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Quantum superpositions of clockwise and counterclockwise supercurrent states in the dynamics
of an rf-SQUID exposed to a quantized electromagnetic field

R. Migliore* and A. Messina
INFM and MIUR, Dipartimento di Scienze Fisiche ed Astronomiche dell’Universita` di Palermo, via Archirafi 36, 90123 Palermo, Italy

~Received 18 November 2002; revised manuscript received 3 February 2003; published 3 April 2003!

The dynamical behavior of a superconducting quantum interference device~an rf-SQUID! irradiated by a
single-mode quantized electromagnetic field is theoretically investigated. Treating the SQUID as a flux qubit,
we analyze the dynamics of the combined system within the low-lying energy Hilbert subspace both in the
asymmetric and in the symmetric SQUID potential configurations. We show that the temporal evolution of the
system is dominated by an oscillatory behavior characterized by more than one, generally speaking, incom-
mensurable Rabi frequencies whose expressions are explicitly given. We find that the external parameters may
be fixed in such a way to realize a control on the dynamical replay of the total system which, for instance, may
be forced to exhibit a periodic evolution accompanied by the occurrence of an oscillatory disappearance of
entanglement between the two subsystems. We demonstrate the possibility of generating quantum maximally
entangled superpositions of the two macroscopically distinguishable states describing clockwise and counter-
clockwise supercurrents in the loop. The experimental feasibility of our proposal is briefly discussed.

DOI: 10.1103/PhysRevB.67.134505 PACS number~s!: 85.25.Dq, 03.67.Lx
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I. INTRODUCTION

It is of great interest to understand and study the phy
of Josephson junction-based devices both for testing fun
mental properties of quantum mechanics, such as the su
position principle or the occurrence of entangled states,1 and
for technological applications in context of quantum info
mation theory and quantum computing.2

In the last decade, rapid developments in the realm
nanotechnologies have made it possible to perform a num
of interesting and sophisticated experiments at l
temperature,3 bringing to light the existence in theseatomlike
circuits of many macroscopic quantum phenomena suc
energy-level quantization,4 macroscopic quantum tunneling
and quantum superposition of states.5,6 More recently, the
usefulness of investigating these solid-state devices in
context of quantum communication and information theo
has been fully recognized.

Superconducting Josephson devices may, in fact,
thought of as two-state systems realizing the elementary
of quantum information, known as quantum bit or qubi7

Moreover, Josephson devices can be scaled up to a
number of qubits and their dynamics may be controlled
externally applied voltages and magnetic fluxes. Superc
ducting devices such as Cooper pair boxes, Josephson
tions ~JJ’s!, or super conducting quantum interference d
vices~SQUID’s! have been thus proposed and used as b
elements for the practical realization of quantum gates
chips.8 The relevant macroscopic degree of freedom, allo
ing to store and manipulate quantum information, may be
charge on the island of a Cooper pair box or the phase
ference at the junction. In the first case, the charging ene
EC overcomes the Josephson energyEJ . Otherwise, in the
opposite regime, the Josephson energy overcomesEC .9 It
has been already experimentally demonstrated that Co
pair boxes behave as two-level systems which can be co
ently controlled10–12 and now great efforts are devoted
prove that the same can be done with flux and ph
qubits.5,6,13However, successful realization of quantum alg
0163-1829/2003/67~13!/134505~11!/$20.00 67 1345
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rithms critically depends on the ability to entangle quantu
states of qubits. The optimum would be the realization o
tunable coupling bus. Several coupling mechanisms are
sible but the natural way of coupling two or more superco
ducting qubits is through an intermediateresonant LC cir-
cuit, playing the role of a data bus.14,15 Such a resonantLC
circuit, describable as a quantum harmonic oscillator, m
be, in principle, replaced by the electromagnetic single-m
of a high-Q cavity or by a large-area current biased Jose
son junction. In all these cases, the situation is similar
cavity QED~Ref. 16! ~where cavity and atoms play the role
of the LC circuit and qubits, respectively! and to ion-trap
proposals.17

It is then evidently of interest to study the interactio
between a two-level solid-state system, such as an rf-SQU
and an external quantum system–like another qubit, a t
circuit or a monochromatic radiation source.15,18–24The aim
of such investigations is to bring to light the occurrence
entangled states and to construct coupling schemes by w
the coherent dynamics of the system may be contro
and/or manipulated.10,12–14,25–27

In this paper, our main scope is to study the dynamics
a flux qubit ~an rf-SQUID! coupled to a single-mode quan
tized electromagnetic field of a resonant cavity. Confini
ourselves to the low-lying energy Hilbert space, we pro
that the time evolution of the combined system is charac
ized by the occurrence of entanglement that may be c
trolled in terms of the strength of the coupling and the circ
parameters. In addition, we show that the dynamics is do
nated by an oscillatory behavior traceable back to the e
tence of a finite set of characteristic Rabi frequencies wh
expression may be explicitly given.

The importance of conceiving experimental schemes
realizing quantum superpositions of macroscopically dis
guishable states has been quite recently emphasized.28 The
main result of this paper is that, appropriately acting up
some control parameters, it is possible to guide the
SQUID toward coherent maximally entangled combinatio
of two states describing clockwise and counterclockwise
©2003 The American Physical Society05-1
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percurrents and then macroscopically distinguishable.
In Sec. II, we describe the physical system under study

dynamics in a reduced low-lying energy Hilbert space
studied in Sec. III where the main results of this paper
reported. In Sec. IV, we discuss our results and we concl
with some remarks about the feasibility of an experim
aimed at verifying our theory in the laboratory.

II. THE QUANTUM CIRCUIT

In this section, we describe in detail the physical syste
namely, an rf-SQUID coupled to a monochromatic field o
high-Q resonant cavity and its Hamiltonian model. In Fig.
the electromagnetic single-mode cavity is represented a
LC resonator.

In Sec. II A, we describe the physical conditions that
low us to consider a SQUID as a two-level system, that is
a flux qubit. Then we give the Hamiltonian model for th
cavity field in terms of the combined system characteris
and finally, in Sec. II C, we consider the inductive coupli
between these two subsystems.

A. The rf-SQUID as material two-level system

Let us begin by describing as usual9 the rf-SQUID, a su-
perconducting loop interrupted by a Josephson junction@Fig.
2~a!#, as a fictitious particle of massC and generalized coor
dinate f ~the magnetic flux in the loop! subjected to the
washboard potential

U~f!52EJcosS 2p
f

f0
D1

~f2fx!
2

2L
, ~1!

where C;10215–10213 F is the junction capacitance,L
;10–100 pH the self-inductance of the loop,fx an exter-

FIG. 1. Schematics of the superconducting circuits with a fl
qubit inductively coupled to anLC resonator modeling a single
mode quantized electromagnetic field of a resonant high-Q cavity.

FIG. 2. ~a! Schematics of an rf-SQUID and~b! of a double
rf-SQUID obtained replacing the single Josephson junction wit
dc-SQUID, namely, a superconducting loop interrupted by two
sephson junctions.
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nally applied dc flux, andf05h/2e the flux quantum. The
Josephson coupling energyEJ is related to the critical super
currentI C by EJ5I Cf0/2p.

Taking into account both the kinetic and the potential e
ergy, it is then immediate to write the Hamiltonian of th
system as follows:

H5
Q2

2C
2EJcosS 2p

f

f0
D1

~f2fx!
2

2L
, ~2!

where the charge on the junction capacitanceQ52 i\]/]f
and the fluxf in the loop are canonically conjugate oper
tors satisfying the commutation rule@f,Q#5 i\. Under the
condition bL52pLI C /f0.1, the rf-SQUID is hysteretic
and the potentialU(f) may have one or several relativ
minima. The height of barrier between minima and the nu
ber of minima depends on the parameterbL . The form of the
potentialU(f) instead can be tuned by changing the ext
nal dc magnetic fluxfx applied to the loop to the case whe
the two lowest-energy wells are degenerate. This case oc
for fx5f0/2. These two degenerate minima correspond
the clockwise and counterclockwise sense of rotation of
supercurrent in the loop. The two relative ground states
localized flux states, hereafter denoteduL& and uR&. For fx
not exactly coincident withf0/2, U(f) defines an asymmet
ric double-well potential nearf5f0/2 with barrierVb be-
tween these two lowest-energy minima. At sufficiently lo
temperatures, transitions between neighboring flux states
dominated by macroscopic quantum tunneling. However,
high barrierVb , tunneling does not mix the two lowest-flu
states with the excited states in the two wells. Thus, in
parameter regimeVb@\v0@kBT (\v0 being the separation
of the first excited state from the ground state in both wel!,
the rf-SQUID effectively behaves as a two-state system7 with
reduced Hamiltonian expressible in terms of the Pauli ma
cessx andsz as follows:

HS52
\

2
Dsx1

\

2
esz5

\

2 S e 2D

2D 2e D , ~3!

where the basis coincides with the two localized flux sta
uL& and uR&. Here \e(fx)[\e52I CA6(bL21)(fx
2f0/2) is the asymmetry of the double well andD is the
tunneling frequency between the wells. This tunneling f
quency can be tuned by changing the heightVb of the barrier
that depends on the Josephson coupling energyEJ . Then if
we replace the junction by a hysteretic dc-SQUID@Fig.
2~b!#, behaving as a JJ with tunable critical current,EJ may
be manipulated by a separate control dc fluxfc . In other
words, this modified device, known as the double rf-SQUI
behaves as a normal rf-SQUID whose Josephson energEJ
is related to the control flux fc by EJ(fc)
5(f0 /p)I C0cos@p(fc /f0)#, I C0 being the critical current of
each of the two JJ’s of the dc-SQUID.

Since in our scheme we need to controlD, in what fol-
lows we will investigate a double rf-SQUID with two exte
nal control fluxesfx andfc when it is exposed to a mono
chromatic quantized electromagnetic field.
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QUANTUM SUPERPOSITIONS OF CLOCKWISE AND . . . PHYSICAL REVIEW B67, 134505 ~2003!
The Hamiltonian of the double rf-SQUID, given also
this case by Eq.~3!, can be easily cast in diagonal form

HS5
\

2 S 2Ae21D2 0

0 Ae21D2D ~4!

in the basis formed by its eigenstatesus& (s[7) given by

u2&5C2F uR&1
e1Ae21D2

D
uL&G ~5!

and

u1&5C1F uR&1
e2Ae21D2

D
uL&G . ~6!

HereC75„11@(e6Ae21D2)/D#2
…

21/2 are the normalizing
factors of u2& and u1&, respectively, and\Ae21D2 is the
energy difference between their corresponding eigenva
E252(\/2)Ae21D2 andE15(\/2)Ae21D2.

B. The quantized electromagnetic field

In this section, we model the electromagnetic field of t
resonant cavity as anLC resonator. In this way our treatmen
and our results may be easily extended to the case of
coupling between the flux qubit and a realLC resonator21 or
a large-area current-biased Josephson junction.13,15 This fact
is important because, in order to verify experimentally o
theoretical predictions, it is more practical to couple the q
bit with one of these two systems rather than with the sin
mode of a resonant cavity. We therefore start by conside
the Hamiltonian of anLFCF resonator with infinite paralle
resistance on resonance and frequencyvF51/ALFCF

HF5
QF

2

2CF
1

fF
2

2LF
, ~7!

wherefF and QF play the roles of the magnetic flux an
charge operators arising from the quantized electromagn
field and satisfying the commutation rule@fF ,QF#5 i\.

As in Refs. 18 and 20, it is possible to relate the resona
operatorsfF and QF to bosonic annihilation and creatio
operatorsa anda†. Defining the fluxfF and the conjugate
operatorQF as

fF5A \

2vFCF
~a1a†! ~8!

and

QF52 iA\vFCF

2
~a2a†! ~9!

and substituting these analytical expressions in Eq.~7!, it is
immediate to cast the Hamiltonian of the resonator in
form of a standard harmonic-oscillator free Hamiltonian

HF5\vFS a†a1
1

2D . ~10!
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Here, the frequencyvF , choosing CF;10212 F and LF
;0.1 nH, belongs in the range of microwaves (vF
'1011 rad s21). The eigenfunctions of Hamiltonian~10!
are, of course, harmonic-oscillator eigenstatesun& ~defined
by a†aun&5nun&) with eigenvaluesEn5\vF(n1 1

2 ).
If the rf-SQUID is effectively coupled with the quantize

mode of an electromagnetic high-Q cavity, we may start
again from Hamiltonian~7!. In order to understand the
meaning ofCF in this case, we assume that the rf-SQUID
located perpendicularly to the magnetic field and within
distance small as compared to the radiation wavelength
such conditions, the vector potentialA(x) arising from the
electromagnetic field of the cavity mode is approximate
uniform throughout the region of the device and in intern
tional units and in the Coulomb gauge (“•A50), it as-
sumes the form

A5S \

2e0vFVD 1/2

~a2a†! u, ~11!

u being the unit polarization vector,e0 the vacuum dielectric
constant, andV the quantization volume of the field mode
Thus, the expression for the operatorfF to be inserted in Eq.
~7! may be written down as

fF5 R
g
A•dl5A \

2vFCF
~a1a†!, ~12!

where the capacitive parameterCF given by the following
expression:

CF5e0VS R
g
u•dlD 22

~13!

depends on the field frequency, via the quantization volu
V, and on the SQUID geometry, via the line integral which
taken across a closed circuitg inside the SQUID loop. Then
also in this case, exploiting Eq.~12! and the properties o
conjugation betweenfF and QF , it is easy to cast Hamil-
tonian ~7! in the form of a standard harmonic-oscillator fre
Hamiltonian~10!.

C. The coupled system

In view of the assumptions made in the preceding sect
the flux qubit and theLC-resonator modeling the monochro
matic field can be thought of as coupled together inductiv
~see Fig. 1! with a contribution to the total Hamiltonian
given by

HI5
2k

L
ffF5B~a1a†!@2esz1Dsx#5HRWA1Hres

~14!

with

HRWA5BD~as11a†s2!, ~15!

Hres5BD~a†s11as2!2B~a1a†!esz , ~16!

and where the constant
5-3
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B5
k

L
A \

2vFCF

f0

Ae21D2
~17!

has the same dimension of\ and depends on the couplin
strength and the system characteristics. Here, the flux link
factor k is assumed of the order of 0.01 in accordance w
the current experimental values.29 Thus, the Hamiltonian de
scribing our weakly interacting rf-SQUID-field system ca
be written down as

H5HS1HF1HI , ~18!

where HS and HF , given by Eqs.~4! and ~10!, are the
Hamiltonians describing the two free subsystems.

III. THE SYSTEM DYNAMICS IN A REDUCED LOW-
LYING ENERGY FOUR-DIMENSIONAL „4D…

HILBERT SUBSPACE

In view of Eqs. ~4!, ~10!, and ~14!, the HamiltonianH
may be formally interpreted as that of a two-level ‘‘atom
quantum mechanically interacting with a monochroma
quantized electromagnetic field. We wish to focus our att
tion on a physical situation wherein the operating tempe
ture is T'10 mK and the field is in resonance with th
transition between the lowest and the first excited state of
rf-SQUID, that is,\vF5\Ae21D2. It is well known that in
such conditions, the dynamical contribution of the rotati
terms of Hamiltonian~18! is preponderant in comparison t
that fromHres . To carry forward our dynamical analysis w
could at this point ignoreHres in HI confining ourselves into
a Jaynes-Cummings~JC! like model as other authors do.14

Instead, we wish to investigate the effects stemming fr
Hres . As a consequence, we have to circumvent the v
difficult problem of diagonalizing H in its infinite-
dimensional Hilbert space. To this end we focus our atten
on the time evolution of the combined system when it sta
from the conditionuns&[un&us& such that no more than on
matter-radiation excitation@n1(s11/2) with s[61] is
present. Under this initial condition and considering the p
dominance ofHRWAon Hres , one may guess that most of th
evolution occurs within the low-lying energy subspace of
free HamiltonianH05HS1HF spanned by the four state
uns&, with n[0,1 ands[2,1. This physical expectation
is confirmed by numerical simulations we have performed
a bigger Hilbert space generated by the 12 statesuns&, with
n[0,1, . . . ,5 ands[2,1.

Putting together all these considerations, in what follo
we will study the dynamics of the coupled matter-radiati
system, both in the asymmetric (eÞ0) and symmetric (e
50) case, using as starting point the reduced Hamiltonia

HR5S 0 2Be 0 BD

2Be \vF BD 0

0 BD \vF Be

BD 0 Be 2\vF

D ~19!

from initial conditions having at most one matter-radiati
excitation.
13450
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A. The dynamics of the system in the asymmetric case

Let us consider the time evolution of the combined
SQUID-radiation system initially prepared in the sta
u01&, that is, the field in its vacuum stateu0& and the
SQUID in the first excited stateu1&5C1@ uR&1(e
2Ae21D2/D)uL&], which is a superposition of the localize
flux statesuL& and uR&.

It is worth noting that the manipulation of the shape of t
potential and the height of the barrier between the t
lowest-energy wells via the control fluxesfx andfc allows
to prepare the SQUID in a prefixed initial condition.8,29 At
the same time, exploiting the currently available experim
tal techniques in CQED, it is possible to prepare the fi
mode in a Fock state with 0 or 1 photon.16 Eigenvalues
uui& ( i[1,2,3,4) and eigenvectorsl i of HR in the asymmet-
ric case may be exactly evaluated and they are explic
given in Appendix A.

The expansion ofu01& t5exp@2i(HRt/\)#u01& in terms of
uu1&, uu2&, uu3&, anduu4& may be cast in the following form

u01&5

Be

~P12P2!Q1Q2
@An1~P22Q1!Q2uu1&exp~2 il1t !

2An2~P21Q1!Q2uu2&exp~2 il2t !

2An3~P12Q2!Q1uu3&exp~2 il3t !

1An4~P11Q2!Q1uu4&exp~2 il4t !]. ~20!

Thus, u01& is as in linear superposition, with differen
weights, of the eigenstatesuui& of Hamiltonian~19!.

We are interested in exploring the ability of the system
periodically come back to the initial stateu01& as well as to
pass through the other statesu12&, u02&, and u11&. The
structure of the previous equation and those of Eqs.~A10!–
~A13! make clear that the time evolution of the system fro
u01& involves all the four statesu02&, u12&, u01&, and
u11&. However, since the statesu01& and u12& are almost
degenerate in energy, in our physical situation transitions
tween them are more probable than transitions between
initial state u01& and the statesu02& and u11&. This fact
may be clearly appreciated by evaluating the time evolut
of the survival probabilityP1(t) of the stateu01&, that is,

P1~ t !5u^01u01& tu25S2H (
j 51

4

Sj
212S1S2 cos

Q1

\
t

12S3S4 cos
Q2

\
t12@S1S31S2S4#cos

~Q12Q2!

2\
t

12@S2S31S1S4#cos
~Q11Q2!

2\
tJ , ~21!

where

S5
Be

~P12P2!Q1Q2
, ~22!

S15
P1Q2

2Be
~Q12P2!, ~23!
5-4
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S25
P1Q2

2Be
~Q11P2!, ~24!

S352
P2Q1

2Be
~Q22P1!, ~25!

and

S452
P2Q1

2Be
~Q21P1!. ~26!

It is immediate to construct explicit expressions also
the transition probabilitiesP2(t)5u^12u01& tu2, P3(t)
5u^02u01& tu2, and P4(t)5u^11u01& tu2 to the states
u12&, u02&, andu11&, respectively. Their explicit analyti
cal expressions are given in Appendix B. Here we wish
underline that these transition probabilities have the sa
mathematical structure of Eq.~21!. This means thatP2 , P3,
andP4 like P1 are given by the sum of a constant and fo
trigonometric time-dependent terms with different weigh
and frequencies. Since these four frequenciesv1[Q1 /\,
v2[Q2 /\, v3[(Q12Q2)/2\ and v4[(Q11Q2)/2\ ap-
pearing in the expressions ofP1(t), P2(t), P3(t), andP4(t)
are in general incommensurable, we find a quasiperiodic
havior wherein a complete exact inversion of the populati
between the degenerate statesu01& and u12& never occurs.
The time evolutions ofP1 , P2 , P3, and P4 are plotted in
Fig. 3.

A similar quasiperiodic behavior characterizes the ti
evolution of the system initially prepared in the stateu0R&
5u0& ^ uR&, that is, the field in the vacuum stateu0& and the
rf-SQUID in the localized flux stateuR& characterized by a
well-defined sense of circulation of the supercurrent in
loop. In view of the definitions ofu2& andu1& as well as of
Eqs. ~A14! and ~A16!, the survival probability of the state
u0R& can be cast in the following form:

P0R~ t !5u^0Ru0R& tu2

5W2H (
j 51

4

Wj
212W1W2 cos

Q1

\
t12W3W4cos

Q2

\
t

12@W1W31W2W4#cos
~Q12Q2!

2\
t

12@W2W31W1W4#cos
~Q11Q2!

2\
tJ , ~27!

where now

W5
B

~P12P2!Q1Q2
, ~28!

W15Q2@ed1~P22Q1!1P2Dd2#

3S 2
P21Q1

2BD
d22

P1

2Be
d1D , ~29!
13450
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W252Q2@ed1~P21Q1!1P2Dd2#

3S 2P21Q1

2BD
d22

P1

2Be
d1D , ~30!

W35Q1@ed1~2P11Q2!2P1Dd2#

3S 2
P11Q2

2BD
d22

P2

2Be
d1D , ~31!

W45Q1@ed1~P11Q2!1P1Dd2#

3S 2
P12Q2

2BD
d22

P2

2Be
d1D , ~32!

and d65(Ae21D26e)/2C6Ae21D2. Figure 4 displays
this survival probability as well as the transition probabiliti
P0L(t)5u^0Lu0R& tu2 @dashed line in Fig. 4~a!#, P1R(t)
5u^1Ru0R& tu2, and P1L(t)5u^1Lu0R& tu2 @dashed line in
Fig. 4~b!# to the statesu0L&, u1R&, and u1L&, respectively.
Also in this case we underline that the time evolution of
these transition probabilities is governed by the four char
teristic frequenciesv1 , v2 , v3, andv4 previously defined.

This leads to a very rich dynamics of the system, char
terized by the occurrence of entangled states of the t
coupled system obtained by the superposition of states
opposite sense of circulation of the supercurrent in the lo
and a different number of photons in the field (0 or 1
However, due to the fact that these characteristic frequen
are not rationally related to each other, it is impossible
restore exactly the initial condition of the system. As we w

FIG. 3. ~a! Survival probabilityP1 of the stateu01& ~dashed
line! and transition probabilitiesP2, ~b! P3 andP4 ~dashed line! to
the statesu12&, u02&, and u11&, respectively, for a system with
e'331010 rad s21, B'2,7310235 J s andvF'1011 rad s21.

FIG. 4. ~a! Survival probabilityP0R of the stateu0R& and tran-
sition probabilitiesP0L ~dashed line!, ~b! P1R andP1L ~dashed line!
to the statesu0L&, u1R&, andu1L&, respectively, for a system with
e'331010 rad s21, B'10234 J s, andvF'1011 rad s21.
5-5
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show in the following section, it is possible to find an exa
correspondence between these frequencies and then a
regular behavior for the total system, in the symmetric c
and choosing properly the values of the coupling strengk
and of the system parameters.

B. The dynamics of the system in the symmetric case:
Existence of quantum superpositions of clockwise

and counterclockwise supercurrent states

In the previous case, the asymmetric SQUID poten
configuration results from the application of a dc control fl
fx not exactly equal tof0/2. In this section, we will study
the system whenfx5f0/2. This means that the two SQUID
potential wells have the same height so thate50. In such
symmetric conditions, Hamiltonian~19! reduces to the rela
tively simpler form

HR5S 0 0 0 BD

0 \vF BD 0

0 BD \vF 0

BD 0 0 2\vF

D , ~33!

whereB must be calculated puttinge50 in Eq. ~17!.
Analyzing the structure of matrix~33!, it is not difficult to

convince oneself that there exist two dynamically separa
subspaces, characterized by the frequenciesV15(B/\)vF

andV25A\21B2/\vF , respectively. The first subspace
generated byu01& and u12& and the representation ofHR
on it is given by the central 232 matrix block. Such a struc
ture is responsible of the appearance of entanglement in
time evolution of the combined rf-SQUID-field system. Th
matrix elements ofH connecting the statesu02& and u11&
generating the second subspace reflect the contributio
counterrotating terms in the truncated version of H.24

The eigenstates of matrix~33! assume the simple form

uu1s&5
1

A2
@2u12&1u01&], ~34!

uu2s&5
1

A2
@ u12&1u01&], ~35!

uu3s&5
1

An3s
F2

~\1AB21\2!

B
u02&1u11&G , ~36!

uu4s&5
1

An4s
F2

~\2AB21\2!

B
u02&1u11&G , ~37!

with eigenvalues given by

l1s5~\2B! vF , ~38!

l2s5~\1B! vF , ~39!

l3s5~\2AB21\2! vF , ~40!
13450
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l4s5~\1AB21\2! vF . ~41!

Expressions~34!–~37! and~38!–~41! may be immediately
derived from those relative to the asymmetric case given
Appendix A in the limit fore50. The two eigenstatesuu1s&
and uu2s& describe a maximum entangled condition of t
rf-SQUID and the monochromatic field states, induced
the inductive coupling between them. Rabi oscillations b
tween the degenerate statesu01& and u12& dominate the
dynamical behavior of the system whose time evolution m
be written down as

u01& t5
1

A2
@ uu1s&exp~2 il1st/\!1uu2s&exp~2 il2st/\!]

~42!

if the initial conditionu01& is assumed. Also in this case w
are interested in exploring the ability of the system to pe
odically come back to the initial stateu01& as well as to pass
through the stateu12&. To this end we plot both the surviva
probabilityP1(t)5u^01u01& tu25 1

2 (11cos 2V1t) of the ini-
tial state@solid line in Fig. 5~a!# and the probabilityP2(t)
5u^12u01&tu25sin2V1t to find the system in the stateu12&
after a timet @dashed line in Fig. 5~a!#. Equation~42! to-
gether with Fig. 5~a! provides a clear evidence of the exi
tence of coherent Rabi oscillations with frequencyV1 be-
tween the statesu01& and u12& corresponding to the
emission and absorption of a quantum of energy\vF by the
rf-SQUID.

Now let us consider the two-dimensional subspace
which the dynamics of the system, with respect to the tr
cated Hamiltonian~33!, is governed only by the counterro
tating terms with characteristic frequencyV2. Preparing the
system in the stateu02& and considering its time evolution
we easily get

u02& t52
B2

4~\21B2!
F 1

An4s

uu3s&exp~2 il3st/\!

2
1

An3s

uu4s&exp~2 il4st/\!G . ~43!

FIG. 5. ~a! Survival probabilityP1 and transition probabilityP2

~dashed line! at the stateu12& for a system initially prepared in the
stateu01&. ~b! Survival probabilityP3 and transition probability
P4 ~dashed line! at the stateu11& for a system initially prepared in
the stateu02&. In both cases, we sete50, B'2,7310235 J s and
vF'1011 rad s21.
5-6
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Once more we calculate the survival probabilityP3(t)
5u^02u02& tu2 of the ground stateu02&,

P3~ t !5
B2

4~B21\2!
F4\2

B2
12~12cos 2V2t !G , ~44!

and the transition probabilityP4(t)5u^11u02& tu2 to the
stateu11&,

P4~ t !5
B2

2~B21\2!
@12cos 2V2t#. ~45!

Analyzing the structure of these two expressions, we
duce that the entanglement between the two interacting
systems leads to an oscillatory behavior as before, but n
as shown also in Fig. 5~b!, we cannot get a complete popu
lation inversion between the ground stateu02& and the
higher-energy excited stateu11&. This is due to the fact that
in this reduced Hilbert space, processes involving the
change of two quanta of energy between the two subsyst
are unlikely.

Until now we have considered the system initially pr
pared in a state belonging to one of the two dynamica
independent two-dimensional subspaces. In the follow
we wish to consider richer physical situations involving bo
the two subspaces at the same time.

Considering, in fact, as initial condition the stateu0R&
5u0& ^ uR&, namely, the field in its vacuum stateu0& and the
SQUID with a right-hand current in the loop, the syste
evolves in accordance with the following expression:

u0R& t5a~ t !u0R&1b~ t !u0L&1g~ t !u1R&1d~ t !u1L&.
~46!

The time-dependent parameters appearing in Eq.~46! are
linear combinations of trigonometric functions characteriz
by the incommensurable frequenciesV1 andV2. In this case
the time evolution of the system is rather similar to th
obtained in the asymmetric case. Generally speaking,
fact makes it impossible for the system to exactly restore
initial condition. Since the ratioV2 /V1 may be controlled
by acting upon the parameterB and then, at least, on one o
the physical parameters appearing in its expression give
Eq. ~17!, we may wonder on what the dynamical propert
of the system become in correspondence to special value
B. It is indeed immediate to see that for

B5\/An221, ~47!

we getV25n V1, wheren.1 is an arbitrary integer. Unde
such a controllable condition, the dynamics of the system
dominated by the occurrence of many interesting featu
The four time-dependent parameters appearing in Eq.~46!
assume the form

a~t!5
exp~2 i tAn221!

2 S cost1cosnt1 i
An221

n
sinnt D ,

~48!
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b~t!5
exp~2 i tAn221!

2

3S 2cost1cosnt1 i
An221

n
sinnt D , ~49!

g~t!52 i
exp~2 i tAn221!

2 S sint1
1

n
sinnt D , ~50!

and

d~t!52 i
exp~2 i tAn221!

2 S sint2
1

n
sinnt D , ~51!

where t5V1t. Analyzing the time evolution of these fou
time-dependent probability amplitudes, it is not difficult
convince oneself thatthe system comes right back to th
initial state u0R& after a time t1[(2p/V1)
5(2pAn221)/vF if n is even and after a timet1/2 if n is
odd. For this reason, Eq.~47! expresses the condition for th
occurrence of periodic behavior in the dynamics of the co
bined system.

Other interesting manifestations in the dynamics of
system occur depending on the parity of the ratio betw
V2 andV1 determined by the fixed value ofB in accordance
to Eq. ~47!.

We find indeed that, ifn is even and always starting from
the stateu0R&, at timet1/2 the combined system reaches t
factorized state wherein the field is still in its vacuum sta
u0& and the current in the loop reverses its sense of circ
tion, meaning that the state of the rf-SQUID becomesuL&. If
n is odd, on the contrary, the probabilityP0L(t) of finding
the system in the stateu0L& is always less than 1@see, for
example, forn53 the dashed line in Fig. 6~a!#.

Moreover, forn even, at timest1/4 and 3t1/4, the system
is once more describable in terms of factorized states.
example, forn54 these factorized states may be expres
as

uc0~ t1/4!&5
exp~2 ipA15/2!

A2
@ u0&2 i u1&] ^ u2&,

~52a!

FIG. 6. ~a! Survival probability of the stateu0R& and transition
probabilities to the statesu0L& ~dashed line!, ~b! u1R&, and u1L&
~dashed line! for a system initially prepared in the stateu0R&. Here,
n53, e50, B5\/A8, andvF'1011 rad s21.
5-7
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uc0~3t1/4!&5
exp~2 i3pA15/2!

A2
@ u0&1 i u1&] ^ u2&,

~52b!

u2& being the ground state of the rf-SQUID. This cohere
evolution is represented in Fig. 7 where we plot, forn54,
the survival probabilityP0R(t) of u0R& and the transition
probabilitiesP0L(t), P1R(t), andP1L(t) to the statesu0L&,
u1R&, andu1L&, respectively.

It has to be stressed that, on the contrary, whenn is odd
the previously described oscillations between factoriz
states and entangled states of the total matter-radiation
tem do not occur. This fact may be fully recognized looki
at Fig. 6, where we plotP0R(t) P0L(t), P1R(t), andP1L(t)
assumingn53 andP0R(0)51. We note that a time instan
in correspondence of which these four probabilities are
equal does not exist.

Remembering thatu2&51/A2@ uR&1uL&] and that the
statesuR& anduL& may be legitimately considered as macr
scopically distinguishable states of the rf-SQUID, Eq.~52!
predicts the generation of a maximally entangled Sch¨-
dinger catlike state in the dynamics of an rf-SQUID expos
to a single-mode quantized electromagnetic field when
combined system is prepared in the stateu0R&.

The fact of being able to build quantum superpositions
two states describing clockwise and counterclockwise su
currents in the loop confirms the role of such nanodevice
simple physical systems due to which it is possible to c
ceive experiments on fundamental aspects of the quan
theory.

IV. DISCUSSION AND CONCLUSIVE REMARKS

In this paper we have investigated the coupled dynam
of an rf-SQUID and a single-mode quantized electrom
netic field in the reduced 4D Hilbert space spanned by
low-lying energy states of the uncoupled system. The co
spondent Hamiltonian model includes contributions fro
both the rotating and counterrotating terms and this fact tu
out to be at the origin of a rich dynamical behavior dom
nated by Rabi oscillations associated to more than one
quency. By construction, our theory is based on a Ham
tonian model containing some external parameters. S
they may be easily varied, we have addressed the intere

FIG. 7. ~a! Survival probability of the stateu0R& ~dashed line!
and transition probabilities to the statesu0L&, ~b! u1R& ~dashed
line!, and u1L& for a system initially prepared in the stateu0R&.
Here,n54, e50, B5\/A15, andvF'1011 rad s21.
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question of the extent at which this circumstance provides
effective tool to get a reasonable control of some aspect
the system dynamics. The analysis reported in the paper
siders, fixing appropriate resonance conditions, two differ
cases, the asymmetric and the symmetric ones. In both ca
the dynamical problem is exactly solved in the trunca
Hilbert space finding quasiperiodic behaviors of the init
state survival probability as well as of some physica
meaningful transition probabilities of experimental intere
Such quasiperiodic temporal evolution reflects the existe
of quantum coherent oscillations occurring at incommen
rable Rabi frequencies. An important difference between
two physical situations under discussion is that in the sy
metric caseHR exhibits two invariant 2D subspaces, where
in the asymmetric case the time evolution of any initial co
dition of the total system explores the entire 4D Hilbe
space. This different dynamical behavior has direct rema
able consequences. When indeed the external paramee
measuring the height difference between the two minima
U(f) does not vanish, the system evolves intrinsically p
venting the occurrence of disentangling in correspondenc
any possible choice of values for the external paramet
Our theory predicts completely different and rich results
the symmetric case stemming from the reducibility into
32 blocks ofHR in the truncated Hilbert space. We have,
fact, proved that the external parameters may be fixed
such a way to realize a control on the dynamical replay of
total system which, for instance, may be forced to exhib
periodic evolution accompanied by the occurrence of an
cillatory disappearance of entanglement between the
subsystems. A relevant result of this paper is the genera
of quantum superpositions of the two macroscopic dis
guishable statesuL& and uR& of the rf-SQUID whenV2
5n V1, with n even.

It is worth noting that the sensitivity of these results to t
parity of the ration between the characteristic frequencyV2
and V1 is an effect of the counterrotating terms of Ham
tonian ~19!. The JC model, in fact, leads to the factorize
states described by Eqs.~52!. However, since in this case th
dynamics of the system is driven only by the Rabi frequen
V15(B/\)vF , we may obtain the factorized states~52! for
any value ofB.

These results are different and their value may be furt
appreciated considering that the realization of our theoret
scheme is in the grasp of experimentalists. The several ty
of SQUID necessary for the observability of our predictio
are easily fabricated exploiting the well-defined trilay
Nb/AlOx /Nb technology. Moreover, it is possible to prepa
and control the state of the rf-SQUID via flux pulses and
pulses. Finally, we may readout the macroscopic flux stat
the qubit using a suitable magnetometer~essentially an hys-
teretic dc-SQUID detector! whose experimentally measure
detection efficiency is of the order of 98%.30

One of the most crucial problem related to this kind
device is the unavoidable presence of decoherence. The q
ity of coherence for a two-level system can be qualitativ
described in terms of the coherence timeTw of a superposi-
tion of its states. It is generally accepted that for an act
decoherence compensation mechanism,Tw must be larger
5-8
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than 104top , top being the duration of an elementary oper
tion of the qubit.31 In our case the Rabi oscillation freque
cies V1 and V2 correspond to characteristic timest1'2.4
310210 sec andt2'6310211 sec~for n54). Moreover, as
demonstrated by Cosmelli and co-workers, for a syst
cooled at 5 mK and effective resistanceR'4 –5 MV, the
decoherence time is approximately of the order of 1ms.32

Thus, in our case we can reasonably believe that it is p
sible to realize a superconducting device satisfying the c
straint Tw.104top . An open problem for the experimenta
realization of the physical system is represented by the c
pling between a qubit and a single mode of a resonant ca
We must take into account the typical dimensions of
SQUID chip with respect to the size of a high-Q supercon-
ducting cavity. In order to bypass this nontrivial technic
problem we may use an experimental arrangement consis
of a chip placed inside a cavity made by two open mirror33

or we may think to integrate the Josephson device an
waveguide in the same chip.34 Many groups are currently
working in this field and we think~and hope! that these
techniques will be of common use in the next few years
most immediate solution is represented by the substitutio
the resonant cavity by anLC resonator or by a large are
current-biased Josephson junction. Several works taking
account this substitution and the fact that, as discusse
Sec. III, the Hamiltonian model for all these three syste
may be expressed in terms of Eq.~10!, make it possible to
retain that this experiment may be realized with the curren
available technologies.
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APPENDIX A

In this appendix, we give the analytical expressions
the eigenstates and eigenvalues of Hamiltonian~19! in the
asymmetric case. In order to simplify the notation we int
duce the following symbols:

G5A4B2e21\2vF
2, ~A1!

Q15A4B2vF
212\vF~\vF2G!, ~A2!

Q25A4B2vF
212\vF~\vF1G!, ~A3!

P15\vF1G, ~A4!

P25\vF2G. ~A5!

The eigenvalues of the Hamiltonian~19! may be written
down as follows:

l15\vF2
Q1

2
, ~A6!
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l25\vF1
Q1

2
, ~A7!

l35\vF2
Q2

2
, ~A8!

l45\vF1
Q2

2
. ~A9!

The eigenstatesuu1&, uu2&, uu3&, and uu4& relative to the
eigenvaluesl1 , l2 , l3, andl4 respectively assume the fo
lowing form:

uu1&5
1

An1
H 2

Q11P2

2BD
u02&1

P1Q124B2e2

4B2De
u12&

2
P1

2Be
u01&1u11&J , ~A10!

uu2&5
1

An2
H Q12P2

2BD
u02&2

P1Q114B2e2

4B2De
u12&

2
P1

2Be
u01&1u11&J , ~A11!

uu3&5
1

An3
H 2

Q21P1

2BD
u02&1

P2Q224B2e2

4B2De
u12&

2
P2

2Be
u01&1u11&J , ~A12!

uu4&5
1

An4
H Q22P1

2BD
u02&2

P2Q214B2e2

4B2De
u12&

2
P2

2Be
u01&1u11&J , ~A13!

where 1/Ani , with i[1,2,3,4, are the normalizing factor
satisfying ^ui uuj&5d i j . It is useful to expand the state
u02&, u12&, u01&, and u11& in terms ofuu1&, uu2&, uu3&,
and uu4&. Inverting Eqs.~A10!–~A13!, we get

u02&5
BD

~P12P2!Q1Q2
@An1P2Q2uu1&2An2P2Q2uu2&]

2An3P1Q1uu3&1An4P1Q1uu4&], ~A14!

u12&5
2B2De

~P12P2!Q1Q2
@An1Q2uu1&2An2Q2uu2&]

2An3Q1uu3&1An4Q1uu4&], ~A15!

u01&5
Be

~P12P2!Q1Q2
@An1~P22Q1!Q2uu1&

2An2~P21Q1!Q2uu2&2An3~P12Q2!Q1uu3&

1An4~P11Q2!Q1uu4&], ~A16!
5-9
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u11&5
1

2~P12P2!Q1Q2
@An1Q2~P1P21P2

22P2Q1

14B2e2!uu1&2An2 Q2~P1P21P2
21P2Q1

14B2e2!uu2&2An3Q1~P1
21P1P22P1Q2

14B2e2!uu3&1An4Q1~P1
21P1P21P1Q2

14B2e2!uu4&]. ~A17!

APPENDIX B

In this section, we give the analytical expressions for
transition probabilitiesP2(t), P3(t), andP4(t) to the states
u12&, u02&, andu11& for a system in the asymmetric con
figuration and prepared att50 in the stateu01&.

Exploiting Eqs.~20!, ~A14!, ~A15!, and ~A17!, we write
down these transition probabilities as

P2~ t !5u^12u01& tu25S2H (
j 51

4

Tj
212T1T2 cos

Q1

\
t

12T3T4 cos
Q2

\
t12@T1T31T2T4#cos

~Q12Q2!

2\
t

12@T2T31T1T4#cos
~Q11Q2!

2\
tJ , ~B1!

where

T15Q2

P22Q1

4B2eD
~24B2e21Q1P1!, ~B2!

T25Q2

P21Q1

4B2eD
~4B2e21Q1P1!, ~B3!

T35Q1

2P11Q2

4B2eD
~24B2e21Q2P2!, ~B4!

and

T45Q1

P11Q2

4B2eD
~24B2e22Q2P2!. ~B5!
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