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Specific heat and thermal conductivity in the vortex state of the two-gap superconductor MgB2

L. Tewordt and D. Fay
I. Institut für Theoretische Physik, Universita¨t Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany

~Received 18 November 2002; published 28 April 2003!

The specific-heat coefficientgs(H) and the electronic thermal conductivitykes(H) are calculated for Abri-
kosov’s vortex lattice by taking into account the effects of supercurrent flow and Andreev scattering. First we
solve the gap equation for the entire range of magnetic fields. We take into account vertex corrections due to
impurity scattering calculated in the Born approximation. The functiongs(H)/gn increases from zero and
becomes approximately linear aboveH/Hc2;0.1. The dependence on impurity scattering is substantially
reduced by the vertex corrections. The upward curvature ofkes(H)/ken , which is caused by decreasing
Andreev scattering for increasing field, is reduced for increasing impurity scattering. We also calculate the
temperature dependence of the scattering rates 1/tps(H) of a phonon and 1/tes(H) of a quasiparticle due to
quasiparticle and phonon scattering, respectively. At low temperatures the ratiotpn /tps(H) increases rapidly to
one asH tends toHc2 which yields a rapid drop in the phononic thermal conductivitykph . Our results are in
qualitative agreement with the experiments on the two-gap superconductor MgB2.

DOI: 10.1103/PhysRevB.67.134524 PACS number~s!: 74.20.Rp, 74.25.Ld, 74.25.Op, 74.70.Pq
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I. INTRODUCTION

Although superconductivity in MgB2 ~Ref. 1! has been
established as conventional phonon-mediateds-wave super-
conductivity, it is often difficult to analyze the results o
measurements of various physical quantities because t
exist two gaps of different magnitude associated with diff
ent bands. Their ratio is estimated asr 5D0

S/D0
L;0.320.4

where the larger gapD0
L is associated with the two

dimensionals bands and the smaller gapD0
S with the three-

dimensionalp bands. Evidence for two gaps is provided
the rapid rise of the specific-heat coefficientgs(H) at very
low fields.2,3 Recent measurements of the in-plane therm
conductivityks(H) for fields both parallel and perpendicula
to thec axis provide more evidence for the existence of t
gaps because they show a very unusual field dependen
low temperatures.4 For increasing field,ks(H) drops rapidly
and reaches a minimum at a relatively low field, then exh
its an S-shape behavior where a steep rise in the low-fi
region is followed by a downward curvature up to abo
Hc2/2 and finally an upward curvature nearHc2 for Hic. The
initial drop is attributed to the decrease of the phononic c
tribution kph(H) which is caused by the rapid enhanceme
of scattering of phonons by the quasiparticles in the vor
cores associated with thep band. The steep increase in th
low-field region is attributed to the rapid rise of the ele
tronic contributionke(H) which arises from the rapid releas
of mobile quasiparticles in the vortex lattice associated w
thep band. The final upward curvature ofk(H) nearHc2 for
Hic is presumed to be due to the mobile carriers of
vortex lattice associated with thes band.

The field dependence ofgs(H) and kes(H) can be ex-
plained qualitatively in terms of a two-band model with tw
energy gaps of different magnitude in the two bands wh
the band with strong pairing~theL or s band! is responsible
for the superconductivity, and the superconductivity in t
second band~the S or p band! is induced by Cooper pai
0163-1829/2003/67~13!/134524~8!/$20.00 67 1345
re
-

l

at

-
ld
t

-
t
x

h

e

e

e

tunneling.5 The vortices in theSband have large vortex core
of radii j0

S and already start to overlap in weak fields. Th
leads to a strong suppression of the small gap at a ‘‘virtu
upper critical fieldHc2

S ;324 kOe which is much smalle
thanHc2

(c).35 kOe. The large radius of the vortex core a
the field-induced suppression of the smaller gap is consis
with recent scanning-tunneling spectroscopy~STS!
measurements.6

Theories of the electronic thermal conductivityke ~Ref.
7! and the phononic thermal conductivitykph ~Ref. 8! in the
mixed state have been developed on the basis of
Brandt-Pesch-Tewordt9–11 ~BPT! and the equivalent Pesch12

~P! approximation schemes. Linear-response equations
the vortex state13 yield another expression forke which
has been applied tod-wave pairing superconductivity in
the cuprates.14 In the BPT approximation the normal an
anomalous Green’s functionsG and F are derived from
Gorkov’s integral equations with kernelD(r 1)G2v

0 (r 1

2r 2)D* (r 2)exp(2i*1
22eA•ds) where D(r ) is Abrikosov’s

vortex lattice order parameter andG2v
0 is the quasihole

propagator. Thus these Green’s functions take into acco
the effects of supercurrent flow and Andreev scattering in
vortex cores as well as quasiparticle transfer between
vortices. The expression forke ,7 which has been derived
from the Kubo formula in analogy to the procedure in R
15, consists essentially of thev integral with the factor
(v/T)2sech2(v/2T) determining the temperature depe
dence, the ‘‘destructive’’ coherence factor arising from t
combination (GG†2FF†), and the total scattering rate i
the denominator consisting of the sum of the quasipart
scattering ratesg andgA(v,H) due to impurity and Andreev
scattering. In the present paper we also calculate the sca
ing rate 1/tes due to thermal scattering in the vortex state, b
this becomes comparable tog only at higher temperatures
The expression forkph contains, in addition to the sum o
scattering rates of phonons by different defects, the sca
ing rate 1/tps for phonons scattered by quasiparticles in t
©2003 The American Physical Society24-1
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vortex state. The latter expression was obtained by repla
in the BCS expression16 the density of states~DOS! and
‘‘coherence’’ functions by the expressions resulting from t
P approximation for the vortex state.8

The results forgs(H)/gn , kes(H)/ken , and tpn /tps ,
which were obtained in Ref. 8 for a single cylindrical
spherical band and an isotropics-wave pairing gap, turned
out to depend sensitively on the reduced impurity scatte
rated5G/D05(p/2)j0 /, wherej0 is the zero-field coher-
ence length and, is the mean free path. If one takes for th
p band in MgB2 jp;500 Å from the STS measurement6

and a mean free path,p;5002800 Å, one arrives at a re
duced scattering ratedp;1 which is much larger than th
largest value ofd50.5 recorded in Ref. 8. For such a larg
impurity scattering rate it is necessary to renormalize
impurity scattering self-energy and to take into account
corresponding vertex corrections. The vertex correcti
yield a renormalization of the gap function,10,12 which, near
Hc2, tends to the renormalization function which has be
derived in the calculation ofHc2.17 It turns out that this gap
renormalization substantially reduces the dependence o
functionsgs(H)/gn , kes(H)/ken , andtpn /tps(H) on impu-
rity scattering.

Recently it has been shown that numerical solutions of
Eilenberger equations yield a spatial average of the D
which is approximated very well by the DOS obtained w
the BPT and P approximations over the whole field ran
betweenHc2 andHc1.18 This result motivates us to calcula
the field dependence of the central parameter of the the
D̃5DL/v, from the gap equation in the P approximation18

by including the impurity scattering vertex corrections
analogy to those in the gap equation of the B
approximation.10 Here D2 is the spatial average ofuD(r )u2
where D(r ) is Abrikosov’s vortex lattice order paramete
L5(2eH)21/25(p/2)1/2a wherea is the lattice constant o
the vortex lattice, andv is the Fermi velocity perpendicula
to the uniform fieldH. It turns out that one can fit the exa
results of these calculations very well with the relation b
tween D̃2 and H/Hc2 given by the Ginzburg-Landau~GL!
relationship if one uses an appropriate value of the Abri
sov parameterbA5^uDu4&/(^uDu2&)2.

We have also investigated the temperature dependenc
the phonon relaxation-time ratiotpn /tps(H) and find that
this ratio increases rapidly to 1 with increasingH in propor-
tion to @gs(H)/gn#2 for temperaturesT,(1/2)D(T,H). This
yields a rapid decrease ofkph for small fields and relatively
low temperatures if one takes forD the small gapDS(T,H)
of thep band. In this way one can explain the observed d
of k for small fields and temperatures nearTc/6 which is
attributed to the drop ofkph .4

Since the interband impurity scattering between thes and
p bands is small,20 one can add, in a crude approximatio
our results obtained for a single isotropic gap in a cylindri
or spherical Fermi-surface~FS! band by weighting them with
the corresponding density of states. If one takes into acco
that the ‘‘virtual’’ upper critical field for the three-
dimensionalp band is much smaller than the upper critic
field of the two-dimensionals band,3 one can explain quali-
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tatively the measured field dependence of the specific h
and thermal conductivity in MgB2.

II. THEORY OF THE SPECIFIC HEAT AND ELECTRONIC
AND PHONONIC THERMAL CONDUCTIVITY IN

ABRIKOSOV’S VORTEX LATTICE

The basis of our theory is the approximation
Brandt-Pesch-Tewordt9–11 ~BPT! for the normal and anoma
lous Green’s functionsG andF in the mixed state. A simpli-
fied version of this theory has been derived by Pesch12 ~P!
from the quasiclassical Eilenberger equations. In this vers
the « integrals of the spatial averages of the spectral fu
tions,2Im G/p and2Im F/p, denoted byA andB, take on
the following form:8

A~V;D̃,u![N~v,u!/N0

5ReH 11
8D̃ r

2

sin2u
@11 iApzw~z!#J 21/2

, ~1!

B~V;D̃,u!5ReS 2 iAp2~D̃ r /sinu!w~z!

$11~8D̃ r
2/sin2u!@11 iApzw~z!#%1/2D ,

~2!

z52@VD̃1 i ~L/v !g#/sinu; u5/~p,H!, ~3!

L5~2eH!21/2, D̃5DL/v, V5v/D, ~4!

D̃25~Hc22H !/6bAH, D25D0
2~T!@12~H/Hc2!#,

~5!

w~z!5exp~2z2!erfc~2 iz!. ~6!

D̃ r5D̃/D, D~V!512E
0

p/2

du2~Lg/v !Apw~z!. ~7!

HereD0(T) is thes-wave gap in zero field,H is the spa-
tial average of the magnetic field,D25^uDu2&, whereD(r ) is
Abrikosov’s vortex lattice order parameter, andbA is the
Abrikosov parameter. For the total impurity scattering rateg

we employ the Born approximationg5GĀ where G

51/2tn and Ā is the average ofA over the Fermi surface
which is calculated self-consistently. For a spherical F
v sinu is the component of the Fermi velocityv(p) perpen-
dicular to the fieldH. For a cylindrical FS parallel toc and
field Huuc, one has to takeu5p/2 andv equal to the Fermi
velocity in theab plane. For a general FS,v sinu is replaced
by the componentv'(p) perpendicular to the field. The ga
renormalization functionD in Eq. ~7! was first calculated by
Brandt10 from the ladder summation of impurity interactio
lines bridging the vertices atD and D* occurring in the
self-energy partGv

0 DG2v
0 D* Gv

0 in Gorkov’s integral equa-
tion for G. In the P-approximation schemeD takes the form
given in Eq.~7! which, nearHc2, tends to the function in-
troduced in Ref. 17.
4-2
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SPECIFIC HEAT AND THERMAL CONDUCTIVITY IN . . . PHYSICAL REVIEW B67, 134524 ~2003!
The field dependence of the DOS,A, and the ‘‘coherence
factor’’ function, B, are governed by the quantityD̃5DL/v
5(2p)21/2a/j wherea5(2/p)1/2L is the lattice constant o
the Abrikosov vortex lattice andj5v/Dp is the effective
coherence length in the plane perpendicular toH. For H

→Hc2 andH→0 one obtains the limiting valuesD̃→0 and
D̃→`, respectively. The relationships betweenD̃ andH/Hc2
and betweenD and H/Hc2 given in Eq.~5! have been de-
rived from the GL theory which is valid nearHc2. To get the
general relationship at lower fields we make use of the
equation in the P approximation.18 At T50 this equation can
be rewritten in the following form:

E
0

`

dV@B~V!2C~V!#50. ~8!

HereB(V) is the spectral function ofF given in Eq.~2! and
C(V) is obtained by taking the limit ofB for H→Hc2 where
D→0:

C~V!5Re$2 iAp2~H/Hc2!1/2~D̃ r /sinu!

3w@~H/Hc2!1/2z#%uL(Hc2) . ~9!

The gap Eq.~8! in the P approximation corresponds to t
gap equation in the BPT approximation10 with the functionB
replaced by the spectral function ofF derived for the theory
of NMR.11 Thus Eq.~8! is an implicit equation forH/Hc2 as
a function ofD̃ for given impurity scattering rated5G/D0.
This calculation is rather complicated because the impu

FIG. 1. Solutions of gap equation forH/Hc2 vs D̃5DL/v @L
5(2eH)21/2#, for impurity scattering ratesd50.1, 0.5, and 1.0, for
u5p/2 ~solid curves!. The fits are obtained from the analytic
expression with the Abrikosov parameterbA51.1, 1.4, and 1.7@see
Eq. ~5!#. The dashed curves show theu-angle averages ford
50.1, 0.5, and 0.8 with fit parameter valuesbA52.3, 2.8, and 3.2.
13452
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scattering self-energyg5GĀ(V) occurring in the expression
for B(V) in Eq. ~2! has to be calculated self-consistently f
each value ofV from the expression forA(V) @see Eq.~1!#.
For Huuc and a cylindrical FS one has to setu5p/2 in Eq.
~8!, and for a spherical FS Eq.~8! is averaged over the pola
angleu. In Fig. 1 we show our results forH/Hc2 versusD̃
obtained from Eq.~8! for u5p/2 and ford50.1, 0.5, and
1.0. These results can be fitted very well by the relations
H/Hc25(116bAD̃2)21 @see Eq.~5!# over the whole field
range if one takesbA51.1, 1.4, and 1.7 ford50.1, 0.5, and
1.0. Similar results are obtained for a spherical FS if o
averages Eq.~8! over the polar angleu ~see the dashed
curves in Fig. 1 ford50.1, 0.5, and 0.8 withbA52.3, 2.8,
and 3.2!.

In Fig. 2 we have plotted our numerical results for t
normalized DOS at zero energy,A(V50)5gs(H)/gn , ver-
susH/Hc2 whereg is the specific-heat coefficient. Here w
have approximatedD̃ occurring in Eq.~1! by the analytical
expression in Eq.~5! with bA51.1, 1.4, and 1.7 for bare
impurity scattering ratesd5G/D050.1, 0.5, and 1.0~solid
curves, from top to bottom!. Here we have employed th
Born approximation for the total impurity scattering se
energy, g5GA(0), where A(0) is calculated self-
consistently. This means thatd is replaced bydA(0). For
d50.1 andu5p/2 the functionA(0) is close to the clean
limit result shown in Ref. 18 for thes-wave pairing state.
The latter function has been shown to be very close to
numerical solution of the Eilenberger equations over

FIG. 2. Ratio of specific-heat coefficients,gs /gn , vs H/Hc2 for
reduced impurity scattering ratesd5G/D050.1, 0.5, and 1.0~solid
curves! for u5p/2 @cylindrical Fermi surface~FS!#. The dashed
curves show theu-angle averages~spherical FS! with d andbA , as
in Fig. 1.
4-3
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L. TEWORDT AND D. FAY PHYSICAL REVIEW B 67, 134524 ~2003!
whole field range fromHc2 to H50 corresponding toHc1.
One can see that all curves in Fig. 2 tend to zero in the li
H/Hc2→0, which is due to the gap renormalization. For
spherical FS one has to average Eq.~1! over the polar angle
u. For the plot ofA versusH/Hc2 one needs Eq.~5! where
bA is calculated from theu-angle average of Eq.~8!. The
results are shown by the dashed curves in Fig. 2 fod
50.1, 0.5, and 0.8 with thebA values used in Fig. 1. It is
interesting that the curve ford50.8 is almost linear over the
whole field region.

We turn now to the theory of the electronic thermal co
ductivity ke in the vortex state which has been developed
Ref. 7 by replacing the zero-field Green’s functionsG andF
in the theory of Ref. 15 by the Green’s functions of the B
approximation. This theory has been applied to superc
ducting states with nodes in the gap such as Sr2RuO4, the
cuprates, and UPt3. To save space we omit here the expre
sion for ke . The main features of this expression are t
following. Most important is the term Im«0 in the denomi-
nator of the v integral with the well-known factor
v2sech2(v/2T). This term Im«0 corresponds to the scatte
ing rate of quasiparticles due to impurity and Andreev sc
tering. The other term corresponds to the coherence facto
BCS theory. In the zero-field limit both terms in the expre
sion of Ref. 7 tend correctly to those occurring in the expr
sion of Ref. 15. The physical meaning of Im«0 is the fol-
lowing. The equation for the position,«0, of the pole of the
Green’s functionG in the BPT approximation9 yields Im«0
5g1gA whereg is the total impurity scattering rate andgA
is the imaginary part of the quasiparticle self-energySv at
«0. From the kernel of Gorkov’s integral equation forG one
sees that, in the spatial representation,Sv(r 1 ,r 2)5
2V(r 1 ,r 2)G2v

0 (r 12r 2), where V(r 1 ,r 2)
5D(r 1)D* (r 2)exp(2ı*1

22eA•ds) and D(r ) is Abrikosov’s
vortex lattice order parameter. From this expression one
ognizes thatgA52Im Sv is the scattering rate for conver
ing a quasiparticle into a quasihole by Andreev reflection
D* (r 2) and then back into a quasiparticle atD(r 1). The
Fourier transform ofSv with respect to the difference coo
dinate (r 12r 2) is

Sv~p!52E d3p8V~p8!G2v
0 ~p2p8!, ~10!

with

V~p8!58p2D2L2d~pz8!exp@2L2~px8
21py8

2!# ~ ẑiH!.
~11!

For a sperical Fermi surface the result is9

Sv~p!52 iApD2~L/v sinu!w@~v1 ig1«!L/v sinu#,
~12!

where« is the normal-state energy measured from the Fe
energy,u5/(p,H), and g is the total impurity scattering
self-energy.

In thev→0 limit corresponding toT→0 one obtains the
following explicit expression for Im«0:7,10

Im «05g1gA ; gA5~v/L!b,
13452
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b5D̃ r
2$@~gL/v !21D̃ r

21h sin2u#1/21~gL/v !%21

~p21<h<1/2!. ~13!

All the other quantitiesD̃ andb occurring in the expression
for ke @see Eq.~13! of Ref. 7# are also renormalized by th
replacementD̃→D̃ r @see Eq.~7! for V50]. Note that D̃
;a/j andGL/v;a/,. In Fig. 3 we have plotted our result
for kes/ken versusH/Hc2 in the limit T→0. The bare im-
purity scattering ratesd5G/D0 are 0.1, 0.5, and 1.0~from
bottom to top!. For a spherical FS one has to evaluate
average ofke over the polar angleu which yields nearly the
same results as shown in Fig. 3 for the plots ofkes/ken vs
H/Hc2 if one uses Eq.~5! with the bA calculated from the
average of Eq.~8! ~see the dashed curves in Fig. 3 ford
50.1, 0.5, and 0.8 with thebA values given in Fig. 1!. All
curves tend to zero in the limitH/Hc2→0. One sees that, fo
low impurity scattering rates,kes/ken exhibits a strong up-
ward curvature nearHc2 which is caused by the rapid reduc
tion of the Andreev scattering rategA with decreasingD̃ or
increasing field as can be seen from Eq.~13!. For increasing
impurity scattering rateg this effect is diminished becaus
gA becomes smaller in comparison tog as can be seen from
the expression in Eq.~13!.

The main problem in analyzing the measured therm
conductivityk in the mixed state is to separate the electro
and phononic contributionske and kph .4 The general ex-
pression forkph @see Eq.~4! of Ref. 8# contains, in addition
to other phonon relaxation times due to defect scattering,
relaxation timetp(v) due to scattering of phonons of fre
quencyv by quasiparticles, which changes drastically in t

FIG. 3. Electronic thermal-conductivity ratiokes/ken vs H/Hc2

for u5p/2 ~solid curves! and for theu-angle averages~dashed
curves!. Notation is as in Fig. 2.
4-4
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SPECIFIC HEAT AND THERMAL CONDUCTIVITY IN . . . PHYSICAL REVIEW B67, 134524 ~2003!
BCS state. The expression for 1/tps in the BCS state16 has
been extended to the vortex lattice state by replacing
BCS DOS E/«, where «5(E22D2)1/2, and the function
D/« occurring in the BCS coherence factor, with the spec
functionsA andB of Eqs.~1! and~2!. In the zero-field limit
the latter expressions tend correctly to the BCS functi
with v[E. The resulting ratio of phonon relaxation time
in the normal and mixed states is given by@see Eq.~3! of
Ref. 8#:

tpn /tps5g~V0!5@12exp~2V0 /y!#~2/V0!E
0

`

dV

3 f @~V2V0/2!/y# f @2~V1V0/2!/y#@A~V

2V0/2!A~V1V0/2!

2B~V2V0/2!B~V1V0/2!#. ~14!

Here V05v0 /D is the phonon energyv0 divided by D
5D(T,H), f is the Fermi function, andy5T/D(T,H). In
Ref. 8 we calculatedg in the limit T→0. It was found that in
the limit D̃→`, or H/Hc2→0, g tends correctly to the BCS
step function with a step atV052, or v052D. This step
function is washed out asD̃→0, or H/Hc2→1, and it tends
to the constant, 1. Since it is important to know the tempe
ture dependence ofkph , and thus oftpn /tps5g, for analyz-
ing the measuredk as a function ofT at fixed field,4 we have
now calculated theT dependence of the expression in E
~14!. For this purpose we make use of the fact that, accord
to the general expression forkph @see Eq.~4! of Ref. 8#, the
maximum of the integrand in thatx integral occurs at abou
xm5v0m /T.4. Therefore it is a good approximation t
make the variable transformationsV05xmy and V5ty in
Eq. ~14!. This yieldstpn /tps5g(xmy) as a function of the
T-dependent quantityy for fixed D̃, or fieldH/Hc2. In Fig. 4
we have plottedg(xmy) versusy for constantxm54 and
constantD̃50.2, 0.3, and 0.6, orH/Hc250.78, 0.62, and
0.29 ~see Fig. 1! for d50.1. In the limit H/Hc2→0, one
obtains a step function with a step aty51/2, that is,V0
54y52 or v052D, as it should be. One sees, that for i
termediate values of the field,tpn /tps5g considered as a
function ofT is smeared out and tends to 1 for high fields.
the limit y→0, or V0→0, Eq. ~14! yields g(V050)
5@A(V050, D̃,u)#2. If the scattering rate 1/tps5(1/tpn)g
occurring in the denominator of thev integral in the expres-
sion forkph @see Eq.~4! in Ref. 8# is comparable to or large
than the other scattering rates due to phonon-defect sca
ing, we expect thatkph rapidly decreases for increasing fie
for temperatures smaller than or close toT.(1/2)D(T,H).
In the measurements ofk one observes a fast drop ofk in
small fields at temperatures aroundTc/6,4 which can be at-
tributed to the fast drop ofkph due to scattering by quasipa
ticles in thep-band vortex lattice.

It is interesting to compare the temperature dependenc
the phonon lifetimetp with the lifetimete of a quasiparticle
due to scattering by acoustic phonons. This scattering
has been derived for the BCS state in Ref. 19@see Eq.~3.9!
of Ref. 19#. We extend this expression for the scattering r
13452
e

l

s

-

.
g

er-

of

te

e

1/tes in anology to our procedure for 1/tp from the BCS to
the vortex state by replacing the density of states by the D
A(V) in Eq. ~1! and the coherence factor terms byB(V) in
Eq. ~2!. Then we obtain

1/tes~v!5C@ f ~2bv!#21A21~V!E
0

`

dv0v0
2

3$A~V!A~V2V0!2B~V!B~V2V0!

3 f @2b~v2v0!#@11b~bv0!#

1@A~V!A~V1V0!2B~V!B~V1V0!#

3 f @2b~v1v0!#b~bv0!%. ~15!

HereC is a constant arising from the electron-phonon mat
elements,b51/T, b(x)5(ex21)21, andv0 is the phonon
frequency. We use this expression now in the calculation
the electronic thermal conductivityke . We mentioned above
that the integrand of thev integral in the expression forke
given in Ref. 7 contains the term Im«05g1gA in the de-
nominator which corresponds to the sum of relaxation ra
of a quasiparticle due to impurity and Andreev scatterin
The effect of thermal scattering by phonons can now
taken into account by adding 1/tes to Im«0. The temperature
dependence of ke is governed by the facto
(v/T)2sech2(v/2T) in the integrand of thev integral which
yields the main contribution of the integrand from the vici
ity of x5v/T at aboutxm52. Therefore we can estimate th
temperature dependence of 1/tes by carrying out the follow-
ing variable transformations in Eq.~15!: x5v/T, t5v0 /T,

FIG. 4. Ratio tpn /tps of phonon lifetimes vsy5T/D(T,H)
corresponding to dominant phonon energyv054Dy54T which
determines the phononic thermal conductivitykph . The constant

fields areH/Hc250.29, 0.62, and 0.78 orD̃50.6, 0.3, and 0.2
~from bottom to top! andd50.1.
4-5
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V5xy, andV05ty with y5T/D(T,H). This yields 1/tes as
a function ofV5xy andx. The normal-state relaxation rat
1/ten is obtained from Eq.~15! by settingA51 andB50. In
Fig. 5 we have plottedten /tes as a function ofy for constant

x5xm52 andD̃50.2, 0.3, and 0.6 (H/Hc250.78, 0.62, and

0.29, ford50.1, see Fig. 1!. One sees that for increasingD̃,
or decreasing field, this function tends to a step funct
where the step occurs aty51/2, that is, at a quasiparticl
energy V5v/D51. This result agrees with the previou
result for the BCS state.19 One recognizes that the variation
of ten /tes as a function ofy are much smaller than those o
the phonon lifetime ratiotpn /tps shown in Fig. 4 where, for

increasingD̃, a step occurs at abouty5V/451/2, i.e., at a
phonon energyV05v0 /D52. The contribution of 1/tes to
the relaxation rate Im«0 occurring in the electronic therma
conductivity ke increases with temperature asT3 because
1/ten is proportional toT3. In the presence of moderate im
purity scattering this becomes comparable withg only at
temperatures such thaty5T/D(T,H).1 where, according
to Fig. 5, the ratioten /tes is nearly 1. The expression fo
1/tes in Eq. ~15! has been calculated in analogy to Ref.
for quasiparticle scattering by acoustic phonons. Instead
this spectrum,Cv0

2, one should employ in the expression f
1/tes the transport Eliashberg functionsa tr

2 Fnn(v0), where
n5s, p, which have been calculated for MgB2.21 Since the
coupling constantlss50.81.lpp50.41, we conclude tha
for thes band the field dependence of 1/tes should be taken
into account while, for thep band, 1/tes can safely be ap-
proximated by 1/ten .

FIG. 5. Ratioten /tes of quasiparticle lifetimes due to phono
scattering vsy5T/D(T,H) corresponding to dominant quasipar
cle energyv52Dy52T which determines the electronic therm
conductivity ke . The constant fields areH/Hc250.29, 0.62, and

0.78 orD̃50.6, 0.3, and 0.2~from bottom to top!, for d50.1.
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III. CONCLUSIONS

We have calculated the density of statesA(v), the elec-
tronic thermal conductivityke , and the scattering rate
1/tp(v) of a phonon and 1/te(v) of a quasiparticle for a
single isotropic gap over the entire field range of the mix
state. That the BPT~Refs. 9–11! and P~Ref. 12! methods for
these calculations are valid approximation schemes has
proved by comparison of the results forA with the solutions
of the Eilenberger equations for Abrikosov’s vortex latti
order parameter.18 By solving the gap equation including im
purity self-energy and vertex corrections~see Fig. 1!, we
have shown that the relation between the central param

of the theory,D̃5D L/v, andH/Hc2 can be very well ap-
proximated by the Ginzburg-Landau~GL! relation @see Eq.
~5!# over the entire field range if one uses an appropri
value of the Abrikosov parameterbA . This result is related
to the fact that the Abrikosov order parameter is a solution
the linearized GL equations which allows extension of t
BPT method over the entire region of linear magnetization22

The second main result of the present paper is that
vertex corrections due to impurity scattering10,12 substan-
tially reduce the dependence of the functionsgs(H)/gn ,
kes(H)/ken , and tpn /tps(H) on the amount of impurity
scattering. The impurity scattering rated5G/D05(p/2)
3(j0 /,) is renormalized here in the Born approximatio
G→g5GĀ(v) where Ā(v) is calculated self-consistentl
from Eq. ~1!. The vertex corrections yield a renormalizatio
of the gapD̃ r due to the functionD @see Eq.~7!#. As can be
seen from Fig. 2, the functionsgs(H)/gn for d50.1, 0.5,
and 1.0 are not very different from each other. The res
are, however, quite different if we set the renormalizati
function D equal to 1. Then the slope ofgs(H)/gn versus
H/Hc2 at H50 rises rapidly withd and becomes very larg
for d51. It should be noticed that all curves in Fig. 2 tend
zero in the zero-field limit as they should to be in accordan
with Anderson’s theorem for ‘‘dirty’’ superconductors. Ou
result that the effect of impurity scattering on the field d
pendence ofgs(H)/gn for a single isotropic gap is rathe
small and does not yield a rapid rise for small fields giv
support for the two-gap model in interpreting the measu
ments ofgs(H)/gn on single crystals of MgB2.3 According
to this model, the first steep increase ofgs(H)/gn , which is
nearly the same for applied fields parallel and perpendic
to thec axis, arises from the behavior of the small gap as
ciated with the three-dimensionalp band. This in effect
closes for increasing field due to the overlap of the vor
cores with a large radiusjp;500 Å,6 at a relatively small
‘‘virtual’’ upper critical field Hc2

S ;3 –4 kOe. The remaining
superconducting contribution aboveHc2

S arises from the
large gap associated with the two-dimensionals band which
closes at an upper critical fieldHc2

(c);32 kOe andHc2
(ab)

;160 kOe. The field dependence of thep-band and the
s-band contributions togs(H)/gn is presumably given by
the almost linear curves in Fig. 2 ford50,8 andd50.5 with
Hc2 equal toHc2

S andHc2
(c) or Hc2

(ab) , respectively.
The results forkes(H)/ken shown in Fig. 3 depend on th

impurity scattering rated primarily because the effect o
4-6
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Andreev scattering on the upward curvature decreases
tively as d increases. Although the slope atH50 is rela-
tively small even ford51, it becomes very large atd51 if
the renormalization of the gapD̃ r5D̃/D due to the vertex
correctionD in ke @see Eq.~13!# is neglected. A consequenc
of this new result is that the observed steep rise ofke(H) for
small fields parallel or perpendicular to thec axis in single-
crystalline MgB2 ~Ref. 4! can again be explained only i
terms of the two-gap model where the smaller gap in
three-dimensionalp band closes in effect at a ‘‘virtual’’ up-
per critical field Hc2

S ;3 –4 kOe due to the overlap of th
vortex cores with a large radiusjp .6 At higher fieldske(H)
tends to saturate until, in the vicinity ofHc2

(c);32 kOe, the
contribution toke from the larger gap associated with th
cylindrical s band exhibits an upward curvature. The cont
butions toke arising from thep ands bands are presumabl
given by the curves in Fig. 3 ford50.8 andd50.5 with the
correspondingHc2 equal toHc2

S andHc2
(c) where the curve for

d50.5 yields the measured upward curvature nearHc2.
The rapid decrease ofk observed at low fields, which is

attributed to the decrease of the phononic thermal conduc
ity kph ,4 can be explained by the field and relevant tempe
ture dependence of the ratio of phonon lifetim
tpn /tps(H)5g(H) shown in Fig. 4. One sees thatg(H)
tends rapidly to the constant one for increasing field a
values of y,1/2 corresponding to temperaturesT
,(1/2)D(T,H). If we assume thatD is the smaller gap as
sociated with thep band, then theT satisfying this condition
is much smaller thanTc . However, at the lowest tempera
tures, this effect onkph is strongly reduced because the sc
tering rate 1/tps occurring in the denominator of thev inte-
gral for kph is multiplied by T/Tc in comparison to the
scattering rate due to sample boundary scattering@see Eq.~4!
of Ref. 8#.

We have calculatedke(H) in the limit T→0, or v→0.
For finite T one has to solve the transcendental equa
determining the pole«0 of the BPT-Green’s function7 for
each finite value ofv occurring in thev integral forke . It
should be pointed out that this calculation is avoided in
expression forke which was derived from linear-respons
theory.13,14 For higher temperatures one should add to
sum of scattering ratesg andgA , due to impurity and An-
dreev scattering@see Eq.~13!#, the scattering rate 1/tes(H)
due to scattering of quasiparticles by phonons. The field
d

.
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relevant temperature dependence of the ratioten /tes(H) is
shown in Fig. 5 as a function ofy5T/D(T,H). One sees
that this ratio is nearly equal to 1 for values ofy.1 corre-
sponding to temperaturesT.D(T,H). For the small gap as
sociated with thep band this condition is probably satisfie
at those temperatures where 1/ten;T3 becomes comparabl
to the intraband impurity scatteringg for the p band. How-
ever, for the large gap associated with thes band, this con-
dition might not be satisfied. We conclude from these e
mates that, for thep band, 1/tes can be approximated by
1/ten while, for thes band, the field dependence of 1/tes(H)
should be taken into account. These considerations are
ported by detailed calculations which yield a larger intraba
impurity scattering rateg for the p band than that for thes
band,20 and a larger scattering rate 1/ten for thes band than
that for thep band because the intraband electron-phon
coupling constant satisfieslss.lpp .21

Our assumption that we can simply add our results
tained for two different isotropic gaps and different upp
critical fields in thep ands bands is a crude approximatio
in view of the actual situation in MgB2. It is true that the
interaction due to interband impurity scattering between
s andp bands is small.20 However, we have neglected th
pairing interaction between the two bands which presuma
leads to Cooper pair tunneling from thes band with strong
pairing to thep band where it leads to giant vortex cores a
where superconductivity is maintained above the virtualHc2

S

up toHc2.5 Nevertheless we believe that our clear-cut resu
for the mixed state of a single isotropic gap are helpful
analyzing the complicated behavior of different physic
quantities in MgB2.

Another approximation is that we have neglected hig
harmonic-oscillator componentsN of Abrivosov’s vortex lat-
tice order parameter which lead to a distortion of the latt
at lower fields.18 For an s-wave superconductor the BP
method breaks down at low fields where properties are
termined by the states bound to the vortex cores. Howe
STS measurements in MgB2 show an absence of localize
states in the cores.6
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