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XY ring-exchange model on the triangular lattice
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We study ring-exchange models for bosons orXY spins on a triangular lattice. A four-spin exchange leads
to a manifold of ground states with gapless excitations and critical power-law correlations. With a nearest-
neighbor exchange, fluctuations select a four-fold ferrimagnetically ordered ground state with a small spin
~superfluid! stiffness which breaks the global U~1! and translational symmetry. We explore consequences for
phase transitions at finite temperature and in an in-plane magnetic field.
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I. INTRODUCTION

Multispin-exchange models incorporating ring-exchan
processes have been of interest since the early studie
magnetism in solid helium-3.1,2 Ring-exchange processe
could also play an important role in Wigner crystals near
melting density3,4 and in Mott insulators which retain a fa
degree of local charge fluctuations.5 Indeed, neutron scatter
ing experiments6 on insulating La2CuO4 have shown that
aspects of the spin-wave dispersion in the antiferromag
may be understood by invoking ring-exchange terms. A
other reason for the interest in such models is that they m
support spin-liquid phases which are translationally invari
Mott insulators with no magnetic order, as indicated fro
numerics on triangular and kagome´ lattices.7 This has been
established analytically in some models with U~1!
symmetry,8,9 which may also be viewed as boson mode
Finally, many models such as the quantum dimer model o
triangular lattice,10 the easy-axis version of a generaliz
Heisenberg model on the kagome´ lattice,8 and the easy-axis
antiferromagnet on the pyrochlore lattice11 may be mapped
onto effective ring-exchange models in their low-energy s
space of states. Thus, understanding the phases and
transitions in ring-exchange models is important.

In this paper, we will focus on anXY ~‘‘easy-plane’’!
ring-exchange model on the triangular lattice with both fo
spin and two-spin exchange terms~with strengthsK and J,
respectively! in the regimeJ!K. This model is interesting
from several points of view. First, several systems such
Wigner crystals and certain organic Mott insulators form
triangular lattice of spins with possibly appreciable rin
exchange processes, and theXY spin problem is one trac
table limit of such models. Second, easy-plane magnets
triangular lattices are known to exist~though mostly as
stacked layers forming a three-dimensional system! and this
could be of some relevance to them—in fact, these syst
have motivated several studies of easy-plane triangular q
tum Heisenberg models.12 Finally, earlier work by some of
us has shown that related models on the kagome´ lattice are
fractionalized,8 whereas they support a critical phase~the
‘‘exciton Bose liquid’’! on the square lattice.13 This was es-
sentially shown by perturbing around the pure ring-excha
limit ( J50) where the kagome´ and square lattices, respe
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tively, haveO(L2) andO(L) conserved quantities. It is thu
worthwhile to examine cases where such extensive sym
tries are absent from the outset, even in the pure ri
exchange model, as is the case with the triangular lattice

The principal results of this paper are the following:~i!
We show that the U~1! four-spin exchange model on th
triangular lattice~with Sz50 or half-filling for the bosons!
has a manifold of degenerate ground states and the cor
tion functions are critical in the ground states. We ident
the appropriate symmetries and conserved quantities w
give rise to this.~ii ! Perturbing in the nearest-neighbor e
change~boson hopping! we find that fluctuations select
fourfold set of states from the degenerate manifold and
system develops long-range order at zero temperature.
ordered states break the global U~1! symmetry as well as
translational symmetry.~iii ! In the ordered ground states, th
spin ~superfluid! stiffness;J2/K and is very small for small
J/K. At any small nonzero temperature, the U~1! symmetry
is restored and we are in a phase with power-law s
~phase! order, which gives way to a disordered phase via
Berezinskii-Kosterlitz-Thouless14 ~BKT! transition for T
.TBKT;J2/K. However, the discrete symmetry of the br
ken translations is not destroyed until a higher tempera
Tc;J. We analyze phase transitions at finite temperatu
and also in the presence of an in-plane magnetic field, wit
a Landau theory, and discuss the phase diagram and ex
mental consequences.

The outline of the paper is as follows. In Sec. II, we w
present the Hamiltonian. In Sec. III we analyze its symm
tries and conserved quantities, and define the dual repre
tation of the model which allows us to analyze the instab
ties of the system towards charge and energy ordering.
present arguments and numerical results to show that
model with J50 has critical power-law correlations atT
50. In Sec. IV, we perturbatively analyze effects on intr
ducing the nearest-neighbor exchange~boson hopping! and
find a phase-ordered state. We also discuss the phase dia
within Landau theory as a function of temperature and
plane magnetic-field. We close with a discussion and spe
lations for three-dimensional generalizations and SU~2!-
invariant models in Sec. V.

II. MODEL

We define the model in rotor variables as
©2003 The American Physical Society27-1
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H5K(
P

cos~w12w21w32w4!1J(
^ i , j &

cos~w i2w j !

1
U

2 (
i

~ni2n̄!2, ~1!

wherew i is the phase of the boson variable (w i50 andw i
52p are identified! andni is the the canonically conjugat
boson number@respectively the angle and angular mome
tum of a U~1! rotor#, satisfying the commutation relatio
@w i ,nj #5 id i , j . The termsw1 , . . . ,w4 in the first term of
H denote angles around four-site plaquettes of the
angular lattice—there are three such kinds of plaque
as shown in Fig. 1~a!. The J term denotes nearest-neighb
hopping of bosons whileU denotes a repulsive interac
tion between bosons. WithU/K→`, we can identify
Sz(r )5nr21/2, S6(r )5exp(6iwr), and this model reduce
to an S51/2 XY quantum spin model withn̄51/2 corre-
sponding to totalSz50.

With J50, changingw r→f r5w r1p on the sites indi-
cated by open circles in Fig. 1~b! changes the sign ofK
~there are four such choices of a triangular sublattice
which to make this transformation, as is clear from the fi
ure!. Thus, forJ50, the ground-state energy is independe
of the sign ofK. For nonzeroJ, however, the sign ofK is
important.

For K,0, the leading perturbative corrections on inclu
ing a nonzeroJ areO(J), and the energy and phases depe
on the sign ofJ—for J,0 we get a ferromagnetic phas
while J.0 leads to aA33A3 Néel order, which are also the
ground states for largeuJ/Ku ~where we may ignore the four
spin term!. Thus there are no phase transitions at any n
zeroJ and we only obtain the well-studied phases.

For K.0, as appropriate for, say, spin degrees of freed
in an electronic Mott insulator, it turns out that the leadi

FIG. 1. ~a! The three kinds of plaquettes on the triangular latti
The ring-exchange process involves the spins located at the p
1–4 of each plaquette. The labeling is chosen to coincide with
appropriate for the definition dual variables in the dual model d
cussed in Sec. II C, and the sitesP form the sites of the dua
kagomélattice. ~b! Rotating w→w1p on the sites indicated by
open circles~which form one of four possible triangular sublattice!
changes the sign of the ring-exchange termK in the Hamiltonian.

Also shown are the basis vectorsâ,b̂ for the triangular lattice.
13442
-

i-
s

n
-
t

-
d

-

m

perturbative corrections to the free energy areO(J2). To this
order, the free energy is independent of the sign ofJ and we
obtain a ferrimagnetic phase which breaks the global U~1!
invariance as well as fourfold translational symmetry. T
physics of this phase and the phase transitions out of it
be the focus of this paper. For largeuJu/K we of course
recover the conventional phases mentioned above.

To make an estimate of the coupling constants in o
case, let us imagine starting from the Hubbard model
electrons~with nearest-neighbor hopping! at half-filling on a
triangular lattice and perturbing int/U to derive an effective
spin model with ring-exchange terms in the insulator. T
takes the form

Hspin5K(
h

@~S1•S2!~S3•S4!1~S1•S4!~S2•S3!

2~S1•S3!~S2•S4!#1(
i , j

Ji , jSi•Sj , ~2!

where the first term involves all four-site plaquettes on
triangular lattice. Adapting results from Ref. 5 to this cas
we find J54t2/U228t4/U3, J85J954t4/U3, and K
580t4/U3. For U/t56, numerical results15 show that the
model is in an insulating phase though still close to t
metal-insulator boundary; in this caseJ/t50.53, J8/t5J9/t
50.02, andK/t50.37. Clearly, it seems that one can d
scribe the spin degrees of freedom in the insulator by set
the further-neighbor couplingsJ85J950 and retaining only
nonzeroJ,K. Indeed, exact-diagonalization studies7 find a
spin-liquid phase for a closely related model in qualitati
agreement with the Monte Carlo results on the Hubb
model.15 It thus seems profitable to understand the abo
model for J/K!1 as a starting point to analyze this fu
problem. ForU/K→`, the Hamiltonian in Eq.~1! is pre-
cisely theXY limit of the above model obtained by settin
terms containingSz to zero.

III. MODEL WITH JÄ0

A. Symmetries

For J50, we can change the sign ofK by shifting w r
→f r5w r1p on any one of four sublattices of the triangul
lattice indicated earlier~we will work with these ‘‘rotated’’
variablesf r and a ferromagnetic four-spin term for conv
nience!. This means shiftingf r→f r1p on any two such
sublattices leaves the action invariant and is a symmetry
eration. We can identify this with a conservation of tot
boson number modulo two on alternate rows of the triangu
lattice. These rows can run in any of the three symme
directions of the lattice; this corresponds to a total of fo
symmetry operations including the identity.

The rotor Hamiltonian above describes bosons hopp
on plaquettes of the triangular lattice. ForJ50, the dynam-
ics conserves the center of mass of the bosons, since
bosons hop equal distances in opposite directions on
plaquette. In other words the center of mass operatorR̂c.m.

5( rr n̂r satisfies@R̂c.m.,H#50 and is a constant of motion

.
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-

7-2



e
f

t
tio
o

te

d

de
-
o

o
s
of
. F

ul

a
y

e

i-
tio

m

-

the

ny

xa-
g

e
he

l
uge

itary

c-
ry,
e-

u-

l

ity

er.

XY RING-EXCHANGE MODEL ON THE TRIANGULAR LATTICE PHYSICAL REVIEW B67, 134427 ~2003!
Thus, in deriving the imaginary-time path integral for th
partition function in terms off, we may insert factors o
exp(iq•R̂c.m.) with an arbitrary vectorq, since R̂c.m. com-
mutes with H. This corresponds tof r→f r1q•r being a
symmetry of the phase action.

If we identify f50 with f52p or keep track of the fac
that the charge is quantized, the first symmetry opera
discussed above is a special case of the second and c
sponds to choosingq5Qi ( i 51,2,3) where the momentaQi
are at the center of the edges of the Brillouin zone, indica
in Fig. 4~a!, below. The above symmetries forJ50 imply we
cannot have terms which depend on (¹f) in the phase ac-
tion ~in the path integral for the partition function!. The low-
est allowed gradient term on which the action can depen
of the form (¹2f). We explicitly confirm this in a spin-wave
calculation in Sec. III C, where we show the collective mo
disperses asv2(k);uku4 for small uku and calculate its con
sequences for correlation functions. The presence of a n
zeroJ explicitly breaks these symmetries; in factJ50 will
turn out to be a critical point of the model.

B. Plaquette duality and dual action

For J50, it is useful to define a dual representation f
the model which permits us to obtain spin-wave theory a
well-defined limit of the model and to analyze instabilities
the spin-wave phase towards charge and energy ordering
this purpose, we use a plaquette duality transformation13 and
work with dual variablesuP and NP which reside at the
centers of each of the four-site plaquettes of the triang
lattice—these sites~labeled byP) form a kagome´ lattice
with nearest-neighbor spacing 1/2 in units of the lattice sp
ing of the original triangular lattice. Alternatively, we ma
label sites on the dual lattice as (r ,a), viewing the kagome´
lattice as a triangular lattice three sites~labeleda51,2,3)
per unit cell, and we will use this notation whenever conv
nient. Thus, there are 3 times as many sites~and hence de-
grees of freedom! on the dual lattice compared to the orig
nal, and this is reflected in a redundancy in the descrip
which we will discuss shortly.

Define

pNP5~f12f21f32f4!, ~3!

pnr5(
hex

uP2(
star

uP, ~4!

where the anglesf1 , . . . ,f4 in Eq. ~3! are around plaquette
P of the lattice with the convention indicated in Fig. 1~a!.
The sites hex and star lie on the 12-site unit of the kago´
lattice around the siter as shown in Fig. 2~a! ~marked by
‘‘ 1’’ and ‘‘ 2, ’’ respectively!, while the center of each
kagoméunit lies on the triangular lattice~and is labeledr ).
In these variables, the dual Hamiltonian on the kagome´ lat-
tice is

Hdual5K(
P

cos~pNP!1
U

2p2 (
r

S (
hex

uP2(
star

uP2pn̄D 2

~5!
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and the dual variables satisfy@NP ,uP8#5 idP,P8 , with uP /p
having integer eigenvalues, whileNP has a continuous spec
trum.

We pause to elaborate further upon the redundancy of
u variables. Since only the combinationnr of the uP vari-
ables is physical, the Hamiltonian will be invariant under a
integer multiple ofp shift of the uP that leaves all thenr
invariant. This can be done locally as follows. Pick any he
gon of the dual kagome´ lattice, and choose two neighborin
sites on this hexagon. ShiftuP→uP1p on those sites, and
simultaneously takeuP→uP2p on the sites on the opposit
side of this hexagon, leaving the remaining two site of t
hexagon~and all the other sites not on this hexagon! un-
touched as shown in Fig. 2~b!. Since this leaves all physica
properties invariant, this should be regarded as a local ga
symmetry. Such transformations are generated by the un
operators

Gr~Ka!5expS iKa•(
hex

~r P2r !NPD , ~6!

whereKa with a51,2,3 are the three reciprocal lattice ve
tors for the triangular lattice. In the spirit of a gauge theo
we could restrict our consideration to physical gaug
invariant states which satisfyGr(Ka)51. This can be re-
written suggestively as

(
hex

~r P2r !NP50~moda!, ~7!

wherea is an arbitrary Bravais lattice vector for the triang
lar lattice. As in Refs. 8 and 13, the operatorNP may be
regarded as the local ‘‘vortex number’’~modulo 2! on the site
P of the dual lattice. Thus the condition of Eq.~7! requires
that the localvortex center of masson each hexagona
plaquette of the kagome´ lattice vanish—the ambiguity by a
Bravais lattice vector corresponding exactly to the ambigu

FIG. 2. ~a! The original triangular lattice~dashed lines! and the
dual kagome´ lattice ~bold lines!. The sites ‘‘1’’ and ‘‘ 2 ’’ indicate
the sites of the kagome´ unit around the siter of the triangular lattice
and are referred to as ‘‘hex’’ and ‘‘star,’’ respectively in the pap
~b! The ‘‘gauge’’ transformation on the dual lattice—shiftingu by «
on the indicated sites as shown, with«/p being an integer—is an
exact symmetry of the dual Hamiltonian.
7-3
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in NP by a shift of 2. Thus the gauge invariance of the du
description is related to the immobility of ‘‘vortices’’ in this
model.

Using a Trotter decomposition, we may write the partiti
function as a discretized imaginary-time path integral in
standard manner. This leads toZ5*Du~r ,t!exp{2S@u~r ,t!#%
with the action

Sdual5
1

p2
lnS 2

etK
D (

r ,a,t
~u r ,a,t2u r ,a,t11!2

1
etU

2p2 (
r

S (
hex

uP2(
star

uP2pn̄D 2

, ~8!

where the field u r ,a,t /p is an integer-valued field,et
5b/Nt with b51/T is the inverse temperature, andNt is
the number of imaginary-time slices. The quantum probl
at a temperatureT corresponds to the continuum limitet
→0,Nt→` with fixed 1/etNt5T. Thus, we reduce the
quantum model to an anisotropic (211)-dimensional classi-
cal model—since there is no sign problem, this proves us
for carrying out Monte Carlo simulations in the dual repr
sentation to numerically test for charge ordering a
plaquette-energy ordering in the ground state at arbitr
U/K.

C. Effective theory and spin-wave approximation

We may rewrite the dual action as

Sdual5
1

p2
lnS 2

etK
D (

r ,a,t
~u r ,a,t2u r ,a,t11!2

1
etU

2p2 (
r

S (
hex

uP2(
star

uP2pn̄D 2

2 (
q,r ,t,a

v2q
0 cos~2qu r ,a,t!, ~9!

where the bare couplingsv2q
0 are chosen to enforce the inte

ger constraint onu and may be singular. We will now write
down a low-energy effective action in terms ofq r ,a,t
5@u# f2(Qmn)/2. Here@u# f symbolically denotes an inte
gration over the fast~high-energy! degrees of freedom while
retaining the spatial structure of the lattice,Q52pn̄, and the
site r[mâ1nb̂ in terms of the basis vectorsâ,b̂ of the
triangular lattice shown in Fig. 1~b!. The factor we have
subtracted out eliminates the mean densityn̄ from the second
~boson repulsion! term in the Hamiltonian.

If we ignore the terms withv2q
0 , we obtain a Gaussian

action in terms ofq. Studying this action motivates us t
guess that the effective low-energy action may be of the fo
Sdual

eff 5Sdual
(0) 1Sdual

(1) with

Sdual
(0) 5E

v
(

k,a,b
q2k,a,2vS v2dab

2p2K~k!
1

U~k!

2p2
Gab~k!D qk,b,v

~10!
13442
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(1) 5E

t
(

q,r ,a
v2qcos~2qq r ,a,t1Qqmn!1Shigher, ~11!

where we have defined renormalized couplingsU(k),K(k)
~which are smooth nonzero functions ofk) andv2q , the site
r[(m,n) as before, and the 333 matrix Ga,b(k)
5Aa* (k)Ab(k) with

A1~k!511e2 ika2e2 ika2 ikb2eikb,

A2~k!511e2 ika2 ikb2e2 ika2e2 ikb,

A3~k!511e2 ikb2eika2e2 ika2 ikb, ~12!

where ka5k•â and kb5k•b̂. Here Shigher denotes other
terms which might be generated in deriving the low-ene
action. For the present purposes, we will not write down
explicit form of these terms but we will discuss them late

If we set v2q50 and ignoreShigher, we can obtain the
eigenmodes of the Gaussian actionSdual

(0) by diagonalizing
Gab(k). We find there is one nonzero eigenvaluel(k) and
two zero eigenvalues. This corresponds to one disper
mode (Q1) and two nondispersive modes (Q2,3) with zero
energy~flat bands!, and the action at this level takes the for

Sdual
(0) 5E

v
(

k
S v21E 2~k!

2p2K~k!
D uQ1~k,v!u2

1E
v

(
k,a52,3

S v2

2p2K~k!
D uQa~k,v!u2, ~13!

where we have setl(k)5E 2(k)/U(k)K(k) so thatE(k) ap-
pears as the excitation energy of the collective modeQ1.
Explicitly,

l~k!52@623 coska23 coskb23 cos~ka1kb!1cos~ka

2kb!1cos~2ka1kb!1cos~2kb1ka!#; ~14!

thus the dispersing modeQ1 has one gapless point atk
5(0,0). The leading dispersion away from this point
E 2(k→0)5(9/16)U(0)K(0)uku4—as stated in Sec. III A,
this dispersion is dictated by the symmetry of conservat
of center of mass of the bosons which forbids a term;uku2.

We can also now see that the extra degrees of freed
~two per site of the triangular lattice! introduced in going
over to the dual description manifest themselves as z
energy modes corresponding to unphysical fluctuatio
while the dispersing mode corresponds to physical fluct
tions. In fact, by Fourier transforming a general superpo
tion f 2(k)Q2(k)1 f 3(k)Q3(k), we can show that the zer
modes indeed arise from the local gauge symmetry gener
by Eq. ~6! in real space. More precisely, in the coars
grained quadratic low-energy theory, these discrete sym
try operations are promoted to continuous shifts~with arbi-
trary uKau). Similarly, Fourier transformingf 1(k)Q1(k), we
find that the physical fluctuations are composed precisely
the gauge-invariant boson densities.
7-4
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At this stage, we may reintroduce the boson phase fie
by a Hubbard–Stratonovitch decoupling of the time deri
tive term of the physical fluctuationQ1 ~as in Ref. 13!,
namely,

expS 2
v2

2p2K~k!
uQ1~k,v!u2D

5E Dff* expS 2
E 2~k!

2U~k!
uf~k,v!u2D

3expS vE~k!

2pAU~k!K~k!
@f~k!Q1* ~k!2f* ~k!Q1~k!# D .

~15!

Providedv2q and Shigher are irrelevant and can be ignore
we can integrating out the fieldQ1 which leads to a Gaussia
action for the boson fieldf,

Sf
(0)5E

v
(

k
S v21E 2~k!

2U~k! D uf~k!u2. ~16!

This corresponds to a spin-wave~harmonic! approximation
and may be used to evaluate boson correlation function
zeroth order inv2q .

D. Boson correlation functions in spin-wave theory

To characterize the Gaussian theorySf
(0) , we evaluate the

space-time correlation functions for the boson creation
erator exp(ifrt). At long times or large separations, the
correlation functions reduce to

^eifr ,0e2 if0,0&;ur u(21/2pA3)AU(0)/K(0)

^eif0,te2 if0,0&;utu(21/4pA3)AU(0)/K(0). ~17!

Clearly, the Gaussian theory describes a critical liquid of
bosons with power-law correlations arising from the gapl
excitations dispersing asE(k);uku2. From the long-time be-
havior of the two-point correlation in a finite-size system, w
may evaluate the finite-size scaling of the gap to addin
particle to be justD(L).U(0)/L2. In the thermodynamic
system, the low-energy density of states per unit volume
collective excitations is given by

N~v!5
1

V (
k

d„v2E~k!… .
v→0

1

2pA3U~0!K~0!
, ~18!

which is a constant depending on the interactions. Thus
low-energy long-wavelength properties of the liquid are d
termined in terms of thek→0 behavior of the functions
U(k),K(k). We next present arguments and numerical e
dence that this Gaussian description of a critical liquid in
model withJ50 may be valid even in the presence of term
v2q andShigher.
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E. Argument for irrelevance of higher-order terms

To see whether the termv2q is relevant, we can evaluat
the correlation functions of this operator, and we find it
local in space and exponentially decaying in time,

^cos 2q r ,a,tcos 2q0,b,0&;d r ,0da,b exp~2gutu!, ~19!

with a constantg.0. This is not hard to understand—
arises from the fact that the variableq is a combination of
the eigenmodesQ1,2,3 and cos 2qr ,a,t is not ‘‘gauge invari-
ant.’’ As a result its spatial correlations are local, while t
fluctuations of the zero modes,Q2,3, determine the exponen
tial temporal decay. Clearly,v2q is irrelevant.

Consider the possible forms we can obtain forShigher.
These terms would be of the form of cosines involving m
tiple q ’s at different space-time points. However, similar a
guments as above apply to these operators. The only op
tors which can have nonzero correlations at nonz
separation would be gauge-invariant combinations of
q ’s. As we have shown, these are the local boson densi
Thus, if we admit only slow fluctuations ofQ1, these would
take the form of weak density-density interactions within
perturbative treatment and could renormalize the coefficie
of the Gaussian action, but not cause an instability.
course, such density-density interactions might lead to
charge-ordered state at strong couplings, but our argum
show that the Gaussian theory is perturbatively stable.16

F. Numerical results

To confirm the above arguments we have carried
Monte Carlo calculations on the dual model using a M
tropolis algorithm, for lattice sizes up to 432 spatial sites a
48 time slices, and periodic boundary conditions. We find
evidence of any charge ordering forn̄51/2, even for large
U/K. We have compared the density-density correlatio
and find agreement with what we expect from a Gauss
theorySdual

(0) . In particular, we show results for the compres
ibility k defined throughk5xnn(k→0,vn50) where

xnn~k,vn!5(
r ,t

e2 ik•r1 ivnt^n~r ,t!n~0,t!&. ~20!

Within the Gaussian theory,k51/etU(0). In Fig. 3 we plot
the scaled compressibility (etK)k which is expected to scale
asK/U(0). We findthat that it is nonzero at allU/K in the
quantum (t-continuum! limit, with U(0)/K.5 as U/K
→`. We have also checked and found no evidence for
ergy ordering on the plaquettes of the triangular lattice. Th
we believe that forn̄51/2, the ring-exchange model withJ
50 is well described by the Gaussian fixed-point actionSdual

(0)

where terms withv2q and all other termsShigher are irrel-
evant.

IV. PERTURBING IN NEAREST-NEIGHBOR COUPLING J

A. Ordered ground state

To perturb in the nearest-neighbor exchangeJ, it is con-
venient to work in the phase representation which we h
7-5
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argued remains a valid ‘‘fixed-point’’ description of the pu
ring-exchange model for all values of the bare coupl
U/K. In this, we make the approximation of completely i
noring irrelevant operators—this seems reasonable in re
spect since we will find that the system acquires long-ra
phase order atT50.

The nearest-neighbor perturbation we add to the Gaus
phase action takes the form

SJ5J(
m,n

E dt@~21!ncos~fm,n,t2fm11,n,t!

1~21!mcos~fm,n,t2fm,n11,t!

1~21!m1ncos~fm,n,t2fm11,n11,t!#, ~21!

where we have chosen to label sites on the triangular la
as r5mâ1nb̂, and we are working in rotated variablesf r
for which the ring-exchange term is ferromagnetic.

To carry out a systematic expansion, we definef r5f̃ r
1Q•r with an arbitrary vectorQ. This allows us to examine
at the effect of perturbing inJ in any of the ground states o
the degenerate manifold to see if fluctuations select any s
Perturbing inSJ around the pure ring-exchange Gauss
theory, we find that the corrections to the free energy van
at leading order inJ. At O(J2), we find a correction to the
free energy density,

FIG. 3. The dependence of the scaled compressibility (etK)k
on the bare boson repulsionU, for variousetK. Within spin-wave
theory, we expect (etK)k5K/U(0) as discussed in the text. From
the figure we see thatK/U(0) coincides withK/U for small U ~as
indicated by the dashed line!, but deviates and tends to a consta
K/Ueff;0.2 as the bareU→` ~as shown by the solid line drawn a
a guide to the eye!. Typical error bars are indicated at one point. W
thus expect theS51/2 XY spin model withJ50 to be compress-
ible, with U(0)5Ueff .
13442
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e
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df52
1

2
bJ2@cos2Qa1cos2Qb1cos2~Qa1Qb!#

3(
m,n

E
t
~21!n^cos~f̃0,0,02f̃1,0,01f̃m,n,t1f̃m11,n,t!&0 ,

~22!

where ^•••&0 is the expectation value evaluated in th

Gaussian theory,Qa[Q•â, Qb[Q•b̂, and we have used th
sixfold symmetry of the triangular lattice to simplify certa
intermediate expressions. The expectation value may be
lytically evaluated at smallU/K by expanding the cosine
term since its argument is small in the Gaussian theory,
we find that the sum overm,n is positive. Thus,~i! the cor-
rections to the free energy are independent of the signJ
and~ii ! minimizing d f with respect to variations ofQ corre-
sponds to maximizing @cos2Qa1cos2Qb1cos2(Qa1Qb)#
which leads to ordering at four wave vectorsQa (a
51, . . . ,4) which are shown in Fig. 4~a!. We expect this
order to persist even at large effective (U/K) ~recall that the
bare U/K→` in the S51/2 spin limit!. To obtain the or-
dered states in the original phase variables, we rotate b
f(r )→w(r )5f(r )2p on the triangular sublattice and w
then find, as shown in Fig. 4~b!, that the resulting ordered
states break~i! global U~1! spin rotational invariance and
~ii ! fourfold translational invariance. For smallJ/K, such
states have been shown to occur at finite magnetic fields
the classical version of a related SU~2!-invariant ring-
exchange model,17 and this ordering has been calleduuud
~for ‘‘ up-up-up-down’’ which is the spin order on a four-site
plaquette, but in the plane in our case!. Here, we find such an
ordered state is stabilized by quantum fluctuations in theXY
limit even in zero magnetic field.

t

FIG. 4. ~a! The four ordering wave vectorsQa (a51, . . . ,4)
obtained by perturbing in the nearest-neighbor couplingJ, with the
hexagon indicating the first Brillouin zone of the triangular lattic
~b! The phase-spin order in the original variablesw r in one of the
four broken-symmetry ground states. The order may be most ea
thought of as alternating rows of ferromagnetic and antiferrom
netic spins. The bold dashed lines indicate bonds on which the s
point in the same direction, while the other bonds have antife
magnetic spin orientation. As discussed in the text, these corres
to energy ordering in the ground state with an associated four
broken discrete symmetry.
7-6
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B. Fluctuations in the ordered state

As shown above, in the presence of a nonzeroJ, the
model has an ordered ground state. This order breaks~1!
invariance. At the same time, it also breaks translatio
symmetry. In the boson language, this state may be vie
as a superfluid coexisting with broken translational ord
This broken discrete symmetry is also evident from our i
plicit choice of a stateQa to minimize the free energy. Thus
we expect two kinds of excitations at low energies about
ordered state—~i! phase fluctuations and~ii ! domain walls in
the discrete order.

It is easy to see that withf r5Q•r1f̃ r , there is an en-
ergy cost;(Q2Qa)2 for small deviationsu(Q2Qa)u!1
whereQa denotes any one of the ordering vectors. This i
plies that the long wavelength effective theory of phase fl
tations around each of these ordered states is described
action of the form

S5E
r ,t

S 1

Ueff
~]tw!21Js~¹w!21Keff~¹2w!2D , ~23!

with a nonzeroJs , and effective couplingsUeff and Keff .
For small U/K,J/K, we find Ueff;U, Keff;K, and
Js;J2/KAU/K. Thus, phase fluctuations are controlled
the phase stiffnessJs .

A sharp domain wall separating regions with differentQa
order would cost an energy;K per unit length. However
since the model is spin disordered forJ50, we expect that a
smooth deformation of the spin configuration by making
domain wall with nonzero widthjD , would cost less energy
Indeed, using the above action one can estimate the en
per unit length of a straight domain wall asedom
5g1Keff /jD1g2JsjD , where g1,2;1 are constants. Mini-
mizing the energy cost with respect tojD , we find thatjD*
;AKeff /Js, and thus domain wall excitations cost an ene
edom* ;AKeffJs per unit length. For smallU/K, edom*
;J(U/K)1/4.

C. Phase transitions at finite temperature

At high temperature, we expect the model to be in a fu
disordered phase where the U~1! symmetry as well as the
discrete broken symmetry is restored. To study these ph
transitions, we appeal to the above estimates of the spin s
ness and domain wall energies. ForU/K;1, since the spin
stiffnessJs;J2/K, while the domain wall energy per un
lengthedom*J@Js , we expect the U~1! symmetry to be re-
stored via a BKT transition14 at a temperatureTBKT;Js once
vortices are included in the effective theory, while the d
crete symmetry is not restored until a much higher tempe
ture Tc;J. Thus there is an intermediate phase with exp
nentially decaying spin correlations, but with the discre
order still present. This bears resemblance to proposed
narios of chiral ordering in theXY antiferromagnet on a
triangular lattice as well as the SU~2! multiple-spin exchange
model. However, in contrast to theXY model where a single
scale—namely, the two-spin exchange coupling—sets
scale for both transition temperatures, the transition temp
13442
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tures are governed by distinct energy scales in the pre
case, and the discrete symmetry corresponds to broken tr
lational invariance.

In order to better understand the discrete transition, le
identify the appropriate order parameter and construct a L
dau theory. Since the discrete symmetry is easily identifi
with translations in the original variablesw r , we will discuss
it in terms of that. As shown in Fig. 4~b!, the ordered state a
T50 has broken translational invariance associated with
dering of cos(wi2wj) on nearest-neighbor bonds. Since the
is a nearest-neighbor spin exchange termJ, this leads to or-
dering in the energy density. We identify the broken discr
symmetry with energy ordering on the bonds. To identify t
appropriate order parameter for this transition, note that
may writeK r ,i5^Sr•Sr1âi

& whereâi ( i 51,2,3) are the unit

lattice vectors making an angle 2p/3 with each other@spe-
cifically, â15â, â25b̂, and â352(â1b̂)]. Labeling the
four ordered states bym50, . . . ,4 andwith a050, we can
write the expectation value in any of these ordered state
K r ,i

m 5cos(Qi•r )cos(Qi•âm). For a general superposition,

K r ,i5 (
m50 . . . 4

Bmcos~Qi•r !cos~Qi•âm!, ~24!

and we identifyBm as the appropriate order parameter for t
Landau theory. Under shifts ofBm→Bm1l, the physical
correlationK r ,i is unchanged. Thus we require the Land
functional to be invariant under such shifts. Further, study
the transformation ofK r ,i under symmetry operations of th
lattice ~unit translations,p/3 rotations, and reflections abou
the three mirror planes!, we find that such symmetry opera
tions correspond to all possible permutations of the set$Bm%.
For the Landau theory we find, beyond quadratic order,
cubic invariant and two quartic invariants. It appears like
that the finite-temperature phase transition restoring this
crete symmetry is in the same universality class as a fo
state Potts model.

To summarize, we expect the system to exhibit with
creasing temperature a BKT transition withTBKT;J2/K
from a state with power-law spin correlations to a state w
exponentially decaying spin correlations. The discrete b
ken symmetry associated with energy ordering on the bo
of the lattice is expected to be restored above a tempera
Tc;J, with the transition being in the universality class
the four-state Potts model. In a weak applied in-plane m
netic field, the U~1! invariance is lost, and the BKT transitio
would become rounded but the discrete transition would s
vive as a finite-temperature transition. At large enough fie
we expect a first-order transition to a state where all the sp
point in the same direction and the translation invariance
restored.

V. DISCUSSION AND CONCLUSIONS

Studying anXY model with four-spin couplings and sma
two-spin exchange, we have obtained a ferrimagnetically
dered ground state and analyzed phase transitions out of
phase. Since the ground state is phase ordered, we expec
7-7
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result to be stable to small out-of-plane couplings involvi
Sz . Similarly, introducing weak couplings between such
dered two-dimensional planes would lead to a thr
dimensionally ordered state,18 where the spin~phase! order
would persist to finite temperature. We thus expect this s
might be of some interest for Mott insulators on a triangu
lattice. If such an ordered state exists, it could be detecte
neutron diffraction studies. The spin-disordered state w
persisting discrete broken symmetry may be indirectly
servable through lattice distortions if the spins couple to
lattice.

We can also analyze the opposite limit from the one st
ied in the paper, where we assume ‘‘easy axis’’ anisotropy
the model in Eq.~2! and weakJ/K. In this Ising limit, we
find eight degenerate ground states for the spin model, a
of theuuud type, with the spins aligned alongSz axis. These
.E

g-
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states correspond to charge-ordered incompressible state

the bosons at densityn̄51/4 or n̄53/4 ~four ground states a
either density!. It may be that any anisotropy which takes
away from the SU~2!-invariant model leads to ordere
ground states, while the SU~2!-invariant model seems to be
uniform spin liquid.7,15 It would be interesting to further ex
plore this possibility.
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