
PHYSICAL REVIEW B 67, 134422 ~2003!
XY frustrated systems: Continuous exponents in discontinuous phase transitions
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XY frustrated magnets exhibit an unusual critical behavior: they display scaling laws accompanied by
nonuniversalcritical exponents and anegativeanomalous dimension. This suggests that they undergo weak
first-order phase transitions. We show that all perturbative approaches that have been used to investigateXY
frustrated magnets fail to reproduce these features. Using a nonperturbative approach based on the concept of
effective average action, we are able to account for thisnonuniversal scalingand to describe qualitatively and,
to some extent, quantitatively the physics of these systems.
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I. INTRODUCTION

After twenty-five years of intense activity, the physics
XY and Heisenberg frustrated systems is still the subject
great controversy concerning, in particular, the nature
their phase transitions in three dimensions~see, for instance
Ref. 1 for a review!. On the one hand, a recent high-ord
perturbative calculation2,3 predicts in both cases a stab
fixed point in three dimensions and, thus, a second-o
phase transition. On the other hand, a nonperturbative
proach, the effective average action method, based o
Wilson-like exact renormalization group~ERG! equation,
leads to first-order transitions.4 Actually, it turns out that, in
the Heisenberg case, these two theoretical approache
almost equivalent from the experimental viewpoint~see,
however, Ref. 5!. Indeed, within the ERG approach, the tra
sitions are found to beweaklyof first order and characterize
by very large correlation lengths and pseudoscaling ass
ated with pseudocritical exponents close to the expon
obtained within the perturbative approach. This occurre
of pseudoscaling and quasiuniversality has been expla
within ERG approaches by the presence a local minimum
the speed of the flow,4,6 related to the presence of a compl
fixed point with small imaginary parts, called pseudofix
point.6

XY frustrated magnets are rather different from this po
of view since their nonperturbative RG flows display neith
a fixed point nor a minimum. We show in this paper th
they, nevertheless,generically exhibit large correlation
lengths at the transition and thus, pseudoscaling, but
without quasiuniversality. More precisely, we show th
quantities such as correlation length and magnetization
have as powers of the reduced temperature on severa
cades. A central aspect of our approach is that, although
RG flow displays neither a fixed point nor a minimum,
remains sufficiently slow in a large domain in coupling co
stant space to producegenerically large correlation lengths
and scaling behaviors. We argue that our approach allow
account for the striking properties of theXY frustrated mag-
nets like theXY stacked triangular antiferromagnets~STA!
0163-1829/2003/67~13!/134422~11!/$20.00 67 1344
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such as CsMnBr3 , CsNiCl3 , CsMnI3, and CsCuCl3, as well
as XY helimagnets such as Ho, Dy, and Tb, which displ
scaling at the transitionwithoutany evidence of universality
Our conclusions are in marked contrast with those dra
from the perturbative approach of Pelissettoet al.2,3 which
leads to predict a second-order phase transition forXY frus-
trated magnets~see Refs. 45, 46 for recent developments!.

II. THE STA MODEL AND ITS LONG-DISTANCE
EFFECTIVE HAMILTONIAN

The prototype ofXY frustrated systems is given by th
STA model. It consists of spins located on the sites
stacked planar triangular lattices. Its Hamiltonian reads

H5(̂
i j &

Ji j SW i•SW j , ~1!

where theSW i are two-component vectors and the sum runs
all pairs of nearest neighbors. The spins interact antife
magnetically inside the planes and either ferromagnetic
or antiferromagnetically between planes, the nature of
last interaction being irrelevant to the long-distance phys
Due to the intraplane antiferromagnetic interactions the s
tem is geometrically frustrated and the spins exhibit a 12
structure in the ground state@see Fig. 1~a!#. As H is invariant
under rotation, other ground states can be built by rotat
simultaneously all the spins.

Let us describe the symmetry-breaking scheme of
STA model in the continuum limit. In the high-temperatu
phase, Hamiltonian~1! is invariant under the SO(2)3Z2
group acting in the spin space and the O~2! group associated
with the symmetries of the triangular lattice.43 In the low-
temperature phase, the residual symmetries are given by
group O(2)diag which is a combination of the group acting i
spin space and of the lattice group. The symmetry-break
scheme is given by7,8

G5O~2!3SO~2!3Z2→H5O~2!diag, ~2!
©2003 The American Physical Society22-1
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and thus consists in a fully broken SO(2)3Z2 group. TheZ2
degrees of freedom are known as chirality variables.

Due to the 120° structure, the local magnetization, defi
on each elementary plaquette as

SW 5SW 11SW 21SW 3 ~3!

vanishes in the ground state and cannot constitute the o
parameter. In fact, as in the case of colinear antiferrom
nets, one has to build the analog of a staggered magne
tion. It is given by a pair of two-component vectorsfW 1 and
fW 2 —defined at the centerx of each elementary cell of th
triangular lattice—that are orthonormal in the ground state7–9

@see Fig. 1~b!#. They can be conveniently gathered into
square matrix:

F~x!5@fW 1~x!,fW 2~x!#. ~4!

Once the model is formulated in terms of the order para
eter, the interaction, originally antiferromagnetic, becom
ferromagnetic. It is thus trivial to derive the effective low
energy Hamiltonian relevant to the study of the critical ph
ics, which writes

H52
J

2E ddx Tr @] tF~x!•]F~x!#, ~5!

where tF denotes the transpose ofF.

FIG. 1. The ground-state configurations~a! of the spins on the
triangular lattice and~b! of the order parameter made of two orth
normal vectors. The three-dimensional structure of the ground s
is obtained by piling these planar configurations.
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It is convenient to consider, in the following, a genera
zation of the models~1! and ~5! to N-component spins. The
order parameter consists in this case in aN32 matrix and
the symmetry-breaking scheme is thus given by O(N)
3O(2)→O(N22)3O(2)diag. Frustrated magnets thus co
respond to a symmetry-breaking scheme isomorphic
O(N)→O(N22) that radically differs from that of the usua
vectorial model which is O(N)→O(N21). The matrix na-
ture of the order parameter together with the symme
breaking scheme led naturally in the 1970’s to the hypothe
of a new universality class7–9—the ‘‘chiral’’ universality
class—gathering all materials supposed to be described
Hamiltonian ~1!: STA and helimagnets. As we now show
examining the current state of the experimental and num
cal data, there is, in fact, no clear indication of universality
the critical behavior ofXY frustrated magnets.

III. THE EXPERIMENTAL AND NUMERICAL CONTEXT

A. The experimental situation

Two kinds of materials are supposed to undergo a ph
transition corresponding to the symmetry-breaking sche
described above: the STA—CsMnBr3 , CsNiCl3 , CsMnI3 ,
CsCuCl3—~see Ref. 10 for RbMnBr3) and the helimagnets
Ho, Dy, and Tb. The corresponding critical exponents
given in Table I.

Note first that, concerning all these data, only one er
bar is quoted in the literature, which merges systematic
statistical errors. We start by making the hypothesis t
these error bars have a purely statistical origin. Under
assumption, we have computed the—weighted—aver
values of the exponents and their error bars. This is

te

TABLE I. Critical exponents of theXY frustrated models, from
Refs. 2,11–15 and references therein. For CsCuCl3 the transition
has been found of first order and the exponents mentioned here
only for a reduced temperature larger that 531023 ~see Ref. 16!.

CsMnBr3 a50.39~9!, 0.40~5!, 0.44~5!

b50.21~1!, 0.21~2!, 0.22~2!, 0.24~2!, 0.25~1!

g51.01~8!, 1.10~5!; n50.54~3!, 0.57~3!

CsNiCl3 a50.342~5!, 0.37~6!, 0.37~8!; b50.243~5!

CsMnI3 a50.34~6!

CsCuCl3 a50.35~5!; b50.23~2!, 0.24~2!, 0.25~2!

Tb a50.20~3!; b50.21~2!, 0.23~4!; n50.53

Ho b50.30~10!, 0.37~10!, 0.39~3!,
0.39~2!, 0.39~4!, 0.39~4!, 0.41~4!

g51.14~10!, 1.24~15!; n50.54~4!, 0.57~4!

Dy b50.38~2!, 0.39~1!, 0.3920.02
10.04

g51.05~7!; n50.57~5!

STA a50.34~6!, 0.43~10!, 0.46~10!

Monte Carlo b50.24~2!, 0.253~10!; g51.03~4!, 1.13~5!

n50.48~2!, 0.50~1!, 0.54~2!

Six loop a50.29~9!; b50.31~2!; g51.10~4!; n50.57~3!
2-2
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meaning of the numbers we give in the following. This h
pothesis is, however, too naive, and we have checked th
we attribute a large part of the error bars quoted in Table
systematic bias—typically 0.1 forb and 0.2 forn—, our
conclusions still hold. We also make the standard assu
tions that the measured exponents govern the leading sc
behavior, i.e., the determination of the critical exponents
not significantly affected by corrections to scaling. This
generically assumed in magnetic materials where correct
to scaling are never needed to reproduce the theoretica
sults in the range of reduced temperature reachable
experiments.44 This is different for fluids where the scalin
domain can be very large. Moreover, since the error bar
frustrated systems are much larger than in the usual fe
magnetic systems—by a factor five to ten, see Tabl
—neglecting corrections to scaling should not bias sign
cantly our analysis.

Under these assumptions we can analyze the data. We
that there are three striking facts.

~i! There are two groups of incompatible exponents. The
average value ofb, the best measured exponent, f
CsMnBr3 , CsNiCl3, and Tb—called group 1—is given b
b;0.23. It is incompatible with that of Ho and Dy—grou
2—which is b;0.39 ~see Table I for details!. Note that for
CsCuCl3, whose exponents are compatible with those
group 1, the transition has been found to be very weakly
first order.16

~ii ! The exponents vary much from compound to co
pound in group 1.For instance, the values ofa for CsNiCl3
and CsMnBr3 are only marginally compatible.

~iii ! The anomalous dimensionh is significantly negative
for group 1. For CsMnBr3, the value ofh determined by
the scaling relationh52b/n21 with b50.227~6! and
n50.555~21! is h520.182~38!. The inclusion of the data
coming from CsNiCl3 and Tb does not change qualitative
this conclusion.

Several conclusions follow from the analysis of the da
From points~i! and ~ii !, it appears that materials that a
supposed to belong to the same universality class diffe
for their critical behavior. There are essentially three ways
explain this. In the first one, the two sets of exponents c
respond to two true second-order phase transitions, each
being described by a fixed point. In the second, one set
responds to a true second-order transition and the othe
pseudocritical exponents associated with weakly first or
transitions. In the third, all transitions are weakly of fir
order.

The first scenario can be ruled out sinceh is negative for
group 1 while it cannot be so in a second-order phase t
sition when the underlying field theory is a Ginzburg-Land
w4-like theory,17 as it is the case here.7 The transition under-
gone by CsMnBr3 , CsNiCl3, and Tb is therefore very likely
not continuous but weakly of first order.

In the second scenario, the materials of group 2 underg
second-order phase transition—h is found positive there—
while those of group 1 all undergo weakly first order tran
tions with pseudoscaling and pseudocritical exponents. N
that although this scenario cannot be excluded, it is q
unnatural in terms of the usual picture of a second-or
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phase transition. Indeed, it would imply a finetuning of t
microscopic coupling constants—i.e., of the initial cond
tions of the flow—for the materials of group 1 in such a w
that they lie out of, but very close to, the border of the ba
of attraction of the fixed point governing the critical behavi
of materials of group 2.

The third scenario, that of generic weak first-order beh
iors for the two groups of materials, seems even more
natural, at least in the usual explanation of weak first-or
phase transitions.

Actually, we shall provide arguments in favor of this la
scenario. Also, as we shall see in the framework of the
fective average action, the generic character of pseudosca
in this scenario has a natural explanation, not relying on
concept of fixed point. Then, no finetuning of parameters
required to explain generically weak first order behaviors
frustrated systems.

B. The numerical situation

There are no convincing numerical data concerning h
magnets. For the STA system, three different versions h
been simulated.

~1! The STA itself.18–20

~2! The STAR ~Ref. 15!—with R for rigid—which con-
sists in a STA where the fluctuations of the spins around th
ground state 120° structure have been frozen. This is real
by imposing the rigidity constraintSW 5SW 11SW 21SW 350 at all
temperatures.

~3! A discretized version of Hamiltonian~5!, called the
Stiefel V2,2 model.15 There, one considers a system of dih
drals interacting ferromagnetically, which is represented
Fig. 1~b!.

At this stage, we emphasize that the rigidity constra
SW 50 which is imposed in the STAR, as well as the form
manipulations leading to the StiefelV2,2 model affect only
themassive—noncritical—modes. Thus, all the STA, STAR
and Stiefel models have the samecritical modes, the same
symmetries and thus the same order parameter. One
could expecta priori that they all exhibit the same critica
behavior.

For the STA system, scaling laws are found18–20so that a
second-order behavior could be inferred. The STAR andV2,2
models both undergo first-order transitions.15 Therefore, by
changing microscopic details to go from the STA model
the STAR orV2,2 models, the nature of transitions appears
change drastically. This situation indicates that if STA und
goes a genuine second-order phase transition, the critica
havior of frustrated magnets, in general, is characterized b
low degree of universality, a conclusion already drawn fro
the experimental situation.

With these behaviors one is brought back to the two l
scenarios proposed in the preceding section:~i! the behavior
of the STA system is controlled by a fixed point while th
STAR and Stiefel models lie outside its basin of attracti
and ~ii ! all systems undergo first-order phase transitions.

In fact, as shown in Ref. 15, using the two scaling re
tionsh52b/n21 andh522g/n, h is found to be negative in
STA systems—although less significantly than in expe
2-3
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ments—for all simulations where these calculations can
performed. One can thus suspect a~weak! first-order behav-
ior even for the STA system. This hypothesis is strengthe
by a recent work of Itakura who has employed Monte Ca
RG techniques in order to investigate the critical behavio
both the STA system and the Stiefel model.21 Using systems
with lattice sizes up to 12631443126, he has provided evi
dences for weak first-order behaviors.

Let us draw first conclusions from the experimental a
numerical situations. It appears that the critical physics
frustrated magnets cannot be explained in terms of a sing
universal—second-order phase transition. A careful anal
of the experimental and numerical data seems to indicate
a whole class of materials undergo~weak! first-order phase
transitions. At this stage, no conclusion can be drawn ab
the existence or absence of a true fixed point controlling
physics of some realizations of frustrated magnets. To cla
this issue, we now present the theoretical situation.

IV. THE THEORETICAL SITUATION

The early RG studies of the STA and helimagnets—a
its generalization toN-component spins—was performed in
double expansion in coupling constant and ine542d on the
Ginzburg-Landau-Wilson~GLW! version of the model in
Refs. 22,23,9 and 7. It has appeared that, for a given dim
sion d, there exists a critical number of spin compone
calledNc(d), above which the transition is of second ord
and below which it is of first order. Naturally, a great the
retical challenge in the study of frustrated magnets has b
the determination ofNc(d). Its value has been determine
within perturbative computation at three-loop order:26

Nc~42e!521.8223.4e17.09e21O~e3!. ~6!

Unfortunately, this series is not well behaved since the co
ficients are not decreasing fast. It has been conjectured
Pelissettoet al.24 thatNc(2)52. Using this conjecture, thes
authors have reexpressed Eq.~6! in the form

Nc~42e!521~22e!~9.926.77e10.16e2!1O~e3!.
~7!

The coefficients of this expression are now rapidly d
creasing so that it can be used to estimateNc(d). Ford53 it
provides Nc(3)55.3 and leads to the conclusion that t
transition is of first-order in the relevant Heisenberg andXY
cases.

In agreement with this result, the perturbative approac
performed at three loops, either in 42e or directly in three
dimensions, lead to a first-order phase transition forXY sys-
tems with aNc(3) given, respectively, byNc(3)53.91~Ref.
25! and Nc(3)53.39 ~Ref. 26!. However, according to the
authors, these computations are not well converged. It is o
recently that a six-loop calculation has been performed2,3 di-
rectly in three dimensions, which is claimed to be converg
in the Heisenberg andXY cases. Note that, for values ofN
betweenN.5 and N.7, the resummation procedures d
not lead to converged results, preventing the authors f
computingNc(3) in this way. ForN52 andN53 a fixed
13442
e

d
o
f

d
f

—
is
at

ut
e

fy

d

n-
,
r

en

f-
by

-

s

ly

d

m

point is found. The exponents associated with theN52 case
are given in Table I. Note thatg andn compare reasonably
well with the experimental data of group 1. However, as
already stressed, the existence of a fixed point imp
h.0—h50.08 in Ref. 2—and is thus incompatible with th
negative value ofh found for the group 1. Moreover, th
value b50.31~2! found in Ref. 2 is far—four standard
deviations—from the average experimental val
b50.237~6! for group 1 and also far—3.7 standar
deviations—from that obtained from group 2, Ho and D
b50.388~7!. It is thus incompatiblewith the two sets of
experimental values. This point strongly suggests that
six-loop fixed point does not describe the physics of mat
als belonging to group 2 that, in the simplest hypothe
should also undergo a first-order phase transition.

The preceding discussion does not rule out the existe
of the fixed point found in Ref. 2. This just shows that, if
exists, it must have a very small basin of attraction, and t
the initial conditions corresponding to the STA and helima
nets lie out of it. In fact, as we argue in the following, th
fixed point probably does not exist at all so that we exp
that all transitions are of~possibly very weak! first-order.

V. THE EXACT RG APPROACHES

There exists an alternative theoretical approach to the
turbative RG calculations which explains well, qualitative
and to some extent quantitatively, all the preceding facts
relies on the Wilsonian RG approach to critical phenome
based on the concept of block spins and scale depen
effective theories.27,28Although it has been originally formu
lated in terms of Hamiltonians, its most recent and succes
implementation involves the effective~average! action.29–31

In the same way as in the original Wilsonian approach, o
constructs an effective action, notedGk , that only includes
high-energyfluctuations—with momentaq2.k2—of the mi-
croscopic system. At the lattice scalek5L5a21, Gk corre-
sponds to the classical HamiltonianH since no fluctuation
has been taken into account. When the running scalek is
lowered, Gk includes more and more low-energy fluctu
tions. Finally, when the running scale is lowered tok50, all
fluctuations have been integrated out and one recovers
usual effective action or Gibbs free energyG. To summarize,
one has

Gk5L5H,

Gk505G. ~8!

Note also that the original Hamiltonian depends on the or
nal spins while the effective action—atk50—is a function
of the order parameter. At an intermediate scalek, Gk is a
function of an average order parameter at scalek noted
fk(q)—or more simply,f(q)—that only includes the fluc-
tuations with momentaq2.k2. ThusGk has the meaning o
a free energy at scalek.

At a generic intermediate scalek, Gk is given as the solu-
tion of anexactequation that governs its evolution with th
running scale,32
2-4
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]Gk@f#

]t
5

1

2
TrH ~Gk

(2)@f#1Rk!
21

]Rk

]t J , ~9!

where t5 ln(k/L) and the trace has to be understood a
momentum integral as well as a summation over inter
indices. In Eq. ~9!, Gk

(2)@f# is the exact field-dependen
inverse propagator, i.e., the second functional derivative
Gk . The quantityRk is the infrared cutoff that suppresse
the propagation of modes with momentaq2,k2. A con-
venient cutoff, that realizes the constraints~8!, is provided
by33

Rk~q2!5Z~k22q2!u~k22q2!, ~10!

whereZ is thek-dependent field renormalization.
Ideally, in order to relate the thermodynamical quantit

to the microscopic ones, one should integrate the flow eq
tion starting fromk5L with the microscopic HamiltonianH
as an initial condition and decreasek down to zero. However
Eq. ~9! is too complicated to be solved exactly and one ha
perform approximations. To render Eq.~9! manageable, one
truncates the effective actionGk@f# to deal with a finite
number of coupling constants. The most natural truncat
well suited to the study of the long-distance physics of a fi
theory, is to perform a derivative expansion32 of Gk@f#. This
consists in writing anansatzfor Gk as a series in power
of ]f. The physical motivation for such an expansion
that since the anomalous dimensionh is small, terms with
high numbers of derivatives should not drastically affect
physics.

Actually, another truncation is performed. It consists
expanding the potential, which involves all powers of t
O(N)3O(2) invariants built out offW 1 andfW 2, in powers of
the fields. This kind of approximation allows to transform t
functional equation~9! into a set of ordinary coupled differ
ential equations for the coefficients of the expansion. It
been shown during the last ten years that low order appr
mations in the field expansion give very good results~see
Ref. 34 for a review and Ref. 35 for an exhaustive biblio
raphy!. The simplest such truncation is4

Gk5E ddxH Z

2
Tr~] tF]F!1

v

4
~fW 1•]fW 22fW 2•]fW 1!2

1
l

4 S r

2
2k D 2

1
m

4
tJ . ~11!

Let us first discuss the different quantities involved in th
expression. One recalls thatF is theN32 matrix gathering
theN-component vectorsfW 1 andfW 2 @see Eq.~4!#. There are
two independent O(N)3O(2) invariants given by r
5TrtFF and t5 1

2 Tr( tFF)22 1
4 (TrtFF)2. The set

$k,l,m,Z,v% denotes the scale-dependent coupling c
stants that parametrize the model at this order of the trun
tion. The first quantity in Eq.~11! corresponds to the stan
dard kinetic term while the third and fourth correspond to
potential part. Actually, apart from the second term—cal
the current term—,Gk in Eq. ~11! looks very much like the
usual Landau-Ginzburg-Wilson action used to study per
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batively the critical physics of the O(N)3O(2) model, up
to trivial reparametrizations. There is, however, a fund
mental difference since we donot use Gk within a weak-
coupling perturbative approach. This allows the presence
the current term that corresponds to a nonstandard kin
term. This term is irrelevant by power counting arou
four dimensions since it is quartic in the fields and quadra
in derivatives. However, its presence isnecessaryaround
two dimensions to recover the results of the low-temperat
approach of the nonlinear sigma (NLs) model since it
contributes to the field renormalization of the Goldsto
modes. Being not constrained by the usual power count
we include this term in our ansatz. Note also that we ha
considered much richer truncations than that given by
~11! by putting all the terms up toF10 and by adding all
terms with four fields and two derivatives. This has allow
us to check the stability of our results with respect to t
field expansion.

We do not provide the details of the computation. T
general technique is given in several publications a
its implementation on the specific O(N)3O(2) model will
be given in a forthcoming paper.5 The b functions for
the different coupling constants entering in Eq.~11! are
given by

dk

dt
52~d221h!k

14vdF1

2
l 01
d ~0,0,kv!1~N22!l 10

d ~0,0,0!

1
3

2
l 10
d ~kl,0,0!1S 112

m

l D l 10
d ~km,0,0!

1
v

l
l 01
21d~0,0,kv!G , ~12a!

dl

dt
5~d2412h!l1vd@2l2~N22!l 20

d ~0,0,0!

1l2l 02
d ~0,0,kv!19l2l 20

d ~kl,0,0!

12~l12m!2l 20
d ~km,0,0!14lv l 02

21d~0,0,kv!

14v2l 02
41d~0,0,kv!#, ~12b!

dm

dt
5~d2412h!m

22vdmF2
2

k
l 01
d ~0,0,kv!1

3~2l1m!

k~m2l!
l 10
d ~kl,0,0!

1
8l1m

k~l2m!
l 10
d ~km,0,0!1m l 11

d ~km,0,kv!

1m~N22!l 20
d ~0,0,0!G , ~12c!
2-5
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h52
d ln Z

dt
52

vd

dk
@~42d!kv l 01

d ~0,0,kv!12k2v2l 02
21d~0,0,kv!12m02

d ~0,0,kv!24m11
d ~0,0,kv!

12~221d!kv l 10
d ~0,0,0!12m20

d ~0,0,kv!12k2l2m2,2
d ~kl,0,0!14k2m2m2,2

d ~km,0,0!

14kvn02
d ~0,0,kv!28kvn11

d ~0,0,kv!14kvn20
d ~0,0,kv!#, ~12d!

dv

dt
5~d2212h!v1

4vd

dk2 FkvH ~42d!

2
l 01
d ~0,0,kv!1

~d216!

2
l 01
d ~kl,0,kv!1kv l 02

21d~0,0,kv!23kv l 02
21d~kl,0,kv!

1~d22!l 10
d ~0,0,0!2~d28!l 10

d ~kl,0,0!18kl l 11
d ~kl,0,kv!12kv l 20

21d~km,0,0!12kv~N22!l 20
21d~0,0,0!J

1m02
d ~0,0,kv!2m02

d ~kl,0,kv!22m11
d ~0,0,kv!12m11

d ~kl,0,kv!1m20
d ~0,0,kv!2m20

d ~kl,0,kv!

1k2l2m22
d ~kl,0,0!12k2m2m22

d ~km,0,0!12kvn02
d ~0,0,kv!24kvn02

d ~kl,0,kv!24kvn11
d ~0,0,kv!

18kvn11
d ~kl,0,kv!12kvn20

d ~0,0,kv!24kvn20
d ~kl,0,kv!G . ~12e!
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In these equations appear the dimensionless funct
l n1,n2
d ,mn1,n2

d ,nn1,n2
d , called threshold functions, since the

govern the decoupling of the massive modes entering in
action ~11!. They encode the nonperturbative content of
flow equations~12!. They are complicated integrals over m
menta and are explicitly given in the Appendix.

VI. RESULTS AND PHYSICAL DISCUSSION

A. Checks of the method

We have first proceeded to all possible checks of
method by comparing our results with all available data
tained within the different pertubative approaches. O
method fulfills all these checks.

~1! Around d54, we have checked that, in the limit o
small coupling constant, our equations degenerate in th
obtained from the weak coupling expansion at one loop:9,22,23

dl

dt
5~d24!l1

1

16p2
@4lm14m21l2~N14!#,

dm

dt
5~d24!m1

1

16p2
~6lm1Nm2!. ~13!

This can be easily verified considering the asymptotic
pressions of the threshold functions that are given in
Appendix.

~2! Also, around d52, performing a low-temperatur
expansion—corresponding to a largek expansion—of our
equations and making the change of variables:

h152pk,

h254pk~11kv!, ~14!

one recovers theb functions found in the framework of th
nonlinears model at one loop,36
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ns

e
e

r
-
r

se

-
e

b152~d22!h11N222
h2

2h1
,

b252~d22!h21
N22

2 S h2

h1
D 2

. ~15!

This shows that our method allows to recover the pert
bative results both neard52 andd54. This is not a surprise
since, as well known, Eq.~9! has a one-loop structure. How
ever, for frustrated magnets, and contrary to the O(N) case,
the matching with the results of the NLs model is not trivial
since it requires to incorporate the nontrivial current te
which is irrelevant aroundd54, and thus absent in a GLW
approach.

~3! Our method also matches with the leading order
sults of the 1/N expansion ofn and h. In the O(N)3O(2)
model these exponents have also been computed at o
1/N2 in d53. They are given by24

n512
16

p2

1

N
2S 56

p2
2

640

3p4D 1

N2
1O~1/N3!,

h5
4

p2

1

N
2

64

3p4

1

N2
1O~1/N3!. ~16!

We have computedn andh for a large range of values o
N to compare our results with those obtained within the 1N
expansion. We meet an excellent agreement—better
1%—for n already forN.10 where the 1/N expansion is
reliable.

~4! For N56, a Monte Carlo simulation has been pe
formed on the STA model.37 A second-order phase transitio
has been found without ambiguity with exponents given
Table II. Our results compare very well with the Monte Car
data. Although the caseN56 does not correspond to an
2-6
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physical system this constitutes a success of our appro
from a methodological point of view. Let us recall that,
this case, the six-loop weak coupling calculation is not c
verged.

~5! In agreement with the weak coupling perturbative
sults, we have found by varyingN in a given dimensiond
that, below a critical valueNc(d) of N, no fixed point exists4

~see Fig. 2!. Our value ofNc(d) agrees within ten percent fo
all dimensions with the values obtained from Eq.~7!. In d
53 we have foundNc(3)55.1, which almost coincides with
that obtained using Eq.~7! that leads toNc(3)55.3.

All these checks show the consistency between our c
putation and most of the previous theoretical approache
is in contradiction with the six-loop calculation of Pelisse
et al.Note that the resultNc(3).3 does not excludea priori
the existence of a fixed pointnot analyticallyrelated—inN
ande542d—to those found aboveNc(d). This is, in fact,
the position advocated by Pelissettoet al.24 However, we
have numerically searched for this fixed point with our eq
tions without success. This implies three possibilities. T
first one is that our method is not able—in principle—to fi
this kind of fixed point. Let us emphasize that, although it
not possible to exclude this case, it is improbable tha
method that recovers all previous results in a convinc
way, misses such a fixed point. Another possibility is tha
has a so small basin of attraction that we have systematic
missed it in our numerical investigation of our equation
This would mean that it probably does not play any role
the physics of frustrated magnets. In this case, one shoul
led to predict first order transitions forXY systems so that i
would be very difficult to explain why they are generical
weakly of first order. Finally, there remains the possibl

TABLE II. Critical exponents for theN56 STA system. The
first row corresponds to Monte Carlo data37 and the second~PW! to
the present work.

a b g n h

MC 20.100(33) 0.359~14! 1.383~36! 0.700~11! 0.025~20!

PW 20.121 0.372 1.377 0.707 0.053

FIG. 2. The full line represents the curveNc(d) obtained by the
three-loop result improved by the constraintNc(2)52, Eq.~7!. The
crosses represent our calculation.
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that the fixed point does not exist at all, which now appe
as the most probable solution.

B. Scaling without fixed and pseudofixed points

The hypothesis of the absence of fixed point immediat
raises the theoretical challenge to explain the occurenc
scaling in theabsenceof a fixed point. For Heisenberg spin
this question has been addressed by Zumbach38 using a local
potential approximation~LPA! of the Polchinski equation39

and by the present authors beyond LPA in the framework
the effective average action method.4 It has been realized
that, whenN is lowered fromN.Nc(3) to N,Nc(3), al-
though the stable fixed point disappears, there is no m
change in the RG flow. This can be understood by consid
ing a domainE of initial conditions of the flow correspond
ing to all systems we are interested in—STA, STAR,VN,2 ,
real materials, etc.—and studying the RG trajectories star
in E. One finds that there exists a domainD#E such that all
trajectories emerging fromD are attracted towards asmall
domainR in which the flow is very slow. Since the flow i
very slow inR the RG time spent in this region is long an
thus, the correlation lengths of the systems inD are very
large. One therefore partly recovers scaling, for systems iD
~that aborts only for very small reduced temperatures!. More-
over, the smallness ofR ensures the existence of~pseudo-!
universality. ConsequentlyR mimics a true fixed point.

This idea has been formalized through the concept
pseudofixed point, corresponding to the point inR where the
flow is the slowest, the minimum of the flow.38 At this point
it has been possible to compute~pseudo-!critical exponents
characterizing the pseudoscaling~and pseudouniversality!
encountered in Heisenberg frustrated spin systems.4,38

Within our approach, we confirm the existence, for valu
of N just belowNc(3), of a minimum of the flow leading
indeed to pseudoscaling and quasiuniversality~see Ref. 4
and, for details, Ref. 5!. However, whenN is lowered, the
minimum of the flow is less and less pronounced and,
some value ofN between 2 and 3, it completely disappea
Since ~pseudo-!scaling is observed in experiments and n
merical simulations inXY systems this means that the min
mum of the flow does not constitute the ultimate explanat
of scaling in the absence of a fixed point. At this stage, o
reaches the limits of the notion of minimum of the flow
the quantity playing the role of~pseudo-!fixed point. First, it
darkens the important fact that the notion relevant to sca
is not the existence of a minimum of the flow but that of
whole regionR in which the flow is slow, i.e., theb func-
tions are small. Putting it differently, the existence of a mi
mum of the flow does not guarantee that the flow is slow, i
that the correlation length is large compared with the latt
spacing. Reciprocally, it can happen that the RG flow is slo
the correlation length being large, and that scaling occ
even in the absence of a minimum. Second, reducingR to a
point, one rules out the possibility to test the violation
universality. Clearly, the degree of universality is related
the size ofR. The smallerR, the more universal is the
behavior.

Qualitatively—thanks to continuity arguments—one e
pects that, forN close toNc(3), all systems inE exhibit
2-7
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pseudoscaling—D5E—andR is almost pointlike so that the
transitions are extremely weakly of first order and univers
ity almost holds. WhenN is sufficiently decreased, two phe
nomena occur. First,D gets smaller thanE and thus the tran-
sitions become of strong first order for all systems t
belong toE but not toD. Second,R gets wider and thus, a
whole spectrum of exponents is observed and pseudoun
sality breaks down. Note that these two phenomena are
obligatorily simultaneous so that, for intermediate values
N, scaling still holds while pseudouniversality is already s
nificantly violated. These two phenomena are observed
merically in the Heisenberg andXY systems: STA, STAR,
andVN,2 models. ForN53, all these models display scalin
but with b exponents that are almost incompatible@bSTA
50.285(11),40 bSTAR50.221(9), andbV3,2

50.193(4) ~see
Ref. 41!#, which means that one probably starts leaving
pseudouniversal regime. ForN52, scaling is only observed
for STA—b50.24~2! here—while the transitions for STAR
andV2,2 are found to be of first order.

From a theoretical point of view, the Heisenberg case
been already treated in Ref. 4. We now concentrate on
XY case.

C. Our results

In practice, we numerically integrate the flow equatio
~12! and compute physical quantities such as correla
length and magnetization as functions of the reduced t
peraturet r5(T2Tc)/Tc . Since one expects the behavior
frustrated magnets to be nonuniversal, one should study
system independently of the others. Thus, ideally, one sho
consider as initial conditions of the RG flow all the micr
scopic parameters characterizing aspecific lattice system.
This program would require to identify and to deal with
infinite number of coupling constants. This remains a th
retical challenge. Rather than doing this, we have chose
address the question of scaling in the absence of a fixed p
independently of a given microscopic system, using forGk a
finite ansatzsimilar to, but richer than, Eq.~11!.

Since our truncations prevent us from relating precis
the thermodynamical quantities to the microscopic c
plings, we have chosen, as initial conditions, the simp
temperature dependence of the parameters at the scak
5L. This consists in fixing all coupling constants
temperature-independent values and in taking the usualan-
satzfor the quadratic term ofGk :

kk5L5a1bT, ~17!

wherea andb are parameters that we have varied to test
robustness of our conclusions. For each temperature we
integrated the flow equations and deduced thet r dependence
of the physical quantities around the critical temperature

Let us now review the main results obtained by the in
gration of the RG flow.

~1! The integration of the flow equations leadsgenerically
to good power laws in reduced temperature for the magn
zation, the correlation length~see Fig. 3!, and the suscepti
bility. We are thus able to extract pseudocritical expone
varying typically, for b between 0.25 and 0.38 and forn
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between 0.47 and 0.58. This phenomenon holds for a w
domainD in coupling constant space.

~2! We easily find initial conditions leading to pseudoe
ponents close to those of group 2:b50.38, n50.58, and
g51.13~see Ho and Dy in Table I for comparison!. We have
checked that the previous result is quite stable to both va
tions of the microscopic parameters and to a change of thT
dependence of the microscopic coupling constants. This i
agreement with the stability ofb in group 2. In the region of
parameters leading to this behavior, correlation lengths
large as 5000 lattice spacings are found.

~3! We also easily find initial conditions leading t
b.0.25, corresponding to group 1. The power laws th
hold on a smaller range of temperature and the critical ex
nents are more sensitive to the determination ofTc and to the
initial conditions, in agreement with point~ii ! of Sec. III A.
For such values ofb, we find a range of values o
n—0.47<n<0.49—which is somewhat below the valu
found for CsMnBr3 ~see Table I!. Also, the correspondingh
deduced from the scaling relationh52b/n21 is always posi-
tive and, at best, zero. Finally, it is very interesting to not
that when we findb of order 0.25~group 1! we also find
correlation lengths at the transition of the order of a fe
hundred lattice spacings which coincide rather well with t
first size where a direct evidence of a first-order transit
has been seen in Monte Carlo RG simulations~lattice sizes
around 100!.21

FIG. 3. Log-log plots of the magnetizationm and of the corre-
lation lengthj for N52 as functions of the reduced temperaturet r

for parameters corresponding to materials of group 1. The stra
lines correspond to the best power-law fit of the data. The pow
law behavior breaks down for smallt r .
2-8
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~4! For b.0.3 we find critical exponents in good agre
ment with those obtained by the six-loop calculation of R
2 ~see Table I!. For instance, forb50.33 we findn.0.56 and
g.1.07.

VII. CONCLUSION

On the basis of their specific symmetry-breaking sche
it has been proposed in Refs. 7–9 that the critical physic
XY frustrated systems in three dimensions could underg
second-order phase transition characterized by critical ex
nents associated with a new universality class. We h
given convincing arguments that rather favor the occurre
of—generically weak—first-order transitions for allXY frus-
trated magnets with a spreading of~pseudo-!critical expo-
nents. This is supported by experimental and numerical
sults that do not agree with a second-order behav
Moreover, we have shown, using a nonperturbative
proach, that this generic but nonuniversal scaling find
natural explanation in terms of slowness and ‘‘geometry’’
the flow. Our approach appears to explain the main puzz
features ofXY frustrated magnets.

We now propose several tests to confirm our approa
On the experimental side, more accurate determination
critical exponents could lead to a definitive answer on
nature of the transition, at least if no drastically new phys
emerges~as it could be the case for helimagnets!. In particu-
lar, it is important to check thath is negative for CsMnBr3,
and therefore to refine the determination ofn. It would
also be of utmost interest to have more precise determ
tions ofa in CsMnBr3 , CsNiCl3, and CsMnI3 which are, up
to now, only marginally compatible. In case they are diffe
ent, this would corroborate the lack of universality that w
predict. The existence of a continuous spectrum of criti
exponents could be directly tested by simulating, for e
ample, a family of models, extrapolating continuously fro
STA to STAR.

On the theoretical side, it would be of interest to push
derivative expansion to refine the value ofh for group 1,
which is, as usual, overestimated.32 This would allow to re-
produce its observed negative value. Moreover, it would
interesting to clarify the discrepancy between the nonper
bative approach and the six-loop result. The ability of o
approach to reproduce exactly the whole set of expon
found by Pelissettoet al. suggests that their fixed point doe
not correspond to a true fixed point but, in fact, to a reg
where the flow is very slow. One can thus question the c
vergence of the perturbative result which is not Borel su
mable. A detailed analysis of this problem of convergen
could reveal that the real fixed point found in the perturb
tive approach is, actually, a complex one.

Finally, the major characteristics ofXY-frustrated mag-
nets, i.e., the existence of scaling laws with continuou
varying exponents are probably encountered in other ph
cal contexts, generically systems with a critical valueNc of
the number of components of the order parameter, separa
a true second-order behavior and a naively first-order on
13442
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APPENDIX: THRESHOLD FUNCTIONS

We discuss in this appendix the different threshold fun
tions l n1 ,n2

d , mn1 ,n2

d , andnn1 ,n2

d appearing in the flow equa

tions ~12!.
The threshold functions are defined as

l n1 ,n2

d ~w1 ,w2 ,a!

52
1

2E0

`

dyyd/221]̃ tH 1

@P1~y!1w1#n1@P2~y!1w2#n2
J ,

~A1a!

mn1 ,n2

d ~w1 ,w2 ,a!

52
1

2E0

`

dyyd/221]̃ tH y@]yP1~y!#2

@P1~y!1w1#n1@P2~y!1w2#n2
J ,

~A1b!

nn1 ,n2

d ~w1 ,w2 ,a!

52
1

2E0

`

dyyd/221]̃ tH y]yP1~y!

@P1~y!1w1#n1@P2~y!1w2#n2
J

~A1c!

with

P1~y!5y@11r ~y!1a#, ~A2!

P2~y!5y@11r ~y!#. ~A3!

In all the previous expressionsy is a dimensionless quantity
y5q2/k2 whereq is the momentum variable over which th
integral in Eq.~9! is performed. As forr (y), it corresponds
to the dimensionless renormalized infrared cutoff:

r ~y!5
Rk~q2!

Zq2
5

Rk~yk2!

Zk2y
. ~A4!

In Eqs.~A1a!–~A1c!, ]̃ t means that only thet dependence
of the functionRk is to be considered and not that of th
coupling constants. Therefore one has

]̃ tPi~y!5
]Rk

]t

]

]Rk
Pi~y! ~A5!

52y@hr ~y!12yr8~y!#. ~A6!
2-9
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Now the threshold functions can be expressed as exp
integrals if we compute the operation of]̃ t . To this end, it is
interesting to notice the equality:]y]̃ tPi(y)5 ]̃ t]yPi(y), so
that
a

on

r,

a

13442
it ]̃ t]yr 52h~r 1yr8!22y~2r 81yr9!. ~A7!

We then get
l n1 ,n2

d ~w1 ,w2 ,a!52
1

2E0

`

dyyd/2
hr 12yr8

@P1~y!1w1#n1@P2~y!1w2#n2
S n1

P1~y!1w1
1

n2

P2~y!1w2
D , ~A8!

nn1 ,n2

d ~w1 ,w2 ,a!52
1

2E0

`

dyyd/2
1

@P1~y!1w1#n1@P2~y!1w2#n2

3H y~11a1r 1yr8!~hr 12yr8!S n1

P1~y!1w1
1

n2

P2~y!1w2
D2h~r 1yr8!22y~2r 81yr9!J , ~A9!

mn1 ,n2

d ~w1 ,w2 ,a!52
1

2E0

`

dyyd/2
11a1r 1yr8

@P1~y!1w1#n1@P2~y!1w2#n2

3H y~11a1r 1yr8!~hr 12yr8!S n1

P1~y!1w1
1

n2

P2~y!1w2
D22h~r 1yr8!24y~2r 81yr9!J .

~A10!
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