuprates. Such a result is in agreement with the data liste
Table I for the excess Hall parameterb}Im g.

A further justification of the above numerical results c
13452
lue

in

be drawn from an analysis of the continuum lim
@N 21(k°*d2k/(2p)2# of Eq. ~10!. Making use of the
DOS n(z) corresponding to the dispersion relation, Eq.~7!
@see Eq.~A1! in Appendix A below#, for the imaginary part
of the relaxation rate one obtains

16t2Im g5
1

8tE2112r

112r n~x!

x2z
FS x2z

2t Ddx, ~12!

wheret5T/4t. Equation~12! confirms that Img is an odd
function of the ETT parameterz in the electron-hole sym-
metric case, a source of asymmetry being provided by a n
f

FIG. 3. Peak heights in Img

around the ETT as a function o
the hopping ratio r 5t8/t, for
fixed temperaturet50.005 ~in
units such that 4t51).
5-5
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zero value of the hopping ratior, both through a change o
the integration limits and through a change in the DOS~see
Appendix A!.

Making use of the approximate expression fof the DO
Eq. ~A4!, and of the asymptotic expansion ofF(y) in Eq.
~11!,

F~y!.
2

3
y2, uyu<d,

uyu21, uyu.d, ~13!

where d5A3 3/2, Eq. ~12! can be integrated analytically
yielding the result~in units such that 4t51)

Im g.
1

2p2

ln b

z221
sechS z21

2t D sechS z11

2t D
3S z sinh

1

t
2sinh

z

t D2
1

2p2tz
H ln~12z2!

1
z

2dt
ln

2dt1z

2dt2z
1 lnF12S z

2dt D 2G J 2
1

24p2t3

3F2dtz1~4d2t22z2!ln
2dt1z

2dt2zG . ~14!

One qualitatively recovers thez dependence shown in Figs.
and 2 for Img, with Im g being an odd function ofz at any
given temperaturet. In particular, Img vanishes atz50,
where it behaves like

Im g.2
1

8p2d

z

t3
, ~15!

for uzu!1, t!1. Img is also characterized by two antisym
metric peaks occurring atz.62dt. In the particle-hole
symmetric case (r 50), the height of such peaks diverge
the limit T→0 as

uIm gpeaku'
ln 2

2p2d

1

T2
. ~16!

The singular behavior of Img as a function of the ETT criti-
cal parameterz in the limit T→0 is a fingerprint of quantum
criticality.25–28 In the caserÞ0, additional terms arising
from Eq. ~A4! make this singular behavior asymmetric o
the two sides of the ETT, as is hinted numerically by Fig
~bottom panel, inset!, thus showing that particle-hole asym
metry enhances the singular behavior of Img close to the
ETT at low temperature.

For the sake of completeness, we also estimated Ig
away from the ETT, in the limituzu/t5um2mcu/T@1. The
derivation of such result is outlined in Appendix B. Here, w
just quote the final result

Im g'
4tn0

4T~m2mc!
ln

2T

um2mcu
, ~17!
13452
,

wheren05(4tp2A124r 2)21 is the density of states in th
isotropic limit. Such a result again confirms that Img is a
sign-changing function of doping, with Img,0 in the hole-
like doping range (z.0).

IV. CONCLUSIONS

We have studied the effect of superconducting fluct
tions on the Hall conductivity of a quasi-2D layered sup
conductor close to an electronic topological transitio
Within the time-dependent Ginzburg-Landau theory, such
effect is due to a nonzero imaginary part of the relaxat
rate g of the superconducting order parameter. We ha
evaluated Img as a function of the ETT parameterz and
temperature, both numerically and analitically, for
quasi-2D dispersion relation, typical of the cuprates. Suc
dispersion is characterized by a change of topology of
Fermi surface atz50.

In agreement with general theoretical results,15 we find
that Img is a sign-changing function of the chemical pote
tial, with Im g50 at z50 in the electron-hole symmetri
case. Such a result is in qualitative agreement with the u
versal behavior exhibited by the Hall anomaly in th
cuprates.17

As expected, we find that Img increases with decreasin
temperature, with a jumplike structure at the ETT who
height diverges asT→0 and increases with increasing in
plane anisotropy, given by a nonzero hopping ratior. On the
one hand, the singular behavior developed by Img at zero
temperature is a fingerprint of quantum criticality atT50.
On the other hand, the monotonicr dependence of the pea
heights in Img at a finite temperature is in qualitative agre
ment with the available experimental results for Img in sev-
eral cuprate and cuprate superlattices, given the direct co
lation betweenTc,max and r observed for the cuprates.33
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APPENDIX A: DOS CLOSE TO THE ETT
IN THE CASE rÅ0

Here, we will derive a useful asymptotic expansion of t
density of states close to the ETT in the electron-hole as
metric case (rÞ0). In the following, we will employ energy
units such that 4t51. We start by rewriting the DOSn(z)
corresponding to the dispersion relation, Eq.~7!, for a square
lattice ~see Ref. 44 and references therein! as a function of
the ETT parameterz:

n~z!5
2

p2

1

A112r ~z2r !
KFA12~z22r !2

112r ~z2r !
G , ~A1!

where K(k) denotes the complete elliptic integral of fir
kind of modulusk ~Ref. 45!. In Eq. ~A1!, the ETT parameter
5-6
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ranges as2112r<z<112r , andn(z) is characterized by
a logarithmic singularity atz50.

In the electron-hole symmetric case (r 50), n(z) is an
even function ofz, with 21<z<1. When electron-hole
symmetry is broken by a nonzero hopping ratior, the elec-
tron subband shrinks, while the hole subband widens o
equal amount 2r , and the logarithmic cusp loses its symm
try aroundz50. In order to extract the asymptotic behavi
of Eq. ~A1! aroundz50 in the caserÞ0, we introduce the
‘‘electron’’ and ‘‘hole’’ auxiliary variables z15z/(122r )
andz252z/(112r ), with

~122r !z11~112r !z250. ~A2!

Clearly, z1→z and z2→2z in the electron-hole symmetri
case (r 50). In terms of these variables, the familiar plot
the DOS, Eq.~A1! ~see, e.g., Fig. 2 in Ref. 29!, can be seen
as given by the intersection of Eq.~A2! with the surface plot
of

n~z1 ,z2!5
2

p2

1

A124r 2

1

A11z11z2

KFA11
z1z2

11z11z2
G .

~A3!

While Eq. ~A3! is manifestly symmetric under particle-ho
conjugation (z1↔z2), Eq. ~A2! is particle-hole symmetric
only in the limit r 50.

Expanding Eq.~A3! in terms of the auxiliary variablesz1 ,
z2, and expressing the result back in terms ofz, for uzu!1
one eventually obtains

n~z!'
2

p2

1

A124r 2
~12az!ln

b

uzu
, ~A4!

which is the desired expansion around the ETT, witha
52r /(124r 2) and b54A124r 2. A result close to Eq.
~A4!, although within the context of an excitonic phase, c
be found in Ref. 46. From Eq.~A4!, one readily sees that, a
lowest order inz, the source of asymmetry in the DOS log
rithmic cusp atz50 comes only from the prefactor, which
linear in z for rÞ0.

APPENDIX B: BEHAVIOR OF Im g AWAY
FROM THE ETT

In the limit uzu/t@1, we may forget about the details o
the dispersion relation, provided we retain its main topolo
cal features. We can therefore expand Eq.~7! around the ETT
as

jk'
p1

2

2m1
2

p2
2

2m2
2z, ~B1!
13452
n
-

n

i-

wherep15kx , p25ky2p, andm1,252/(162r ) are the ei-
genvalues of the effective mass tensor around the ET29

Here and below, we will make use of energy units such t
4t51.

Our starting point will be again the general expression
the retarded polarization operator, Eq.~9!. Passing to the new
coordinatesx5p1 /A4Tm1, y5p2 /A4Tm2, one obtains

PR~0,v;z,T!52n0E
0

`

dx

3E
0

`

dy
@ tanh~s1v!1tanh~s2v!#

s1 id
,

~B2!

where s5v1x22y222z, v5V/(4T), z5z/(4T), and
n05Am1m2/(2p2)5(p2A124r 2)21 is the density of states
in the isotropic case. According to Eq.~4!, in order to obtain
Im g, we will be eventually interested in RePR in the limit
v→0. Since the expansion inv of the numerator in the
integrand of Eq.~B2! gives no contribution linear inv, we
can just consider

RePR~0,v→0;z,T!522n0E
0

`

dx

3E
0

`

dy
tanh~v11x22y2!

v11x22y2
,

~B3!

wherev15v22z.
Let us now restrict ourselves to the casez!2T, in which

casev15v12uzu@1. The inner integral in Eq.~B3! can
then be estimated by introducing a cutoffd&1, splitting the
integration range in the intervals@0,a2d#, @a2d,a1d#,
@a1d,`@ , with a25x21v1, and replacing the hyperbolic
tangent with its appropriate asymptotic expansion in e
interval. One eventually obtains

E
0

`

dy
tanh~v11x22y2!

v11x22y2
'2

1

2Ax21v1

,ln
d2

4~x21v1!
.

~B4!

Making use of such result back in Eq.~B3! and performing
the v derivative as required by Eq.~4!, one has

lim
v→0

]RePR

]v
52

n0

2 E
0

`

dx
1

~x212uzu!3/2
ln

d2e2

4~x212uzu!
,

~B5!

where the last integration is trivial. Repeating an an
ogous derivation in the casez@T, one eventually obtains
the final result, Eq.~17!, to within logarithmic accuracy
(d2e2/4'1).
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