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Quantum superpositions of clockwise and counterclockwise supercurrent states in the dynamics
of an rf-SQUID exposed to a quantized electromagnetic field
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The dynamical behavior of a superconducting quantum interference dewicé-SQUID irradiated by a
single-mode quantized electromagnetic field is theoretically investigated. Treating the SQUID as a flux qubit,
we analyze the dynamics of the combined system within the low-lying energy Hilbert subspace both in the
asymmetric and in the symmetric SQUID potential configurations. We show that the temporal evolution of the
system is dominated by an oscillatory behavior characterized by more than one, generally speaking, incom-
mensurable Rabi frequencies whose expressions are explicitly given. We find that the external parameters may
be fixed in such a way to realize a control on the dynamical replay of the total system which, for instance, may
be forced to exhibit a periodic evolution accompanied by the occurrence of an oscillatory disappearance of
entanglement between the two subsystems. We demonstrate the possibility of generating quantum maximally
entangled superpositions of the two macroscopically distinguishable states describing clockwise and counter-
clockwise supercurrents in the loop. The experimental feasibility of our proposal is briefly discussed.
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[. INTRODUCTION rithms critically depends on the ability to entangle quantum
states of qubits. The optimum would be the realization of a
It is of great interest to understand and study the physictunable coupling bus. Several coupling mechanisms are pos-
of Josephson junction-based devices both for testing fundssible but the natural way of coupling two or more supercon-
mental properties of quantum mechanics, such as the supefucting qubits is through an intermediatesonant LC cir-
position principle or the occurrence of entangled statsd  cuit, playing the role of a data bid&!® Such a resonaritC
for technological applications in context of quantum infor- circuit, describable as a quantum harmonic oscillator, may
mation theory and quantum computifig. be, in principle, replaced by the electromagnetic single-mode
In the last decade, rapid developments in the realm obf a highQ cavity or by a large-area current biased Joseph-
nanotechnologies have made it possible to perform a numbeion junction. In all these cases, the situation is similar to
of interesting and sophisticated experiments at lowcavity QED(Ref. 16 (where cavity and atoms play the roles
temperaturé,bringing to light the existence in theaeomlike  of the LC circuit and qubits, respectivelyand to ion-trap
circuits of many macroscopic quantum phenomena such gsoposals-’
energy-level quantizatiochmacroscopic quantum tunneling, It is then evidently of interest to study the interaction
and quantum superposition of statésMore recently, the between a two-level solid-state system, such as an rf-SQUID,
usefulness of investigating these solid-state devices in thand an external quantum system-like another qubit, a tank
context of quantum communication and information theorycircuit or a monochromatic radiation source®=2*The aim
has been fully recognized. of such investigations is to bring to light the occurrence of
Superconducting Josephson devices may, in fact, bentangled states and to construct coupling schemes by which
thought of as two-state systems realizing the elementary unthe coherent dynamics of the system may be controlled
of quantum information, known as quantum bit or qubit. and/or manipulated1?-1425-27
Moreover, Josephson devices can be scaled up to a large In this paper, our main scope is to study the dynamics of
number of qubits and their dynamics may be controlled bya flux qubit(an rf-SQUID coupled to a single-mode quan-
externally applied voltages and magnetic fluxes. Supercortized electromagnetic field of a resonant cavity. Confining
ducting devices such as Cooper pair boxes, Josephson junaurselves to the low-lying energy Hilbert space, we prove
tions (JJ'9, or super conducting quantum interference de-that the time evolution of the combined system is character-
vices (SQUID’s) have been thus proposed and used as basized by the occurrence of entanglement that may be con-
elements for the practical realization of quantum gates anttolled in terms of the strength of the coupling and the circuit
chips® The relevant macroscopic degree of freedom, allow-parameters. In addition, we show that the dynamics is domi-
ing to store and manipulate quantum information, may be th@ated by an oscillatory behavior traceable back to the exis-
charge on the island of a Cooper pair box or the phase diftence of a finite set of characteristic Rabi frequencies whose
ference at the junction. In the first case, the charging energgxpression may be explicitly given.
Ec overcomes the Josephson enekyy. Otherwise, in the The importance of conceiving experimental schemes for
opposite regime, the Josephson energy overcofes It realizing quantum superpositions of macroscopically distin-
has been already experimentally demonstrated that Coopguishable states has been quite recently empha&izede
pair boxes behave as two-level systems which can be cohemain result of this paper is that, appropriately acting upon
ently controlled®'2 and now great efforts are devoted to some control parameters, it is possible to guide the rf-
prove that the same can be done with flux and phas&QUID toward coherent maximally entangled combinations
qubits>®**However, successful realization of quantum algo-of two states describing clockwise and counterclockwise su-
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x nally applied dc flux, andby,=h/2e the flux quantum. The
~y L K Josephson coupling ener@y is related to the critical super-
a— currentl ¢ by Ej=1c¢o/27.
.‘t @f\ Lr Cr Taking into account both the kinetic and the potential en-
— ergy, it is then immediate to write the Hamiltonian of the
L, C system as follows:
FIG. 1. Schematics of the superconducting circuits with a flux Q? b\ (p—dy)?
qubit inductively coupled to am.C resonator modeling a single- H= 2c EJ005< 277% + oL 2
mode quantized electromagnetic field of a resonant Rigtavity.
] o where the charge on the junction capacitaQce —i%d/d¢
percurrents and then macroscopically distinguishable. and the flux¢ in the loop are canonically conjugate opera-

In Sec. Il, we describe the physical system under study. Itgyrs satisfying the commutation rufes,Q]=i#. Under the
dynamics in a reduced low-lying energy Hilbert space iscondition g, =27LIc/de>1, the rf-SQUID is hysteretic
studied in Sec. Ill where the main results of this paper argynq the potential (¢) may have one or several relative
reported. In Sec. IV, we discuss our results and we concludginima. The height of barrier between minima and the num-
with some remarks about the feasibility of an experimentyq; of minima depends on the parameger. The form of the

aimed at verifying our theory in the laboratory. potentialU(¢) instead can be tuned by changing the exter-
nal dc magnetic fluxp, applied to the loop to the case where
Il. THE QUANTUM CIRCUIT the two lowest-energy wells are degenerate. This case occurs

. ) o . ) for ¢y= ¢ol2. These two degenerate minima correspond to

In this section, we describe in detail the physical systemine clockwise and counterclockwise sense of rotation of the
namely, an rf-SQUID coupled to a monochromatic field of agypercurrent in the loop. The two relative ground states are
high-Q resonant cavity and its Hamiltonian model. In Fig. 1 |gcalized flux states, hereafter denoféd and|R). For ¢,
the electromagnetic single-mode cavity is represented as g{ exactly coincident withpo/2, U(¢) defines an asymmet-
LC resonator. _ ) - ric double-well potential neap= ¢y/2 with barrierVv, be-

In Sec. Il A, we describe the physical conditions that al-yyeen these two lowest-energy minima. At sufficiently low
low us to consider a SQUID as a two-level system, that is, agemperatures, transitions between neighboring flux states are
a flux qubit. Then we give the Hamiltonian model for the yominated by macroscopic quantum tunneling. However, for
cavity field in terms of the combined system charactenstmsfmgh barrierV,,, tunneling does not mix the two lowest-flux
and finally, in Sec. Il C, we consider the inductive coupling states with the excited states in the two wells. Thus, in the

between these two subsystems. parameter regim¥,>7%wo>kgT (% w, being the separation
of the first excited state from the ground state in both wells
A. The rf-SQUID as material two-level system the rf-SQUID effectively behaves as a two-state sySteith

reduced Hamiltonian expressible in terms of the Pauli matri-

Let us begin by describing as usthe rf-SQUID, a su- cesa, and o, as follows:

perconducting loop interrupted by a Josephson jundifag.
2(a)], as a fictitious particle of ma<s and generalized coor-

dinate ¢ (the magnetic flux in the logpsubjected to the :_f_i fi :ﬁ e —A
washboard potential Hs=— 580t 5€0.=5 -A —€)’ &
b\ (= )2 where the basis coincides with the two localized flux states
U(¢)=—EJC05<27T%)+T, (D) |L) and |R). Here he(d)=fie=21c\6(B —1)(py

— ¢ol2) is the asymmetry of the double well aidis the
where C~10"15-1013F is the junction capacitancd, tunneling frequency between t_he wells. This tunnelin_g fre-
~10-100 pH the self-inductance of the loap, an exter- dUeNCy can be tuned by changing the helghof the barrier

that depends on the Josephson coupling engrgyThen if

@ ®) we replace the junction by a hysteretic dc-SQUJBig.

2(b)], behaving as a JJ with tunable critical curresj, may

be manipulated by a separate control dc fliix. In other

words, this modified device, known as the double rf-SQUID,

behaves as a normal rf-SQUID whose Josephson erigygy
is related to the control flux ¢. by E;(¢)
=(¢po/ )| coc0g m(p.! do) ], | co being the critical current of
each of the two JJ’s of the dc-SQUID.

FIG. 2. (a8 Schematics of an rf-SQUID antb) of a double Since in our scheme we need to contigl in what fol-
rf-SQUID obtained replacing the single Josephson junction with 40ws we will investigate a double rf-SQUID with two exter-
dc-SQUID, namely, a superconducting loop interrupted by two Jonal control fluxes¢, and ¢, when it is exposed to a mono-
sephson junctions. chromatic quantized electromagnetic field.
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The Hamiltonian of the double rf-SQUID, given also in Here, the frequencywg, choosingCg~10"'2F and Lg

this case by Eq(3), can be easily cast in diagonal form

h(—m 0 )

He=3| o  J&5az (4)
in the basis formed by its eigenstates (o=+) given by

%»=c_bm+fii§E§:L% ®
and

Hﬁ=c+|m+53i§E§3L%. ©®)

HereC. = (1+[(e* Veé?+A?)/A1?) Y2 are the normalizing
factors of|—) and|+), respectively, andi \Je’+ A? is the

energy difference between their corresponding eigenvalues

E_=—(h/2)JE€+AZ andE, = (#/2) €2+ AZ.

B. The quantized electromagnetic field

~0.1 nH, belongs in the range of microwavesyg(
~10"rad s'). The eigenfunctions of Hamiltoniafil0)
are, of course, harmonic-oscillator eigenstgtes (defined
by a'a|n)=n|n)) with eigenvalue€,=fwg(n+3).

If the rf-SQUID is effectively coupled with the quantized
mode of an electromagnetic high-cavity, we may start
again from Hamiltonian(7). In order to understand the
meaning ofCg in this case, we assume that the rf-SQUID is
located perpendicularly to the magnetic field and within a
distance small as compared to the radiation wavelength. In
such conditions, the vector potentid(x) arising from the
electromagnetic field of the cavity mode is approximately
uniform throughout the region of the device and in interna-
tional units and in the Coulomb gaug® (A=0), it as-
sumes the form

1/2
(a—a') u,

(11)

A= ( 260(1)|:V

u being the unit polarization vectogg the vacuum dielectric
constant, and/ the quantization volume of the field mode.
Thus, the expression for the operathy to be inserted in Eq.

(12)

-2
(13

szeov( é Ud|
Y

depends on the field frequency, via the quantization volume
V, and on the SQUID geometry, via the line integral which is
taken across a closed circyitinside the SQUID loop. Then,
also in this case, exploiting Eq12) and the properties of
where ¢ and Qg play the roles of the magnetic flux and conjugation betweerbr and Qg, it is easy to cast Hamil-
charge operators arising from the quantized electromagnettonian (7) in the form of a standard harmonic-oscillator free
field and satisfying the commutation rUlég ,Qr]=i%. Hamiltonian(10).

As in Refs. 18 and 20, it is possible to relate the resonator
operators¢ and Qg to bosonic annihilation and creation
operatorsa anda’. Defining the flux¢r and the conjugate
operatorQg as

In this section, we model the electromagnetic field of the(7) may be written down as
resonant cavity as dnC resonator. In this way our treatment
and our results may be easily extended to the case of the h +
coupling between the flux qubit and a réal resonatd or br= jg A-dl=y/5 —= (at+a)),
a large-area current-biased Josephson junc¢fidhThis fact 7 FoF
is important because, in order to verify experimentally ourwhere the capacitive paramet€g given by the following
theoretical predictions, it is more practical to couple the qu-expression:
bit with one of these two systems rather than with the single
mode of a resonant cavity. We therefore start by considering
the Hamiltonian of arlL-Cg resonator with infinite parallel
resistance on resonance and frequetney 1/\/LCg

_QF ¥

- 2Cg 2L¢’

He (7

C. The coupled system

In view of the assumptions made in the preceding section,
the flux qubit and thé. C-resonator modeling the monochro-
matic field can be thought of as coupled together inductively

dp= 50 C (a+ah) (8) (see Fig. 1 with a contribution to the total Hamiltonian
@Wr-F given by
and
2k +
hrowrCr H|:T¢¢F:B(a+a [ —€eo,+ Aoy ]=Hrwat Hres
Qe=-i\— (a—a') 9 (14
and substituting these analytical expressions in(2g.it is with
immediate to cast the Hamiltonian of the resonator in the _ t
form of a standard harmonic-oscillator free Hamiltonian Hrwa=BA(ao +alo-), (15
! Hes=BA(a'o,. +ac_)—B(a+ah)eo,, (16)
He=fioglaat ). (10 and where the constant
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K 7 bo A. The dynamics of the system in the asymmetric case
B= L V2w:Cr Je2t A2 (17) Let us consider the time evolution of the combined rf-

SQUID-radiation system initially prepared in the state
has the same dimension 6f and depends on the coupling |0+), that is, the field in its vacuum stai®) and the
strength and the system characteristics. Here, the flux linkageQUID in the first excited state|+)=C,[|R)+ (e
factork is assumed of the order of 0.01 in accordance with— \/e?>+A?/A)|L)], which is a superposition of the localized
the current experimental valuésThus, the Hamiltonian de-  flux states|L) and|R).
scribing our weakly interacting rf-SQUID-field system can It is worth noting that the manipulation of the shape of the

be written down as potential and the height of the barrier between the two
lowest-energy wells via the control fluxes, and ¢ allows
H=Hs+tHe+H,, (18 to prepare the SQUID in a prefixed initial conditiB?® At
where Hg and Hg, given by Egs.(4) and (10), are the the same time,'exploiting Fhe currer)tly available experimen-
Hamiltonians describing the two free subsystems. tal techniques in CQED, it is possible to prepare the field

mode in a Fock state with 0 or 1 photbhEigenvalues

ll. THE SYSTEM DYNAMICS IN A REDUCED LOW- |ui) (i=1,2,3,4) and eigenvectols of Hg in the asymmet-
LYING ENERGY FOUR-DIMENSIONAL (4D) ric case may be exactly evaluated and they are explicitly

HILBERT SUBSPACE given in Appendix A.
The expansion of0+ )= exd —i(Hgt/%)]|0+) in terms of

In view of Egs.(4), (10), and (14), the HamiltonianH  |uj), |u,), |us), and|u,) may be cast in the following form:
may be formally interpreted as that of a two-level “atom”
guantum mechanically interacting with a monochromatic
qguantized electromagnetic field. We wish to focus our atten-
tion on a physical situation wherein the operating tempera-

Be \/_ .
|0+)- m[ n1(P,—Q1)Q,lus)exp —ikqt)

ture is T~10 mK and the field is in resonance with the = ny(P2+ Qu) Qslug)exp —ikst)
transition between the lowest and the first excited state of the :
—ng(P;— uz)exp(—ikgt
rf-SQUID, that is,hwpzh\/€2+A2. It is well known that in \/—3( 1~ Q2)Qulus)expl at)
such conditions, the dynamical contribution of the rotating +N4(P1+Q2) Qs uz)exp —ingt)]. (20

terms of Hamiltonian(18) is preponderant in comparison to
that fromH,.s. To carry forward our dynamical analysis we

could at this point ignoréd, . in H; confining ourselves into : : : -
a Jaynes-Cumming&JC) like model as other authors db, We are interested in exploring the ability of the system to

. . . ; eriodically come back to the initial sta@+ ) as well as to
Instead, we wish to investigate the eﬁepts stemming frongass through the other statiss-), [0—), and|1+). The
H,es- As a consequence, we have to circumvent the ver

difficult problem of diagonalizingH in its infinite- Structure of the previous equation and those of E4$0)-

dimensional Hilbert space. To this end we focus our attention%Alg) make clear that the time evolution of the system from
pace. %Oﬂ involves all the four statef—), |1—), |0+), and

on the time evolution of the combined system when it start 1+). However, since the staté8-+) and|1-) are almost

from the conditioring)=|n)|o) such that no more than one degenerate in energy, in our physical situation transitions be-

matter-radiation e.x‘?'t?‘.t"’fﬁ””.?“’ 2) with g== 1] is tween them are more probable than transitions between the
present. Under this initial condition and considering the pre-

dominance ot gy, 0n H .. one may guess that most of the initial state|0+) and the statef0—) and|1+). This fact
evolution occurRszCithin trﬁsé low-lying energy subspace of the oY be cle_arly appreql_ated by evaluating the time e\_/olut|on
free HamiltonianHy=Hg+ He spanned by the four states of the survival probabilityP,(t) of the statg0+), that is,
[no), with n=0,1 ando=—,+. This physical expectation 4 Q
is confirmed by numerical simulations we have performed on P,(t)=[(0+|0+)|?= 82| > SJ-2+ 2S5,S, cos—t
a bigger Hilbert space generated by the 12 sthte$, with =1 L

Thus, |0+) is as in linear superposition, with different
weights, of the eigenstatés;) of Hamiltonian(19).

n=0,1,...,5 andr=—,+. Q (01— Q,)
Putting together all these considerations, in what follows +2S;S, cosft+2[5153+ 5254]00312—ﬁzt
we will study the dynamics of the coupled matter-radiation
system, both in the asymmetrie£0) and symmetric £ (0,+Q,)
=0) case, using as starting point the reduced Hamiltonian +2[S,S;+S;S4]co 12h 2 t], (21
0 -Be O BA
where
—Be Awg BA 0 9
He= 1
R 0 BA +hwg Be (19 S=%, (22)

BA 0 Be 2hog (P1=P2)QiQ
from initial conditions having at most one matter-radiation _PiQ
excitation. S1=2ge (P2 (23
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P1Q; (b)
SZ_—ZBE (Q1+Py), (29 1 0.05
P.Q;
S3=~ g (Q2= P, (25 0.01
0 Yi
and %0 05 1 15 2 0 05 1 15 2
time (0.1 ns) time (0.1 ns)
S,=— _PZQl(Q2_|_ P,). (26) FIG. 3. (@) Survival probabilityP; of the state|0+) (dashed
2Be line) and transition probabilitieB,, (b) P; andP, (dashed lingto

the stateg1—), |0—), and|1+), respectively, for a system with
It is immediate to construct explicit expressions also fore=3x10°rads !, B~2,7x10 % Js andw~10" rad s'*.
the transition probabilitiesP,(t)=|(1—]0+ )%, Ps(t)

=|(0—|0+)? and P4(t)=[(1+|0+)|? to the states W,=—Q,[ €6, (P,+Q;)+PA5_]

[1-), |0—), and|1+), respectively. Their explicit analyti-

cal expressions are given in Appendix B. Here we wish to (_P2+Q1 _ Py 5 ) (30)
underline that these transition probabilities have the same 2BA - 2Be )’
mathematical structure of EQR1). This means thal,, P,

andP, like P, are given by the sum of a constant and four W53=Qq[€5,(—P1+Qy)—P;AS_]
trigonometric time-dependent terms with different weights

and frequencies. Since these four frequencigs=Q,/#, x(— P11tQ, _ P2 5 ) (31)
w=Q2 /%, w3=(Q1—Q2)/2h and ws=(Q1+Q2)/2f ap- 2BA 77 2Be )"

pearing in the expressions Bf (1), P,(t), P3(t), andP,(t)

are in general incommensurable, we find a quasiperiodic be- W;=Q4[€6,(P1+Q;)+P1AS_]

havior wherein a complete exact inversion of the populations P.—Q p

between the degenerate sta@s ) and|1—) never occurs. |——L <25 2 5+), (32)
The time evolutions oP,, P,, P3, andP, are plotted in 2BA 2Be

Fig. 3.

= (/€2 24 NP 2 i i
A similar quasiperiodic behavior characterizes the timeand O==(Ve+ A x€)/2C. e+ A% Figure 4 displays

) S ) this survival probability as well as the transition probabilities
evolution of the system initially prepared in the Sti®) Po(t)=|(OL|OR),|? [dashed line in Fig. @], Pig(t)
:|0>®|R>_, that is, the field in the vacuum std@)_ and the —|(1R|OR),[%, and Py, (t)=|(1L|ORY|? [dashed line in
rf-SQUID in the localized flux statéR) characterized by a Fig. 4b)] to the stated0L), |1R), and|1L), respectively.

weII-defm.ed sense of F'T‘?“'a“o"‘ of the supercurrent in theAlso in this case we underline that the time evolution of all
loop. In view of the definitions of—-) and|+) as well as of

Eqs. (A14) and (A16), the survival probability of the state these transition probabilities is governed by the four charac-

. . ) teristic frequencies, w,, ws, andw, previously defined.
|OR) can be cast in the following form: This leads to a very rich dynamics of the system, charac-

terized by the occurrence of entangled states of the total

— 2
Por(t)=|(OR|OR)| coupled system obtained by the superposition of states with

4 0 Q opposite sense of circulation of the supercurrent in the loop
= W2 2 sz+ 2W, W, cos—1t+2W3W4cos—2t and a different number of photons in the field (0 or 1).
=1 h h However, due to the fact that these characteristic frequencies
(0, Q) are not rationally related to each other, it is impossible to
+ 2] Wy W+ W, W, ]co 12h 274 restore exactly the initial condition of the system. As we will
+
+2[W2W3+W1W4]COS(Q12%t , (27)
where now
We— o2 (28) OOH 05 l“1 T 2
- (P,—P : - '
(P1=P2)Q:Q; time (0.1 ns) time (0.1 ns)
W31=Qy[€6,(P,—Q1)+PyA5 ] FIG. 4. () Survival probabilityP, of the stated OR) and tran-
sition probabilitiesP,, (dashed ling (b) P,z andP4, (dashed ling
_ P2+ Qs _ Py S (29) to the state$OL), |1R), and|1L), respectively, for a system with
2BA 77 2Be ')’ e~3%x10¥rads!, B~107%*Js, andwp~10"rad s *.
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show in the following section, it is possible to find an exact (b)

correspondence between these frequencies and then a mo 1 I R~
regular behavior for the total system, in the symmetric caseo.s 0.8/ Ps
and choosing properly the values of the coupling stretkgth ©.¢ 0.6
and of the system parameters. 0.4 0.4
0.2 0.2 P4
B. The dynamics of the system in the symmetric case: I T R & B
Existence of quantum superpositions of clockwise time (0.1 ns) time (0.1 ns)

and counterclockwise supercurrent states

. . . FIG. 5. (a) Survival probabilityP,; and transition probability,
In the previous case, the asymmetric SQUID pOtentIaI(dashed lingat the staté1—) for a system initially prepared in the

configuration results from the appllicatior] ofadc c_ontrol ﬂuxstate|0 +). (b) Survival probabilityP5 and transition probability
b« not exactly equal tape/2. In this section, we will study  p, (gashed lingat the staté1+) for a system initially prepared in

the system whew, = ¢o/2. This means that the two SQUID the statd0—). In both cases, we set=0, B~2,7x10 % Js and
potential wells have the same height so that0. In such 4 _~10"rads ™.

symmetric conditions, Hamiltoniaf19) reduces to the rela-
tively simpler form Mf(wam) or . (41)
0 0 0 BA . . .
Expression$34)—(37) and(38)—(41) may be immediately
0 fwg BA O 33  derived from those relative to the asymmetric case given in
0 BA ‘fowp 0 ’ (33 Appendix A in the limit fore=0. The two eigenstatdsi;)
BA 0 0 %% and |u,s) describe a maximum entangled condition of the
F rf-SQUID and the monochromatic field states, induced by
whereB must be calculated putting=0 in Eq.(17). the inductive coupling between them. Rabi oscillations be-
Analyzing the structure of matrig33), it is not difficult to ~ tween the degenerate staf@s+) and|[1—) dominate the
convince oneself that there exist two dynamically separate@ynamical behavior of the system whose time evolution may
subspaces, characterized by the frequen€igs (B/%)wy b€ Written down as
and Q,= %%+ B?%hwg, respectively. The first subspace is
generated byO+) and|1—) and the representation &éfg 1 . _
on it is given by the central 2 2 matrix block. Such a struc- |0+>tzﬁ[|uls>exq_|)\15t/ﬁ)+ |UpsyexXp( —iNast/fi)]
ture is responsible of the appearance of entanglement in the (42)
time evolution of the combined rf-SQUID-field system. The
matrix elements off connecting the statd®—) and[1+) it the initial condition|0+) is assumed. Also in this case we
generating the second subspace reflect the contribution @fre interested in exploring the ability of the system to peri-
counterrotating terms in the truncated version of'H. odically come back to the initial stafe+) as well as to pass
The eigenstates of matri83) assume the simple form  {hrough the statél — ). To this end we plot both the survival
probability P, (t) =[{0+ |0+ )|?= 3 (1+ cos A1,t) of the ini-

HR:

1 tial state[solid line in Fig. %a)] and the probabilityP,(t)
|us9)= E[_|1_>+|0+>]’ (34) =|(1—|0+)/?=sirPQ,t to find the system in the staf@—)
after a timet [dashed line in Fig. ®)]. Equation(42) to-
1 gether with Fig. %a) provides a clear evidence of the exis-
lupe)=—=[|1=)+|0+)], (35)  tence of coherent Rabi oscillations with frequeridy be-
V2 tween the state§0+) and |1—) corresponding to the
emission and absorption of a quantum of endigy by the
1 (fi+BZ+42) rf-SQUID.
|uss)= {— 5 [0=)+|1+)], (36) Now let us consider the two-dimensional subspace in
VNss which the dynamics of the system, with respect to the trun-
cated Hamiltonian(33), is governed only by the counterro-
1 (h—BZ+#2) tating terms with characteristic frequenfy,. Preparing the
|Uss) = e N B 0-)+[1+)|, 3D system in the statf—) and considering its time evolution,
4s we easily get
with eigenvalues given by
Nis=(f—B) (38) 0-) i U expl— insilh)
=(h—B) wg, W= ————| —|uzgexp —i
1s F t 4(ﬁ2+82) \/n_43 3s 3s
)\zsz(ﬁ"f‘B) WE, (39)

1
— ——|usg)exp(—iNst/h)

Nae= (i~ VBZ+12) we, (40) Vs
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Once more we calculate the survival probabiliBs(t)
=]{0—]0—)|? of the ground stat¢0—),

1
0.8
Pt — | s, @y O
=——|— —Cos .
4B +4?)| B? ? ot
and the transition probability?,(t)=|(1+|0—)? to the ol L e :
state[1+), time (0.1 ns) time (0.1 ns)
B2 FIG. 6. (a) Survival probability of the statf)R) and transition
Py(t)= ———-[1-cos At]. (45  probabilities to the statelL) (dashed ling (b) |1R), and|1L)
2(B°+1%7) (dashed lingfor a system initially prepared in the std@&R). Here,

n=3, e=0, B=#/\8, andwg~10"rad s *.
Analyzing the structure of these two expressions, we de-

duce that the entanglement between the two interacting sub- N e
systems leads to an oscillatory behavior as before, but now, B(7)= exp—izyn"—1)
as shown also in Fig.(b), we cannot get a complete popu- 2
lation inversion between the ground std®&—) and the nZ_1
higher-energy excited statg+ ). This is due to the fact that, X | —cosr+cosnr—+i sinnr) . (49
in this reduced Hilbert space, processes involving the ex-
change of two quanta of energy between the two subsystems
are unlikely. exp(—ir/n?—1) 1
Until now we have considered the system initially pre- y(7)=—i 5 (sin T+ ﬁsinnf), (50)

pared in a state belonging to one of the two dynamically
independent two-dimensional subspaces. In the following
we wish to consider richer physical situations involving both
the two subspaces at the same time.

Considering, in fact, as initial condition the std@R)
=|0)®|R), namely, the field in its vacuum sta@) and the
SQUID with a right-hand current in the loop, the system
evolves in accordance with the following expression: where 7= t. Analyzing the time evolution of these four

time-dependent probability amplitudes, it is not difficult to
|OR);= a(t)|OR)+ B(t)|OL) + y(1)|1R) + &(t)| 1L ). convince oneself thathe system comes right back to the
(46)  initial state |OR) after a time t;=(27/Q,)
. N =(27Jn?—1)/we if nis even and after a timg/2 if n is
'I_'he “me'de_pef‘de”t parameters appearing in Eq) are od(d. For this )reagon, E@7) expresses the con%ition for the
linear gomblnatlons of trigonometric functions Cha,raCte”Zedoccurrence of periodic behavior in the dynamics of the com-
by the incommensurable frequencles and(),. In this case  pinaq system.
the time evolution of the system is rather similar to that — oiher interesting manifestations in the dynamics of the
obtained in the asymmetric case. Generally speaking, th'?ystem occur depending on the parity of the ratio between

fact makes it impossible for the system to exactly restore itg) 2140 determined by the fixed value &in accordance
initial condition. Since the ratid),/{); may be controlled toqu.(47;.

by acting upon the parametBrand then, at least, on one of  \ye find indeed that, if is even and always starting from
the physical parameters appearing in its expression given by,e siatd 0RY, at timet,/2 the combined system reaches the
Eg. (17), we may wonder on what the dynamical propertiest, orizeq state wherein the field is still in its vacuum state
of the system become in correspondence to special values @3y anq the current in the loop reverses its sense of circula-

B. Itis indeed immediate to see that for tion, meaning that the state of the rf-SQUID becories If
n is odd, on the contrary, the probabiliiy, (t) of finding
B=#/yn*-1, ( the system in the stat@L) is always less than Isee, for

example, fom= 3 the dashed line in Fig.(8)].

s(r)=—i

exp(—irx/nz—l)(
2

1
sinT— ﬁsinnr) , (1

we getld,=n Q,, Wheref!?l is an arbitra_ry integer. Under . Moreover, forn even, at times$,/4 and 3,/4, the system
such a controllable condition, the dynamics of the system IS ’ i . r

. . : once more describable in terms of factorized states. For
dominated by the occurrence of many interesting features; N .
: o eéxample, forn=4 these factorized states may be expressed
The four time-dependent parameters appearing in (&6).

as
assume the form

U ey [M2-1 exp(—i7\/15/2) _
_en |;n 2 cos7+cosnr+i n 1sinnr>, |¢o(t1/4)>=+[|0>—'|1>]®|—>,

(48) (5239

a(T
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(b) question of the extent at which this circumstance provides an
effective tool to get a reasonable control of some aspects of
the system dynamics. The analysis reported in the paper con-
siders, fixing appropriate resonance conditions, two different
cases, the asymmetric and the symmetric ones. In both cases,
the dynamical problem is exactly solved in the truncated
Hilbert space finding quasiperiodic behaviors of the initial
state survival probability as well as of some physically
time (0.1 ns) time (0.1 ns) meaningful transition probabilities of experimental interest.
Such quasiperiodic temporal evolution reflects the existence
FIG. 7. (a) Survival probability of the staté0R) (dashed line  of quantum coherent oscillations occurring at incommensu-
and transition probabilities to the statf8L), (b) [1R) (dashed rable Rabi frequencies. An important difference between the
line), and|1L) for a system initially prepared in the sta@R).  two physical situations under discussion is that in the sym-

oo oo
ORI, N S

o O O O

0 0.5 1 1.5 2

Here,n=4, e=0, B=#/./15, andwg~10" rads*. metric caseH g exhibits two invariant 2D subspaces, whereas
in the asymmetric case the time evolution of any initial con-
exp(—i37-r\/1—5/2) _ dition of the total system explores the entire 4D Hilbert
| iho(3t1/4)) = 2 [o)+i|]e|—), space. This different dynamical behavior has direct remark-
2 (52b) able consequences. When indeed the external pararaeter

measuring the height difference between the two minima of
|—) being the ground state of the rf-SQUID. This coherentU(¢) does not vanish, the system evolves intrinsically pre-
evolution is represented in Fig. 7 where we plot, for 4, venting the occurrence of disentangling in correspondence to
the survival probabilityPy(t) of |OR) and the transition any possible choice of values for the external parameters.
probabilitiesPg, (t), P1r(t), andPq, () to the statesOL), Our theory predicts completely different and rich results in
|1R), and|1L), respectively. the symmetric case stemming from the reducibility into 2
It has to be stressed that, on the contrary, whés odd X 2 blocks ofHg in the truncated Hilbert space. We have, in
the previously described oscillations between factorizedact, proved that the external parameters may be fixed in
states and entangled states of the total matter-radiation sysuch a way to realize a control on the dynamical replay of the
tem do not occur. This fact may be fully recognized lookingtotal system which, for instance, may be forced to exhibit a
at Fig. 6, where we ploPgg(t) Po (t), P1r(t), andPy (t) periodic evolution accompanied by the occurrence of an os-
assumingn=3 andPyg(0)=1. We note that a time instant cillatory disappearance of entanglement between the two
in correspondence of which these four probabilities are alpubsystems. A relevant result of this paper is the generation
equal does not exist. of quantum superpositions of the two macroscopic distin-
Remembering thaf—)=1/J2[|R)+|L)] and that the Quishable statesL) and |R) of the rf-SQUID whenQ,
stategR) and|L) may be legitimately considered as macro- =N {1, with n even.
scopically distinguishable states of the rf-SQUID, E&R) It is worth noting that the sensitivity of these results to the
predicts the generation of a maximally entangled Schroparity of the ration between the characteristic frequeriey
dinger catlike state in the dynamics of an rf-SQUID exposec®nd {2, is an effect of the counterrotating terms of Hamil-
to a single-mode quantized electromagnetic field when thé&onian (19). The JC model, in fact, leads to the factorized
combined system is prepared in the St&IR). states described by Eq$2). However, since in this case the
The fact of being able to build quantum superpositions ofdynamics of the system is driven only by the Rabi frequency
two states describing clockwise and counterclockwise supel21= (B/fi) wg, we may obtain the factorized statés) for
currents in the loop confirms the role of such nanodevices agny value ofB.
simple physical systems due to which it is possible to con- These results are different and their value may be further

ceive experiments on fundamental aspects of the quantu@ppreciated considering that the realization of our theoretical
theory. scheme is in the grasp of experimentalists. The several types

of SQUID necessary for the observability of our predictions
are easily fabricated exploiting the well-defined trilayer
Nb/AIO, /Nb technology. Moreover, it is possible to prepare
In this paper we have investigated the coupled dynamicand control the state of the rf-SQUID via flux pulses and rf
of an rf-SQUID and a single-mode quantized electromagpulses. Finally, we may readout the macroscopic flux state of
netic field in the reduced 4D Hilbert space spanned by théhe qubit using a suitable magnetomefessentially an hys-
low-lying energy states of the uncoupled system. The correteretic dc-SQUID detectpwhose experimentally measured
spondent Hamiltonian model includes contributions fromdetection efficiency is of the order of 98¥%.
both the rotating and counterrotating terms and this fact turns One of the most crucial problem related to this kind of
out to be at the origin of a rich dynamical behavior domi- device is the unavoidable presence of decoherence. The qual-
nated by Rabi oscillations associated to more than one fraty of coherence for a two-level system can be qualitatively
quency. By construction, our theory is based on a Hamildescribed in terms of the coherence tifig of a superposi-
tonian model containing some external parameters. Sincigon of its states. It is generally accepted that for an active
they may be easily varied, we have addressed the interestirgcoherence compensation mechanidip,must be larger

IV. DISCUSSION AND CONCLUSIVE REMARKS
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than 1dt0p, top being the duration of an elementary opera- Q:

tion of the qubit? In our case the Rabi oscillation frequen- No=hwet =, (A7)
cies (), and Q, correspond to characteristic timeg~2.4

x 10" 10 sec and,~6x 10" ! sec(for n=4). Moreover, as Q,

demonstrated by Cosmelli and co-workers, for a system Ns=hwr— -, (A8)
cooled at 5 mK and effective resistanBe=4-5 MQ), the

decoherence time is approximately of the order gf4.3? Q,

Thus, in our case we can reasonably believe that it is pos- N=lhop+ o (A9)

sible to realize a superconducting device satisfying the con-
straint T,>10%,,. An open problem for the experimental ~ The eigenstatefu;), |uy), |us), and|u,) relative to the
realization of the physical system is represented by the coweigenvalues.|, A5, A3, and\, respectively assume the fol-
pling between a qubit and a single mode of a resonant cavityowing form:

We must take into account the typical dimensions of the ) 5

SQUID chip with respect to the size of a highsupercon- luy) = 1] Qit P2| Syt P1Q;—4B%€ 1)
ducting cavity. In order to bypass this nontrivial technical 1 \/n—l 2BA 4B2A ¢

problem we may use an experimental arrangement consisting

of a chip placed inside a cavity made by two open mirtors 1

or we may think to integrate the Josephson device and a _E|O+>+|1+> , (A10)
waveguide in the same chif.Many groups are currently

working in this field and we thinkKand hop¢ that these 2 9

techniques will be of common use in the next few years. A |, )= 1 Ql_P2|0_>_ M|l_>

most immediate solution is represented by the substitution of \/n—2 2BA 4B%Ae

the resonant cavity by ahC resonator or by a large area

current-biased Josephson junction. Several works taking into _ Py 04)+ 11+ Al
account this substitution and the fact that, as discussed in 236| L (ALD)
Sec. lll, the Hamiltonian model for all these three systems
may be expressed in terms of H30), make it possible to 1 Q,+P; P,Q,—4B2%¢2
retain that this experiment may be realized with the currently — |ug)= —1 — 2BA [0—)+ f| -)
available technologies. Vng 4B°Ae
ACKNOWLEDGMENTS —%m—k)—l— | 1+ )} , (A12)
We wish to acknowledge C. Cosmelli, A. Vourdas, A.
Konstadopoulou, gnd F. Chiarello for helpful discussions and 1 |Q,—P; P,Q,+4B2%€?
F. Intravaia for his technical support. One of the authors |ug)=— 2BA 0—)————I1-)
(R.M.) acknowledges financial support from Finanziamento \/”_4 4B°Ae
Progetto Giovani Ricercatori 1999, Comitato 02. P
2
——|0+>+|1+)], (A13)
APPENDIX A 2Be

In this appendix, we give the analytical expressions forvvhf?re.lk/n—i , with 1=1,2,3,4, are the normalizing factors
the eigenstates and eigenvalues of Hamiltor(#9) in the  Satisfying (uju;)=5;;. It is useful to expand the states
asymmetric case. In order to simplify the notation we intro-/0—), [1—), [0+), and[1+) in terms of|uy), [uz), [us),

duce the following symbols: and|u,). Inverting Egs.(A10)—(A13), we get
52 2572 2 BA
G=4B%e*+h g, (A1) |0—)= m[\/n—lszzmﬁ—\/n_szQszﬂ
_ 2 2 _
Qu= V4B wp + 2k wr(fiwp—G), (A2) —\N3P1Qalug) + VnsP1Qy|ug)l, (A14)
Q,=V4B2w2 + 2k wp(hwe+G), (A3) 2B2A
’ " ] " |1_>:(P —P )(;Q [\/n—lQ2|ul>_\/n—2Q2|u2>]
Plzth“l‘G, (A4) 1 2 12
P.—#0.—G. (A5) = n3Qu]ug) + VnyQulug)], (A15)
The eigenvalues of the Hamiltonigth9 may be written [0+)= B [Vni(P,—Q1)Q,luy)
down as follows: (P1=P2)Q1Q;
Q, _\/n_z(P2+Q1)Q2|U2>_\/n_s(Pl_Qz)Q1|U3>
N=howr— —, Ab
IORT 2 (A8 +n4(P1+Q2)Quluy)], (A16)
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|1+)= [Vn1Qa(P1Po+P3—P,Q,

1
2(P1—P5)Q1Q;
+4B2€?)|u;) — Vn, Qu(P1Po+P2+P,Qy
+4B2€%)|u,) — VnaQ1(P3+ PP, — P1Q,
+4B2€?)|ug) + VnsQ1(P2+ PP, + P1Q,

+4B%€?)|uy)]. (A17)

APPENDIX B

In this section, we give the analytical expressions for the

transition probabilitied,(t), P3(t), andP,(t) to the states
|1-), |0—), and|1+) for a system in the asymmetric con-
figuration and prepared a0 in the statg0+).

Exploiting Egs.(20), (Al4), (A15), and(Al7), we write
down these transition probabilities as

4

Po(t)=[(1—]0+) 2= X T?+2T;T, cos%t
=1

%
+2T,T, COS%H O[T To+ T2T4]COS—(Q12_hQ2) t
+
+2[T,yTa+T,T4]co (leﬁQZ) t} , (B1)
where
PZ_Ql
Ty= —4B%€*+Q,Py), B2
1 Q24BZGA( Q:P1) (B2)
P,+Q;
T,= 4B2e2+Q,P,), B3
2 Q24326A( Q1P1) (B3)
—P1+Q;
T3=Q;—————(—4B2%€+ Q,P,), B4
3=Q1 ABZeA ( Q2P2) (B4)
and
P1+Q;
T,= —4B%e?—Q,P,). B5
4 Ql4BzeA( Q2P>) (BS)

PHYSICAL REVIEW B67, 134505 (2003

Also
4

j=1

%
+27,7, co%w 2[Z,Z4+ 2224]cos(QlZ_—hQ2)t
+2[Z,Z5+ zlz4]c0%(Q12;Q2) t] , (B6)
where
P —
Zi= Qo an ZH(-PQu), ®7)
P+
Zy=—Qp 2 B (~Py+Q), (88)
—P,+
Z3=Qi L (P Q). (B9)
P,+0Q
Z4=Qi g (~P1+Qa), (B10)
and
: Q
Pa(t)=[(1+ |0+>t|2232[ 21 x]?+ 2X, X5 cosh—lt
~
+2X5X, cos%t +2[X Xat+ X2X4]cos(Q12_—ﬁQ2)t
+2[ X, X5+ xlx4]cos@12%t} , (B11)
where
X1=Q2(P2—Q1), (B12
Xo==Q2(P2+Q), (B13
X3=Q1(=P1+Q2), (B14)
X4=Q1(P1+Q2). (B1Y
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