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Specific heat and thermal conductivity in the vortex state of the two-gap superconductor MgB
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The specific-heat coefficient;(H) and the electronic thermal conductivikg(H) are calculated for Abri-
kosov’s vortex lattice by taking into account the effects of supercurrent flow and Andreev scattering. First we
solve the gap equation for the entire range of magnetic fields. We take into account vertex corrections due to
impurity scattering calculated in the Born approximation. The functigfH)/ vy, increases from zero and
becomes approximately linear abot#H_,~0.1. The dependence on impurity scattering is substantially
reduced by the vertex corrections. The upward curvature QfH)/«.,, which is caused by decreasing
Andreev scattering for increasing field, is reduced for increasing impurity scattering. We also calculate the
temperature dependence of the scattering ratgs(H) of a phonon and ¥ (H) of a quasiparticle due to
quasiparticle and phonon scattering, respectively. At low temperatures thegatig(H) increases rapidly to
one asH tends toH, which yields a rapid drop in the phononic thermal conductivify,. Our results are in
qualitative agreement with the experiments on the two-gap superconductoy. MgB
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I. INTRODUCTION tunneling® The vortices in thé8band have large vortex cores

of radii §§ and already start to overlap in weak fields. This

Although superconductivity in MgB (Ref. 1) has been leads to a strong suppression of the small gap at a “virtual”
established as conventional phonon-mediatedave super- upper critical fieldH3,~3—4 kOe which is much smaller

CondUCtiVity, it is often difficult to analyze the results of than Hg%):ss kOe. The |arge radius of the vortex core and
measurements of various physical quantities because thefge field-induced suppression of the smaller gap is consistent
exist two gaps of different magnitude associated with differith  recent scanning-tunneling  spectroscopySTS
ent bands. Their ratio is estimated s AS/A5~0.3-0.4  measurements.
where the larger gap\g is associated with the two-  Theories of the electronic thermal conductivity (Ref.
dimensionalo bands and the smaller gag with the three-  7) and the phononic thermal conductiviky, (Ref. 8 in the
dimensionalr bands. Evidence for two gaps is provided by mixed state have been developed on the basis of the
the rapid rise of the specific-heat coefficien(H) at very  Brandt-Pesch-Tewordt! (BPT) and the equivalent Pesch
low fields?® Recent measurements of the in-plane thermalP) approximation schemes. Linear-response equations for
conductivity k(H) for fields both parallel and perpendicular the vortex stat€ yield another expression fok, which
to thec axis provide more evidence for the existence of twohas been applied ta-wave pairing superconductivity in
gaps because they show a very unusual field dependencethe cuprates’ In the BPT approximation the normal and
low temperature$.For increasing fieldxs(H) drops rapidly ~anomalous Green’s function& and F are derived from
and reaches a minimum at a relatively low field, then exhib-Gorkov’s integral equations with kernel(r;)G® (14
its an S-shape behavior where a steep rise in the low-field ro)A*(ry)exp(—ifi2eAds where A(r) is Abrikosov’s
region is followed by a downward curvature up to aboutvortex lattice order parameter ar@®, is the quasihole
H¢,/2 and finally an upward curvature nedyg, for H||c. The  propagator. Thus these Green’s functions take into account
initial drop is attributed to the decrease of the phononic conthe effects of supercurrent flow and Andreev scattering in the
tribution «,(H) which is caused by the rapid enhancementvortex cores as well as quasiparticle transfer between the
of scattering of phonons by the quasiparticles in the vortewortices. The expression fat,,” which has been derived
cores associated with the band. The steep increase in the from the Kubo formula in analogy to the procedure in Ref.
low-field region is attributed to the rapid rise of the elec-15, consists essentially of the integral with the factor
tronic contributionke(H) which arises from the rapid release (w/T)?secl(w/2T) determining the temperature depen-
of mobile quasiparticles in the vortex lattice associated withdence, the “destructive” coherence factor arising from the
the 7~ band. The final upward curvature ©fH) nearH., for ~ combination GG'—FFT), and the total scattering rate in
H||c is presumed to be due to the mobile carriers of thethe denominator consisting of the sum of the quasiparticle
vortex lattice associated with the band. scattering ratey and ya(w,H) due to impurity and Andreev
The field dependence of(H) and x.{(H) can be ex- scattering. In the present paper we also calculate the scatter-
plained qualitatively in terms of a two-band model with two ing rate 1#.sdue to thermal scattering in the vortex state, but
energy gaps of different magnitude in the two bands wher¢his becomes comparable toonly at higher temperatures.
the band with strong pairinghe L or o band is responsible  The expression fok, contains, in addition to the sum of
for the superconductivity, and the superconductivity in thescattering rates of phonons by different defects, the scatter-
second bandthe S or 7 band is induced by Cooper pair ing rate 1f, for phonons scattered by quasiparticles in the
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vortex state. The latter expression was obtained by replacintively the measured field dependence of the specific heat
in the BCS expressidh the density of state$DOS) and  and thermal conductivity in Mg
“coherence” functions by the expressions resulting from the

P approximation for the vortex stafte. Il. THEORY OF THE SPECIFIC HEAT AND ELECTRONIC
The results forys(H)/ vy, kedH)/ken, and ry,/7ps, AND PHONONIC THERMAL CONDUCTIVITY IN
which were obtained in Ref. 8 for a single cylindrical or ABRIKOSOV'S VORTEX LATTICE

spherical band and an isotropsewave pairing gap, turned
out to depend sensitively on the reduced impurity scatterin%
rate 5=I"1A o= (m/2)é,/€ whereé, is the zero-field coher- r
ence length and is the mean free path. If one takes for the

 band in MgB ¢,~500 A from the STS mgasureme?lts from the quasiclassical Eilenberger equations. In this version
and a mean free path,~500-800 A, one arrives at are- o o integrals of the spatial averages of the spectral func-
duced scattering raté,.~1 which is much larger than the tions, — Im G/ and — Im F/r, denoted byA andB, take on
largest value o®6=0.5 recorded in Ref. 8. For such a large {4 following form®

impurity scattering rate it is necessary to renormalize the
impurity scattering self-energy and to take into account the
corresponding vertex corrections. The vertex corrections
yield a renormalization of the gap functidhl?which, near 8x2 ~112
H¢,, tends to the renormalization function which has been =Re{1+ i [1—|—i\/;zw(z)]] , (D
derived in the calculation dfi,.1" It turns out that this gap sir’ g

renormalization substantially reduces the dependence of the

The basis of our theory is the approximation of
andt-Pesch-Tewordit*! (BPT) for the normal and anoma-
lous Green’s function& andF in the mixed state. A simpli-
fied version of this theory has been derived by PEsh)

A(Q:A,0)=N(w,6)/N,

functionsys(H)/ vq, ke H)/ ken, and7,n/7pg(H) on impu- 8(Q:A.6) Re( —iJm2(4, Isin@)w(z) )

rity scattering. A,0)= ~5, . )
Recently it has been shown that numerical solutions of the {1+ (8AT/sIPO)[1+i \/;ZW(Z)]}M

Eilenberger equations yield a spatial average of the DOS &

which is approximated very well by the DOS obtained with -

the BPT and P approximations over the whole field range z=2[QA+i(Alv)yl/sing; 6=/ (p,H), (©)

betweerH ., andH_;.*® This result motivates us to calculate

the field dependence of the central parameter of the theory, A=(2eH) Y2 A=AAlv, Q=wlA, (4)

A=AA/v, from the gap equation in the P approximatfon
by including the impurity scattering vertex corrections i X2—(H_,—H)/68,H, A2=A%(T)[1—(H/H)],

analogy to those in the gap equation of the BPT (5)
approximatiort’ Here A? is the spatial average df(r)|?
where A(r) is Abrikosov’s vortex lattice order parameter, w(2) = exp(— 22)erfd —iz). (6)

A= (2eH) Y?=(x/2)"%a wherea is the lattice constant of

the vortex lattice, and is the Fermi velocity perpendicular 2

to the uniform fieldH. It turns out that one can fit the exact A,=A/ID, D(Q)=1—f d62(A ylv)aw(z). (7)
results of these calculations very well with the relation be- 0

tweenA? and H/H., given by the Ginzburg-Landa(GL) . . , .
relationship if one uses an appropriate value of the Abriko-t. IHereAO(T)f [{sr]thesrwa\{f %.a&'?_zﬁfﬁ'eldi IS tZe spa-
sov parameteBa=(|A[*)/((|A|2)2. ial average of the magnetic field,>=(|A|*), whereA(r) is

We have also investigated the temperature dependence ﬁtr!tosovs vortext Iatlt:|ce tﬁrdtert Fl)arame_'ier, a‘? 1S thet
the phonon relaxation-time ratio,,/7,{(H) and find that rikosov parameter. For Ihe total impurity scatiering rate
this ratio increases rapidly to 1 with increasiHgn propor- ~We employ the Born approximationy=I'A  where T
tion to[ ys(H)/y,]? for temperature3 <(1/2)A(T,H). This  =1/27, and A is the average of over the Fermi surface
yields a rapid decrease af,, for small fields and relatively which is calculated self-consistently. For a spherical FS,
low temperatures if one takes far the small gapAS(T,H) v sin @ is the component of the Fermi velocitp) perpen-
of the 7 band. In this way one can explain the observed droglicular to the fieldH. For a cylindrical FS parallel tc and
of « for small fields and temperatures négy/6 which is  field H||c, one has to tak@= m/2 andv equal to the Fermi
attributed to the drop ok, A velocity in theab plane. For a general F3,siné@is replaced

Since the interband impurity scattering betweendhend by the componeng, (p) perpendicular to the field. The gap
m bands is smaft® one can add, in a crude approximation, renormalization functio in Eq. (7) was first calculated by
our results obtained for a single isotropic gap in a cyIindricaIBrandiLO from the ladder summation of impurity interaction
or spherical Fermi-surfad&S) band by weighting them with  lines bridging the vertices ah and A* occurring in the
the corresponding density of states. If one takes into accourself-energy parG?uAG(iwA*G?u in Gorkov’s integral equa-
that the “virtual” upper critical field for the three- tion for G. In the P-approximation scheniztakes the form
dimensionalr band is much smaller than the upper critical given in Eq.(7) which, nearH.,, tends to the function in-
field of the two-dimensional band® one can explain quali- troduced in Ref. 17.
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FIG. 1. Solutions of gap equation fét/Hs, vs A=AA/v [A

H/Hg,
=(2eH) 2], for impurity scattering rate6=0.1, 0.5, and 1.0, for

6=m/2 (solid curveg. The fits are obtained from the analytical  FIG. 2. Ratio of specific-heat coefficientg,/y,, vsH/H, for
expression with the Abrikosov paramejgr=1.1, 1.4, and 1.7see

reduced impurity scattering ratés=1'/A;=0.1, 0.5, and 1.@solid
Eq. (9] The dashed curves show theangle averages fob  curveg for 6= /2 [cylindrical Fermi surfacgFS)]. The dashed
=0.1, 0.5, and 0.8 with fit parameter valygg=2.3, 2.8, and 3.2.  curves show th&-angle averagepherical FSwith § and3,, as

in Fig. 1.

The field dependence of the DOS, and the “coherence
factor” function, B, are governed by the quantity=AA/v
=(2m) Y2al ¢ wherea= (2/7)Y?A is the lattice constant of _
the Abrikosov vortex lattice ang=v/A is the effective ~each value of) from the expression foh(Q2) [see Eq(1)].
coherence length in the plane perpendiculatHtoFor H  For H|[c and a cylindrical FS one has to set /2 in Eq.
—H,, andH—0 one obtains the limiting valués—0 and (8), and for a spherical FS E() is averaged over the p~olar
A— =, respectively. The relationships betwekmndH/H,, ~ @ngled. In Fig. 1 we show our results fdi/H., versusA
and betweend and H/H,, given in Eq.(5) have been de- obtained from Eq(8) for 0=_ /2 and for5=0.1, 0.5, ._and _
rived from the GL theory which is valid ne#t.,. To get the 1.0. These results can be fitted very well by the relationship

general relationship at lower fields we make use of the ga}b1/Hc2.=(1+6,3A52)71 [see Eq.(5)] over the whole field
equation in the P approximatidAAt T=0 this equation can range if one takeg,=1.1, 1.4, and 1.7 fo6=0.1, 0.5, and

be rewritten in the following form: 1.0. Similar results are obtained for a spherical FS if one

scattering self-energy= FK(Q) occurring in the expression
for B(Q) in Eqg. (2) has to be calculated self-consistently for

averages Eq(8) over the polar angled (see the dashed
fo dO[B(Q) - C(Q)]=0. ®) gtrjlr('jv?in Fig. 1 for6=0.1, 0.5, and 0.8 wittB,=2.3, 2.8,
_ ) _ ) In Fig. 2 we have plotted our numerical results for the
HereB(Q) |s.the spectrz_il functl(.)nldf given in Eq.(2) and  normalized DOS at zero energy(Q=0)= y,(H)/y,, ver-
C(Q) is obtained by taking the limit o8 for H—H, where  sysH/H., wherey is the specific-heat coefficient. Here we
A-=0: have approximated occurring in Eq.(1) by the analytical
oy U2 s expression in Eq(5) with B,=1.1, 1.4, and 1.7 for bare
C(Q)=Re| I\m2(H/He) Y&, /sin ) impurity scattering rate$=1/A,=0.1, 0.5, and 1.@solid
XWL(H/He2) Y21 A, - (99  curves, from top to bottoin Here we have employed the
c2

Born approximation for the total impurity scattering self-
The gap Eq.(8) in the P approximation corresponds to the energy, y=T'A(0), where A(0) is calculated self-
gap equation in the BPT approximatt8mith the functionB

) \ consistently. This means that is replaced bysA(0). For
replaced by the spectral function Bfderived for the theory  5—0.1 andg= /2 the functionA(0) is close to the clean
of NMR.** Thus Eq.(8) is an implicit equation foH/Hc; @S |imit result shown in Ref. 18 for the-wave pairing state.
a function ofA for given impurity scattering raté=1"/A,.

The latter function has been shown to be very close to the
This calculation is rather complicated because the impuritynumerical solution of the Eilenberger equations over the
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whole field range fromH., to H=0 corresponding td ;.
One can see that all curves in Fig. 2 tend to zero in the limit
H/H:.,—0, which is due to the gap renormalization. For a

c
spherical FS one has to average EQ.over the polar angle d
0. For the plot ofA versusH/H., one needs Eq5) where  —
Ba is calculated from the&-angle average of Eq8). The @
results are shown by the dashed curves in Fig. 2 Jor ¥

=0.1, 0.5, and 0.8 with th@, values used in Fig. 1. Itis
interesting that the curve fa¥=0.8 is almost linear over the
whole field region.

We turn now to the theory of the electronic thermal con-
ductivity . in the vortex state which has been developed in
Ref. 7 by replacing the zero-field Green’s functiddsandF
in the theory of Ref. 15 by the Green’s functions of the BPT
approximation. This theory has been applied to supercon:
ducting states with nodes in the gap such agR86,, the
cuprates, and URt To save space we omit here the expres-
sion for k.. The main features of this expression are the
following. Most important is the term I, in the denomi-
nator of the o integral with the well-known factor
w?seck(w/2T). This term Ime, corresponds to the scatter-
ing rate of quasiparticles due to impurity and Andreev scat-
tering. The other term corresponds to the coherence factor of FIG. 3. Electronic thermal-conductivity ratig,/ «e,, VS H/H ¢,
BCS theory. In the zero-field limit both terms in the expres-for 6==/2 (solid curve$ and for the #-angle averagegdashed

sion of Ref. 7 tend correctly to those occurring in the expres
sion of Ref. 15. The physical meaning of by is the fol-
lowing. The equation for the positios,, of the pole of the
Green’s functionG in the BPT approximatichyields Ime,

= y+ ya Wherev is the total impurity scattering rate angd

is the imaginary part of the quasiparticle self-enehyy at
go. From the kernel of Gorkov’s integral equation f6rone
sees that, in the spatial representatioB,(rq,r,)=
—V(rq,r)G% (ri—ry), where V(ry,ryp)
=A(rl)A*(rz)exp(—lffZeA-ds) and A(r) is Abrikosov’'s

vortex lattice order parameter. From this expression one rec-. a/¢ andTAly~

ognizes thatya=—1Im32 , is the scattering rate for convert-
ing a quasiparticle into a quasihole by Andreev reflection a
A*(r,) and then back into a quasiparticle A{(r,). The
Fourier transform oE , with respect to the difference coor-
dinate f,—r») is

Ew(p)=—J d*p'V(p")G® (p—p'), (10

with

!
X

V(p')=8m2A%A25(py)exd — A2(p, *+p) ] (ZH).

(11)
For a sperical Fermi surface the resuft is

S .(p)=—iVaAZ(Alv sinOW[ (w+iy+e)Alv sind],
(12)

wheree is the normal-state energy measured from the Fermi

energy, 8=/ (p,H), and vy is the total impurity scattering
self-energy.

In the w— 0 limit corresponding t&' — 0 one obtains the
following explicit expression for Ing,:"°

Imeg=7y+vya: va=wW/AN)B,

curves. Notation is as in Fig. 2.

B=DAX[(yAlv)?+ A%+ 5sir?0]Y%+ (yAlv)} 2

(m i< p=1/2). (13)

All the other quantities\ and 8 occurring in the expression
for k. [see Eq.(13) of Ref. 7] are also renormalized by the

replacementA A, [see Eq.(7) for Q=0]. Note thatA
al/f. In Fig. 3 we have plotted our results
for kes/ ken VErsusH/Hg, in the limit T—0. The bare im-
burity scattering rate$=I'/A, are 0.1, 0.5, and 1.(from
bottom to top. For a spherical FS one has to evaluate the
average ofk, over the polar angl® which yields nearly the
same results as shown in Fig. 3 for the plots«@f/ ke, VS
H/H., if one uses Eq(5) with the B, calculated from the
average of Eq(8) (see the dashed curves in Fig. 3 fér
=0.1, 0.5, and 0.8 with th@, values given in Fig. )L All
curves tend to zero in the limit/H.,— 0. One sees that, for
low impurity scattering ratesy.s/ k., €xhibits a strong up-
ward curvature neat ., which is caused by the rapid reduc-

tion of the Andreev scattering ratg, with decreasingA or
increasing field as can be seen from ELB). For increasing
impurity scattering ratey this effect is diminished because
va becomes smaller in comparison foas can be seen from
the expression in Eq13).

The main problem in analyzing the measured thermal
conductivity k in the mixed state is to separate the electronic
and phononic contributiong, and Kph.4 The general ex-
pression fork,, [see Eq(4) of Ref. § contains, in addition

to other phonon relaxation times due to defect scattering, the
relaxation timer,(w) due to scattering of phonons of fre-
quencyw by quasiparticles, which changes drastically in the
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BCS state. The expression forr{ in the BCS stat€ has 1.4 ' '
been extended to the vortex lattice state by replacing the
BCS DOSE/e, where e=(E2—A?%)'2 and the function

Ale occurring in the BCS coherence factor, with the spectral §
functionsA andB of Egs.(1) and(2). In the zero-field limit e
the latter expressions tend correctly to the BCS functions
with w=E. The resulting ratio of phonon relaxation times
in the normal and mixed states is given [gee Eq.(3) of
Ref. g

c

ronl Tos=9(Q0) = [ 1— exp — Qo/y)](21020) f “d0
0

XF[(Q—Qo/2)Iy]f[ = (Q+ Qo/2)/Y[AQ
—Q2AQ+Q/2)

—B(Q—0¢/2)B(Q+Qy/2)]. (14) . .
0 1 2 3

Here Qg=wq/A is the phonon energy, divided by A
=A(T,H), fis the Fermi function, angy=T/A(T,H). In y=T/A(T,H)
Ref. 8 we calculated in the limit T— 0. It was found that in
the limit A—o, or H/H,—0, g tends correctly to the BCS ~ FIG. 4. Ratio,,/7,s of phonon lifetimes vsy=T/A(T,H)
step function with a step a@®,=2, or wo=2A. This step correspondlng to domlqant phonon energ_y_:4Ay=4T which
L ~ . determines the phononic thermal conductivity,. The constant
function is washed out a&—0, orH/H —1, and it tends fields areH/H .—0.29 0.62. and 0.78 6A=0.6. 0.3. and 0.2
to the constant, 1. Since it is important to know the temperazfrom bottom tz)ztopx.an;j 5':0’1 ' e '
ture dependence of,,, and thus ofr,,/7ps=g, for analyz- o
ing the measured as a function off at fixed field? we have
now calculated thel dependence of the expression in Eq.
(14). For this purpose we make use of the fact that, accordin
to the general expression fat, [see Eq(4) of Ref. g, the
maximum of the integrand in thatintegral occurs at about
Xm= wom/T=4. Therefore it is a good approximation to
make the variable transformatio¥,=x,,,y and Q=ty in

1/7¢5in anology to our procedure for 4 from the BCS to

%he vortex state by replacing the density of states by the DOS
A(Q) in Eq. (1) and the coherence factor terms By()) in

Eqg. (2). Then we obtain

Eq. (14). This yields 7p,/7,s=9(Xy) as a function of the 1/7-es(w)=C[f(—,Bw)]*lAfl(Q)f dwow}
T-dependent quantity for fixed A, or field H/H¢,. In Fig. 4 0

we have plottedg(x,,y) versusy for constantx,=4 and X{A(Q)A(Q—Q0)—B(Q)B(Q—Qp)
constantA=0.2, 0.3, and 0.6, oH/H,=0.78, 0.62, and

0.29 (see Fig. 1 for 5=0.1. In the limit H/H.,—0, one Xf[=Blw=wo)[1+b(Bwo)]
obtains a step function with a step wt1/2, that is,{g +[AQ)AQ+ Q) —B(Q)B(Q+Q0)]

=4y=2 or wg=2A, as it should be. One sees, that for in-
termediate values of the field,,/7,s=g considered as a Xf[ = B(w+ wo) Ib(Bwo)}. (15
function of T is smeared out and tends to 1 for high fields. In
the limit y—0, or Q,—0, Eqg. (14) vields g(20=0)  HereC is a constant arising from the electron-phonon matrix
=[A(Q=0,4,0)]% If the scattering rate tjs=(1/7,,)g  elements3=1/T, b(x)=(e*~1)"*, andwy is the phonon
occurring in the denominator of the integral in the expres- frequency. We use this expression now in the calculation of
sion for kp,, [see Eq(4) in Ref. 8] is comparable to or larger the electronic thermal conductivity, . We mentioned above
than the other scattering rates due to phonon-defect scattdghat the integrand of the integral in the expression fot,
ing, we expect thak, rapidly decreases for increasing field given in Ref. 7 contains the term ls=y+ y, in the de-
for temperatures smaller than or closeTte: (1/2)A(T,H). nominator which corresponds to the sum of relaxation rates
In the measurements & one observes a fast drop &fin of a quasiparticle due to impurity and Andreev scattering.
small fields at temperatures aroul@6,* which can be at- The effect of thermal scattering by phonons can now be
tributed to the fast drop o, due to scattering by quasipar- taken into account by adding#to Imeg. The temperature
ticles in thew-band vortex lattice. dependence of «, is governed by the factor

It is interesting to compare the temperature dependence ¢fo/ T)?sec(w/2T) in the integrand of the integral which
the phonon lifetimer,, with the lifetime 7, of a quasiparticle Yyields the main contribution of the integrand from the vicin-
due to scattering by acoustic phonons. This scattering ratiéy of x=w/T at abouix,,=2. Therefore we can estimate the
has been derived for the BCS state in Ref[48e Eq(3.9)  temperature dependence ofJJ/by carrying out the follow-
of Ref. 19. We extend this expression for the scattering rateng variable transformations in EQL5): x=w/T, t=wy/T,
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1.1 . ' IlIl. CONCLUSIONS

We have calculated the density of stafgsv), the elec-
tronic thermal conductivityx., and the scattering rates
1/7p(w) of a phonon and ¥.(w) of a quasiparticle for a
single isotropic gap over the entire field range of the mixed
state. That the BPTRefs. 9—1] and P(Ref. 12 methods for
these calculations are valid approximation schemes has been
_ proved by comparison of the results famwith the solutions
of the Eilenberger equations for Abrikosov's vortex lattice
order parametéf By solving the gap equation including im-

T purity self-energy and vertex correctiofisee Fig. 1, we
have shown that the relation between the central parameter
of the theory, A=A A/v, andH/H_, can be very well ap-

proximated by the Ginzburg-LanddL) relation[see Eq.
(5)] over the entire field range if one uses an appropriate

[%2]
(]
[
~
c
O]
(=)

05 L . value of the Abrikosov parametgt, . This result is related
0 1 2 3 to the fact that the Abrikosov order parameter is a solution of
the linearized GL equations which allows extension of the
y=T/A(T,H) BPT method over the entire region of linear magnetizatfon.

The second main result of the present paper is that the
vertex corrections due to impurity scattertfid? substan-
tially reduce the dependence of the functiopgH)/v,,
kes(H)/ken, and 7,,/7,(H) on the amount of impurity
scattering. The impurity scattering ra@=1"/Ay=(/2)
X(&p/€) is renormalized here in the Born approximation

I'—y=TA(w) Where A(w) is calculated self-consistently
from Eq. (1). The vertex corrections yield a renormalization
of the gapA, due to the functiorD [see Eq(7)]. As can be
seen from Fig. 2, the functiong,(H)/vy, for 6=0.1, 0.5,

FIG. 5. Ratio7,/7es Of quasiparticle lifetimes due to phonon
scattering vsy=T/A(T,H) corresponding to dominant quasiparti-
cle energyw=2Ay=2T which determines the electronic thermal
conductivity k.. The constant fields arel/H.,=0.29, 0.62, and

0.78 orA=0.6, 0.3, and 0.Zfrom bottom to top, for §=0.1.

Q=xy, andQy=ty with y=T/A(T,H). This yields 1#.;as

a function of( =xy andx. The normal-state relaxation rate
1/_Ten's obtained from Eq(15) by sett|ngA=1 andB=0. In and 1.0 are not very different from each other. The results
Fig. 5 we have plottede,/ 7es as a function of for constant  re however, quite different if we set the renormalization
X=Xm=2 andA=0.2, 0.3, and 0.6H/H,=0.78, 0.62, and function D equal to 1. Then the slope ofy(H)/y, versus
0.29, for5=0.1, see Fig. )l One sees that for increasidg ~ H/H¢, atH=0 rises rapidly withs and becomes very large
or decreasing field, this function tends to a step functiorfor = 1. It should be noticed that all curves in Fig. 2 tend to
where the step occurs gt=1/2, that is, at a quasiparticle Z€ro in the zero-field limit as they should to be in accordance
energy Q=w/A=1. This result agrees with the previous with Anderson’s theoren_1 for ‘_‘dlrty” superconductor_s. Our
result for the BCS stat. One recognizes that the variations "€Sult that the effect of impurity scattering on the field de-
of 7on/7es @S a function of are much smaller than those of Pendence ofys(H)/v, for a single isotropic gap is rather
the phonon lifetime ratia,,/ 7,5 shown in Fig. 4 where, for small and does not yield a rapl_d rise for s_mall fields gives
. L~ ) support for the two-gap model in interpreting the measure-
increasingA, a step occurs at aboyt= Q'/4=.1/2, i.e,ata  ments ofy«(H)/y, on single crystals of Mgg* According
phonon energyo=wo/A=2. The contribution of Wes 10 g this model, the first steep increasejatH)/y,, which is

the relaxation rate Imo OCCUrring in the electronic thermal nearly the same for app“ed fields para”e| and perpendicu'ar
conductivity . increases with temperature @ because to thec axis, arises from the behavior of the small gap asso-
1/7en is proportional toT®. In the presence of moderate im- ciated with the three-dimensionat band. This in effect
purity scattering this becomes comparable wijthonly at  closes for increasing field due to the overlap of the vortex
temperatures such thgt=T/A(T,H)>1 where, according cores with a large radiug,~500 A° at a relatively small

to Fig. 5, the ratiore,/7es iS nearly 1. The expression for “virtual” upper critical field H§2~3—4 kOe. The remaining
1/7¢s in Eq. (15) has been calculated in analogy to Ref. 19superconducting contribution abowd?, arises from the
for quasiparticle scattering by acoustic phonons. Instead dirge gap associated with the two-dimensiomaland which
this spectrumCw3, one should employ in the expression for closes at an upper critical fielthJ~32 kOe andHG”
1/7.4 the transport Eliashberg functiom&ﬁan(wo), where  ~160 kOe. The field dependence of theband and the
n=o, 7, which have been calculated for MgB' Since the  o-band contributions toys(H)/y, is presumably given by
coupling constank ,,=0.81>\ . ,=0.41, we conclude that the almost linear curves in Fig. 2 fé= 0,8 andé=0.5 with

for the o band the field dependence of-d{ should be taken H,, equal toH$, andH or H | respectively.
into account while, for ther band, 1f.4 can safely be ap- The results folk.(H)/ ke, Shown in Fig. 3 depend on the
proximated by 1#,,,. impurity scattering rates primarily because the effect of
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Andreev scattering on the upward curvature decreases releelevant temperature dependence of the ragig 7.(H) is
tively as & increases. Although the slope Ht=0 is rela- shown in Fig. 5 as a function of=T/A(T,H). One sees
tively small even for6=1, it becomes very large @=1 if  that this ratio is nearly equal to 1 for valuesyf1 corre-

the renormalization of the gaj,=A/D due to the vertex Sponding to temperaturds>A(T,H). For the small gap as-
correctionD in Ke [See Eq(]_?,)] is neg|ected_ A consequence sociated with ther band this condition is probably satisfied
of this new result is that the observed steep risegH) for  at those temperatures whererd/~T* becomes comparable
small fields parallel or perpendicular to theaxis in single-  to the intraband impurity scattering for the = band. How-
crystalline Mg (Ref. 4 can again be explained only in ever, for the large gap associated with thévand, this con-
terms of the two-gap model where the smaller gap in thelition might not be satisfied. We conclude from these esti-
three-dimensionatr band closes in effect at a “virtual” up- mates that, for ther band, 1t can be approximated by

per critical field HZ,~3—4 kOe due to the overlap of the 1/7en While, for theo band, the field dependence ofrd{H)
vortex cores with a large radius, .® At higher fieldsk(H)  Should be taken into account. These considerations are sup-

tends to saturate until, in the vicinity Mg%)wgz kOe, the ported by detailed calculations which yield a larger intraband

contribution tox, from the larger gap associated with the IMPUrity scattering ratey for the 7~ band than that for the

20 -
cylindrical o band exhibits an upward curvature. The contri-Pand;” and a larger scattering raterl for the o band than
butions tok, arising from ther ando bands are presumably that for the band because the intraband electron-phonon

given by the curves in Fig. 3 fof=0.8 ands=0.5 with the ~ COUPling constant satisfies, ;>\ - .
correspondindd ., equal ton2 anng‘"é) where the curve for _Our assumptlpn that We can simply add our results ob-
tained for two different isotropic gaps and different upper

0=0.5 yields the measured upward curvature reg. critical fields in ther and o bands is a crude approximation
The rapid decrease of observed at low fields, which is jn view of the actual situation in MgpB It is true that the

attributed to the decrease of the phononic thermal conductiv! . . . ) .
ity x,,,* can be explained by the field and relevant temperalmeracuon due t.o mterbaand impurity scattering between the
ture P dependence of the ratio of phonon lifetimes” and 7 bands is smaft’ However, we have neglected the
.l (H)=g(H) shown in Fig. 4. One sees thg(H) pairing interaction between the two bands which presumably
on! Tps . 4. : . .
tends rapidly to the constant one for increasing field andea}d.s to Cooper pair tunne[lng from tlaugband with strong
values of y<1/2 corresponding to temperatured pairing to thewr band where it leads to giant vortex cores and
<(L/2)A(T,H). If we assume tha is the smaller gap as- where superconductivity is maintained above the virtﬁ@
sociated with ther band, then thd satisfying this condition YP t°H<:2',5 Nevertheless we believe that our clear-cut results
is much smaller tha,. However, at the lowest tempera- for the_ mixed state o_f a single isotropic gap are helpfu'l in
tures, this effect ok, is strongly reduced because the scat-2nalyzing the complicated behavior of different physical
tering rate 1#,; occurring in the denominator of the inte- ~ quantities in Mg8. .
gral for x,, is multiplied by T/T; in comparison to the Another approximation Is that we have neglected higher
scattering rate due to sample boundary scattdsag Eq(4) harmonic-oscillator componeni$of Abrivosov’s vortex lat-
of Ref. § tice order parameter which lead to a distortion of the lattice
We.ha.ve calculated(H) in the limit T—0, or @—0 at lower fields'® For an swave superconductor the BPT
e ’ . - .
For finite T one has to solve the transcendental equatiorqneth.Od breaks down at low fields where properties are de-
determining the poles, of the BPT-Green's functidnfor termined by the states bound to the vortex cores. However,

each finite value ofv occurring in thew integral for k.. It STS measurements in MgBshow an absence of localized

should be pointed out that this calculation is avoided in theotates in the cores.
expression fork, which was derived from linear-response

13,14 H
theory:. For_hlgher temperatures one shOl_JId add to the ACKNOWLEDGMENT
sum of scattering rateg and y,, due to impurity and An-
dreev scatteringisee Eq.(13)], the scattering rate {(H) We would like to thank T. Dahm and K. Scharnberg for

due to scattering of quasiparticles by phonons. The field andaluable discussions.

1J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J.°M.R. Eskildsen, M. Kugler, S. Tanaka, J. Jun, S.M. Kazakov, J.

Akimitsu, Nature(London 410, 63 (2002. Karpinski, and @. Fischer, Phys. Rev. L&88, 187003(2002.
2H.D. Yang, J.-Y. Lin, H.H. Li, F.H. Hsu, C.J. Liu, S.-C. Li, R.-C. L. Tewordt and D. Fay, Phys. Rev. 8, 024528(2001).

Yu, and C.-Q. Jin, Phys. Rev. Le7, 167003(2002. 8L. Tewordt and D. Fay, Phys. Rev. Le&9, 137003(2002.
SE. Bouquet, Y. Wang, I. Sheikin, T. Plackowski, A. Junod, S. Lee, 9U. Brandt, W. Pesch, and L. Tewordt, Z. Phg€1, 209 (1967.

and S. Tajima, Phys. Rev. LeR&9, 257001(2002. 10y, Brandt, Ph.D. thesis, Universitat Hamburg, 1969; Phys. Lett.
AV Sologubenko, J. Jun, S.M. Kazakov, J. Karpinski, and H.R.  27A, 645(1968.

Ott, Phys. Rev. B56, 014504(2002. 1w, Pesch, Ph.D. thesis, Universitat Hamburg, 1968; Phys. Lett.
5N. Nakai, M. Ichioka, and K. Machida, J. Phys. Soc. Jph.23 28A, 71 (1968.

(2002. 2W. Pesch, Z. Phys. B1, 263(1975.

134524-7



L. TEWORDT AND D. FAY PHYSICAL REVIEW B 67, 134524 (2003

13p, Klimesch and W. Pesch, J. Low Temp. PH3&. 869 (1978. 9. Tewordt, Phys. Revi28 12 (1962.

4. Vekhter and A. Houghton, Phys. Rev. LeB8, 4626(1999. 201, Mazin, O.K. Andersen, O. Jepsen, O.V. Dolgov, J. Kortus,
15V, Ambegaokar and L. Tewordt, Phys. Ré\34, A805 (1964). A.A. Golubov, A.B. Kuz’menko, and D. van der Marel, Phys.
163, Bardeen, G. Rickayzen, and L. Tewordt, Phys. R&g 982 Rev. Lett.89, 107002(2002.

(1959. 21y, Kong, O.V. Dolgov, O. Jepsen, and O.K. Andersen, Phys. Rev.
17E. Helfand and N.R. Werthamer, Phys. R&¢7, 288 (1967). B 64, 020501R) (2001).

'°T. Dahm, S. Graser, C. Iniotakis, and N. Schopohl, Phys. Rev. B2g 1 grandt, Rep. Prog. PhyS8, 1465(1995.
66, 144515(2002).

134524-8



