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Response of parametrically driven nonlinear coupled oscillators
with application to micromechanical and nanomechanical resonator arrays
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The response of a coupled array of nonlinear oscillators to parametric excitation is calculated in the weak
nonlinear limit using secular perturbation theory. Exact results for small arrays of oscillators are used to guide
the analysis of the numerical integration of the model equations of motion for large arrays. The results provide
a qualitative explanation for a recent experiment@Buks and Roukes, J. Microelectromech. Syst.11, 802~2002!#
involving a parametrically excited micromechanical resonator array. Future experiments are suggested which
could provide quantitative tests of the theoretical predictions.
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I. MOTIVATION: NONLINEARITY OF MEMS
AND NEMS RESONATORS

Recent technological advances have enabled the fab
tion of mechanical resonators down to micrometer and e
nanometer scales, with frequencies almost reaching the g
hertz range.1,2 Even though the main thrust in this field o
research comes from the need to produce smaller, ligh
faster, and more efficient electromechanical systems, the
new basic physics to be learned along the way.3 One particu-
larly interesting aspect of the physical behavior of microel
tromechanical and nanoelectromechanical systems~MEMS
and NEMS! is their nonlinear mechanical response at re
tively small deviations from equilibrium. This nonlinear b
havior has been observed experimentally,2,4 and also ex-
ploited to achieve mechanical signal amplification a
mechanical noise squeezing5,7,6 in single resonators. In addi
tion, MEMS and NEMS facilitates the fabrication of larg
arrays of resonators, for which the coherent response m
be useful for signal enhancement and noise reduction.
important to understand the nonlinear behavior of MEM
and NEMS resonators in order to improve their future d
signs. At the same time, one can take advantage of th
systems for the experimental study of nonlinear dynamic

This paper is motivated by a recent experiment by Bu
and Roukes8@henceforth BR# who fabricated an array of 67
fully suspended doubly clamped micromechanical resona
beams. Each beam was 2703130.25mm in size, and the
distance between neighboring beams was 4mm. The sub-
strate beneath the array was completely etched away, fo
ing a suspended diffraction grating with optical access fr
both sides. All even-numbered beams were electrically c
nected to one electrode and all odd-numbered beams
second electrode. This allowed the application of elec
static forces to induce coupling between the beams. The
tem was driven parametrically by introducing an ac com
nent to the potential difference between the even-numbe
and odd-numbered beams. The collective response of th
ray, as a function of the driving frequency and the dc co
ponent of the potential difference, was measured using o
0163-1829/2003/67~13!/134302~12!/$20.00 67 1343
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cal diffraction. The response that BR inferred from the
measurement was surprising in that~i! instead of showing a
band consisting of a sequence of resonance peaks at th
normal frequencies of the array, the typical response as
frequency was swept up showed a small number of w
peaks where the response gradually increased and
abruptly decreased; and~ii ! the array responded at freque
cies beyond the expected top edge of the band.

We show below that both these effects are a direct re
of the fact that the restoring forces acting on the resona
as well as the damping that they undergo are both nonlin
In Sec. II we describe the simplest equations of motion t
are required to model the nonlinear resonator array. In S
III, we solve the response of a single nonlinear resonato
parametric excitation at twice its resonance frequency us
secular perturbation theory~for comparison, we solve in Ap-
pendix A the response to parametric excitation at the re
nance frequency!. In Sec. IV we use the same method
calculate the response of the coupled resonator array
obtain exact results for a few~two or three! resonators. Un-
derstanding the analytical results of these two sections
lows us to interpret the results of Sec. V, where we num
cally integrate the equations of motion for an array of
resonators. Our results agree qualitatively with the obse
tions of BR, explaining the two points mentioned above, b
we suggest that further experiments be performed in orde
test our theoretical calculations in a more quantitative m
ner.

II. EQUATIONS OF MOTION

We seek the simplest set of equations of motion~EOM!
that capture the important physical aspects of the array
coupled micromechanical beams. We first note that the n
mal frequencies of an individual beam are sufficiently se
rated such that the frequency bands, formed by the coup
of the beams in the array, are well separated by gaps
which the system cannot respond. We therefore assume
we can treat the lowest band separately from all the oth
so that each individual beam is oscillating strictly in its fu
©2003 The American Physical Society02-1



b

e
a

ea
rm

er
m
e
ti

at
e
M
st
b

he
il

l t
iff
m
ro

n
o

its

lle

b
M

-
or

th
no

he
tio

bo
om
o

r,
b
th
fo
ro

osi-
of

ieu

the
und

em
the
c

re-

he
ue,
. It

om a
e

st
om-
gle

ipa-
tic
ms.
and
dc
We
a-

her
p-

al-
he
are

is-

n

RON LIFSHITZ AND M. C. CROSS PHYSICAL REVIEW B67, 134302 ~2003!
damental mode of vibration. Each beam can therefore
described by a single degree of freedomxn , giving its dis-
placement from equilibrium. We neglect any inhomogen
ities in the fabrication of the beams and assume that
beams are identical. BR have actually examined each b
individually and report that their beams have a fairly unifo
distribution of resonance frequencies, with an average
vB5179.3 kHz, and a standard deviation of 0.53 kHz. Th
is a much larger variation in the quality factors of the bea
prior to the application of electrostatic interaction betwe
them, but this variation disappears when a small poten
difference is introduced between the beams.9

The coordinatesxn are all assumed to be small so th
only terms to lowest order inxn , necessary to capture th
physical behavior of the system, will be kept in the EO
Two types of forces act on the beams, namely, the ela
restoring force of each beam and the electrostatic forces
tween the beams. Experiments done by Buks and Roukes4 on
single beams of the type used in the array show that t
response is similar to that of a Duffing oscillator—an osc
lator whose restoring force contains a term proportiona
the cube of the displacement and makes the oscillator st
than it would be within the harmonic approximation. Assu
ing a symmetric restoring force, and therefore no term p
portional to an even power ofxn , and neglecting higher tha
cubic-order nonlinear corrections, the elastic force acting
the nth individual beam is

Felastic
(n) 52mvB

2xn2maxn
3 , ~1!

where m is the effective mass of a beam oscillating in
fundamental mode, whose frequency isvB .

Even though the electrostatic force between two para
charged wires decays only as 1/r , for simplicity we consider
only the attractive interactions between nearest-neigh
beams. Within this approximation, each term in the EO
depends either on the variablesxn , describing the displace
ment of an individual beam from its equilibrium position,
on the difference variablesxn112xn , describing the relative
displacements of a pair of neighboring beams. To keep
equations as simple as possible, we restrict each type of
linear term in the EOM to depend either onxn or on xn11
2xn , depending on whether it is mostly influenced by t
elastic forces of the beams or the electrostatic interac
between them, respectively.

The cubic term in the expansion of the nearest-neigh
electrostatic interaction tends to pull the beams away fr
equilibrium, acting against the cubic term in the expansion
the elastic force in Eq.~1!. Since, as we shall confirm late
the response of the array is consistent with having a cu
term that stiffens the beams, the elastic contribution to
cubic term is stronger than the electrostatic one. We there
ignore the cubic as well as all higher terms in the elect
static interaction, which we write as

Felectric
(n) 52

1

2
mD2@11H cosvpt#~xn1122xn1xn21!.

~2!
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Note that the linear electrostatic force constant1
2 mD2, which

is modulated with a relative amplitudeH!1, representing
the dc and the ac components of the applied voltage, is p
tive, acting to soften the elastic restoring force. The factor
1/2 is used with the difference variable for convenience.

Parametric excitation, as it appears in the bare Math
equation for a single oscillator of frequencyv0 without all
the additional terms that we have here, is an instability of
system that occurs whenever the drive frequency is aro
one of the special valuesvp52v0 /n, wheren is an integer
that labels the so-called instability tongues of the syst
~named after the tongue-shaped instability curves in
frequency-amplitude plane!.10 We choose the parametri
driving frequencyvp to be around twice some valuev0
within the array’s band of normal frequencies. We are the
fore exciting the system in its first (n51) instability tongue.
Thus,

vp52v01eV, ~3!

where e is a small parameter. In the BR experiment, t
system was actually excited in its second instability tong
i.e., vp was chosen around some frequency in the band
turns out that the response at the second tongue, apart fr
few differences, is quite similar to that of the first tongue. W
therefore prefer to carry out full calculations only for the fir
tongue that is somewhat easier to handle, and just for c
parison, we calculate in Appendix A the response of a sin
nonlinear oscillator, excited at its second tongue.

There is good reason to believe that most of the diss
tion in the coupled system is a result of the electrosta
interaction that causes currents to flow through the bea
This assumption is based on the observation of Buks
Roukes9 that the quality factors greatly diminish as the
component of the electrostatic potential is increased.
therefore make the simplifying approximation that dissip
tion occurs predominantly as a result of currents, all ot
dissipation mechanisms being relatively negligible. This a
proximation avoids the problem of the variation in the qu
ity factors of the individual beams before application of t
electrostatic potential. The dissipative forces in the EOM
therefore written with respect to the difference variable,

Fdiss
(n) 5

1

2
mvBG~ ẋn1122ẋn1 ẋn21!

1
1

2
mvBah@~xn112xn!2~ ẋn112 ẋn!

2~xn2xn21!2~ ẋn2 ẋn21!#, ~4!

where we have included a nonlinear contribution to the d
sipation, of the same order as the nonlinear elastic force~1!.
When putting all the pieces together, we~a! divide out the
effective massm of a beam;~b! scale timet→t/vB so that
all frequencies~including D) are measured in units ofvB ;
and~c! scale lengthx→x/Aa to get rid of the dependence o
a. The equation of motion for thenth beam becomes
2-2



n
et
in
ex
-
fo

on
w
e

st
de
co
tiv
r

te
o

R
s
xt

ea
o

an
tio

-
he
ual

the

ing

x

ms

not
y

mo-

a
nd
ular

ng

ear
of
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ẍn1xn1xn
31

1

2
D2@11H cos~2v01eV!t#

3~xn1122xn1xn21!2
1

2
G~ ẋn1122ẋn1 ẋn21!

2
1

2
h@~xn112xn!2~ ẋn112 ẋn!

2~xn2xn21!2~ ẋn2 ẋn21!#50. ~5!

In the following sections, we shall solve these equatio
using secular perturbation theory. The physical param
that allows us to use this approach is the linear damp
coefficient which is assumed to be small. We therefore
press it asG5eg, takinge to be our small expansion param
eter. The parametric instability of the system then occurs
small driving amplitude near resonance, and if, in additi
we consider the system near the onset of the instability,
can assume that the effects of nonlinearity are small as w
Thus, for small displacementsxn , all the nontrivial physical
effects, namely, the parametric excitation, the cubic ela
restoring force, and both the linear and the amplitu
dependent dissipation, all enter the EOM as perturbative
rections to the simple linear equations. All these perturba
terms can be chosen to enter the EOM in the same orde
the small parametere by taking the leading order inxn to be
of the order ofe1/2, and expressingD2H5eh. This ensures,
as we shall confirm later on, that all the terms will contribu
to the lowest-order solution we are seeking. The final form
the EOM is therefore

ẍn1xn1xn
31

1

2
@D21eh cos~2v01eV!t#

3~xn1122xn1xn21!2
1

2
eg~ ẋn1122ẋn1 ẋn21!

2
1

2
h@~xn112xn!2~ ẋn112 ẋn!

2~xn2xn21!2~ ẋn2 ẋn21!#50. ~6!

As for boundary conditions, we follow the experiment of B
who had two additional fixed beams, identical to all the re
at both ends of the array. This means that we define two e
variables and set them to zero,x05xN1150.

III. RESPONSE OF A SINGLE PARAMETRICALLY
DRIVEN NONLINEAR OSCILLATOR

We begin by calculating the response of a single nonlin
oscillator to parametric excitation. Previous calculations
this problem exist in the literature11 ~and references therein!,
nevertheless, we solve it here as a precursor to the m
oscillator case, treated in the following section. The equa
of motion ~6! for the single-oscillator case becomes

ẍ1@v22eh cos~2v1eV!t#x1eg ẋ1x31hx2ẋ50,
~7!
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where we choosev0 to be v5A12D2, the resonance fre
quency of the beam in the harmonic approximation. T
parametric excitation is performed around twice the act
resonance frequency of the oscillator.~In Appendix A, we
treat the case where the excitation is performed around
resonance frequency of the resonator.!

We calculate the correction to linear response by us
secular perturbation theory.12,13 Recalling that the motion of
the oscillator away from equilibrium is of the order ofe1/2,
we try a solution of the form

x~ t !5e1/2~A~T!eivt1c.c.!1e3/2x1~ t !1•••, ~8!

whereT5et is a slow time variable, allowing the comple
amplitude A(T) to vary slowly in time. The variation of
A(T) gives us the extra freedom to eliminate secular ter
and ensure that the perturbative correctionx1(t), as well as
all higher-order corrections to the linear response, do
diverge ~as they do if one uses naive perturbation theor!.
Using the relation

Ȧ5
dA

dt
5e

dA

dT
[eA8, ~9!

we calculate the time derivatives of the trial solution~8!,

ẋ5e1/2~@ ivA1eA8#eivt1c.c.!1e3/2ẋ1~ t !1•••, ~10a!

ẍ5e1/2~@2v2A12iveA81e2A9#eivt1c.c.!1e3/2ẍ1~ t !

1•••. ~10b!

Substituting these expressions back into the equation of
tion ~7!, and picking out all terms of the order ofe3/2, we get
the following equation for the first perturbative correction

ẍ11v2x152~2ivA8eivt1c.c.!

1h cos@~2v1eV!t#~Aeivt1c.c.!

2g~ ivAeivt1c.c.!2~Aeivt1c.c.!3

2h~Aeivt1c.c.!2~ ivAeivt1c.c.!. ~11!

The collection of terms proportional toeivt on the right-
hand side of Eq.~11!, called the secular terms, act like
force, driving the simple harmonic oscillator on the left-ha
side at its resonance frequency. The sum of all the sec
terms must vanish so that the perturbative correctionx1(t)
will not diverge. This gives us an equation for determini
the slowly varying amplitudeA(T). After expressing the co-
sine as a sum of exponentials, we get

2iv
dA

dT
2

h

2
A* eiVT1 ivgA13uAu2A1 ivhuAu2A50.

~12!

Ignoring initial transients, and assuming that the nonlin
terms in the equation are sufficient to saturate the growth
the instability, we try a steady-state solution of the form

A~T!5aei (V/2)T. ~13!
2-3
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The solution to the equation of motion~7! is therefore

x~ t !5e1/2~aei (v1eV/2)t1c.c.!1O~e3/2!, ~14!

where we are not interested in the correctionx1(t) of the
order of e3/2, but rather in the fixed amplitudea of the
lowest-order term. This amplitudea can be any solution o
the equation

@~3uau22vV!1 iv~g1huau2!#a5
h

2
a* , ~15!

obtained by substituting the steady-state solution~13! into
Eq. ~12! of the secular terms. We immediately see that h
ing no response (a50) is always a possible solution regar
less of the excitation frequencyV. We divide both sides of
Eq. ~15! by gv and define the rescaled variablesā

5a/Agv, V̄5V/g, h̄5vh, and h̄5h/2gv, in terms of
which the equation for the fixed complex amplitudea be-
comes

@~3uāu22V̄!1 i ~11h̄uāu2!#ā5h̄ā* . ~16!

Expressingā5uāueif we obtain, after taking the magnitud
squared of both sides, the intensityuāu2 of the nontrivial
response as all positive roots of the equation

~3uāu22V̄!21~11h̄uāu2!25h̄2. ~17!

This has the form of a distorted ellipse in the (V̄,uāu2) plane,
and a parabola in the (uāu2,h̄) plane. In addition, we obtain
for the relative phase of the response

FIG. 1. Response intensityuāu2 as a function of the frequencyV̄

for fixed amplitudeh̄51.5. Solid curves are stable solutions a
dashed curves are unstable solutions. Thin curves show the

sponse without nonlinear damping (h̄50). Thick curves show the

response for finite nonlinear damping (h̄51). Dotted lines indicate

the maximal response intensityuāumax
2 and the saddle-node fre

quencyV̄SN.
13430
-

f5
i

2
ln

ā*

ā
52

1

2
arctan

11h̄uāu2

3uāu22V̄
. ~18!

In Fig. 1, we plot the response intensityuāu2 of a single
oscillator to parametric excitation as a function of frequen

V̄, for fixed amplitudeh̄51.5, in terms of the rescaled var
ables. Solid curves indicate stable solutions and das
curves are solutions that are unstable to small perturbati
Thin curves show the response without nonlinear damp

(h̄50) which grows indefinitely with frequencyV̄ and is
therefore incompatible with the experimental observations
BR and the assumptions of our calculation. Thick curv
show the response with finite nonlinear damping (h̄51).
With finite h̄, there is a maximum value for the respon
uāumax

2 5(h̄21)/h̄ and a maximum frequency

V̄SN5h̄A11S 3

h̄
D 2

2
3

h̄
, ~19!

at which the stability of the solution changes~known as a

saddle-node bifurcation!. For frequencies aboveV̄SN the
only solution is the trivial oneā50. These values are indi
cated by horizontal and vertical dotted lines in Fig. 1.

The threshold for the instability of the trivial solution i
easily calculated by settingā50 in the expression~17! for
the nontrivial solution. As seen in Fig. 1, for a givenh̄, the

threshold is situated atV̄56Ah̄221. The threshold is plot-
ted in Fig. 2 in the (V,h) plane. Note that the minimal am

plitude needed for instability is obtained on resonanceV̄

50) and its value ish̄51, or h52gv, so that it scales as
the linear damping coefficientg.

Finally, in Fig. 3, we plot the response intensityuāu2 of
the oscillator as a function of amplitudeh̄ for fixed fre-

quencyV̄ and finite nonlinear dampingh̄51. Again, solid
curves indicate stable solutions and dashed curves uns

solutions. Thick curves show the response forV̄51 and thin

curves show the response forV̄5h̄/3 andV̄521. The in-
tersection of the trivial and the nontrivial solutions, whic
corresponds to the instability threshold occurs ath̄

5AV̄211. For V̄,h̄/3 the nontrivial solution foruāu2

grows continuously forh̄ above threshold and is stable. Th

is a supercritical bifurcation. On the other hand, forV̄

.h̄/3, the bifurcation is subcritical—the nontrivial solutio
grows for h̄ below threshold. This solution is unstable unt
the curve ofuāu2 as a function ofh̄ bends around at a saddle
node bifurcation at

h̄SN5

11
h̄

3
V̄

A11S h̄

3
D 2

, ~20!

re-
2-4
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where the solution becomes stable anduāu2 is once more an
increasing function ofh̄. For amplitudesh̄,h̄SN, the only
solution is the trivial oneā50.

Like the response of a forced Duffing oscillator, the r
sponse of a parametrically excited Duffing oscillator also

hibits hysteresis in a frequency scan. If the frequencyV̄
starts out at negative values and is increased gradually w
fixed amplitudeh̄, the response will gradually increase alo

the thick solid curve in Fig. 1, untilV̄ reachesV̄SN and the
response drops abruptly to zero. If the frequency is then

creased gradually, the response will remain zero untilV̄

reaches the upper instability thresholdAh̄221, and the re-
sponse will jump abruptly to the thick solid curve above, a
then gradually decrease to zero along this curve. A sim
hysteretic behavior will be observed if the amplitudeh̄ is

varied with a fixed frequencyV̄.h̄/3, as can be inferred
from Fig. 3.

FIG. 2. Threshold for instability plotted in the (V,h) plane. The
lower, long-dashed curve shows the threshold without any lin
damping (g50), which is zero on resonance. The upper cu
shows the threshold with linear damping (gÞ0). The parameters

for the upper curve arev51/2 andg51 so thath̄5h. The thresh-

old on resonance (V̄5V50) is thereforeh̄5h51. The solid and
short-dashed regions of the upper curve indicate the so-called
critical and supercritical branches of the instability, respectively.

the subcritical branch (V̄.h̄/3), there will be hysteresis ash is

varied and on the supercritical branch (V̄,h̄/3), there will not be
any hysteresis.
13430
-
-
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IV. RESPONSE OF A PARAMETRICALLY DRIVEN ARRAY
OF NONLINEAR COUPLED OSCILLATORS—

SECULAR PERTURBATION THEORY

Consider now the coupled array of nonlinear oscillators
described by the general EOM~6!. We calculate its respons
to parametric excitation, again using secular perturbat
theory. We expandxn(t) as a sum of standing-wave mode
with slowly varying amplitudes

xn~ t !5e1/2(
m51

N

~Am~T!sin~nqm!eivmt1c.c.!

1e3/2xn
(1)~ t !1•••, n51, . . . ,N. ~21!

Recall that the boundary conditions are such that there
two additional fixed beams, labeled 0 andN11, exerting
electrostatic forces on the first and the last beams of
array. With these boundary conditions (x05xN1150), the
possible wave vectorsqm are given by

qm5
mp

N11
, m51, . . . ,N. ~22!

We substitute the trial solution~21! into the EOM term by
term. Up to ordere3/2, we have

r

b-
n

FIG. 3. Response intensityuāu2 as a function of the parametri

modulation amplitudeh̄ for fixed frequencyV̄ and finite nonlinear

damping (h̄51). Thick curves show the stable~solid curves! and

unstable~dashed curves! response forV̄51. Thin curves show the

stable solutions forV̄5h̄/3 andV̄521, and demonstrate that hys

teresis ash̄ is varied is expected only forV̄.h̄/3.
ẍn5e1/2(
m

sin~nqm!~@2v2Am12iveAm8 #eivmt1c.c.!1e3/2ẍn
(1)~ t !, ~23a!

xn1122xn1xn21524e1/2(
m

sin2S qm

2 D sin~nqm!~Ameivmt1c.c.!1e3/2~xn11
(1) 22xn

(1)1xn21
(1) !, ~23b!

1

2
eg~ ẋn1122ẋn1 ẋn21!522e3/2g(

m
vmsin2S qm

2 D sin~nqm!~ iAmeivmt1c.c.!, ~23c!
2-5
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xn
35e3/2(

j ,k,l
sin~nqj !sin~nqk!sin~nql !~Aje

iv j t1c.c.!~Ake
ivkt1c.c.!~Ale

iv l t1c.c.!

5
e3/2

4 (
j ,k,l

$sin@n~2qj1qk1ql !#1sin@n~qj2qk1ql !#1sin@n~qj1qk2ql !#2sin@n~qj1qk1ql !#%

3$AjAkAle
i (v j 1vk1v l )t13AjAkAl* ei (v j 1vk2v l )t1c.c.%, ~23d!

and

1

2
h@~xn112xn!2~ ẋn112 ẋn!2~xn2xn21!2~ ẋn2 ẋn21!#

522he3/2(
j ,k,l

sin
qj

2
sin

qk

2
sin

ql

2 H sinF2qj1qk1ql

2 Gsin@n~2qj1qk1ql !#1sinFqj2qk1ql

2 Gsin@n~qj2qk1ql !#

1sinFqj1qk2ql

2 Gsin@n~qj1qk2ql !#1sinFqj1qk1ql

2 Gsin@n~qj1qk1ql !#J
3~Aje

iv j t1c.c.!~Ake
ivkt1c.c.!~ iv lAle

iv l t1c.c.!. ~23e!
n

on

o
-
e

ng

e

th
n

ce
he
At the order ofe1/2, we simply get the linear dispersio
relation, given by

vm
2 5122D2sin2S qm

2 D , m51, . . . ,N. ~24!

At the order ofe3/2, we getN equations of the form

ẍn
(1)1xn

(1)1
1

2
D2~xn11

(1) 22xn
(1)1xn21

(1) !

5(
m

~mth secular term!eivmt1other terms, ~25!

where the left-hand sides are, again, coupled linear harm
oscillators, with a dispersion relation given by Eq.~24!. On
the right-hand sides, we haveN secular terms that act t
drive the coupled oscillatorsxn

(1) at their resonance frequen
cies. As we did for a single oscillator in Sec. III, here too w
require that all the secular terms vanish so that thexn

(1) re-
main finite, and thus obtain equations for the slowly varyi
amplitudesAm(T). To extract the equation for themth am-
plitude Am(T), we make use of the orthogonality of th
modes, multiplying all the terms by sin(nqm) and summing
overn. We also express all normal frequencies relative to
same reference frequencyv0, used to define the excitatio
frequencyvp in Eq. ~3!, so that

vm5v01eVm . ~26!

We find that the coefficient of themth secular term, which is
required to vanish, is given by
13430
ic

e

22ivm

dAm

dT
22igvmsin2S qm

2 D1hAm* sin2S qm

2 Dei (V22Vm)T

2
3

4 (
j ,k,l

AjAkAl* ei (V j 1Vk2V l2Vm)TD jkl ;m
(1)

22h(
j ,k,l

H @2iv lAj* AkAle
i (2V j 1Vk1V l2Vm)T

2 iv lAjAkAl* ei (V j 1Vk2V l2Vm)T#

3D jkl ;m
(2) sin

qj

2
sin

qk

2
sin

ql

2
sin

qm

2 J 50, ~27!

where we have introduced twoD functions, defined in terms
of Kronecker deltas as

D jkl ;m
(1) 5d2 j 1k1 l ,m2d2 j 1k1 l ,2m2d2 j 1k1 l ,2(N11)2m

1d j 2k1 l ,m2d j 2k1 l ,2m2d j 2k1 l ,2(N11)2m

1d j 1k2 l ,m2d j 1k2 l ,2m2d j 1k2 l ,2(N11)2m

2d j 1k1 l ,m1d j 1k1 l ,2(N11)2m2d j 1k1 l ,2(N11)1m

~28a!

and

D jkl ;m
(2) 5d2 j 1k1 l ,m1d2 j 1k1 l ,2m2d2 j 1k1 l ,2(N11)2m

1d j 2k1 l ,m1d j 2k1 l ,2m2d j 2k1 l ,2(N11)2m

1d j 1k2 l ,m1d j 1k2 l ,2m2d j 1k2 l ,2(N11)2m

1d j 1k1 l ,m2d j 1k1 l ,2(N11)2m2d j 1k1 l ,2(N11)1m .

~28b!

These D functions ensure the conservation of latti
momentum—the conservation of momentum to within t
2-6
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nonuniqueness of the specification of the normal modes
to the fact that sin(nqm)5sin(nq2k(N11)6m) for any integerk.
The first Kroneckerd in each line is a condition of direc
momentum conservation, and the other two are the so-ca
umklapp conditions, where only lattice momentum is co
served.

As for the single oscillator, we again try a steady-st
solution, this time of the form

Am~T!5amei [(V/2)2Vm]T, ~29!

so that the solutions to the EOM, after substitution of E
~29! into Eq. ~21!, become

xn~ t !5e1/2(
m

@amsin~nqm!ei (v01eV/2)t1c.c.#1O~e3/2!,

~30!

where all modes are oscillating at half the parametric exc
tion frequencyvp/2.

As before, we are not interested in the corrections of
order ofe3/2, but only in the values of the fixed amplitude
am as functions of all the parameters of the original EO
Substituting the steady-state solution~29! into the Eq.~27!
for the time-varying amplitudesAm(T), we obtain the re-
quired equations for the fixed complex amplitudesam

~V22Vm!vmam22igvmamsin2S qm

2 D1ham* sin2S qm

2 D
2

3

4 (
j ,k,l

ajakal* D jkl ;m
(1) 22ihsin

qm

2 (
j ,k,l

v l@2aj* akal

2ajakal* #sin
qj

2
sin

qk

2
sin

ql

2
D jkl ;m

(2) 50. ~31!

We can change to rescaled variables as we did in the
of a single oscillator by dividing the equations for the amp
tudes ~31! by (gv0)3/2 and defining as beforeā j

5aj /Agv0, V̄5V/g, h̄5v0h, andh̄5h/2gv0, and in ad-
dition r m5vm /v0 anddm52Vm /g. After doing so we ob-
tain the rescaled equations

~V̄2dm!r mām22ir msin2S qm

2 D ām12h̄sin2S qm

2 D ām*

2
3

4 (
j ,k,l

ā j ākāl* D jkl ;m
(1) 22i h̄sin

qm

2 (
j ,k,l

r l@2ā j* ākāl

2ā j ākāl* #sin
qj

2
sin

qk

2
sin

ql

2
D jkl ;m

(2) 50. ~32!

This is the main result of the perturbative calculation. W
have managed to replaceN coupled differential equations~6!
for the oscillator coordinatesxn(t) by N coupled algebraic
equations~31! for the time-independent mode amplitud
am . All that remains, in order to obtain the overall collectiv
response of the array as a function of the parameters o
original EOM, is to solve these coupled algebraic equatio
13430
ue

ed
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e
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Before doing so we should note the following gene
statements. First, one can easily verify that for a single
cillator (N5 j 5k5 l 5m51), the general equation~31! re-
duces to the single-oscillator equation~15!, we derived in
Sec. III. Next, one can also see that the trivial solution,am
50 for all m, always satisfies the equations, though, as
have seen in the case of a single oscillator, it is not alway
stable solution. Finally, one can also verify that whenever
a givenm, Dmmm; j

(1) 5Dmmm; j
(2) 50 for all j Þm, then a single-

mode solution exists withamÞ0 and aj50 for all j Þm.
These single-mode solutions have the elliptical shape of
single-oscillator solution given in Eq.~17!, and satisfy the
equation

1

4 sin4~qm/2! S 3

4
Dmmm;m

(1) uāmu22V̄ D 2

1S 11sin2
qm

2
Dmmm;m

(2) h̄uāmu2D 2

5h̄2, ~33!

where for each solution we have setv05vm , so thatdm

50 and r m51. Note that genericallyDmmm;m
(1) 5Dmmm;m

(2)

53, except when umklapp conditions are satisfied.
Additional solutions, involving more than a single mod

exist in general but are hard to obtain analytically. We c
culate these multimode solutions below for the case of t
and three oscillators by finding the roots of the coupled
gebraic equations numerically. In Appendix B, we show t
explicit sets of coupled mode-amplitude equations for th
cases.

In Fig. 4, we show the solutions for the response intens
of two oscillators as a function of frequency, for a particu
choice of the equation parameters. The top graph shows
square of the amplitude of the antisymmetric modeā2,
whereas the bottom graph shows the square of the ampli
of the symmetric modeā1. Solid curves indicate stable so
lutions and dashed curves indicate unstable solutions.
two elliptical single-mode solution branches, mentioned
the previous paragraph are easily spotted. These branche
labeled byS1 andS2 @In Appendix B, Eqs.~B4!, we give the
analytical expressions for these two solution branches#. In
addition, we find two double-mode solution branches,
beled D1 and D2, involving the excitation of both mode
simultaneously. Note that the two branches of double-m
solutions intersect at a point where they switch their stabil

With two oscillators we obtain regions in frequency whe
three stable solutions can exist. If all the stable solut
branches are accessible experimentally, then the observe
fects of hysteresis might be more complex than in the sim
case of a single oscillator. This is demonstrated in Fig
where we compare our analytical solutions with a numeri
integration of the differential equations of motion~6! for two
oscillators. The response intensity, plotted here, is the t
and space averages of the square of the oscillator displ
ments,

I 5
1

N (
n51

N

^xn
2&, ~34!
2-7
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where the angular brackets denote time average, and
N52. A solid curve shows the response intensity for f
quency swept upwards, and a dashed curve shows the
sponse intensity for frequency swept downwards. Sm
circles show the analytical response intensity, using the
that I 53(ua1u21ua2u2)/2, for the stable regions of the fou
solution branches shown in Fig. 4. With the analytical so
tion in the background, one can easily understand all
discontinuous jumps, as well as the hysteresis effects,
are obtained in the numerical solution of the equations
motion. Note the theS1 branch is missed in the upward
frequency sweep and is only accessed by the system in
downward frequency sweep. One could trace the wh
stable region of theS1 branch by changing the sweep dire
tion after jumping onto the branch, thereby climbing all t
way up to the end of theS1 branch and then falling onto th
tip of the D1 branch or to zero.

In Fig. 6, we show the solutions for the response inten
of three oscillators as a function of frequency for a particu
choice of the equation parameters. The graphs show

FIG. 4. Two oscillators: Response intensity of as a function

frequencyV̄ for a particular choice of the equation parameters. T

top graph showsuā2u2 and the bottom graph showsuā1u2. Solid
curves indicate stable solutions and dashed curves indicate uns
solutions. The two elliptical single-mode solution branches@Eqs.
~B4a! and ~B4b!# are labeledS1 and S2. The two double-mode
solution branches are labeledD1 andD2.
13430
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squares of the amplitudes of the three different modes. S
curves indicate stable solutions and dashed curves indi
unstable ones. For three oscillators, there is only one elli
cal single-mode solution branch, of the form of Eq.~33!,
whose exact analytical expression is given in Eq.~B8!. This
branch is labeled byS2. In addition, we find a host of non
trivial multimode solution branches, including the one that
disconnected from all other branches. We show these p
not only to demonstrate that it is possible to obtain su
solutions exactly, but also to emphasize the large number
nontrivial structure of the solution branches one finds, ev
for such a small number of oscillators. This can only serve
a hint for the multimode solutions one can expect to fi
when the number of oscillators is large, as in the BR exp
ment.

V. RESPONSE OF PARAMETRICALLY DRIVEN
NONLINEAR COUPLED OSCILLATORS—NUMERICAL

INTEGRATION OF THE EQUATIONS

The equations of motion~6! were integrated numerically
for an array ofN567 oscillators, as in the BR experimen
The results for the response intensity~34! as a function of
parametric drive frequencyvp ~measured in units of the top
band-edge frequencyv0) are shown in Fig. 7. These resul
must be considered illustrative only, since many of the
rameters of the experimental system are not known. The
rameters used to construct the figure,D250.02,eh50.016,
eg50.004, andh56.0, were chosen using the insigh
gained from the two- and three-oscillator results. We sho
emphasize that the structure of the response branches
pends strongly on the equation parameters. First of all, a
the case of a small number of beams, the overall height
width of individual response branches depend on the stren
of the driveh with respect to the linear damping coefficie
g, and on the nonlinear dissipation coefficienth. Further-

f

e

ble

FIG. 5. Hysteresis with two oscillators: Comparison of stab
solutions, obtained analytically~small circles!, with a numerical
integration of the equations of motion~solid curve - frequency
swept up; dashed curve - frequency swept down!. Plotted is the
averaged response intensity, defined in Eq.~34!. Branch labels cor-
respond to those in Fig. 4.
2-8
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more, for example, if the width of the frequency respon
band is taken to be much larger thanN times the width of a
single-mode response, then very few multimode soluti
exist, if any.

A number of the important features of the experimen
data are reproduced by these calculations. We concentra
the solid curve in the figure, which is for frequency swe
upwards, since this is the protocol that was used in the
periment. In particular, the response intensity shows feat
that span a range of frequencies that is large compared
the mode spacing~which is about 0.0006 for the paramete
used!. The lowest-frequency feature, from aboutvp /v0
51.94 tovp /v051.97, can be identified as the response

FIG. 6. Three oscillators: Response intensity of three oscilla

as a function of frequencyV̄ for a particular choice of the equatio
parameters. The graphs show the squares of the amplitudes o
three different modes. Solid curves indicate stable solutions
dashed curves indicate unstable ones. The only elliptical sin
mode solution branch@Eq. ~B8!# is labeled byS2.
13430
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the parametric drive of a single mode at or very near
band edge atv/v050.98, analogous to the one mode r
sponse shown in Fig. 1. Furthermore, the variation of
response with frequency shows abrupt jumps, particularly
the high-frequency side of the features as the frequenc
raised. Finally, the response extends to frequencies hig
than the band edge for the linear modes, which would giv
response only up tovp /v052.0. All these features are un
derstood, now that we have seen the analytical solutions
small numbers of oscillators. In particular, the wide featu
compared with the mode spacing are explained by the sim
fact that as the frequency is swept upwards a particular
lution branch is followed as long as it remains stable. In
meantime many other stable solutions that may be as clos
each other as the mode spacing are simply skipped ove

Comparing the two traces in Fig. 7 shows that the
sponse for a downward frequency sweep is significantly
ferent with a less dramatic variation of the response. In p
ticular, note that the downwards sweep was able to acc
additional stable solution branches that were missed in
upwards sweep. There is also no response abovevp /v0
52.0 in this case. This is because the zero-displacement
is stable forvp /v0.2.0, and the system will remain in thi
state as the frequency is lowered, unless a large enough
turbance kicks it onto another of the solution branches. T
hysteresis on reversing the frequency sweep was not loo
at in the first experiments, and it would be interesting to t
this prediction in further experiments.

VI. CONCLUSIONS

We have calculated the response of nonlinear coupled
cillators to parametric excitation. Our calculations agr
qualitatively with the experimental measurements of Bu
and Roukes8 and explain the main features observed in t

rs

the
d

e-

FIG. 7. Response intensity as a function of the driving f
quencyvp ~measured in units of the top band-edge frequencyv0)
for N567 parametrically driven oscillators~solid curve—frequency
swept up; dashed curve—frequency swept down!. The response in-
tensity is defined aŝxn

2& @Eq. ~34!#, with the bar denoting the av
erage over the space indexn, and the brackets the average ov
time. The parameters used areD250.02, eh50.016, eg50.004,
andh56.
2-9
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RON LIFSHITZ AND M. C. CROSS PHYSICAL REVIEW B67, 134302 ~2003!
experiment. The abrupt drops in the response as the
quency is swept upwards, the response continuing bey
the upper edge of the frequency band, and the large siz
the response features compared with the mode spacing a
qualitatively explained.

Nevertheless, we propose that a more systematic stud
conducted on systems of coupled nonlinear resonators so
our theoretical predictions could be tested more quan
tively. For example, successive measurements on sys
containing only one, two, and three coupled resona
which are made as identically as possible, could be use
extract the nonlinear parameters of the resonators. Th
could then be used to predict and explain the response
large resonator array more quantitatively.

Furthermore, we have demonstrated that as the numb
oscillators is increased, the number of the solution branc
for the response of the system increases and the effec
hysteresis become more and more complicated. This
gests that the appropriate experimental protocol for study
a system with many oscillators should be—in addition to
standard up-sweep and down-sweep in frequency—
change the direction of the sweep after every abrupt cha
in the response intensity. Such a protocol may provide m
information about the response curve by accessing additi
branches of the solution and fully tracing them out.
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APPENDIX A: PARAMETRIC EXCITATION
OF A SINGLE OSCILLATOR

AT ITS SECOND INSTABILITY TONGUE

For a single nonlinear oscillator, like the one studied
Sec. III, which is parametrically excited at its second ins
bility tongue, Eq.~5! becomes

ẍ1@v22D2H cos~v1eV!t#x1eg ẋ1x31hx2ẋ50,
~A1!

where againv5A12D2 is the resonance frequency of th
oscillator in the harmonic approximation, but the parame
excitation is performed aroundv and not around 2v. In this
case, the scaling ofD2H with respect toe needs to be rede
termined. The technical reason for this is that if we ta
D2H5eh, as before, then the parametric driving term do
not contribute to the ordere3/2 secular term that we use t
find the response, and the ordere1/2 term inx becomes iden-
tically zero.

The remedy for this situation is to letD2H scale likeep

with p,1, so that there will be a nonsecular correction tox
at an order lower thane3/2. The value ofp will be chosen
such that this correction will contribute to the ordere3/2 secu-
lar term and will give us the required response. The equa
of motion ~A1! becomes
13430
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ẍ1v2x5
hep

2
~ei (vt1VT)1c.c.!x2eg ẋ2x32hx2ẋ,

~A2!

and we try an expansion of the solution of the form

x~ t !5e1/2~A~T!eivt1c.c.!1ep11/2xp~ t !1e3/2x1~ t !1•••.
~A3!

Substituting this expansion into the equation of motion~A2!,
we obtain at the ordere1/2 the linear equation as usual, and
the orderep11/2

ẍp1v2xp5
h

2
~Aei (2vt1VT)1A* eiVT1c.c.!. ~A4!

As expected, there is no secular term on the right-hand s
so we can immediately solve forxp ,

xp~ t !5
h

2 S 2
A

3v2 ei (2vt1VT)1
A*

v2 eiVT1c.c.D1O~e!.

~A5!

Substituting the solution forxp into the expansion~A3!, and
the expansion back into the equation of motion~A2!, con-
tributes an additional term from the parametric driving th
has the form

e2p11/2
h2

4 S 2
A

3v2 ei (2vt1VT)1
A*

v2 eiVT1c.c.D ~ei (vt1VT)

1c.c.!5e2p11/2
h2

4v2 S 2

3
A1A* ei2VTDeivt1c.c.

1nonsecular terms. ~A6!

To contribute to the ordere3/2 secular term, we see that w
must setp51/2. This gives us the required contribution
the equation for the vanishing secular terms. All other ter
remain as they were in Eq.~12!, so that the new equation fo
determiningA(T) becomes

2iv
dA

dT
2

h2

4v2 S 2

3
A1A* ei2VTD1 ivgA13uAu2A

1 ivhuAu2A50. ~A7!

Again, ignoring initial transients, and assuming that the n
linear terms in the equation are sufficient to saturate
growth of the instability, we try a steady-state solution, th
time of the form

A~T!5aeiVT. ~A8!

The solution to the equation of motion~A1! is therefore

x~ t !5e1/2~aei (v1eV)t1c.c.!1O~e!, ~A9!

where the correctionx1/2 of ordere is given in Eq.~A5! and,
as before, we are not interested in the correctionx1(t) of the
order of e3/2, but rather in the fixed amplitudea of the
lowest-order term. We substitute the steady-state solu
~A8! into Eq. ~A7! of the secular terms and obtain
2-10
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F S 3uau222vV2
2

3

h2

4v2D1 iv~g1huau2!Ga5
h2

4v2 a* .

~A10!

We divide both sides of the last equation bygv and de-

fine the rescaled variables:ā5a/Agv, V̄5V/g, h̄5vh,
and h̄5h/2Agv3, in terms of which we obtain after takin
the magnitude squared of both sides, in addition to the tri
solutiona50, the nontrivial response

S 3uāu222V̄2
2

3
h̄2D 2

1~11h̄uāu2!25h̄4. ~A11!

Figure 8 shows the response intensityuāu2 as a function of

the frequencyV̄ for fixed amplitudeh̄51.5 in the second
instability tongue. The solution looks very similar to the r
sponse shown in Fig. 1 for the first instability tongue, thou
we should point out two important differences. The first
that the orientation of the ellipse, indicated by the slope
the curves forh̄50, is different. The slope here is 2/3
whereas for the first instability tongue the slope is 1/3. T
second is the change in the definition ofh̄. The lowest am-
plitude required for having an instability is again on res

nance (V̄50) and its value is againh̄51, but now this
implies thath52Agv3 or thath scales asAg. This is con-
sistent with the well-known result~see, for example, Ref. 10!
that the minimal amplitude for the instability of thenth
tongue scales asg1/n.

APPENDIX B: EXPLICIT EQUATIONS
FOR TWO AND THREE COUPLED OSCILLATORS

1. Two coupled nonlinear oscillators

For two coupled oscillators (N52), we have

q15
p

3
, q25

2p

3
, ~B1!

FIG. 8. Response intensityuāu2 as a function of the frequencyV̄

for fixed amplitudeh̄51.5 in the second instability tongue. Sol
curves are stable solutions and dashed curves are unstable solu

Thin curves show the response without non-linear dampingh̄
50). Thick curves show the response for finite nonlinear damp

(h̄51).
13430
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v1
2512

1

2
D2, v2

2512
3

2
D2, ~B2!

and we choose the reference frequencyv0 to bev2, so that
d25V250, r 251, d152(v12v2)/ge[d.0, and r 1
5v1 /v2[r . For D!1, d.D2/eg and r .11D2/2. The
first mode is the symmetric one withx1(t)5x2(t) and the
second mode is antisymmetric withx1(t)52x2(t). Equa-
tions ~32! for the rescaled complex amplitudesā1 andā2 are

~V̄2d!rā12 i
r

2
ā11

h̄

2
ā1* 2

9

4
~ uā1u2ā112uā2u2ā11ā2

2ā1* !

2
3

8
i h̄@r uā1u2ā112r uā2u2ā11~22r !ā2

2ā1* #50,

~B3a!

V̄ā22 i
3

2
ā21

3

2
h̄ā2* 2

9

4
~ uā2u2ā212uā1u2ā21ā1

2ā2* !

2
3

8
i h̄@9uā2u2ā212uā1u2ā21~2r 21!ā1

2ā2* #50.

~B3b!

The two single-mode solution branches, having the g
eral form of Eq.~33! and labeledS1 and S2 in Fig. 4, are
easily obtained by settingā2 or ā1 to zero in the coupled
equations above, respectively. This yields the analyt
forms of these solutions, which are

S1 : S 9

2
uā1u222r ~V̄2d! D 2

1r 2S 11
3

4
h̄uā1u2D 2

5h̄2,

~B4a!

S2 : S 3

2
uā2u22

2

3
V̄ D 2

1S 11
9

4
h̄uā2u2D 2

5h̄2.

~B4b!

2. Three coupled nonlinear oscillators

For three coupled oscillators (N53) we have

q15
p

4
, q25

p

2
, q35

3p

4
~B5!

v1
2512D21

D2

A2
, v2

2512D2, v3
2512D22

D2

A2
,

~B6!

and we choose the reference frequencyv0 to bev2, so that
d250, r 251, and d152(v12v2)/ge52d3[d.0. For
D!1, d.D2/A2eg and r 1,3.16D2/2A2. Equations~32!

for the rescaled complex amplitudesā1 , ā2, andā3 are

ns.

g
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ode.
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~V̄2d!r 1ā12 i
22A2

2
r 1ā11

22A2

2
h̄ā1* 2

3

4
~3uā1u2ā12uā3u2ā314uā2u2ā312ā2

2ā3* 14uā2u2ā112ā2
2ā1* 16uā3u2ā1

13ā3
2ā1* 22uā1u2ā32ā1

2ā3* !2 i h̄F322A2

4
3r 1uā1u2ā12

A211

4
r 3uā3u2ā31

22A2

2
@2r 1uā2u2ā11~22r 1!ā2

2ā1* #

1
A221

4
@2r 3uā1u2ā31~2r 12r 3!ā1

2ā3* #1
1

4
@2r 1uā3u2ā11~2r 32r 1!ā3

2ā1* #G50, ~B7a!

V̄ā22 i ā21h̄ā2* 2
3

2
~2uā2u2ā212uā1u2ā21ā1

2ā2* 12uā3u2ā21ā3
2ā2* 1ā1* ā2ā31ā1ā2* ā31ā1ā2ā3* !

2 i h̄F uā2u2ā21
22A2

2
@2uā1u2ā21~2r 121!ā1

2ā2* #1
21A2

2
@2uā3u2ā21~2r 321!ā3

2ā2* #G50, ~B7b!

~V̄1d!r 3ā32 i
21A2

2
r 3ā31

21A2

2
h̄ā3* 2

3

4
~3uā3u2ā32uā1u2ā114uā2u2ā312ā2

2ā3* 14uā2u2ā112ā2
2ā1* 16uā1u2ā3

13ā1
2ā3* 22uā3u2ā12ā3

2ā1* !2 i h̄F312A2

4
3r 3uā3u2ā31

A221

4
r 1uā1u2ā11

21A2

2
@2r 3uā2u2ā31~22r 3!ā2

2ā3* #

2
A211

4
@2r 1uā3u2ā11~2r 32r 1!ā3

2ā1* #1
1

4
@2r 3uā1u2ā31~2r 12r 3!ā1

2ā3* #G50. ~B7c!

Only one single-mode solution of the form of Eq.~33! exists in the case of three oscillators and involves the second m
It is obtained by settingā15ā350 in the coupled equations above. The analytical expression for this solution is

S2 : ~3uā2u22V̄!21~11h̄uā2u2!25h̄2. ~B8!
pia
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