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XY ring-exchange model on the triangular lattice
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We study ring-exchange models for bosonsxdf spins on a triangular lattice. A four-spin exchange leads
to a manifold of ground states with gapless excitations and critical power-law correlations. With a nearest-
neighbor exchange, fluctuations select a four-fold ferrimagnetically ordered ground state with a small spin
(superfluid stiffness which breaks the global(l) and translational symmetry. We explore consequences for
phase transitions at finite temperature and in an in-plane magnetic field.

DOI: 10.1103/PhysRevB.67.134427 PACS nuni§er75.10.Jm, 05.30.Jp

. INTRODUCTION tively, haveO(L?) andO(L) conserved quantities. It is thus
worthwhile to examine cases where such extensive symme-
Multispin-exchange models incorporating ring-exchangeiries are absent from the outset, even in the pure ring-
processes have been of interest since the early studies 8kchange model, as is the case with the triangular lattice.
magnetism in solid helium-3? Ring-exchange processes  The principal results of this paper are the followir(o:
could also play an important role in Wigner crystals near the/e show that the () four-spin exchange model on the
melting densit§* and in Mott insulators which retain a fair tiangular lattice(with S,=0 or half-filling for the bosons
degree of local charge fluctuatiohéndeed, neutron scatter- has a manifold of degenerate ground states and the correla-

. . & nsulating LaCuO, h h that tion functions are critical in the ground states. We identify
INg experments on nsufating Latb-uty have snown that = y,q appropriate symmetries and conserved quantities which

aspects of the spin-wave dispersion in the antiferromagn&jie rise to this.(ii) Perturbing in the nearest-neighbor ex-
may be understood by invoking ring-exchange terms. Anthange(boson hoppingwe find that fluctuations select a
other reason for the interest in such models is that they magsurfold set of states from the degenerate manifold and the
support spin-liquid phases which are translationally invariantystem develops long-range order at zero temperature. The
Mott insulators with no magnetic order, as indicated fromordered states break the globa{lly symmetry as well as
numerics on triangular and kag(’)rhﬂtices? This has been translational symmetryiii ) In the ordered ground states, the
established analytically in some models with (1  spin(superfluid stiffness~J?/K and is very small for small
symmetry>® which may also be viewed as boson models.J/K. At any small nonzero temperature, thelsymmetry
Finally, many models such as the quantum dimer model on ¥ restored and we are in a phase with power-law spin
triangular latticé®® the easy-axis version of a generalized (Phasé order, which gives way to a disordered phase via a
Heisenberg model on the kagoriatice® and the easy-axis BereZ|nskg—Kosterhtz-ThouIe%é_ (BKT) transition for T
antiferromagnet on the pyrochlore lattiéenay be mapped -~ Tekr™~J°/K. However, the discrete symmetry of the bro-
onto effective ring-exchange models in their low-energy Sub_ken translations is not destroyeq .unt|l a h.|g.her temperature
space of states. Thus, understanding the phases and phdse J: We analyze phase transitions at finite temperature,
transitions in ring-exchange models is important. and also in the presence of an in-plane magnetic field, W|th|n_
In this paper, we will focus on aXY (“easy-plane” a Landau theory, and discuss the phase diagram and experi-

ring-exchange model on the triangular lattice with both four-mental consequences. . )
spin and two-spin exchange terrwith strengthsk and J, The outline of _the paper is as follows. In Sec. .II, we will
respectively in the regimeJ<K. This model is interesting present the Hamiltonian. In Sec. Ill we analyze its symme-

from several points of view. First, several systems such alieS and conserved quantities, and define the dual represen-

Wigner crystals and certain organic Mott insulators form gtation of the model which allows us to analyze the instabili-

triangular lattice of spins with possibly appreciable ring- ties of the system towards charge and energy ordering. We
exchange processes, and tk¥ spin problem is one trac- present arguments and numerical results to show that the
table limit of such models. Second, easy-plane magnets o'ﬁ‘OdEI with J=0 has C“U%a| _pol\Ner-la}N Cor:!falanons at
triangular lattices are known to exigthough mostly as - O: In Sec. IV, we perturbatively analyze effects on intro-
stacked layers forming a three-dimensional systand this ~ducing the nearest-neighbor excharigeson hoppingand

could be of some relevance to them—in fact, these systerﬂ‘g?d a phase-ordered state. We al_so discuss the phase dla_gram
have motivated several studies of easy-plane triangular qualfithin Landau theory as a function of temperature and in-
tum Heisenberg modelZ.Finally, earlier work by some of pla}ne magnetlc-ﬂelc_:l. We _close with a cﬂscgssmn and specu-
us has shown that related models on the kagtattece are lations for three-dimensional generalizations and(ZU
fractionalized whereas they support a critical phaghe ~ Invariant models in Sec. V.

“exciton Bose liquid”) on the square latticE. This was es-
sentially shown by perturbing around the pure ring-exchange
limit (J=0) where the kagomand square lattices, respec-  We define the model in rotor variables as

1. MODEL
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perturbative corrections to the free energy @&@?). To this
order, the free energy is independent of the sigd ahd we
obtain a ferrimagnetic phase which breaks the globdl) U
invariance as well as fourfold translational symmetry. The
physics of this phase and the phase transitions out of it will
be the focus of this paper. For largd/K we of course
recover the conventional phases mentioned above.

To make an estimate of the coupling constants in one
case, let us imagine starting from the Hubbard model for
¢ ¢ ] electrongwith nearest-neighbor hoppipgt half-filling on a

o S Vi & triangular lattice and perturbing MU to derive an effective
(a) (b) spin model with ring-exchange terms in the insulator. This
takes the form

FIG. 1. (a) The three kinds of plaquettes on the triangular lattice.
The ring-exchange process involves the spins located at the points
1-4 of geach plat?ue?te. The labeling is choZen to coincide withpthat Hspin= KED: [(S1-S2)(S3 Sa) +(S1-80) (S &)
appropriate for the definition dual variables in the dual model dis-
cussed in Sec. IIC, and the sit€sform the sites of the dual
kagomelattice. (b) Rotating — ¢+ on the sites indicated by _(31'53)(82'84)]+i21 4SS, @
open circlegwhich form one of four possible triangular sublattices '
changes the sign of the ring-exchange té¢nm the Hamiltonian.  where the first term involves all four-site plaquettes on the
Also shown are the basis vectasb for the triangular lattice. triangular lattice. Adapting results from Ref. 5 to this case,
we find J=4t2/U—-28%U3, J'=J"=4tYU3 and K
=80t*/U%. For U/t=6, numerical result8 show that the
H=KX coS¢1—@,+@3—¢4q)+I>, codei—¢)) model is in an insulating phase though still close to the
P Ry metal-insulator boundary; in this cad&t=0.53,J'/t=J"/t
U _ =0.02, andK/t=0.37. Clearly, it seems that one can de-
+ > 2 (ni—n)?, ) scribe the spin degrees of freedom in the insulator by setting
' the further-neighbor coupling¥ =J”=0 and retaining only
nonzeroJ,K. Indeed, exact-diagonalization studidid a
spin-liquid phase for a closely related model in qualitative
agreement with the Monte Carlo results on the Hubbard
model® It thus seems profitable to understand the above
model for JJK<1 as a starting point to analyze this full

where ¢; is the phase of the boson variable; €0 and ¢;
=2 are identified andn; is the the canonically conjugate
boson numbefrespectively the angle and angular momen-
tum of a W1) rotor], satisfying the commutation relation

[¢i,nj]=i08;j. The termse,, ..., ¢4 in the first term of ‘ S :
H denote angles around four-site plaquettes of the trip_roblem. ForU/K—e, the Hamiltonian in Eq(1) is pre-

angular lattice—there are three such kinds of plaquettegIsely theXY limit of the above model obtained by setting

as shown in Fig. (g). The J term denotes nearest-neighbor terms containings, to zero.
hopping of bosons whildJ denotes a repulsive interac-
tion between bosons. WithJ/K—o, we can identify . MODEL WITH J=0
S,(r)=n,—1/2, S*(r)=exp(*i¢,), and this model reduces
to an S=1/2 XY quantum spin model witm=1/2 corre- ) o
sponding to totas,=0. For J=0, we can change the sign &f by shifting ¢,
With J=0, changinge,— &, =¢,+ 7 on the sites indi- — ¢, = @, + 7 on any one of four sublattices of the triangular
cated by open circles in Fig.() changes the sign oK lattice indicated earliefwe will work with these “rotated”
(there are four such choices of a triangular sublattice oryariables¢, and a ferromagnetic four-spin term for conve-
which to make this transformation, as is clear from the fig-Nience. This means shiftings,— ¢+ on any two such
ure). Thus, forJ=0, the ground-state energy is independentSublattices leaves the action invariant and is a symmetry op-
of the sign ofK. For nonzeraJ, however, the sign oK is eration. We can identify this with a conservation of total
important. boson number modulo two on alternate rows of the triangular
For K<0, the leading perturbative corrections on includ- lattice. These rows can run in any of the three symmetry
ing a nonzerd areO(J), and the energy and phases depenodwectlons of the lattice; this corresponds to a total of four
on the sign of)J—for J<0 we get a ferromagnetic phase, SYMmetry operations including the identity. _
while J>0 leads to a/3x 3 Neel order, which are also the 1€ rotor Hamiltonian above describes bosons hopping
ground states for largg/K| (where we may ignore the four- on plaquettes of the triangular lattice. Rbe 0, the dynam-

spin term. Thus there are no phase transitions at any noniS conserves the center of mass of the bosons, since the

zeroJ and we only obtain the well-studied phases. bosons hop equal distances in opposite directions on any

ForK>0, as appropriate for, say, spin degrees of freedonplaquette. In other words the center of mass operigr.
in an electronic Mott insulator, it turns out that the leading=X,rn, satisfie§ R.,,H]=0 and is a constant of motion.

A. Symmetries
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Thus, in deriving the imaginary-time path integral for the YA » KTTTANCTT
partition function in terms of$, we may insert factors of // \ /N a /N

exp(q- R.,) with an arbitrary vector, sinceR;,, com- — % ,

mutes withH. This corresponds tap,— ¢, +q-r being a  / + + ) //\ +E ¢ \

symmetry of the phase action. / B Ny .V
If we identify ¢=0 with ¢= 2 or keep track of the fact % I/*\ iy N -+8—I"\ 4

that the charge is quantized, the first symmetry operation \\ [ \+ +/ 2\ \ \

discussed above is a special case of the second and corr < \ v

sponds to choosing=Q; (i=1,2,3) where the momentg, ‘o \ \ \

are at the center of the edges of the Brillouin zone, indicated oY Vi %

in Fig. 4(a), below. The above symmetries fd#=0 imply we

cannot have terms which depend dwd) in the phase ac- (@) (b)

tion (in the path integral for the partition functiprnrhe low- . . . )

est allowed gradient term on which the action can depend is F!C- 2. (@ The original triangular latticédashed lingsand the

of the form (V2¢). We explicitly confirm this in a spin-wave dual kagomdattice (bold lineg. The sites “+” and “ —" indicate

calculation in Sec. 11l C, where we show the collective model® Sites of the kagomenit around the site of the triangular lattice
and are referred to as “hex” and “star,” respectively in the paper.

; 201) — |1 |4 ; _

disperses a?) (k) “I(|t forfsmet{l_l |k| a.lrlﬁ calculate its ]E:On b) The “gauge” transformation on the dual lattice—shiftiddy &
Sequ\?ncesl- .Olr ct())rrelfl |0r|;1 unctions. . € lp.re?;;(::g 0 'I? no n the indicated sites as shown, withr being an integer—is an
zeroJ explicitly rgg S e_se symmetries; in wi exact symmetry of the dual Hamiltonian.

turn out to be a critical point of the model.

and the dual variables sati§iip , 0p/]=ip pr , With 6p /7
having integer eigenvalues, whily has a continuous spec-

For J=0, it is useful to define a dual representation fortrum.
the model which permits us to obtain spin-wave theory as a We pause to elaborate further upon the redundancy of the
well-defined limit of the model and to analyze instabilities of 6 variables. Since only the combination of the 6p vari-
the spin-wave phase towards charge and energy ordering. Fables is physical, the Hamiltonian will be invariant under any
this purpose, we use a plaquette duality transform&tiand  integer multiple of7 shift of the 6, that leaves all then,
work with dual variablesdp and Np which reside at the invariant. This can be done locally as follows. Pick any hexa-
centers of each of the four-site plaquettes of the triangulagon of the dual kagomiattice, and choose two neighboring
lattice—these siteglabeled byP) form a kagomelattice  sites on this hexagon. Shift.— 6+ 7 on those sites, and
with nearest-neighbor spacing 1/2 in units of the lattice spacsimultaneously takép— 6p— 7 0n the sites on the opposite
ing of the original triangular lattice. Alternatively, we may side of this hexagon, leaving the remaining two site of the
label sites on the dual lattice as, &), viewing the kagome hexagon(and all the other sites not on this hexagam-
lattice as a triangular lattice three sitdabeleda=1,2,3) touched as shown in Fig(l®. Since this leaves all physical
per unit cell, and we will use this notation whenever conve-properties invariant, this should be regarded as a local gauge
nient. Thus, there are 3 times as many sisd hence de- symmetry. Such transformations are generated by the unitary
grees of freedopon the dual lattice compared to the origi- operators
nal, and this is reflected in a redundancy in the description
which we will discuss shortly.

Define Gr(Ka)=eX[(iKa~%:x(rp—r)Np , (6)

TNp= (1= o+ 3~ Pa), 3

B. Plaquette duality and dual action

whereK , with «=1,2,3 are the three reciprocal lattice vec-
tors for the triangular lattice. In the spirit of a gauge theory,

wnr:E HP—E Op, 4 we could restrict our consideration to physical gauge-
hex star invariant states which satisfG,(K,)=1. This can be re-
where the angles, . .. ,$, in Eq.(3) are around plaquette Written suggestively as

P of the lattice with the convention indicated in Fig(al
The sites hex and star lie on the 12-site unit of the kagome

lattice around the site as shown in Fig. @) (marked by hzex (rp—r)Np=0(moda), @)
“+" and “—,” respectively, while the center of each
kagomeunit lies on the triangular latticéand is labeled).
In these variables, the dual Hamiltonian on the kagdate
tice is

wherea is an arbitrary Bravais lattice vector for the triangu-
lar lattice. As in Refs. 8 and 13, the operatdp may be
regarded as the local “vortex numbefrhodulo 2 on the site
U 2 P of the dual lattice. Thus the condition of E() requires
_2 2 HP—E gp_wﬁ that the localvortex center of mas®n each hexagonal
22 T | hex star plaguette of the kagomiattice vanish—the ambiguity by a
(5) Bravais lattice vector corresponding exactly to the ambiguity

Hauar= K; cog 7Np) +
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in Np by a shift of 2. Thus the gauge invariance of the dualand

description is related to the immobility of “vortices” in this
model.

Using a Trotter decomposition, we may write the partition

S f 2 02008209y, +QAMN + Sigher, (11

function as a discretized imaginary-time path integral in the

standard manner. This leads Z&= [Do(r,nexp{—3 a(r,7)]}
with the action

S dual™

) 2 (ar,a,f_ 0r,a,T+1)2

=2

r

(2 Op— > 0 WWZ,

hex star

8

where the field 6, , /7 is an integer-valued fielde,
=BIN,. with B=1/T is the inverse temperature, aid. is

where we have defined renormalized couplidf&),/C(k)
(which are smooth nonzero functionslof andv,, the site
r=(m,n) as before, and the 83 matrix G, (k)
=A}, (k)Ag(k) with

ika=ikp_ gikp

Ai(k)=1+e ka—g~

Ay(K)=1+e Ka=1ko_ g=ika_ g=iky

Ag(K) =1+ e Ko— gika_ g—Tkaik, (12)

where k,=k-a and k,=k-b. Here S denotes other

the number of imaginary-time slices. The quantum problenterms which might be generated in deriving the low-energy

at a temperaturd corresponds to the continuum limé,
—0,N,—o with fixed 1/,N.=T. Thus, we reduce the
guantum model to an anisotropic {2.)-dimensional classi-

action. For the present purposes, we will not write down the
explicit form of these terms but we will discuss them later.
If we setv,q=0 and ignoreS;g,e,, We can obtain the

cal model—since there is no sign problem, this proves usefutigenmodes of the Gaussian actisff), by diagonalizing
for carrying out Monte Carlo simulations in the dual repre-G,, s(K). We find there is one nonzero eigenvahik) and
sentation to numerically test for charge ordering andtwo zero eigenvalues. This corresponds to one dispersing
plaquette-energy ordering in the ground state at arbitrarynode @,) and two nondispersive mode®§ 5 with zero

U/K.

C. Effective theory and spin-wave approximation

We may rewrite the dual action as

2
r a,'r+1)

)Z (Or i~

a7

1
Saual= (
’7T

(Z Op— > 0P—WF2

2 w2 T\ hex star

- X 309296, ,.,), (9)

q,r7a

where the bare couplingﬁq are chosen to enforce the inte-

ger constraint or¥ and may be singular. We will now write
down a low-energy effective action in terms af, , .
=[0];—(Qmn)/2. Here[ #]; symbolically denotes an inte-
gration over the fasthigh-energy degrees of freedom while
retaining the spatial structure of the latti€@+=2#7n, and the
site r=ma+nb in terms of the basis vectora,b of the
triangular lattice shown in Fig. (b). The factor we have
subtracted out eliminates the mean densifyom the second
(boson repulsionterm in the Hamiltonian.

If we ignore the terms wnh;zq, we obtain a Gaussian
action in terms ofd. Studying this action motivates us to
guess that the effective low-energy action may be of the for
Shta= Siart Sticas With

energy(flat band$, and the action at this level takes the form
0%+ E2(K)

fw; 27T2K:(k)

2
e )2
-I—fw kv“E—Zﬁ(szK(k))'@“(k' NE (13

where we have set(k)=£2(k)/U(k)K(k) so that(k) ap-
pears as the excitation energy of the collective méue
Explicitly,

)|®1(k!w)|2

A (k)=2[6—3 cosk,— 3 cosk,— 3 cogk,+ k;,) + cogk,
—kp) +cog 2k, +kp) + cog 2k, + ko) 1; (14

thus the dispersing mod®, has one gapless point &t
=(0,0). The leading dispersion away from this point is
£2(k—0)=(9/16Y4(0)K(0)|k|*—as stated in Sec. IlIA,
this dispersion is dictated by the symmetry of conservation
of center of mass of the bosons which forbids a terfi|?.

We can also now see that the extra degrees of freedom
(two per site of the triangular lattitentroduced in going
over to the dual description manifest themselves as zero-
energy modes corresponding to unphysical fluctuations,

while the dispersing mode corresponds to physical fluctua-
tions. In fact, by Fourier transforming a general superposi-
tion f5(k)®,(k) + f3(k)®3(k), we can show that the zero
r.rqnodes indeed arise from the local gauge symmetry generated

y Eqg. (6) in real space. More precisely, in the coarse-
gramed quadratic low-energy theory, these discrete symme-

try operations are promoted to continuous shiftéth arbi-
trary |K,|). Similarly, Fourier transformind, (k) ®,(k), we

find that the physical fluctuations are composed precisely of
the gauge-invariant boson densities.

uk)
272

(O) —

dual

2 ?

Gaﬁ(k) ﬁk,ﬁ,w
(10)

a)zﬁaﬁ
ol ——E
2m2K(K)
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At this stage, we may reintroduce the boson phase fields E. Argument for irrelevance of higher-order terms
by a Hubbard—Stratonovitch decoupling of the time deriva-

. . ) . To see whether the termy, is relevant, we can evaluate
tive term of the physical fluctuatio®, (as in Ref. 13

the correlation functions of this operator, and we find it is

namely, local in space and exponentially decaying in time,
p( w? Ok w)|2) (cos 29, , .C0S 200 5.0)~ S 0045 XN —¥|7]), (19
- 10,k
272K (k) with a constanty>0. This is not hard to understand—it

arises from the fact that the variabteis a combination of
E?(k) the eigenmode® , , 3 and cos @, , , is not “gauge invari-
:f D ¢o* ex;{ - m|¢(k.w)|2> ant.” As a result its spatial correlations are local, while the
fluctuations of the zero mode®,; 3, determine the exponen-
p( w&(K) 06 (k) — 6 (K)© (k)]) tialéempgral (;I]ecay. Clglarlfzq is irrelevant.b .
xXexp ———————— 1 (K)— 1 . onsider the possible forms we can obtain her-
2 UK)K(K) These terms would be of the form of cosines involvi?]g mul-
(15)  tiple ¥'s at different space-time points. However, similar ar-
guments as above apply to these operators. The only opera-
Provideduv,, and S;gner are irrelevant and can be ignored, tors which can have nonzero correlations at nonzero
we can integrating out the fielél; which leads to a Gaussian separation would be gauge-invariant combinations of the
action for the boson field, J's. As we have shown, these are the local boson densities.
Thus, if we admit only slow fluctuations & ,, these would
- w’+E2(K) ) take the form of weak density-density interactions within a
St :f ; T(k) [ (k). (16) perturbative treatment and could renormalize the coefficients
¢ of the Gaussian action, but not cause an instability. Of

This corresponds to a spin-wayearmoni¢ approximation ~Course, such density-density interactions might lead to a

and may be used to evaluate boson correlation functions tgharge-ordered state at strong couplings, but our arguments
zeroth order iv . show that the Gaussian theory is perturbatively stible.

. . . . F. Numerical results
D. Boson correlation functions in spin-wave theory

To confirm the above arguments we have carried out
Monte Carlo calculations on the dual model using a Me-
tropolis algorithm, for lattice sizes up to 432 spatial sites and
48 time slices, and periodic boundary conditions. We find no
evidence of any charge ordering for=1/2, even for large
(61081 400y || (~ 112 {3) THOYTETO) U/K. We have compared the density-density correlations

and find agreement with what we expect from a Gaussian
theoryS{°),. In particular, we show results for the compress-
ibility « defined through«= xp,(k—0,w,=0) where

To characterize the Gaussian the&t§, we evaluate the
space-time correlation functions for the boson creation op
erator expig,,). At long times or large separations, these
correlation functions reduce to

<ei(/)ol,.e7i¢o’o>~|T|(71/477\f§)»51110i7}_(i05' (17)

Clearly, the Gaussian theory describes a critical liquid of the o

bosons with power-law correlations arising from the gapless Xon(K,wp) =2, e~ K r*ien’n(r, /n(0,7)).  (20)

excitations dispersing aXk)~ |k|?. From the long-time be- T

havior of the two-point correlation in a finite-size system, wejithin the Gaussian theory= 1/ 24(0). In Fig. 3 we plot

may evaluate the finite-size scaling of the gap to adding gne scaled compressibilitye(K) « which is expected to scale

particle to be justA(L)=U(0)/L?. In the thermodynamic 45K /4(0). We findthat that it is nonzero at all/K in the

system, the Iqw-gnergy dgnsity of states per unit volume Oﬁuantum ¢-continuum limit, with 2(0)/K=5 as U/K

collective excitations is given by —o. We have also checked and found no evidence for en-
ergy ordering on the plaquettes of the triangular lattice. Thus,

1 1 we believe that fon=1/2, the ring-exchange model with
N(w)=g Ek: 5(‘0_6('())“):0 23U(0)K(0) 18 _0 is well described by the Gaussian fixed-point ac&H,

where terms withv,q and all other termsS;gne, are irrel-
which is a constant depending on the interactions. Thus, agvant.
low-energy long-wavelength properties of the liquid are de-
termined in terms of th&k—0 behavior of the functions |v. PERTURBING IN NEAREST-NEIGHBOR COUPLING J
U(k),xC(k). We next present arguments and numerical evi-
dence that this Gaussian description of a critical liquid in the
model withJ=0 may be valid even in the presence of terms  To perturb in the nearest-neighbor exchadgé is con-
U2q and Syigher- venient to work in the phase representation which we have

A. Ordered ground state
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T T T T I T T T T T )—/-——-—/"‘(———/
r m] ETK = 0.75 7 / \/"; “:*‘;4 /
'T aeK =050 AT AN
mecK =025 S e
o _ Q A
< 3 ERL T
& o5 A . ®)
r é// . FIG. 4. (a) The four ordering wave vecto®, (a=1,...,4)
K/Ueff 5 | obtained by perturbing in the nearest-neighbor couplingith the
aa hexagon indicating the first Brillouin zone of the triangular lattice.
r . (b) The phase-spin order in the original variablgsin one of the
0 P S T W I S S S B four broken-symmetry ground states. The order may be most easily
0 0.5 1 thought of as alternating rows of ferromagnetic and antiferromag-
K/U netic spins. The bold dashed lines indicate bonds on which the spins

point in the same direction, while the other bonds have antiferro-
FIG. 3. The dependence of the scaled compressibilitK} « magnetic spin orientation. As discussed in the text, these correspond
on the bare boson repulsias for variouse K. Within spin-wave {0 €nergy ordering in the ground state with an associated fourfold
theory, we expectd,K)«=K/1(0) as discussed in the text. From broken discrete symmetry.
the figure we see thd€/14(0) coincides withK/U for smallU (as
indicated by the dashed linebut deviates and tends to a constant
K/Ug~0.2 as the bart) — (as shown by the solid line drawn as  §f=——8J%[co$Q,+ coSQ,+ coF(Q,+ Qp)]

a guide to the eye Typical error bars are indicated at one point. We 2

thus expect th&s=1/2 XY spin model withJ=0 to be compress-

ible, with 14(0) = Ue- X % (=D)cod ¢0,0,0-P1,0,07 Pmn, -+ Pm 10,70
argued remains a valid “fixed-point” description of the pure (22

ring-exchange model for all values of the bare coupling
U/K. In this, we make the approximation of completely ig- , ) ,
noring irrelevant operators—this seems reasonable in retrgvhere (=)o is the e>A<pectat|onAvaIue evaluated in the
spect since we will find that the system acquires long-rang&aussian theorf2,=Q-a, Q,=Q-b, and we have used the

phase order af =0. sixfold symmetry of the triangular lattice to simplify certain
The nearest-neighbor perturbation we add to the GaussidAtermediate expressions. The expectation value may be ana-
phase action takes the form lytically evaluated at smalU/K by expanding the cosine

term since its argument is small in the Gaussian theory, and
we find that the sum oven,n is positive. Thus(i) the cor-
rections to the free energy are independent of the sigh of

$=32 | drl(—1)"coS dmn..— Bms1n.r) and (i) minimizing 8f with respect to variations @ corre-
mn sponds to maximizing [ co$Q,+coSQ,+coS(Qy+Qp)]
+(—1)™coS dmn »— Pmnsis) which leads to ordering at four wave vectof3, («

. T =1,...,4) which are shown in Fig. @). We expect this

+(=1)™""cos bmn, -~ Pmi 101,715 (21)  order to persist even at large effectiié/K) (recall that the

bare U/K—o in the S=1/2 spin limi. To obtain the or-

. . . dered states in the original phase variables, we rotate back
where we hz%ve chosen to label sites on the triangular latt'C%(r)—>¢(r)= #(r)—m on the triangular sublattice and we
asr=ma+nb, and we are working in rotated variablgs  then find, as shown in Fig.(8), that the resulting ordered
for which the ring-exchange term is ferromagnetic. states breaki) global U1) spin rotational invariance and

To carry out a systematic expansion, we defitie= ¢, (i) fourfold translational invariance. For smallK, such
+Q-r with an arbitrary vecto. This allows us to examine states have been shown to occur at finite magnetic fields for
at the effect of perturbing id in any of the ground states of the classical version of a related &Yinvariant ring-
the degenerate manifold to see if fluctuations select any statexchange modéf, and this ordering has been callediud
Perturbing inS; around the pure ring-exchange Gaussian(for “ up-up-up-down” which is the spin order on a four-site
theory, we find that the corrections to the free energy vanisiplaquette, but in the plane in our casdere, we find such an
at leading order in). At ©(J?), we find a correction to the ordered state is stabilized by quantum fluctuations inXNe
free energy density, limit even in zero magnetic field.
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B. Fluctuations in the ordered state tures are governed by distinct energy scales in the present
As shown above, in the presence of a nonzardhe  C@S€ and the discrete symmetry corresponds to broken trans-

model has an ordered ground state. This order bregs U lational invariance. _ .
invariance. At the same time, it also breaks translational In order to better understand the discrete transition, let us

symmetry. In the boson language, this state may be viewelglentify the appropriate order parameter and construct a Lan-

as a superfluid coexisting with broken translational orderd@u theory. Since the discrete symmetry is easily identified

This broken discrete symmetry is also evident from our jm-With translations in the original variables , we will discuss
plicit choice of a stat®,, to minimize the free energy. Thus, It N terms of that. As shown in Fig.(8), the ordered state at
we expect two kinds of excitations at low energies about thed =0 has broken translational invariance associated with or-

ordered state-4) phase fluctuations an@) domain walls in ~ dering of cos¢;—¢)) on nearest-neighbor bonds. Since there
the discrete order. is a nearest-neighbor spin exchange tdfrthis leads to or-

dering in the energy density. We identify the broken discrete
symmetry with energy ordering on the bonds. To identify the

~(O— 2 iati — <
Svrr?greCSSt de(r%tegl;a)nyfg:]esrgfatl:wS%\:?etlrci)r?;|\(/gctersa) |T<hlls im_appropriate order parameter for this transition, note that we
plies that the long wavelength effective theory of phase flucMay WriteK.;=(S;- S, 3) wherea; (i=1,2,3) are the unit

tations around each of these ordered states is described by ftice vectors making an anglen23 with each othefspe-

It is easy to see that witkh,=Q-r+ ¢, , there is an en-

action of the form cifically, a;=a, a,=b, and a;=—(a+b)]. Labeling the
four ordered states by =0, . ..,4 andwith a;=0, we can
B 1 ) ) s 5 write the expectation value in any of these ordered states as
S= Jr,, U_eﬁ(afgo) FI(Ve) +Ke(Vi0)7), (23 Kﬁfi=cosQi~r)cosQi~éM). For a general superposition,
with a nonzeroJg, and effective coupling®) .4 and K. -
For small U/K,J/K, we find Ug~U, Kq~K, and Kyi= =; A B,Cco8Q;-r)cogQ;-a,), (24)
Js~J%IKJU/K. Thus, phase fluctuations are controlled by e
the phase stiffnesi. and we identifyB, as the appropriate order parameter for the

A sharp domain wall separating regions with differ@y  Landau theory. Under shifts a,—B,+\, the physical
order would cost an energy K per unit length. However, correlationK, ; is unchanged. Thus we require the Landau
since the model is spin disordered fb+0, we expect that a functional to be invariant under such shifts. Further, studying
smooth deformation of the spin configuration by making athe transformation oK, ; under symmetry operations of the
domain wall with nonzero widtlf , would cost less energy. lattice (unit translationsz/3 rotations, and reflections about
Indeed, using the above action one can estimate the energye three mirror plangswe find that such symmetry opera-
per unit length of a straight domain wall asym,  tions correspond to all possible permutations of theBet.
=v1Kex/€p+ v2Jsép, Where y; ,~1 are constants. Mini- For the Landau theory we find, beyond quadratic order, one
mizing the energy cost with respect &g, we find that£y cubic invariant and two quartic invariants. It appears likely
~ JKgi/Js, and thus domain wall excitations cost an energythat the finite-temperature phase transition restoring this dis-
ek o VKeds per unit length. For smallU/K, et Crete symmetry is in the same universality class as a four-
~J(U/K)Y4, state Potts model.

To summarize, we expect the system to exhibit with in-
creasing temperature a BKT transition witfgr~J%/K
from a state with power-law spin correlations to a state with

At high temperature, we expect the model to be in a fullyexponentially decaying spin correlations. The discrete bro-
disordered phase where thg1ly symmetry as well as the ken symmetry associated with energy ordering on the bonds
discrete broken symmetry is restored. To study these phags# the lattice is expected to be restored above a temperature
transitions, we appeal to the above estimates of the spin stifff;~J, with the transition being in the universality class of
ness and domain wall energies. RdfK~ 1, since the spin the four-state Potts model. In a weak applied in-plane mag-
stiffnessJs~J%/K, while the domain wall energy per unit netic field, the W1) invariance is lost, and the BKT transition
lengtheyom=J>Js, We expect the (1) symmetry to be re- would become rounded but the discrete transition would sur-
stored via a BKT transitiotf at a temperatur@g;~Js once  Vive as a finite-temperature transition. At large enough fields,
vortices are included in the effective theory, while the dis-we expect a first-order transition to a state where all the spins
crete symmetry is not restored until a much higher temperapoint in the same direction and the translation invariance is
ture T.~J. Thus there is an intermediate phase with expo+Jestored.
nentially decaying spin correlations, but with the discrete
ordgr still pre;ent. Thi; bgars resemblf'ince to proposed sce- V. DISCUSSION AND CONCLUSIONS
narios of chiral ordering in theXY antiferromagnet on a
triangular lattice as well as the $2) multiple-spin exchange Studying arX'Y model with four-spin couplings and small
model. However, in contrast to tR€Y model where a single two-spin exchange, we have obtained a ferrimagnetically or-
scale—namely, the two-spin exchange coupling—sets thdered ground state and analyzed phase transitions out of this
scale for both transition temperatures, the transition temperghase. Since the ground state is phase ordered, we expect our

C. Phase transitions at finite temperature
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result to be stable to small out-of-plane couplings involvingstates correspond to charge-ordered incompressible states for

SZ . Similarly,.introd.ucing Weak COUp|ingS betWeen SUCh Or'the bosons at densiE: 1/4 orF: 3/4 (four ground states at
dered two-dimensional planes would lead to a threegijther density. It may be that any anisotropy which takes us
dimensionally ordered stat8 where the spinphasé order away from the S(R)-invariant model leads to ordered

would persist to finite temperature. We thus expect this statground states, while the $2)-invariant model seems to be a
might be of some interest for Mott insulators on a triangularyniform spin liquid”° It would be interesting to further ex-

lattice. If such an ordered state exists, it could be detected ipjore this possibility.

neutron diffraction studies. The spin-disordered state with

persisting discrete broken symmetry may be indirectly ob-

Iser_vable through lattice distortions if the spins couple to the ACKNOWLEDGMENTS
attice.
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