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XY frustrated systems: Continuous exponents in discontinuous phase transitions
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XY frustrated magnets exhibit an unusual critical behavior: they display scaling laws accompanied by
nonuniversalcritical exponents and amegativeanomalous dimension. This suggests that they undergo weak
first-order phase transitions. We show that all perturbative approaches that have been used to in¥éstigate
frustrated magnets fail to reproduce these features. Using a nonperturbative approach based on the concept of
effective average action, we are able to account forrbisuniversal scalingnd to describe qualitatively and,
to some extent, quantitatively the physics of these systems.
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. INTRODUCTION such as CsMnBy, CsNiCk, CsMnk, and CsCuGl, as well
as XY helimagnets such as Ho, Dy, and Th, which display
After twenty-five years of intense activity, the physics of scaling at the transitiowithoutany evidence of universality.
XY and Heisenberg frustrated systems is still the subject of @ur conclusions are in marked contrast with those drawn
great controversy concerning, in particular, the nature ofrom the perturbative approach of Pelissegioal>® which
their phase transitions in three dimensigsse, for instance, |eads to predict a second-order phase transitiorXféifrus-

Ref. 1 for a review. On the one hand, a recent high-order trated magnetésee Refs. 45, 46 for recent developmgnts
perturbative calculatictt predicts in both cases a stable

fixed point in three dimensions and, thus, a second-order
phase transition. On the other hand, a nonperturbative ap-
proach, the effective average action method, based on a

Wilson-like exact renormalization groufERG) equation, The prototype ofXY frustrated systems is given by the
leads to first-order transitiorfsActually, it turns out that, in STA model. It consists of spins located on the sites of

the Heisenberg case, these two theoretical approaches ajgcked planar triangular lattices. Its Hamiltonian reads
almost equivalent from the experimental viewpoifsee,

however, Ref. b Indeed, within the ERG approach, the tran- o

sitions are found to beveaklyof first order and characterized H= E JiiS- S, (D)

by very large correlation lengths and pseudoscaling associ- {n

ated with pseudocritical exponents close to the exponents -

obtained within the perturbative approach. This occurrencévhere theS; are two-component vectors and the sum runs on

of pseudoscaling and quasiuniversality has been explaingd! pairs of nearest neighbors. The spins interact antiferro-

within ERG approaches by the presence a local minimum isnagnetically inside the planes and either ferromagnetically

the speed of the flod® related to the presence of a complex OF antiferromagnetically between planes, the nature of this

fixed point with small imaginary parts, called pseudofixed'aSt interaction being irrelevant to the long-distance physics.

point® Due to the intraplane antiferromagnetic interactions the sys-
XY frustrated magnets are rather different from this pointt€m is geometrically frustrated and the spins exhibit a 120°

of view since their nonperturbative RG flows display neitherstructure in the ground stafsee Fig. 1a)]. As H is invariant -

a fixed point nor a minimum. We show in this paper thatu_nder rotation, other gro_und states can be built by rotating

they, neverthelessgenerically exhibit large correlation Simultaneously all the spins. .

lengths at the transition and thus, pseudoscaling, but now Let us describe the symmetry-breaking scheme of the

without quasiuniversality. More precisely, we show that STA model in the continuum limit. In the high-temperature

quantities such as correlation length and magnetization bg2hase, Hamiltoniar(1) is invariant under the SO(2)7,

have as powers of the reduced temperature on several d@oup acting in the spin space and th&l0group associated

cades. A central aspect of our approach is that, although théith the symmetries of the triangular Iattyé%]n the low-

RG flow displays neither a fixed point nor a minimum, it temperature phase, the residual symmetries are given by the

remains sufficiently slow in a large domain in coupling con-9roup O(2}agWhich is a combination of the group acting in

stant space to produagenericallylarge correlation lengths SPin space and of the lattice group. The symmetry-breaking

and scaling behaviors. We argue that our approach allows tgcheme is given 4

account for the striking properties of tieY frustrated mag-

nets like theXY stacked triangular antiferromagndSTA) G=0(2) X SQ2) X Zy—H=0(2) giag 2

II. THE STA MODEL AND ITS LONG-DISTANCE
EFFECTIVE HAMILTONIAN
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TABLE I. Critical exponents of thXY frustrated models, from
Refs. 2,11-15 and references therein. For Csgti@# transition
has been found of first order and the exponents mentioned here hold
only for a reduced temperature larger that 502 (see Ref. 15

CsMnBr, @=0.399), 0.405), 0.445)
B=0.21(1), 0.21(2), 0.222), 0.242), 0.251)
y=1.018), 1.105); »=0.543), 0.573)

CsNiCl a=0.3425), 0.376), 0.378); 8=0.2435)
CsMnl, a=0.346)

CsCuC} a=0.355); f=0.232), 0.242), 0.252)

Tb a=0.203); f=0.21(2), 0.234); v=0.53
Ho =0.30(10), 0.3710), 0.393),

0.392), 0.394), 0.394), 0.41(4)
vy=1.1410), 1.2415); v=0.544), 0.574)

Dy p=0.382), 0.341), 0.39°3E;
y=1.057); »=0.575)

STA a=0.34(6), 0.4310), 0.4610)

Monte Carlo £=0.24(2), 0.25310); y=1.034), 1.135)
v=0.482), 0.501), 0.542)

Six loop a=0.299); f=0.312); y=1.104); v=0.573)

FIG. 1. The ground-state configuratiot@ of the spins on the
triangular lattice andb) of the order parameter made of two ortho-
normal vectors. The three-dimensional structure of the ground stai
is obtained by piling these planar configurations.

It is convenient to consider, in the following, a generali-
t%ation of the model$1) and (5) to N-component spins. The
order parameter consists in this case iN&2 matrix and
the symmetry-breaking scheme is thus given byND(

and thus consists in a fully broken SO2J, group. TheZ, < O(2)—O(N—=2)XO(2)4iag. Frustrated magnets thus cor-

degrees of freedom are known as chirality variables. respond to a symmetry-breaking scheme isomorphic to
Due to the 120° structure, the local magnetization, define®(N) —O(N—2) that radically differs from that of the usual
on each elementary plaguette as vectorial model which is Q) —=O(N—1). The matrix na-
ture of the order parameter together with the symmetry-
$=5,+5,+5S, (3  breaking scheme led naturally in the 1970's to the hypothesis
1

of a new universality cla$s®—the “chiral” universality
vanishes in the ground state and cannot constitute the ordélass—gathering all materials supposed to be described by
parameter. In fact, as in the case of colinear antiferromagHamiltonian (1): STA and helimagnets. As we now show,
nets, one has to build the analog of a staggered magnetizgxamining the current state of the experimental and numeri-

tion. It is given by a pair of two-component vectofﬁq and c¢aldata, there s, in fact, no clear indication of universality in

<Z2 —defined at the center of each elementary cell of the the critical behavior oY frustrated magnets.
triangular lattice—that are orthonormal in the ground <téte
[see F|g 1b)] They can be Convenienﬂy gathered into a !ll. THE EXPERIMENTAL AND NUMERICAL CONTEXT

square matrix: A. The experimental situation

CI)(X)=[97>1(X),<?>2(X)]- (4) Tqu kinds of mate_rials are supposed to unde_rgo a phase

transition corresponding to the symmetry-breaking scheme

Once the model is formulated in terms of the order paraméescribed above: the STA—CsMnBrCsNiCk, CsMnk,

eter, the interaction, originally antiferromagnetic, becomesCsCuCt—(see Ref. 10 for RbMnBj and the helimagnets,

ferromagnetic. It is thus trivial to derive the effective low- Ho, Dy, and Tb. The corresponding critical exponents are

energy Hamiltonian relevant to the study of the critical phys-given in Table I.

ics, which writes Note first that, concerning all these data, only one error
bar is quoted in the literature, which merges systematic and

I 4 X statistical errors. We start by making the hypothesis that

H=— EJ’ d* Tr[g'®(x)-a®(x)], (3 these error bars have a purely statistical origin. Under this
assumption, we have computed the—weighted—average

where '® denotes the transpose ®f. values of the exponents and their error bars. This is the
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meaning of the numbers we give in the following. This hy- phase transition. Indeed, it would imply a finetuning of the
pothesis is, however, too naive, and we have checked that thicroscopic coupling constants—i.e., of the initial condi-
we attribute a large part of the error bars quoted in Table | tdions of the flow—for the materials of group 1 in such a way
systematic bias—typically 0.1 fop and 0.2 for»—, our  that they lie out of, but very close to, the border of the basin
conclusions still hold. We also make the standard assump?f attraction of the fixed point governing the critical behavior
tions that the measured exponents govern the leading scalir®} materials of group 2.

behavior, i.e., the determination of the critical exponents is The third scenario, that of generic weak first-order behav-
not significantly affected by corrections to scaling. This isiors for the two groups of materials, seems even more un-
generically assumed in magnetic materials where correctiondatural, at least in the usual explanation of weak first-order
to scaling are never needed to reproduce the theoretical réhase transitions.

sults in the range of reduced temperature reachable in Actually, we shall provide arguments in favor of this last
experimenté? This is different for fluids where the scaling Scenario. Also, as we shall see in the framework of the ef-
domain can be very large. Moreover, since the error bars ifective average action, the generic character of pseudoscaling
frustrated systems are much larger than in the usual ferrdD this scenario has a natural explanation, not relying on the
magnetic systems—by a factor five to ten, see Table Foncept of fixed point. Then, no finetuning of parameters is
—neglecting corrections to scaling should not bias signiﬁ_required to explain generically weak first order behaviors in

cantly our analysis. frustrated systems.
Under these assumptions we can analyze the data. We find
that there are three striking facts. B. The numerical situation

(i) There are two groups of incompatible exponeiiise
average value ofB, the best measured exponent, for
CsMnBr, CsNiCk, and Th—called group 1—is given by
B~0.23. It is incompatible with that of Ho and Dy—group
2—which is 8~0.39 (see Table | for detai)s Note that for

: : 2) The STAR (Ref. 159—with R for rigid—which con-
, wh t tible with those of . %) . . .
g;i;% tr\:ve (t)r?aerm‘iat)i(gr? ?g; Sbeegr? fgzrr?dp?olig \\/Igry we?isk?y %psts in a STA where the fluctuations of the spins around their
first Ord’erIIG ground state 120° structure have been frozen. This is realized

(i) The exponents vary much from compound to comby imposing the rigidity constrairt =S, + S,+S;=0 at all
pound in group 1For instance, the values affor CsNiCl; ~ temperatures.
and CsMnBg are only marginally compatible. (3) A discretized version of Hamiltoniafb), called the

(iii) The anomalous dimensianis significantly negative ~Stiefel V2, model'® There, one considers a system of dihe-
for group 1 For CsMnBg, the value ofn determined by d_rals interacting ferromagnetically, which is represented in
the scaling relation p=28/v—1 with B=0.2276) and Fig. 1(b).
»=0.55521) is »=—0.18238). The inclusion of the data At this stage, we emphasize that the rigidity constraint
coming from CsNiC} and Tb does not change qualitatively S =0 which is imposed in the STAR, as well as the formal
this conclusion. manipulations leading to the Stief#l, , model affect only

Several conclusions follow from the analysis of the datathe massive—noncritical—modes. Thus, all the STA, STAR,
From points(i) and (ii), it appears that materials that are and Stiefel models have the saroétical modes, the same
supposed to belong to the same universality class differ asymmetries and thus the same order parameter. One thus
for their critical behavior. There are essentially three ways taould expecta priori that they all exhibit the same critical
explain this. In the first one, the two sets of exponents corbehavior.
respond to two true second-order phase transitions, each one For the STA system, scaling laws are folfid’so that a
being described by a fixed point. In the second, one set cosecond-order behavior could be inferred. The STAR gl
responds to a true second-order transition and the other tmodels both undergo first-order transitidisTherefore, by
pseudocritical exponents associated with weakly first ordechanging microscopic details to go from the STA model to
transitions. In the third, all transitions are weakly of first the STAR orV,, models, the nature of transitions appears to
order. change drastically. This situation indicates that if STA under-

The first scenario can be ruled out singés negative for goes a genuine second-order phase transition, the critical be-
group 1 while it cannot be so in a second-order phase trarhavior of frustrated magnets, in general, is characterized by a
sition when the underlying field theory is a Ginzburg-Landaulow degree of universality, a conclusion already drawn from
¢*-like theory!’ as it is the case hefeThe transition under- the experimental situation.
gone by CsMnBy, CsNiCk, and Tb is therefore very likely With these behaviors one is brought back to the two last
not continuous but weakly of first order. scenarios proposed in the preceding sectiorthe behavior

In the second scenario, the materials of group 2 undergo af the STA system is controlled by a fixed point while the
second-order phase transitions-is found positive there— STAR and Stiefel models lie outside its basin of attraction
while those of group 1 all undergo weakly first order transi-and (i) all systems undergo first-order phase transitions.
tions with pseudoscaling and pseudocritical exponents. Note In fact, as shown in Ref. 15, using the two scaling rela-
that although this scenario cannot be excluded, it is quitdéions »=28/v—1 andn=2— /v, nis found to be negative in
unnatural in terms of the usual picture of a second-ordeSTA systems—although less significantly than in experi-

There are no convincing numerical data concerning heli-
magnets. For the STA system, three different versions have
been simulated.

(1) The STA itself*®-20
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ments—for all simulations where these calculations can b@oint is found. The exponents associated withithe?2 case
performed. One can thus suspedingealk first-order behav- are given in Table I. Note thay and v compare reasonably
ior even for the STA system. This hypothesis is strengthenedell with the experimental data of group 1. However, as we
by a recent work of Itakura who has employed Monte Carloalready stressed, the existence of a fixed point implies
RG techniques in order to investigate the critical behavior of;>0—#7=0.08 in Ref. 2—and is thus incompatible with the
both the STA system and the Stiefel moéeUsing systems negative value ofy found for the group 1. Moreover, the
with lattice sizes up to 126144x126, he has provided evi- value =0.31(2) found in Ref. 2 is far—four standard
dences for weak first-order behaviors. deviations—from the average experimental value
Let us draw first conclusions from the experimental and3=0.2376) for group 1 and also far—3.7 standard
numerical situations. It appears that the critical physics ofleviations—from that obtained from group 2, Ho and Dy:
frustrated magnets cannot be explained in terms of a single-8=0.3887). It is thus incompatiblewith the two sets of
universal—second-order phase transition. A careful analysiexperimental values. This point strongly suggests that the
of the experimental and numerical data seems to indicate thatx-loop fixed point does not describe the physics of materi-
a whole class of materials undergoeal first-order phase als belonging to group 2 that, in the simplest hypothesis,
transitions. At this stage, no conclusion can be drawn abouthould also undergo a first-order phase transition.
the existence or absence of a true fixed point controlling the The preceding discussion does not rule out the existence
physics of some realizations of frustrated magnets. To clarifyof the fixed point found in Ref. 2. This just shows that, if it

this issue, we now present the theoretical situation. exists, it must have a very small basin of attraction, and that
the initial conditions corresponding to the STA and helimag-
IV. THE THEORETICAL SITUATION nets lie out of it. In fact, as we argue in the following, this

fixed point probably does not exist at all so that we expect

The early RG studies of the STA and helimagnets—andhat all transitions are ofpossibly very weakfirst-order.
its generalization t?t\-component spins—was performed in a

double expansion in coupling constant and #n4d —d on the
Ginzburg-Landau-WilsonNGLW) version of the model in
Refs. 22,23,9 and 7. It has appeared that, for a given dimen- There exists an alternative theoretical approach to the per-
sion d, there exists a critical number of spin component,turbative RG calculations which explains well, qualitatively
calledN.(d), above which the transition is of second orderand to some extent quantitatively, all the preceding facts. It
and below which it is of first order. Naturally, a great theo- relies on the Wilsonian RG approach to critical phenomena,
retical challenge in the study of frustrated magnets has beeflased on the concept of block spins and scale dependent
the determination oN.(d). Its value has been determined effective theorie$!-?®Although it has been originally formu-

V. THE EXACT RG APPROACHES

within perturbative computation at three-loop order: lated in terms of Hamiltonians, its most recent and successful
X . implementation involves the effectiv@verage action?®~3*
Nc(4—€)=21.8-23.4e+7.09%"+O(e”). (6) In the same way as in the original Wilsonian approach, one

this series is not well behaved since the coefconstructs an effective action, notég, that only includes

Juigh-energyfluctuations—with momentag®>k?—of the mi-
roscopic system. At the lattice scde A=a !, ', corre-

sponds to the classical Hamiltonidh since no fluctuation

has been taken into account. When the running skake
No(4— €)=2+(2— €)(9.9— 6.77e+0.16¢2) + O( €3). Ipwereq, I’ includes more .and more low-energy fluctua-

(7)  tions. Finally, when the running scale is lowereckts0, all
fluctuations have been integrated out and one recovers the

The coefficients of this expression are now rapidly de-usual effective action or Gibbs free eneigyTo summarize,

creasing so that it can be used to estim¥étéd). Ford=3 it one has

provides N;(3)=5.3 and leads to the conclusion that the

Unfortunately,
ficients are not decreasing fast. It has been conjectured
Pelissettet al?* thatN,(2)=2. Using this conjecture, these
authors have reexpressed E). in the form

transition is of first-order in the relevant Heisenberg &id F=p=H,
cases.
In agreement with this result, the perturbative approaches I'_o=T. )

performed at three loops, either in-4 or directly in three

dimensions, lead to a first-order phase transitionqdrsys-  Note also that the original Hamiltonian depends on the origi-
tems with aN¢(3) given, respectively, biN.(3)=3.91(Ref.  nal spins while the effective action—&t=0—is a function
25) and N.(3)=3.39 (Ref. 26. However, according to the of the order parameter. At an intermediate sdalé’y is a
authors, these computations are not well converged. It is onlfunction of an average order parameter at sdalaoted
recently that a six-loop calculation has been perforieti- ¢, (q)—or more simply,¢(q)—that only includes the fluc-
rectly in three dimensions, which is claimed to be convergeduations with momentag®>k?. ThusT', has the meaning of
in the Heisenberg andY cases. Note that, for values Bf  a free energy at scale

betweenN=5 andN=7, the resummation procedures do At a generic intermediate scatel", is given as the solu-
not lead to converged results, preventing the authors frontion of anexactequation that governs its evolution with the
computingN,(3) in this way. ForN=2 andN=3 a fixed  running scalé?
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arfe]l 1 ) _, IRk batively the critical physics of the ®) < O(2) model, up
& 3 MITTel+RO T —o 9  to trivial reparametrizations. There is, however, a funda-
mental difference since we doot use I’y within a weak-
wheret=In(k/A) and the trace has to be understood as &oupling perturbative approach. This allows the presence of
momentum integral as well as a summation over internathe current term that corresponds to a nonstandard kinetic
indices. In Eq.(9), T{?[¢] is the exact field-dependent term. This term is irrelevant by power counting around
inverse propagator, i.e., the second functional derivative ofour dimensions since it is quartic in the fields and quadratic
I'y. The quantityRy is the infrared cutoff that suppresses in derivatives. However, its presence rigcessaryaround
the propagation of modes with momeng@<k?. A con-  two dimensions to recover the results of the low-temperature
venient cutoff, that realizes the constraii®, is provided approach of the nonlinear sigma (M). model since it

by*3 contributes to the field renormalization of the Goldstone
o s o s 5 modes. Being not constrained by the usual power counting,

Ri(q%)=2(k*=q%) 6(k"—q°), (10 we include this term in our ansatz. Note also that we have

whereZ is thek-dependent field renormalization. considered much richer truncations than that given by Eq.

Ideally, in order to relate the thermodynamical quantities(11) by putting all the terms up te@'° and by adding all
to the microscopic ones, one should integrate the flow equa{erms with four fields _and two derlvatlves._Th|s has allowed
tion starting fromk= A with the microscopic Hamiltoniahl us to check. the stability of our results with respect to the
as an initial condition and decreasdown to zero. However, field expansion. . _
Eq.(9) is too complicated to be solved exactly and one hasto We do not provide the details of the computation. The
perform approximations. To render E@) manageable, one _geqeral technlque is given in several publlcatlons_ and
truncates the effective actiofi,[ 4] to deal with a finite itS implementation on the specific 8 O(2) model will
number of coupling constants. The most natural truncation®®@ given in a forthcoming papér.The_B functions for
well suited to the study of the long-distance physics of a fieldhe different coupling constants entering in EqJ1) are
theory, is to perform a derivative expansidof I',[ #]. This ~ diven by
consists in writing amansatzfor I', as a series in powers
of d¢. The physical motivation for such an expansion is

that since the anomalous dimensignis small, terms with d_": —(d=2+ )«
high numbers of derivatives should not drastically affect the dt
physics. 1
Actually, another truncation is performed. It consists in +4Ud[_|81(0101’<w)+(N_2)I?_0(010'0)
expanding the potential, which involves all powers of the 2

O(N) X O(2) invariants built out ots; and -, in powers of 3
the fields. This kind of approximation allows to transform the + EIEO(K)\,O,OH
functional equatior{9) into a set of ordinary coupled differ-

ential equations for the coefficients of the expansion. It has ®

been shown during the last ten years that low order approxi- + Xlgid(O,Oxw)
mations in the field expansion give very good resise

Ref. 34 for a review and Ref. 35 for an exhaustive bibliog-
raphy). The simplest such truncatiorf‘is

194 k2,0,0)

o
1+2K

: (123

dA 2 d
4 =(d=4+2)h+v [ 2\2(N=2)15(0,0,0

Z 0 . - - -
_ dy,] = t e . _ . 2
A 2 +200+20)29 (k,0,0) + 4N 0l 259(0,0
+Z g_K +%T . (11) ( ) 20(K,“ ) wlgy ( K®)

+40235%0,0x0)], (12b)
Let us first discuss the different quantities involved in this

expression. One recalls thédt is theN X2 matrix gathering

the N-component vectorél and (;32 [see Eq(4)]. There are d_f“‘ =(d—4+279)u

two independent Q)X O(2) invariants given byp dt

=Trdd and 7=3Tr('®dd)?—3(Tr'dd)%. The set

{x:\,u,Z,w} denotes the scale-dependent coupling con- — 2041 _E|gl(o'okw)+ MIQO(KA,O,O)
stants that parametrize the model at this order of the trunca- K k(p—N)

tion. The first quantity in Eq(11) corresponds to the stan- 8\ +

dard ki_netic term while the third and fourth correspond to the + )\—_Ml‘ljo(x,u,O,O)+,u|‘fl(;<,u,0,;<w)
potential part. Actually, apart from the second term—called k(A= p)

the current term—/", in Eq. (11) looks very much like the

usual Landau-Ginzburg-Wilson action used to study pertur- +M(N—2)I‘2’0(0,0,0)}, (129
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B dinz
(T

+2(—2+d)kw! §(0,0,0)+2m3(0,0 k) + 22\ 2m3 5( kX, 0,0) + 4x22mG o x2,0,0)

v
=2ﬁ[(4—d)mlgl(o,o,m) +2k%02125 90,0 kw) +2m3,(0,0 k) — 4mI(0,0 k)

+4Kwn82(0,0;<w)—8Kwn°1’1(0,0;<w)+4Kwngo(0,0;<w)], (12d)
do dvgq (4—d) (d—16)
a=(d—2+27])w+ﬁ Kw:T|81(O,O,Kw)+ Tlgl(K)\,O,Kw)-i-Ka)lS;d(O,O,Kw)—3Kw|g;d(K)\,O,Kw)

d d d 2+d 2+d
+(d—2)1740,0,00— (d—8)I7¢(kN,0,0) + 8kNl14( kN, 0,k w) + 2k wl5; “(kw,0,0)+ 2k w(N—2)15,°(0,0,0)
+m82(0,0,Kw)—m82(K)\,O,Kw)—2mc111(0,0,1<w)+ngl(K)\,O,Kw)+mgo(0,0,/<w)—mc2’0(K)\,0,Kw)
+thzmgz(K)\,O,O)+ZKZMZmSZ(KM,O,O)+2Kwn82(0,0,Ka))—4Kwn82(K)\,0,Kw)—4Kwn§j_1(0,O,Kw)
+8kwny(k\,0,kw)+2kwn3y(0,0kw) —4kwny kN, 0kw) |. (129

[
In these equations appear the dimensionless functions 72
190 n2sM51 n2,N01 2+ Called threshold functions, since they /31:—(0'—2)771+N—2—2—77l,

govern the decoupling of the massive modes entering in the

action (11). They encode the nonperturbative content of the N=2/ 7,2

flow equationg12). They are complicated integrals over mo- Bo=—(d=2)np+ —(—2) - (15
menta and are explicitly given in the Appendix. 2 \m

This shows that our method allows to recover the pertur-
bative results both near=2 andd=4. This is not a surprise
A. Checks of the method since, as well known, Eq9) has a one-loop structure. How-
gver, for frustrated magnets, and contrary to th&jD¢ase,

We have first proceeded to all possible checks of ou : . . o
method by comparing our results with all available data ob-the ma_ltchmg_wnh th? results of the hd-Lmode! Is not trivial
ince it requires to incorporate the nontrivial current term

?:antﬁgdv;ﬁtlt‘]illlns ;“eihg;fgegir;tCkp;ertubatlve approaches. Our\?vhich is irrelevant around=4, and thus absent in a GLW
_ | - . approach.
(1) Around d=4, we have checked that, in the limit of . .
small coupling constant, our equations degenerate in those (3) Our method also matches with the leading order re-

: : : 3 sults of the 1IN expansion ofy and 7. In the O(N) X O(2)
obtained from the weak coupling expansion at one . model these exponents have also been computed at order

1/N? in d=3. They are given b/

VI. RESULTS AND PHYSICAL DISCUSSION

dx 1 s
gr = (A= ON+ —— [+ AP+ NE(N+4)],
16m 161 (56 640| 1 .
v= —;N— ;_Q m‘f’O(l/N ),
du 1
EZ(d—4)M+P(6)\M+NM2). (13
4 41 64 1
n=—+w— — — +O(1N3). (16)

This can be easily verified considering the asymptotic ex-
pressions of the threshold functions that are given in the

Appendix. _ We have computea and 7 for a large range of values of

(2) Also, aroundd=2, performing a low-temperature o compare our results with those obtained within tH¢ 1/
expansion—corresponding to a largeexpansion—of our  expansion. We meet an excellent agreement—better than
equations and making the change of variables: 1%—for v already forN>10 where the N expansion is
reliable.

(4) For N=6, a Monte Carlo simulation has been per-
—4mk(1+ k) (14) formed on the STA modét’ A second-order phase transition

72 ' has been found without ambiguity with exponents given in

one recovers th@ functions found in the framework of the Table Il. Our results compare very well with the Monte Carlo
nonlineare model at one loop® data. Although the casbl=6 does not correspond to any

a2 N 374 N?

N1=27K,
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TABLE II. Critical exponents for theN=6 STA system. The that the fixed point does not exist at all, which now appears
first row corresponds to Monte Carlo d3tand the seconPW) to as the most probable solution.
the present work.

B. Scaling without fixed and pseudofixed points

* A 14 g K The hypothesis of the absence of fixed point immediately

MC —0.100(33) 0.3504) 1.38336) 0.70011) 0.02520) raises the theoretical challenge to explain the occurence of
PW  -0.121 0.372 1.377 0.707 0.053 scaling in theabsenceof a fixed point. For Heisenberg spins,
this question has been addressed by Zumt¥agding a local
potential approximatiofLPA) of the Polchinski equatiof
physical system this constitutes a success of our approagnd by the present authors beyond LPA in the framework of
from a methodological point of view. Let us recall that, in the effective average action methbdt has been realized
this case, the six-loop weak coupling calculation is not conthat, whenN is lowered fromN>N(3) to N<N(3), al-
verged. though the stable fixed point disappears, there is no major
(5) In agreement with the weak coupling perturbative re-change in the RG flow. This can be understood by consider-
sults, we have found by varyindy in a given dimensiord  ing a domainé of initial conditions of the flow correspond-
that, below a critical valuél,(d) of N, no fixed point exists  ing to all systems we are interested in—STA, STAR, ,,
(see Fig. 2 Our value ofN.(d) agrees within ten percent for real materials, etc.—and studying the RG trajectories starting
all dimensions with the values obtained from E@). Ind  in £ One finds that there exists a domddC & such that all
=3 we have foundN,(3)=5.1, which almost coincides with trajectories emerging fror® are attracted towards small
that obtained using Eq7) that leads tdN.(3)=5.3. domainR in which the flow is very slow. Since the flow is
All these checks show the consistency between our comvery slow inR the RG time spent in this region is long and,
putation and most of the previous theoretical approaches. thus, the correlation lengths of the systemsinare very
is in contradiction with the six-loop calculation of Pelissetto large. One therefore partly recovers scaling, for systenf® in
et al. Note that the resull¢(3)>3 does not excluda priori  (that aborts only for very small reduced temperaturigtore-
the existence of a fixed poimot analyticallyrelated—inN  over, the smallness dR ensures the existence giseudo}
and e=4—d—to those found abovbl.(d). This is, in fact, universality. Consequentg mimics a true fixed point.
the position advocated by Pelissetoal? However, we This idea has been formalized through the concept of
have numerically searched for this fixed point with our equa{seudofixed point, corresponding to the poinidrwhere the
tions without success. This implies three possibilities. Theflow is the slowest, the minimum of the floAt this point
first one is that our method is not able—in principle—to find it has been possible to compueseudojcritical exponents
this kind of fixed point. Let us emphasize that, although it ischaracterizing the pseudoscaliignd pseudouniversality
not possible to exclude this case, it is improbable that @ncountered in Heisenberg frustrated spin systetfis.
method that recovers all previous results in a convincing Within our approach, we confirm the existence, for values
way, misses such a fixed point. Another possibility is that itof N just belowN(3), of aminimum of the flow leading
has a so small basin of attraction that we have systematicalijpdeed to pseudoscaling and quasiuniversaliige Ref. 4
missed it in our numerical investigation of our equations.and, for details, Ref. )5 However, whenN is lowered, the
This would mean that it probably does not play any role inminimum of the flow is less and less pronounced and, for
the physics of frustrated magnets. In this case, one should s®me value oN between 2 and 3, it completely disappears.
led to predict first order transitions fotY systems so that it Since (pseudo}scaling is observed in experiments and nu-
would be very difficult to explain why they are generically merical simulations irKY systems this means that the mini-

weakly of first order. Finally, there remains the possiblity mum of the flow does not constitute the ultimate explanation
of scaling in the absence of a fixed point. At this stage, one

99 reaches the limits of the notion of minimum of the flow as
the quantity playing the role dpseudo}ixed point. First, it

20 ) . .
18 Qarkens the important fact t_hgt the notion relevant to scaling
16 is not the existence of a minimum of the flow but that of a
14 whole regionR in which the flow is slow, i.e., thg8 func-

Ne g9 tions are small. Putting it differently, the existence of a mini-
10 mum of the flow does not guarantee that the flow is slow, i.e.,
3 that the correlation length is large compared with the lattice
6 spacing. Reciprocally, it can happen that the RG flow is slow,
4 the correlation length being large, and that scaling occurs
9 even in the absence of a minimum. Second, reduding a

point, one rules out the possibility to test the violation of

universality. Clearly, the degree of universality is related to

the size of R. The smallerR, the more universal is the
FIG. 2. The full line represents the curie(d) obtained by the ~ behavior.

three-loop result improved by the constraiy(2)=2, Eq.(7). The Qualitatively—thanks to continuity arguments—one ex-

crosses represent our calculation. pects that, forN close toN.(3), all systems in& exhibit
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pseudoscaling-P=£&—andR is almost pointlike so that the or

transitions are extremely weakly of first order and universal- 0.1 /
ity almost holds. WheilN is sufficiently decreased, two phe- 02

nomena occur. Firsf) gets smaller tha& and thus the tran- og (ﬂ):g.i i

sitions become of strong first order for all systems that™ ~'\™mo/ |

belong to€ but not toD. Second;R gets wider and thus, a 206 F

whole spectrum of exponents is observed and pseudounivel 0.7

sality breaks down. Note that these two phenomena are nc 0.8

obligatorily simultaneous so that, for intermediate values of 0.8 , . | 1 | |
N, scaling still holds while pseudouniversality is already sig- 13 25 2 15 1 05 0
nificantly violated. These two phenomena are observed nu

merically in the Heisenberg andY systems: STA, STAR, (a) log,o|t/|

andVy , models. FoN=3, all these models display scaling
but with 8 exponents that are almost incompatipl@sa N
=0.285(11)% Bsmar=0.2219), and By, =0.193(4) (see BTN
Ref. 41)], which means that one probably starts leaving the
pseudouniversal regime. Fbr=2, scaling is only observed log1o(§6> 0.8
for STA—B=0.242) here—while the transitions for STAR

=
'S
1

andV,, are found to be of first order. 04

From a theoretical point of view, the Heisenberg case has 02l

been already treated in Ref. 4. We now concentrate on the ol
XY case. 0.2 L i L ! L |
-3 25 -2 -15 -1 05 0

C. Our results

. o ) logo[tr|
In practice, we numerically integrate the flow equations

(12 and compute physical quantities such as correlation FiG. 3. Log-log plots of the magnetization and of the corre-
length and magnetization as functions of the reduced temation lengthé for N=2 as functions of the reduced temperattjre
peraturet,=(T—T.)/T.. Since one expects the behavior of for parameters corresponding to materials of group 1. The straight
frustrated magnets to be nonuniversal, one should study eadihes correspond to the best power-law fit of the data. The power-
system independently of the others. Thus, ideally, one shoultiw behavior breaks down for sma}l.

consider as initial conditions of the RG flow all the micro-

scopic parameters characterizingspecific lattice system. between 0.47 and 0.58. This phenomenon holds for a wide
This program would require to identify and to deal with an domainD in coupling constant space

infi'nite number of coupling const_ants. This remains a theo- (2) We easily find initial conditions leading to pseudoex-
retical challenge. Rather than doing this, we have chosen t onents close to those of group B=0.38, »=0.58, and

address the question of scaling in the absence of a fixed poi yt=l.13(see Ho and Dy in Table | for comparisoiWe have

|f_nqtependetntly 9{ a ?'V%n tm!c:]osct?]plc s%/stlelm, usinglfer checked that the previous result is quite stable to both varia-
inite ansatzsimilar to, but richer than, Eq11). tions of the microscopic parameters and to a change of the

Since our truncations prevent us from relating preCISe'ydependence of the microscopic coupling constants. This is in

the thermodynamical quantities to the microscopic COUagreement with the stability g& in group 2. In the region of
plings, we have chosen, as initial conditions, the simples

barameters leading to this behavior, correlation lengths as
temperature dependence of the parameters at the kcaleIarge as 5000 lattice spacings are found

=A. This consists in fixing _all coyplmg_ constants  to (3) We also easily find initial conditions leading to
temperature—mdepe_ndent values and in taking the uensal B=0.25, corresponding to group 1. The power laws then
satzfor the quadratic term of : hold on a smaller range of temperature and the critical expo-
17) nents are more sensitive to the determinatioi odnd to the
initial conditions, in agreement with poirti) of Sec. Il A.

wherea andb are parameters that we have varied to test thd-or such values of, we find a range of values of
robustness of our conclusions. For each temperature we have—0.47<v<0.49—which is somewhat below the value
integrated the flow equations and deducedtthdependence found for CsMnBg (see Table)l Also, the corresponding
of the physical quantities around the critical temperature. deduced from the scaling relatiop=28/v—1 is always posi-

Let us now review the main results obtained by the intetive and, at best, zero. Finally, it is very interesting to notice
gration of the RG flow. that when we findg of order 0.25(group 1 we also find

(1) The integration of the flow equations leaglsnerically ~ correlation lengths at the transition of the order of a few
to good power laws in reduced temperature for the magnetihundred lattice spacings which coincide rather well with the
zation, the correlation lengtfsee Fig. 3, and the suscepti- first size where a direct evidence of a first-order transition
bility. We are thus able to extract pseudocritical exponentdias been seen in Monte Carlo RG simulatidiagtice sizes
varying typically, for 8 between 0.25 and 0.38 and fer  around 100

Kk:A:a+ bT,
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On the basis of their specific symmetry-breaking scheme
it has been proposed in Refs. 7—-9 that the critical physics of APPENDIX: THRESHOLD FUNCTIONS

XY frustrated systems in three dimensions could undergo a \ye discuss in this append|x the different threshold func-
second-order phase transition characterized by critical expg;gns |9 md andn? appearing in the flow equa-
nents associated with a new universality class. We have (;2)” 2’ e MM
given convincing arguments that rather favor the occurrence The threshold functions are defined as
of—generically weak—first-order transitions for Al frus-
trated magnets with a spreading @seudo)critical expo-

”1 N2
nents. This is supported by experimental and numerical re-

sults that do not agree with a second-order behavior. -
1f dyyd/2 1 { 1

(Wg,Wp,a)

Moreover, we have shown, using a nonperturbative ap- =-- A ,
proach, that this generic but nonuniversal scaling finds a 2Jo [P(y)+w ][ Pa(y) +w,]"™
natural explanation in terms of slowness and “geometry” of (Ala)
the flow. Our approach appears to explain the main puzzling

features ofXY frustrated magnets. mp, .n,(W1,W2,8)

We now propose several tests to confirm our approach.
On the experimental side, more accurate determinations of 1 (o o y[gypl(y)]z
critical exponents could lead to a definitive answer on the =~ Efo dyy’ P W oz |
nature of the transition, at least if no drastically new physics [Pa(y) Fwa B Paly) +we]
emergedas it could be the case for helimagnets particu- (Alb)

lar, it is important to check thaf is negative for CsMnBy; §
and therefore to refine the determination af It would nnl,nz(Wl,Wg,a)
also be of utmost interest to have more precise determina-

tions of a in CsMnBr;, CsNiCk, and CsMn} which are, up 1 " 2T yayP1(y)

to now, only marginally compatible. In case they are differ- Efo y NP L(y) + Wi ™[ Po(y) +w,]™
ent, this would corroborate the lack of universality that we

predict. The existence of a continuous spectrum of critical (Alc)

exponents could be directly tested by simulating, for ex-yith
ample, a family of models, extrapolating continuously from

STA to STAR. Pi(y)=yl[1+r(y)+al, (A2)
On the theoretical side, it would be of interest to push the
derivative expansion to refine the value gpffor group 1, Po(y)=y[1+r(y)]. (A3)

which is, as usual, overestimat&diThis would allow to re-

produce its observed negative value. Moreover, it would bdn all the previous expressionss a dimensionless quantity:

interesting to clarify the discrepancy between the nonpertury =% k? whereq is the momentum variable over which the

bative approach and the six-loop result. The ability of ourintegral in Eq.(9) is performed. As forr (y), it corresponds

approach to reproduce exactly the whole set of exponent® the dimensionless renormalized infrared cutoff:

found by Pelissettet al. suggests that their fixed point does

not correspond to a true fixed point but, in fact, to a region R(G%) Ru(yk?)

where the flow is very slow. One can thus question the con- riy)= R

vergence of the perturbative result which is not Borel sum- q y

mable. A detailed analysis of this problem of convergence ~

could reveal that the real fixed point found in the perturba- !N Eds.(Ala)—(Alc), ¢, means that only thedependence

tive approach is, actually, a complex one. of the functionRy is to be considered and not that of the
Finally, the major characteristics ofY-frustrated mag- CPUPling constants. Therefore one has

nets, i.e., the existence of scaling laws with continuously

(A4)

varying exponents are probably encountered in other physi- BP.(y)= ‘9_Rk iP-(y) (A5)
cal contexts, generically systems with a critical vaNig of o gt R

the number of components of the order parameter, separating

a true second-order behavior and a naively first-order one. =—y[gr(y)+2yr'(y)]. (AB)
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Now the threshold functions can be expressed as explicit

PHYSICAL REVIEW B67, 134422 (2003

> Do =—n(r+yr’)—2y(2r'+yr"). (A7)
integrals if we compute the operation &f. To this end, it is
interesting to notice the equalityyd,P;(y) =3,d,Pi(y), so
that We then get
|
1 (= nr+2yr’ ny n,
19 (wy,w ,a=——Jd 2 ( + , A8
oy (Wa W2, 8) == 5 0 vy [P1(y)+W ][ Py(y) +w,]"2\ Pa(y) + Wy Pa(y)+w, (A8)
1J°¢ 1
d _ 12
n Wi,Wy,a)=—=] d
)= | Y TPy Wil

X

n; n;

y(1+a+r+yr’)(nr+2yr’)(P
1

q 1+a+r+yr’
m

(y)+w; - Pa(y) +w,

- 77(r+yf')—ZY(2f'+yf”)]. (A9)

1 (e
(W11W2 1a): - _f dy)/jlz
2Jo

nl,nz

[P1(y) +wWy]"[P,(y)+w,]"2

ny n;

X

y(1+a+r+yr’)(nr+2yr’)<

+
Pi(y)+w,

—2n(r+yr’)—4y(2r' +yr");.
Py(y) Fw,  2n(rtyr)—dy(er’+y )]

(A10)
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