PHYSICAL REVIEW B 67, 134511 (2003

Topological defect densities in type-I superconducting phase transitions
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We examine the consequences of a cubic term added to the mean-field potential of Ginzburg-Landau theory
to describe first-order superconducting phase transitions. Constraints on its existence are obtained from experi-
ment, which are used to assess its impact on topological defect creation. We find no fundamental changes in
either the Kibble-Zurek or Hindmarsh-Rajantie predictions.
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I. INTRODUCTION prediction.lo The KZ mechanism is, however, accurate only
for global symmetry breaking, a situation where the geodesic
It is generally believed that the Universe, evolving from rule for phase angle summation is valid. A local gauge treat-
the initial Big Bang, underwent a series of symmetry-ment by Hindmarsh-Rajanti¢iR) (Ref. 11 identifies a new
breaking phase transitiohdaccompanied by the creation of mechanism for defect generation, which leads to a prediction
topological defects, frustrations of the unbroken phase withifor the first experiment well below the measurement sensi-
the broken one, induced by continuity of the order-parametefivity, although the prediction for the second experiment is in
values. These defects appear as magnetic monopoles, cosrf@sonable agreement with observation.
strings, domain walls, and textures. The above experiments were both conducted in type-ll
Direct experimenta| tests of these ideas are unfeasible, b@ﬁateria's, which exhibit a second-order phase transition. The
transitions described by similar equations occur in experiguestion naturally arises as to the extent of changes in the
mentally accessible condensed-matter systems, and a nélgfect density predictions for type-I superconductors. This is
trend has unfolded which compares these two systems. Tht§e motivation for our work.
“cosmology in the laboratory” relies on the fact that the  Distinction between type-l and type-Il superconductors is
dynamics of phase transitions lie in universality classes anéfaditionally made through the Ginzburg-Landé@L) pa-
the cosmological ones are hence analogous to those of cofameterx=»\/¢, the ratio between the magnetic-field pen-
densed matter. For instance, vortices created in the superflugiration length)\, and the order-parametéscalar field co-
phase transitions ofHe and®He have been studied experi- herence length¢. These characteristic length scales are
mentally (see, e.g., Refs. 3 and 4 for extensive discusgionsobtained, in the presence of a gauge fiéldfrom the free
following an earlier suggestion in which common featuresenergy density
with cosmic strings have been noté&imilarities between
cosmological phase transitions and the isotropic-nematic . e. 1. . .
phase transition in liquid crystals were studied in Refs. 6 and F(®)= 5 iAVO—-AD| +V(D)+-u-(VXA),
) : o ; Mg c 2
7. Analogy with the thermodynamics and transitions in poly- 1)
mer chains was drawn in Ref. 8.

as306iated phase tranaiion involves & 106al gage symmerryere/ i the magnetic moment of the specimen, s the

. . : Ylectron mass, an® is the order parameter. The GL poten-
breaking process. In superconductors, cosmic strings man= s usually written a%

fest themselves as flux tubes or vortices. Two experiments Y
aimed at observing defect densities in superconductive tran-

sitions have led to conflicting resuftg In the first, a thin V(D)= ad?+ '[_3(1)4, @
sample of YBaCu;O;_s was laser-heated abovEe., then 2

allowed to relax back to a superconducting state under the . .

cooling power of the refrigerator; a surrounding superconWherea is assumed to depend linearly on the temperature,
ducting quantum interference devi¢BQUID) loop with a ~@=a'(t—1), t=T/T., a' and g are constants, and is
sensitivity of 20d,/cn? was used to detect the net flux the critical temperature. Thus one obtains

creation. The experiment yielded negative results at the level

of 10~ 2 of the Kibble-Zurek(KZ) mechanisni.Explanations m.c? B

for this include an overly optimistic estimate of the vortex- A= 4762 [af &)
antivortex difference, the lack of validity of the prediction

for a local symmetry breaking, and dissipation of the fluxgnd

structure more rapidly than experimentally detectable. In

contrast, the second experiment, involving a series 200 5

connected Josephson junctions under the same experimental = — %)

2

conditions, yielded a net flux creation about twice the KZ V2mgla|
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At T=0 the coherence length is given gy=#/\2mea’, | V(o) &t
with k~ /8. For k>1/,2, the transition is second order, P s
and &, is typically less than~0.04 um; for k<1/y2, the \ /
transition is first-order, with¢&, typically greater than |

~0.08 um. In general, both are second order fd=0. Critical

First-order transitions arise from the external field term in

Eqg. (1) in the event that a characteristic sample dimension is \ /_\ //
greater than. '“ /0 / P
In thermal field theory{TFT) a first-order phase transition / A Supem’m“ng

arises from consideration of one-loop radiative corrections to
a potential of the form of Eq(2), which introduce a barrier p, \ ‘/
between minima through a cubic scalar field term, as g -

B FIG. 1. Characteristic potential curves.

V(D)= ad?— y|D|>+ = D4, (5)

2 and hence
where y(T) = (12/47)e®T.*? As in the previous cases is )
constant andv=«a'(t—1) is linear with temperature. to— 2 14 3 i )

A similar — y|®|3 term, however, arises in considerations sh [ 9 &2 16 a’ﬂ.

of gauge-field fluctuations in the normal-to-superconductor 1+ 1———
phase transitioh>* with 4 4

e The superheating curve converges to a zero-field shift in
Y=8pozNThoTe, (6)  temperature fronT, by (95%16a’ 8)T.. This shift is unde-
tected at the current experimental temperature sensitivity of
resulting in a first-order phase transition for all valuescof =~ Atg,,~ 10 3.2 Therefore, a bound for the slope gfis
Crossovers between first- and second-order transitions arise
in considerations of thermal fluctuatiotfsas also in nonlo- 9 &
cal BCS treatments. 16 7S
With this is mind, we adopt a potential of the form of Eq. a'p

(5) and explore constralnts op(T) from experl_me_nt. The The supercooling transition occurstat 1, the critical tem-
results are compared with TFT one-loop radiative correc-

tions. Comparison with the results of Ref. 13, which perature, since_it is determiped solely &y 0 (this neglects
deals with temperatures close TQ, is attained in the limit a small correction tar, as given by Ref. 16
t—1.

These results are then used to analyze the impact of the  !ll. SUPERHEATING PERTURBATION BOUND
cubic term on the KZ and the HR predictions for type-I su-
perconductors, namely, on the models themselves and onie

Ateyp- 9

Measurements of the supercritical fields have commonly
en performed on microspheres of type-l materials as a
eans of determining. Table | indicates the critical prop-
erties of, Sn and Al. The existence of a cubic term should
also be manifest in the presence of a magnetic field. To as-
Il. TEMPERATURE SENSITIVITY BOUND sess its influence, we repeat Ref. 23 calculations, including
éhe cubic term in the potential. For a small superconducting
§phere of radius, the magnetic moment is given By

possible nucleation suppression due to the slowing down o
the transition induced by the potential barrier.

A first-order superconducting phase transition manifest
supercritical fields under variation of the temperature, a
shown in Fig. 1. The superheating curve is given by the
condition dV/d® =d?v/d®?=0, for a certain value ofp L
#0. This yeldsa=9vy?/16p. \

In contrast, the supercooling curve is given by the condi-
tion d2V(d)/dd2=0 for d=0, corresponding tax=0. Where®o=®/d,, and®Z=m.c?/4me’\>.

The unobservable critical curve is given by the condition After a somewhat lengthy computatidsee Appendix
V(0)=V(®,.) anddV(P.)/dd =0, whered, is the nonva- the reduced superheating fiel,,=Hs,/H., is given by
nishing minimum of the potential. This corresponds do

3\?
a’d2|87’

3\ ad,
1- coth N + (10

ad,

= 72/23_ TABLE |. Critical properties of Sn and Al.
Introducing the linear dependencies=a’'(t—1) and :
¥(t)= 6t, we obtain for the superheating curve Material ~ Tc(K) Hc(0)(G) &o (pm) A (nm)
9 &2 Sn 3.7 309 0.23 34
Tt A\ 12 Al 1.2 105 1.6 16
a'(t—1) 16Bt, (7)
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4 TABLE Il. Derived quantities and bounds fa.
hen=| 1+ =5 | h%, (12)

: ( 415 G) o Material Sn Al
where yo=3y/2[a|B is a dimensionless parameter, anda’ (J) 1.15<10 ® 2.38x10°%'
hd, is the “unperturbed” ¢/=0) superheating field. B (In) 4.72¢107% 2.16x10°%°

Generally, such measurements have been obtained with' (eV?) 3.61x10°* 7.45<10°3
colloids, and the size distributions of the micro- 8 9.45x10* 4.32x10°°©
sphere¥ 1820-22provide a statistical error which renders a Bound tp, shift 5 (eV) tg, shift 5 (eV)
direct fit of yg from hg,(t) data unfeasible. Although the hy, 0.25 1.2%10°? 0.25 1.20¢10°4
measurement reported in Ref. 19 was conducted using singleT,, 1073 7.78<10°4 1073 7.57x10°¢
microspheres, non-local and impurity effects lead to a largeRef. 13  5.1%10°° 1.77x10°% 2.32x10°® 3.64x10°7
theoretical uncertainty in TFT 2.92<10°° 1.33x10°® 3.24x10°® 4.31x10°7

hdy(t) = h2(0)(1—t?), (12) Note that the dimensionality of here is changed with
V2 respect to the free-energy potential of E8), through a con-

0 . ) venientm, factor—this is because the dimension of the sca-
where hc(0)=Hc(0)/Hc(t)2,4Wh'Ch is itself an approxima- |4y field in GL theory is{®2]=L "3, its square representing
tion valid only close tol.=* . a density, while in field theoryd®]=L 1. The electron mass

Since the supercooling field implies the evaluation of agetermines the conversion as it is absent from the kinetic
second derivative at the origin, it can be easily seen that thgyrm of the Lagrangean density of field theoty,® 9*®,

presence of a cubic term has no effect: while present in the corresponding condensed-matter free en-
) ergy term, (2/2m,) V2® (or, equivalently, in the coherence
(76D =6yeD—0. (13  length: &r=1/a’ versuség,=h?/2mea’).
do Table Il also includes the quantities and B, both in SI

and natural units. As explained above, conversion is not di-
J_ect, but achieved through the multiplicative factog.

* The results in Table Il include the cubic term predicted by
Ref. 13. In the absence of an applied magnetic field, each

momentum fluctuation of the gauge fieldhas an expecta-

The effect ofy (throughyg) on the superheating field must
be small, otherwise it would have been already detecte
therefore, we must haveg<<1, which is not valid for rela-
tive temperatures in the range

9 &2 tion value given by the equipartition theorem. When suitably
1- - — <t<1. (14)  integrated over the momentum spdeeth a cutoff A of the
4a'p order of &, ),
For this interval to be vanishingly small, o e
(A% =4 AT=BuorvmuoTcl®l.  (16)
9 &2 v Cc
7.5t (15  Since A% couples to®? in Eq. (1), this translates into an
a'p unimportant correction to the scalar field mass, plus a nega-
This is a weaker bound than the one of [9). tive cubic term, given by-8pug(e/fic)\muT|®[%. This

For Al and Sn with maximum critical fields of order term implies a shift in the superheating temperat@atezero
1% G, the shift betweers, and h?, is I?‘?széthan 102 G, field), of
well below the sensitivity of measurements=“For this rea- _ 1223 2.6
son, we simply drop the bound of E@.5) and consider only A7=7.25¢10"TcHA(0)*s. (7
the one of Eq(9). Conversely, a breakdown of the perturba- with H.(0) in G andé&, in um.
tion expansion of the superheating reduced field would imply  This shift lies beyond experimental accessibility, since it
a superheating temperature shiftedt{g=1.6. Also notice requires a temperature sensitivity of TOK (for Al; 10~ ° K
that no “spikes” should be seen in thd-T superheating for Sn). However, such an experimentight be performed
curve for values of in the “exclusion” interval as the field with Al, using state-of-the-art relative temperature measure-
values are quite small there. ment techniques.

Table Il provides a comparison of the bounds ®mith Surprisingly, for both materials the slopes pfpredicted
the prediction of Ref. 13. The analogy between cosmologyy TFT and Ref. 13 have similar magnitudes10 7 eV.
and condensed matter prompts for comparison with the TFThis is an indication of the analogous underlying mecha-
cubic term also. To do this, we compute the associateghisms behind them: the thermal averaging of the gauge field
slope of y(t) from (T)=(\2/4w)e®T, obtaining § in condensed matter can be thought of as equivalent to finite-
=(\/2/4m)e®T... Obviously, although the prediction is ma- temperature vacuum polarization in high-energy physics
terial independent, its formulation in terms of a reduced tem{expressed by the renormalization of one-loop Feynmann
perature is not. diagrams.
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IV. TOPOLOGICAL DEFECT FORMATION TFT and Ref. 13, the approximation fails. In fact, we have

. S .shown that the current temperature sensitivity of 1&
Let us now discuss some possible implications of the in- 5
. . . , , -~ only allows values ofyg smaller than 10°. Therefore, we
clusion of the cubic term in the mean-field potential. Since - L
must conclude that the barrier’s height is not comparable to

ﬁ?g&gtirzsﬁﬁ'tgy /r;easurements constrair-10°7, the true vacuum’s depth, and the field should always tunnel
Y g =ap. through it(i.e., with a probability close to unijy Because of

The K-Z mechanism predicts a density of topological de-,, . . .
. = . this, there is n ncern that defects may not have time t
fects (vorticeg, n=¢, 2(7'0/7'q)”, where 7= A/ 16kgT, IS S, there Is o conce at defects may not have time to

he ch e o ai bv the Gork .__nucleate within the resolution time of the measuring device,
t ec aracterlstlc.tlme scale, given y the Gorkov equation,g 6 g happen if the potential barrier were high and di-
74 is the quench time, andis a critical exponent. Moreover,

. : ) . . rpinished too slowly.
it rests upon the assumption that there is a single topologica
defect pergg area and, therefore, one must look for changes

induced in this quantity. However, since the characteristic V. CONCLUSIONS

scales of the problem are obtained via linearization of the GL _ _ _ o
equations, close t@, and when the order parameter is small, In this work we have examined a possible description of a
we seeno changes in this prediction. type-l superconducting phase transition by introducing a cu-

On the other hand, for a thin slab of of width, the HR  bic term in the GL mean-field potential, inspired by a gauge
mechanism predicts a defect density of the order field thermal averaging} and also by analogy with TFT.
:(e/ZW)Tl/ZL—UZE—l where ~2#/k is the domain size Our analysis of the bounds derived from the superheating

z , , :
immediately after the transition. This quantity is related tof|eld and temperature constraints clearly shows that the con-

he hiah bé to fall f fibri qi tribution of any cubic term is small compared to other pa-
the highest wave numberto fall out of equilibrium and is 5 meters in the GL potential. Thus the following conclusions
obtained from the adiabaticity relation

can be drawn: First, the superheating temperature shift in-

do(k) duced by a cubic term, derived either from Ref. 13 or from
=w?(k), (18)  TFT, increases with decreasing G-L parameterAtg,(Sn)
dt ~10"%; Atg,(Al) ~10 ). This suggests that future experi-

for a given dispersion relatiom(k). In the underdamped ments to search for a TFT cubic term should be conducted

case,w(k)z\/mz, with a photon mass given bmi with extreme <1) type-l materials, for example

oDl o2 o 3 a-tungsten, with T.=15.4+0.5 mK, H,=1.15+0.03 G.
=2e7|®[*= %‘3/30‘/3- Thus_we Obt?"”k va e_/,qu, _ Similarly, the shift in the supercritical field might be reinves-
and hence« Tq - Here, the introduction of a cubic term in

tigated using a dc SQUID, which currently possess a sensi-

the potential will change the photon mass, as the ”“‘?ivity of 10 5¢//Hz, or 10°® G over a 10xm grain diam-
vacuum shifts to 0 '

eter.
3+~ 16aBT 972 Furthermore, the impact of any cubic term on the defect
_ —3y*tV=16ap+9y density predictions of KZRefs. 1 and 5 or HRRef. 1]) is
. (19 ) ) . :
4B negligible, with no suppression or slowing down of defect

production because the potential barrier dueytis not suf-
ficient to prevent nucleation.

These considerations suggest that, all else being equal,
experiments to detect topological defect formation in type-I
‘superconductors would observe a reduction of the predicted

R defect densities by 10-100 depending on choice of ma-
erial. Recent calculatiorfé.however, suggest that the defect
structure formed in type-I materials survives significantly
longer than in type-Il. Given that the type-l estimate is of
T S, |32 order 104 s, it seems possible that the disadvantage in
VAL 4(%) e /T (20 might be compensated by simple measurability.

However, sinceyg=37v/2|a|B<1, the effect of the cubic
term is too small to significantly change the HR result.

Another effect related to metastability concerns the non
vanishing probability of the order parameter to quantum tun
nel from the the symmetriffalse vacuum towards the non-
symmetric vacuum. Following Refs. 25 and 26, the rate o
transition per unit volume and time to the true vacua is
given, in the thin wall approximation, by

where
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APPENDIX Solving for &, we get

Including the presence of a magnetic field witibade-
pendent magnetic moment, the conditions for the reduced
superheating fieldhs,=Hg,/H are

2(1+ yg®o— P3)=—(1+2y5Do—3P2),

which implies that

(i) minimum
8| D2 (1+ yg®y— D2)sinki(x 3 4 2 3 2
hzh:_ 0 (_ Yc®o 0)_ (Xo) ! Dy= §+2_57é+§762 §+§76_
sh™9 1. sinh(2xg) 2 sinkf(Xg)
- 2
2Xo %o Substituting in the first expression, we obtain
(i) inflexion point 3
o 4] ®F (14 2960307 xEsintf(xo) n=g| V5T57] | 17| V5T57%e
sh™ g )
1
3 sinf?(xg) — X3coth(Xo) — X3 — = XoSinh 2X) 3 2 \%a
2 - —+ = —
5 576 N’

wherex,=®a/\.
Since the diametea is much larger than the penetration which, to first-order inyg, becomes
depth\, we can take the limik,—o. The above conditions

become 4 4 4 [
L PN
8 a 5415 /15 A
hghzgq)g (1+ qu)o_q)g)x V15 V15
giving the result Eq(11), with
and
4 a 0 4 4\F
2 _7x3 Y v N e = /=,
hsh—g(Do(l-l—Zqu)o 3(1)0))\ . sh 5% N
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