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Topological defect densities in type-I superconducting phase transitions
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We examine the consequences of a cubic term added to the mean-field potential of Ginzburg-Landau theory
to describe first-order superconducting phase transitions. Constraints on its existence are obtained from experi-
ment, which are used to assess its impact on topological defect creation. We find no fundamental changes in
either the Kibble-Zurek or Hindmarsh-Rajantie predictions.
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I. INTRODUCTION

It is generally believed that the Universe, evolving fro
the initial Big Bang, underwent a series of symmetr
breaking phase transitions1,2 accompanied by the creation o
topological defects, frustrations of the unbroken phase wit
the broken one, induced by continuity of the order-parame
values. These defects appear as magnetic monopoles, co
strings, domain walls, and textures.

Direct experimental tests of these ideas are unfeasible
transitions described by similar equations occur in exp
mentally accessible condensed-matter systems, and a
trend has unfolded which compares these two systems.
‘‘cosmology in the laboratory’’ relies on the fact that th
dynamics of phase transitions lie in universality classes
the cosmological ones are hence analogous to those of
densed matter. For instance, vortices created in the super
phase transitions of4He and 3He have been studied exper
mentally ~see, e.g., Refs. 3 and 4 for extensive discussio!
following an earlier suggestion in which common featur
with cosmic strings have been noted.5 Similarities between
cosmological phase transitions and the isotropic-nem
phase transition in liquid crystals were studied in Refs. 6 a
7. Analogy with the thermodynamics and transitions in po
mer chains was drawn in Ref. 8.

The case of superconductors is of particular interest as
associated phase transition involves a local gauge symm
breaking process. In superconductors, cosmic strings m
fest themselves as flux tubes or vortices. Two experime
aimed at observing defect densities in superconductive t
sitions have led to conflicting results.9,10 In the first, a thin
sample of YBa2Cu3O72d was laser-heated aboveTc , then
allowed to relax back to a superconducting state under
cooling power of the refrigerator; a surrounding superc
ducting quantum interference device~SQUID! loop with a
sensitivity of 20F0 /cm2 was used to detect the net flu
creation. The experiment yielded negative results at the le
of 1023 of the Kibble-Zurek~KZ! mechanism.9 Explanations
for this include an overly optimistic estimate of the vorte
antivortex difference, the lack of validity of the predictio
for a local symmetry breaking, and dissipation of the fl
structure more rapidly than experimentally detectable.
contrast, the second experiment, involving a series of;200
connected Josephson junctions under the same experim
conditions, yielded a net flux creation about twice the K
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prediction.10 The KZ mechanism is, however, accurate on
for global symmetry breaking, a situation where the geode
rule for phase angle summation is valid. A local gauge tre
ment by Hindmarsh-Rajantie~HR! ~Ref. 11! identifies a new
mechanism for defect generation, which leads to a predic
for the first experiment well below the measurement sen
tivity, although the prediction for the second experiment is
reasonable agreement with observation.

The above experiments were both conducted in typ
materials, which exhibit a second-order phase transition.
question naturally arises as to the extent of changes in
defect density predictions for type-I superconductors. Thi
the motivation for our work.

Distinction between type-I and type-II superconductors
traditionally made through the Ginzburg-Landau~GL! pa-
rameterk5l/j, the ratio between the magnetic-field pe
etration length,l, and the order-parameter~scalar field! co-
herence length,j. These characteristic length scales a
obtained, in the presence of a gauge fieldAW , from the free
energy density

F~F!5
1

2me
U i\¹W F2

e

c
AW FU2

1V~F!1
1

2
mW •~¹W 3AW !,

~1!

wheremW is the magnetic moment of the specimen,me is the
electron mass, andF is the order parameter. The GL pote
tial is usually written as5

V~F!5aF21
b

2
F4, ~2!

wherea is assumed to depend linearly on the temperatu
a5a8(t21), t[T/Tc , a8 and b are constants, andTc is
the critical temperature. Thus one obtains

l5Amec
2

4pe2

b

uau
~3!

and

j5
\

A2meuau
. ~4!
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At T50 the coherence length is given byj05\/A2mea8,
with k;Ab. For k.1/A2, the transition is second orde
and j0 is typically less than;0.04mm; for k,1/A2, the
transition is first-order, withj0 typically greater than
;0.08mm. In general, both are second order forH50.
First-order transitions arise from the external field term
Eq. ~1! in the event that a characteristic sample dimensio
greater thanl.

In thermal field theory~TFT! a first-order phase transitio
arises from consideration of one-loop radiative correction
a potential of the form of Eq.~2!, which introduce a barrier
between minima through a cubic scalar field term, as

V~F!5aF22guFu31
b

2
F4, ~5!

whereg(T)5(A2/4p)e3T.12 As in the previous case,b is
constant anda5a8(t21) is linear with temperature.

A similar 2guFu3 term, however, arises in consideratio
of gauge-field fluctuations in the normal-to-superconduc
phase transition,13,14 with

g58m0

e

\c
Apm0Tc , ~6!

resulting in a first-order phase transition for all values ofk.
Crossovers between first- and second-order transitions
in considerations of thermal fluctuations,14 as also in nonlo-
cal BCS treatments.15

With this is mind, we adopt a potential of the form of E
~5! and explore constraints ong(T) from experiment. The
results are compared with TFT one-loop radiative corr
tions. Comparison with the results of Ref. 13, whi
deals with temperatures close toTc , is attained in the limit
t→1.

These results are then used to analyze the impact of
cubic term on the KZ and the HR predictions for type-I s
perconductors, namely, on the models themselves and
possible nucleation suppression due to the slowing dow
the transition induced by the potential barrier.

II. TEMPERATURE SENSITIVITY BOUND

A first-order superconducting phase transition manife
supercritical fields under variation of the temperature,
shown in Fig. 1. The superheating curve is given by
condition dV/dF5d2V/dF250, for a certain value ofF
Þ0. This yeldsa59g2/16b.

In contrast, the supercooling curve is given by the con
tion d2V(F)/dF250 for F50, corresponding toa50.
The unobservable critical curve is given by the conditi
V(0)5V(Fc) anddV(Fc)/dF50, whereFc is the nonva-
nishing minimum of the potential. This corresponds toa
5g2/2b.

Introducing the linear dependenciesa5a8(t21) and
g(t)5dt, we obtain for the superheating curve

a8~ t21!5
9

16

d2

b
t2, ~7!
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tsh5
2

11A12
9

4

d2

a8b

;11
9

16

d2

a8b
. ~8!

The superheating curve converges to a zero-field shif
temperature fromTc by (9d2/16a8b)Tc . This shift is unde-
tected at the current experimental temperature sensitivity
Dtexp;1023.16 Therefore, a bound for the slope ofg is

9

16

d2

a8b
,Dtexp. ~9!

The supercooling transition occurs att51, the critical tem-
perature, since it is determined solely bya50 ~this neglects
a small correction toa, as given by Ref. 13!.

III. SUPERHEATING PERTURBATION BOUND

Measurements of the supercritical fields have commo
been performed on microspheres of type-I materials a
means of determiningk. Table I indicates the critical prop
erties of, Sn and Al. The existence of a cubic term sho
also be manifest in the presence of a magnetic field. To
sess its influence, we repeat Ref. 23 calculations, includ
the cubic term in the potential. For a small superconduct
sphere of radiusa, the magnetic moment is given by23

m

V
523F12

3l

aF0
coth

aF0

l
1

3l2

a2F0
2G H

8p
, ~10!

whereF0[F/F` andF`
2 [mec

2/4pe2l2.
After a somewhat lengthy computation~see Appendix!,

the reduced superheating field,hsh[Hsh /Hc , is given by

FIG. 1. Characteristic potential curves.

TABLE I. Critical properties of Sn and Al.

Material Tc(K) Hc(0)(G) j0 (mm) l (nm)

Sn 3.7 309 0.23 34
Al 1.2 105 1.6 16
1-2



nd

w
o-
a

e
ng
rg

f a
th

t
te

r

a-
pl

g
F
te

-
m

ca-
g

etic

en-
e

di-

by
ach
-
bly

ga-

it

re-

a-
eld
ite-
ics

ann

TOPOLOGICAL DEFECT DENSITIES IN TYPE-I . . . PHYSICAL REVIEW B 67, 134511 ~2003!
hsh5S 11
4

A4 15
gGD hsh

0 , ~11!

where gG[3g/2Auaub is a dimensionless parameter, a
hsh

0 is the ‘‘unperturbed’’ (g50) superheating field.
Generally, such measurements have been obtained

colloids, and the size distributions of the micr
spheres17,18,20–22provide a statistical error which renders
direct fit of gG from hsh(t) data unfeasible. Although th
measurement reported in Ref. 19 was conducted using si
microspheres, non-local and impurity effects lead to a la
theoretical uncertainty in

hsh
0 ~ t !5

1

AkA2
hc

0~0!~12t2!, ~12!

where hc
0(0)5Hc(0)/Hc(t), which is itself an approxima-

tion valid only close toTc .24

Since the supercooling field implies the evaluation o
second derivative at the origin, it can be easily seen that
presence of a cubic term has no effect:

d2

dF2 ~gGF3!56gGF→0. ~13!

The effect ofg ~throughgG) on the superheating field mus
be small, otherwise it would have been already detec
therefore, we must havegG!1, which is not valid for rela-
tive temperatures in the range

12
9

4

d2

a8b
,t,1. ~14!

For this interval to be vanishingly small,

9

4

d2

a8b
!1. ~15!

This is a weaker bound than the one of Eq.~9!.
For Al and Sn with maximum critical fields of orde

102 G, the shift betweenhsh and hsh
0 is less than 1022 G,

well below the sensitivity of measurements.17–22For this rea-
son, we simply drop the bound of Eq.~15! and consider only
the one of Eq.~9!. Conversely, a breakdown of the perturb
tion expansion of the superheating reduced field would im
a superheating temperature shifted totsh51.6. Also notice
that no ‘‘spikes’’ should be seen in theH-T superheating
curve for values oft in the ‘‘exclusion’’ interval as the field
values are quite small there.

Table II provides a comparison of the bounds ond with
the prediction of Ref. 13. The analogy between cosmolo
and condensed matter prompts for comparison with the T
cubic term also. To do this, we compute the associa
slope of g(t) from g(T)5(A2/4p)e3T, obtaining d
5(A2/4p)e3Tc . Obviously, although the prediction is ma
terial independent, its formulation in terms of a reduced te
perature is not.
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Note that the dimensionality ofg here is changed with
respect to the free-energy potential of Eq.~5!, through a con-
venientme factor—this is because the dimension of the s
lar field in GL theory is@F2#5L23, its square representin
a density, while in field theory@F#5L21. The electron mass
determines the conversion as it is absent from the kin
term of the Lagrangean density of field theory,]mF]mF,
while present in the corresponding condensed-matter free
ergy term, (\2/2me)¹

2F ~or, equivalently, in the coherenc
length:jFT

2 51/a8 versusjcm
2 5\2/2mea8).

Table II also includes the quantitiesa8 andb, both in SI
and natural units. As explained above, conversion is not
rect, but achieved through the multiplicative factorme .

The results in Table II include the cubic term predicted
Ref. 13. In the absence of an applied magnetic field, e
momentum fluctuation of the gauge fieldAW has an expecta
tion value given by the equipartition theorem. When suita
integrated over the momentum space~with a cutoffL of the
order ofj0

21),

^A2&F54
m0

p
LTc28m0

e

\c
Apm0TcuFu. ~16!

Since A2 couples toF2 in Eq. ~1!, this translates into an
unimportant correction to the scalar field mass, plus a ne
tive cubic term, given by28m0(e/\c)Apm0TcuFu3. This
term implies a shift in the superheating temperature~at zero
field!, of

DT57.25310212Tc
3Hc~0!2j0

6 , ~17!

with Hc(0) in G andj0 in mm.
This shift lies beyond experimental accessibility, since

requires a temperature sensitivity of 1026 K ~for Al; 1029 K
for Sn!. However, such an experimentmight be performed
with Al, using state-of-the-art relative temperature measu
ment techniques.

Surprisingly, for both materials the slopes ofg predicted
by TFT and Ref. 13 have similar magnitudes,;1027 eV.
This is an indication of the analogous underlying mech
nisms behind them: the thermal averaging of the gauge fi
in condensed matter can be thought of as equivalent to fin
temperature vacuum polarization in high-energy phys
~expressed by the renormalization of one-loop Feynm
diagrams!.

TABLE II. Derived quantities and bounds ford.

Material Sn Al

a8 (J) 1.15310225 2.38310227

b (J m3) 4.72310254 2.16310256

a8 (eV2) 3.6131021 7.4531023

b 9.4531024 4.3231026

Bound tsh shift d (eV) tsh shift d (eV)
hsh 0.25 1.2331022 0.25 1.2031024

DTexp 1023 7.7831024 1023 7.5731026

Ref. 13 5.1931029 1.7731026 2.3231026 3.6431027

TFT 2.9231029 1.3331026 3.2431026 4.3131027
1-3
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IV. TOPOLOGICAL DEFECT FORMATION

Let us now discuss some possible implications of the
clusion of the cubic term in the mean-field potential. Sin
temperature sensitivity measurements constraingG,1022,
we always assumeg2!ab.

The K-Z mechanism predicts a density of topological d
fects ~vortices!, n.j0

22(t0 /tq)n, wheret05p\/16kBTc is
the characteristic time scale, given by the Gorkov equat
tq is the quench time, andn is a critical exponent. Moreover
it rests upon the assumption that there is a single topolog
defect perj0

2 area and, therefore, one must look for chang
induced in this quantity. However, since the characteri
scales of the problem are obtained via linearization of the
equations, close toTc and when the order parameter is sma
we seeno changes in this prediction.

On the other hand, for a thin slab of of widthLz , the HR
mechanism predicts a defect density of the ordern

.(e/2p)T1/2Lz
21/2ĵ21, where ĵ;2p/ k̂ is the domain size

immediately after the transition. This quantity is related
the highest wave numberk̂ to fall out of equilibrium and is
obtained from the adiabaticity relation

Udv~k!

dt U5v2~k!, ~18!

for a given dispersion relationv(k). In the underdamped
case,v(k)5Ak21mg

2, with a photon mass given bymg
2

52e2uFu2522e2a/b. Thus we obtain k̂;A3 a8e2/btq ,
and hencen}tq

21/3. Here, the introduction of a cubic term i
the potential will change the photon mass, as the t
vacuum shifts to

F5
23g1A216ab19g2

4b
. ~19!

However, sincegG[3g/2Auaub!1, the effect of the cubic
term is too small to significantly change the HR result.

Another effect related to metastability concerns the n
vanishing probability of the order parameter to quantum t
nel from the the symmetric~false! vacuum towards the non
symmetric vacuum. Following Refs. 25 and 26, the rate
transition per unit volume and time to the true vacua
given, in the thin wall approximation, by

G

VDt
5T4S S3

2pTD 3/2

e2S3 /T, ~20!

where

S3~T!5
2p

81

1

b7Ab

g9~T!

e2~T!
~21!

is the Euclidean action, ande(T) is the ‘‘depth’’ of the true
vacuum.

The thin wall approximation is valid whenever the bar
er’s height is much greater thane. This is true wheng is
comparable to the other parameters, namely, whengG;1.
For eventually smaller values ofg, like those predicted by
13451
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TFT and Ref. 13, the approximation fails. In fact, we ha
shown that the current temperature sensitivity of 1023 K
only allows values ofgG smaller than 1022. Therefore, we
must conclude that the barrier’s height is not comparable
the true vacuum’s depth, and the field should always tun
through it~i.e., with a probability close to unity!. Because of
this, there is no concern that defects may not have time
nucleate within the resolution time of the measuring devi
as would happen if the potential barrier were high and
minished too slowly.

V. CONCLUSIONS

In this work we have examined a possible description o
type-I superconducting phase transition by introducing a
bic term in the GL mean-field potential, inspired by a gau
field thermal averaging,13 and also by analogy with TFT.

Our analysis of the bounds derived from the superhea
field and temperature constraints clearly shows that the c
tribution of any cubic term is small compared to other p
rameters in the GL potential. Thus the following conclusio
can be drawn: First, the superheating temperature shift
duced by a cubic term, derived either from Ref. 13 or fro
TFT, increases with decreasing G-L parameterk @Dtsh(Sn)
;1029; Dtsh(Al) ;1026]. This suggests that future exper
ments to search for a TFT cubic term should be conduc
with extreme (k!1) type-I materials, for example
a-tungsten, with Tc515.460.5 mK, Hc51.1560.03 G.
Similarly, the shift in the supercritical field might be reinve
tigated using a dc SQUID, which currently possess a se
tivity of 1025f0 /AHz, or 1026 G over a 10mm grain diam-
eter.

Furthermore, the impact of any cubic term on the def
density predictions of KZ~Refs. 1 and 5 or HR~Ref. 11! is
negligible, with no suppression or slowing down of defe
production because the potential barrier due tog is not suf-
ficient to prevent nucleation.

These considerations suggest that, all else being eq
experiments to detect topological defect formation in typ
superconductors would observe a reduction of the predic
HR defect densities by 10–100 depending on choice of m
terial. Recent calculations.27 however, suggest that the defe
structure formed in type-I materials survives significan
longer than in type-II. Given that the type-I estimate is
order 1024 s, it seems possible that the disadvantage inj
might be compensated by simple measurability.
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APPENDIX

Including the presence of a magnetic field with aF de-
pendent magnetic moment, the conditions for the redu
superheating fieldhsh[Hsh /Hc are

~i! minimum

hsh
2 5

8

9FF0
2 ~11gGF02F0

2!sinh2~x0!

11
sinh~2x0!

2x0
2

2 sinh2~x0!

x0
2

G ,

~ii ! inflexion point

hsh
2 5

4

9 F F0
2 ~112gGF023F0

2!x0
2sinh2~x0!

3 sinh2~x0!2x0
3coth~x0!2x0

22
1

2
x0sinh~2x0!G ,

wherex0[F0a/l.
Since the diametera is much larger than the penetratio

depthl, we can take the limitx0→`. The above conditions
become

hsh
2 5

8

9
F0

3 ~11gGF02F0
2!

a

l

and

hsh
2 5

4

9
F0

3~112gGF023F0
2!

a

l
.
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2 5

8

9 SA3
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1
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