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Response of parametrically driven nonlinear coupled oscillators
with application to micromechanical and nanomechanical resonator arrays
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The response of a coupled array of nonlinear oscillators to parametric excitation is calculated in the weak
nonlinear limit using secular perturbation theory. Exact results for small arrays of oscillators are used to guide
the analysis of the numerical integration of the model equations of motion for large arrays. The results provide
a qualitative explanation for a recent experim@iiks and Roukes, J. Microelectromech. S$4f.802(2002]
involving a parametrically excited micromechanical resonator array. Future experiments are suggested which
could provide quantitative tests of the theoretical predictions.
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I. MOTIVATION: NONLINEARITY OF MEMS cal diffraction. The response that BR inferred from their
AND NEMS RESONATORS measurement was surprising in thigtinstead of showing a

band consisting of a sequence of resonance peaks at the 67

Recent technological advances have enabled the fabricaormal frequencies of the array, the typical response as the
tion of mechanical resonators down to micrometer and evefrequency was swept up showed a small humber of wide
nanometer scales, with frequencies almost reaching the gigpeaks where the response gradually increased and very
hertz rangé:? Even though the main thrust in this field of abruptly decreased; ar(d) the array responded at frequen-
research comes from the need to produce smaller, lightegies beyond the expected top edge of the band.
faster, and more efficient electromechanical systems, there is We show below that both these effects are a direct result
new basic physics to be learned along the Wé@ne particu-  of the fact that the restoring forces acting on the resonators
larly interesting aspect of the physical behavior of microelec-as well as the damping that they undergo are both nonlinear.
tromechanical and nanoelectromechanical systaisMS In Sec. Il we describe the simplest equations of motion that
and NEMS is their nonlinear mechanical response at rela-are required to model the nonlinear resonator array. In Sec.
tively small deviations from equilibrium. This nonlinear be- Ill, we solve the response of a single nonlinear resonator to
havior has been observed experimentafiyand also ex- parametric excitation at twice its resonance frequency using
ploited to achieve mechanical signal amplification andsecular perturbation theofyor comparison, we solve in Ap-
mechanical noise squeez?n795in single resonators. In addi- pendix A the response to parametric excitation at the reso-
tion, MEMS and NEMS facilitates the fabrication of large nance frequendy In Sec. IV we use the same method to
arrays of resonators, for which the coherent response migltalculate the response of the coupled resonator array and
be useful for signal enhancement and noise reduction. It isbtain exact results for a fefgwo or thre¢ resonators. Un-
important to understand the nonlinear behavior of MEMSderstanding the analytical results of these two sections al-
and NEMS resonators in order to improve their future dedows us to interpret the results of Sec. V, where we numeri-
signs. At the same time, one can take advantage of thesmlly integrate the equations of motion for an array of 67
systems for the experimental study of nonlinear dynamics. resonators. Our results agree qualitatively with the observa-

This paper is motivated by a recent experiment by Bukdgions of BR, explaining the two points mentioned above, but
and Rouke¥henceforth BR who fabricated an array of 67 we suggest that further experiments be performed in order to
fully suspended doubly clamped micromechanical resonatingest our theoretical calculations in a more quantitative man-
beams. Each beam was 270X 0.25.m in size, and the ner.
distance between neighboring beams wagm. The sub-
;trate beneath the.array. was co_mple_tely etphed away, form- IIl. EQUATIONS OF MOTION
ing a suspended diffraction grating with optical access from
both sides. All even-numbered beams were electrically con- We seek the simplest set of equations of motiB®M)
nected to one electrode and all odd-numbered beams tothat capture the important physical aspects of the array of
second electrode. This allowed the application of electroeoupled micromechanical beams. We first note that the nor-
static forces to induce coupling between the beams. The sysaal frequencies of an individual beam are sufficiently sepa-
tem was driven parametrically by introducing an ac compo+ated such that the frequency bands, formed by the coupling
nent to the potential difference between the even-numbereadf the beams in the array, are well separated by gaps in
and odd-numbered beams. The collective response of the awvhich the system cannot respond. We therefore assume that
ray, as a function of the driving frequency and the dc comwe can treat the lowest band separately from all the others,
ponent of the potential difference, was measured using optiso that each individual beam is oscillating strictly in its fun-
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damental mode of vibration. Each beam can therefore b#lote that the linear electrostatic force constamiA?, which
described by a single degree of freedam giving its dis- is modulated with a relative amplitudd<1, representing
placement from equilibrium. We neglect any inhomogene-+the dc and the ac components of the applied voltage, is posi-
ities in the fabrication of the beams and assume that alflive, acting to soften the elastic restoring force. The factor of
beams are identical. BR have actually examined each bea®2 is used with the difference variable for convenience.
individually and report that their beams have a fairly uniform  Parametric excitation, as it appears in the bare Mathieu
distribution of resonance frequencies, with an average oéquation for a single oscillator of frequenay, without all
wp=179.3 kHz, and a standard deviation of 0.53 kHz. Therghe additional terms that we have here, is an instability of the
is a much larger variation in the quality factors of the beamssystem that occurs whenever the drive frequency is around
prior to the application of electrostatic interaction betweenone of the special valuas,=2wq/n, wheren is an integer
them, but this variation disappears when a small potentiathat labels the so-called instability tongues of the system
difference is introduced between the beams. (named after the tongue-shaped instability curves in the
The coordinates,, are all assumed to be small so that frequency-amplitude plané® We choose the parametric
only terms to lowest order ix,, necessary to capture the driving frequencyw, to be around twice some valug,
physical behavior of the system, will be kept in the EOM. within the array’s band of normal frequencies. We are there-
Two types of forces act on the beams, namely, the elastifore exciting the system in its firsnE& 1) instability tongue.
restoring force of each beam and the electrostatic forces b&hus,
tween the beams. Experiments done by Buks and Réwkes
single beams of the type used in the array show that their 0-=2wn+ e ®)
response is similar to that of a Duffing oscillator—an oscil- P 0 '
lator whose restoring force contains a term proportional to . .
the cube of the displacement and makes the oscillator stiffe\fyhere € Is a small parameter. _In the BR.expen.ment, the
than it would be within the harmonic approximation. Assum—.SyStern was actually excited in its second instability tongue,

ing a symmetic restoring force, and therefore no term prog . %8 e PR B B SO om
portional to an even power of,, and neglecting higher than P gue, ap

s e o e St oo e st e U
the nth individual beam is p y y

tongue that is somewhat easier to handle, and just for com-
parison, we calculate in Appendix A the response of a single
FOstic= — MwaX, — max3, (1) nonlinear oscillator, excited at its second tongue.

There is good reason to believe that most of the dissipa-
wherem is the effective mass of a beam oscillating in its tion in the coupled system is a result of the electrostatic
fundamental mode, whose frequencyug . interaction that causes currents to flow through the beams.

Even though the electrostatic force between two paralleThis assumption is based on the observation of Buks and
charged wires decays only as 1for simplicity we consider Rouke$ that the quality factors greatly diminish as the dc
only the attractive interactions between nearest-neighbotomponent of the electrostatic potential is increased. We
beams. Within this approximation, each term in the EOMtherefore make the simplifying approximation that dissipa-
depends either on the variablgs, describing the displace- tion occurs predominantly as a result of currents, all other
ment of an individual beam from its equilibrium position, or dissipation mechanisms being relatively negligible. This ap-
on the difference variables, ., —X,,, describing the relative proximation avoids the problem of the variation in the qual-
displacements of a pair of neighboring beams. To keep th#y factors of the individual beams before application of the
equations as simple as possible, we restrict each type of noglectrostatic potential. The dissipative forces in the EOM are
linear term in the EOM to depend either ap or onx,,, therefore written with respect to the difference variable,
—X,, depending on whether it is mostly influenced by the
elastic forces of the beams or the electrostatic interaction 1 ) o
between them, respectively. F() = > Mgl (Xn 1~ 2%+ Xn-1)

The cubic term in the expansion of the nearest-neighbor

electrostatic interaction tends to pull the beams away from 1 ) .
equilibrium, acting against the cubic term in the expansion of + 5 Mwga 7 (Xn+ 1= %) *(Xns 1 Xn)

the elastic force in Eq(l). Since, as we shall confirm later,

the response of the array is consistent with having a cubic — (X=X 1) (X —Xn_ )], (4

term that stiffens the beams, the elastic contribution to the
i(;unbo'?etet[]rg 'gusé{gr;%ewgl?g;hzlFﬁ;ﬁgft?:rﬁnzn% \t/r\:g tgleercet:gt\?\{herg we have included a nonlinear contribution to the dis-
static interaction. which we write as sipation, of the same o.rder as the nonllnear. glastlc fatce

' When putting all the pieces together, @ divide out the
effective massn of a beam;(b) scale timet—t/wg so that
all frequencieqincluding A) are measured in units @bg;
and(c) scale lengthx— x/+/« to get rid of the dependence on

(2 a. The equation of motion for theth beam becomes

1
Ft(arllt)ectric: - EmAz[l_" H Coswpt](xn+l_ 2Xnt+Xn_1).
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. 1 where we choosey to be w=\/1—A?, the resonance fre-
3 2 . ! o
Xn+ X T X+ A1+ H cos 2wp+ Q)] quency of the beam in the harmonic approximation. The

parametric excitation is performed around twice the actual

1 . . resonance frequency of the oscillatdn Appendix A, we
X (Xn+17 2%+ Xn-1) = 5T (Xns 172X+ X0 1) treat the case where the excitation is performed around the
resonance frequency of the resonator.
1 5 : We calculate the correction to linear response by using
~ 5 ML (Xn+17X0) "(Xn 1~ Xn) secular perturbation theot%!® Recalling that the motion of
o the oscillator away from equilibrium is of the order o¥?,
—(Xp—Xn—1)%(Xn—Xn—1)]1=0. (5)  we try a solution of the form
In the following sections, we shall solve these equations x(t)=eY(A(T)e“' +c.c)+ ¥ () + - - -, (8)

using secular perturbation theory. The physical parameter L . . .
that allows us to use this approach is the linear dampin her_eT—et is a slow time varla_lble_, allowing the_ cpmplex
coefficient which is assumed to be small. We therefore ex= mp||tu.deA(T) to vary slowly in tlmg. The variation of
press it ad" = e, takinge to be our small expansion param- A(T) gives us the extra freedom to eliminate secular terms

eter. The parametric instability of the system then occurs fof'Jlnd ensure that the perturbative correctig(it), as well as

small driving amplitude near resonance, and if, in addition,a” higher-order corrections to the linear response, do not

we consider the system near the onset of the instability, ngvgrge(as they do if one uses naive perturbation thgory
can assume that the effects of nonlinearity are small as well: sing the relation

Thus, for small displacemenss,, all the nontrivial physical  dA  dA
effects, namely, the parametric excitation, the cubic elastic A=—=e—
restoring force, and both the linear and the amplitude- dt dT
dependent dissipation, all enter the EOM as perturbative Coye calculate the time derivatives of the trial soluti@,
rections to the simple linear equations. All these perturbative

terms can be chosen to enter the EOM in the same order of ; _ VY[ oA+ eA'Je ! +c.c) + Es/z)'(l(t)Jr e (103
the small parameter by taking the leading order ir, to be

of the order ofe'’?, and expressind?H = eh. This ensures,
as we shall confirm later on, that all the terms will contribute
to the lowest-order solution we are seeking. The final form of - (10b)
the EOM is therefore

=eA’, 9)

x= Y[ — w’A+2iweA’ + €?A"]e' “'+c.c) + €¥x,(1)

Substituting these expressions back into the equation of mo-
. s 1 tion (7), and picking out all terms of the order ef?, we get
XntXn+Xp+ S[A+ eh oS 2wo + €)t] the following equation for the first perturbative correction

X1+ %= — (2ioA’e'“'+c.c)

1 . . )
X(Xn+1_2Xn+Xn—1)_Ef'y(xn+1_2Xn+Xn—1) )
+hcog(2w+eQ)t](A“ +c.c)

1 - - _ H i wt _ i wt 3
_En[(xnﬂ_xn)z(xnﬂ_xn) y(iwA€®“ +c.c)—(Ae“ +c.c)

— (A€ +c.c)’(iwAe“+c.c). (11

~ (Xn=Xn-1)%(Xn=Xn-1)]=0. (6) , _ A ,
» , The collection of terms proportional ®“" on the right-
As for boundary conditions, we follow the experiment of BR \3nq side of Eq(11), called the secular terms, act like a
who had two additional fixed beams, identical to all the rest¢q ce. driving the simple harmonic oscillator on the left-hand

at both ends of the array. This means that we define two extrgje at its resonance frequency. The sum of all the secular

variables and set them to zeng=Xy1=0. terms must vanish so that the perturbative correckig(t)
will not diverge. This gives us an equation for determining
. RESPONSE OF A SINGLE PARAMETRICALLY the slowly varying amplitudé\(T). After expressing the co-
DRIVEN NONLINEAR OSCILLATOR sine as a sum of exponentials, we get

We begin by calculating the response of a single nonlinear h
oscillator to parametric excitation. Previous calculations of 2jw——— =A*e'*T+iwyA+3|A|?A+iwy|Al?A=0.
this problem exist in the literatute(and references thergin daT 2
nevertheless, we solve it here as a precursor to the many- (12)
oscillator case, treated in the following section. The equationgnoring initial transients, and assuming that the nonlinear
of motion (6) for the single-oscillator case becomes terms in the equation are sufficient to saturate the growth of
) , ) the instability, we try a steady-state solution of the form
X+[w?— eh cod 2w+ eQ)t]x+ eyx+x3+ nx?x=0,
(7) A(T)=aé 2T, (13
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FIG. 1. Response intensity|? as a function of the frequen@
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In Fig. 1, we plot the response intensi|t§|2 of a single
oscillator to parametric excitation as a function of frequency
Q, for fixed amplitudeh= 1.5, in terms of the rescaled vari-
ables. Solid curves indicate stable solutions and dashed
curves are solutions that are unstable to small perturbations.
Thin curves show the response without nonlinear damping
(»=0) which grows indefinitely with frequenc{) and is
therefore incompatible with the experimental observations of
BR and the assumptions of our calculation. Thick curves
show the response with finite nonlinear damping=(1).

With finite », there is a maximum value for the response

for fixed amplitudeh=1.5. Solid curves are stable solutions and |a|2,,,=(h—1)/7 and a maximum frequency
dashed curves are unstable solutions. Thin curves show the re-

sponse without nonlinear dampin@# 0). Thick curves show the
response for finite nonlinear damping+€ 1). Dotted lines indicate
the maximal response intensity|Z,, and the saddle-node fre-

quencyQgy.

The solution to the equation of motidid) is therefore

X(t) = e"(aé @<t c.c)+0(e¥?), (14)
where we are not interested in the correctiorft) of the
order of €2 but rather in the fixed amplituda of the
lowest-order term. This amplitude can be any solution of
the equation

h
[(Bla*~00) +io(y+gla]*)]a=5a*, (19

obtained by substituting the steady-state soluti®8 into

5SN:h 1+

(19

7

at which the stability of the solution changéknc&vn as a
saddle-node bifurcation For frequencies abovélgy the

only solution is the trivial on@=0. These values are indi-
cated by horizontal and vertical dotted lines in Fig. 1.
The threshold for the instability of the trivial solution is

easily calculated by settingzo in the expressiol17) for
the nontrivial solution. As seen in Fig. 1, for a givan the

threshold is situated & = + \h?— 1. The threshold is plot-
ted in Fig. 2 in the {2,h) plane. Note that the minimal am-

plitude needed for instability is obtained on resonanfe (

=0) and its value ih=1, orh=2yw, so that it scales as
the linear damping coefficient.

Finally, in Fig. 3, we plot the response intensia2 of
the oscillator as a function of amplitude for fixed fre-
guency() and finite nonlinear dampingg=1. Again, solid

Eq. (12) of the secular terms. We immediately see that havcurves indicate stable solutions and dashed curves unstable

ing no responsea=0) is always a possible solution regard-
less of the excitation frequendy. We divide both sides of

Eq. (15 by yw and define the rescaled variables
=alJyw, O=Qly, n=wn, andh=h/2yw, in terms of
which the equation for the fixed complex amplitudebe-
comes

[(3]a]?—Q)+i(1+ 7[a]?)Ja=ha*. (16)
Expressinga=|a|e'? we obtain, after taking the magnitude
squared of both sides, the intensitg|? of the nontrivial
response as all positive roots of the equation

(3[a]?~ Q)%+ (1+ y[a?)?=h2, (17
This has the form of a distorted ellipse in mE,@Z) plane,

and a parabola in thed|?,h) plane. In addition, we obtain
for the relative phase of the response

solutions. Thick curves show the responsef?mt 1 and thin

curves show the response @:;/3 andQ=-1. The in-
tersection of the trivial and the nontrivial solutions, which

corresponds to the instability threshold occurs lat
=V0O2+1. For Q<7/3 the nontrivial solution for|a|?
grows continuously foh above threshold and is stable. This
is a supercritical bifurcation. On the other hand, far
>;/3, the bifurcation is subcritical—the nontrivial solution
grows forh belowthreshold. This solution is unstable until

the curve ofa|? as a function oh bends around at a saddle-
node bifurcation at

(20
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h laf2 = J%l;
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-2 -1 1 2 FIG. 3. Response intensity|? as a function of the parametric

FIG. 2. Threshold for instability plotted in the(h) plane. The modu!atiolamplituqafor fixed frequency() and finite nonlinear
lower, long-dashed curve shows the threshold without any lineaP@MPing (7=1). Thick curves show the stabfsolid curves and
dampmg (‘}’ 0) which is zero on resonance. The upper curveunstable(dashed curve)sresponse fOﬂ 1. Thin curves show the
shows the threshold with linear damping#0). The parameters stable solutions fof) = 77/3 andQ = —1, and demonstrate that hys-
for the upper curve are=1/2 andy=1 so thath=h. The thresh- teresis ad is varied is expected only fan > 7,/3_

old on resonance§=Q=0) is thereforeh=h=1. The solid and
short-dashed regions of the upper curve indicate the so-called sulV. RESPONSE OF A PARAMETRICALLY DRIVEN ARRAY

critical and supercritical branches of the instability, respectively. On OF NONLINEAR COUPLED OSCILLATORS—
the subcritical branch@®> 7/3), there will be hysteresis ds is SECULAR PERTURBATION THEORY
varied and on the supercritical branc € 7/3), there will not be Consider now the coupled array of nonlinear oscillators as

any hysteresis. described by the general EO{8). We calculate its response

to parametric excitation, again using secular perturbation
where the solution becomes stable d{at? is once more an th_er?ryl- Wle expand(t) ?S 3 sum of standing-wave modes
increasing function oh. For amplltudesh<hsN, the only with slowly varying amplitudes

solution is the trivial one=0. N

Like the response of a forced Duffing oscillator, the re- X,(1)=€¥2> (An(T)sin(ng,)e “m+c.c)
sponse of a parametrically excited Duffing oscillator also ex- m=1
hibits hysteresis in a frequency scan. If the frequefLy + M (1) + - - n=1,...N. (21)

starts out at negative values and is increased gradually with a

fixed amplitudeh, the response will | gradually increase along Recall that the boundary conditions are such that there are
the thick solid curve in Fig. 1, unt reachesQSN and the WO additional fixed beams, labeled 0 ahd+-1, exerting

response drops abruptly to zero. If the frequency is then dé electrostatic forces on the first and the last beams of the
array. With these boundary conditiongy,E Xy 1=0), the
creased gradually, the response will remain zero uftil

possible wave vectorg,, are given by
reaches the upper instability threshojth?—1, and the re-

sponse will jump abruptly to the thick solid curve above, and mar
then gradually decrease to zero along this curve. A similar Am=NT 1 m=1,... N. (22

hysteretic behavior will be observed if the amplituﬁeis
varied with a fixed frequenc{)>7/3, as can be inferred We substitute the trial solutiof21) into the EOM term by

from Fig. 3. term. Up to ordere®?, we have

X, = €2} sin(ngy) ([ — 0?An+ 2i weAlJe'“mt+c.c)+ e D(t), (233
m

Xpyt1— 2Xn+ X 1_—461/22 sm2( )sm(nqm)(Ame"”m +c.c)+ ex(, —2xP+xV) ), (23b

1 . . .

Eey(xn+1—2xn+xn,1)——263/23/2 w smz( )S|n(nqm)(|Ame""m‘+c c), (230
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x3= 63’22k| sin(ng;)sin(ng)sin(ng;) (Aje'“i'+c.c) (Age' K +c.c) (Ale' '+ c.c)
ik
312
=T ,—Em {sinn(—q;+ai+q))]+sinn(g; —qc+q)]+sirn(q;+g—a) ] —sinn(q; +q+a) 1}

X{AAA € @it okt ety A A AR elle o ety ¢}, (230
and

1 . . . .
E 7][(Xn+l_xn)2(xn+l_xn)_(Xn_xn—l)z(xn_xn—l)]

— Qi+ Qg+ Ot
_—27763’22 sindsinXsi q'[s'r{M Sif'{n(—Qj+qk+QI)]+Sir{W

2SIy siny 2

sinn(g; —qx+a)]

| djT 0k g;toxta| .
+sw{‘T Sin(n(q;+ o~ q|>]+sw{‘T snin(q,-+qk+q|>]]
X (Aje'“i'+c.c)(Age' K +c.c)(iwAe @ +c.c). (230
|
At the order ofe'2, we simply get the linear dispersion dA, ,
relation, given by —2lom g 2|7wm3'n2 | +hAY Sir?| ) gi(@-20,T
dm E E AA A*ei(Qj+Qk*Q|fﬂm)TA(l)'
w§:1—2A25i¥(7), m=1,...N. (24) 4 i I Jidim
_2772 ([ZI wlAjkAkAlei(*Qj+Qk+Q|*Qm)T
At the order ofe®? we getN equations of the form Kl
—j wlA]AkAik ei(QjJer*QI*Qm)T]
. 1
(D @4 A2 oy @) 4 (D)
X X Z AT £ 2 XS xXAQ) msm%sm%sm%squ—m] 0, (27)

:E (mth secular tere'“mt+ other terms, (25)  Where we have introduced twb functions, defined in terms
m of Kronecker deltas as

1

where the left-hand sides are, again, coupled linear harmonicAJ(k'):m: O—jrkelm™ O—jrkctl,=m™ O—jrkctl 2N+1)-m
oscillators, with a dispersion relation given by Eg4). On _ —5 -5
the right-hand sides,pwe hawe seculgr termz thqat act to Ottt kel -m ™ G2+ 1)
drive the coupled oscillatonsﬁl) at their resonance frequen- 01 k—1,m™ Oj+k—1,-m™ Oj+k—1 2(N+1)—m
cies. As we did for a single oscillator in Sec. Ill, here too we
require that all the secular terms vanish so thatxffé re-
main finite, and thus obtain equations for the slowly varying (283
amplitudesA(T). To extract the equation for thath am-
plitude A,(T), we make use of the orthogonality of the
modes, multiplying all the terms by simg§,) and summing
overn. We also express all normal frequencies relative to the
same reference frequenay,, used to define the excitation T8kt mt Oj—k+1,-m™ Oj—k+12(N+1)-m
frequencyw, in Eq. (3), so that

= Ok ImT O k1 20N+ 1)—m™ Oj +k+1.2(N+1)+m

A(k| m= O jtkrl,mT O jikrl,—m— O 4kt 2N+1)-m

+ 0t k—1,mT O+ k—1,-m™ Oj+k—12(N+1)—m

wm:wo+€Qm- (26) +5j+k+|,m_ j+k+1,2(N+1)—m~ Cj+k+1,2(N+1)+m~-
(28b)
We find that the coefficient of theath secular term, whichis These A functions ensure the conservation of lattice
required to vanish, is given by momentum—the conservation of momentum to within the
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nonuniqueness of the specification of the normal modes due Before doing so we should note the following general
to the fact that sin(g,) =sin(nt+1)+m) for any integerk. statements. First, one can easily verify that for a single os-
The first Kroneckers in each line is a condition of direct cillator (N=j=k=I1=m=1), the general equatiof8l) re-
momentum conservation, and the other two are the so-calleduces to the single-oscillator equatigh5), we derived in
umklapp conditions, where only lattice momentum is con-Sec. Ill. Next, one can also see that the trivial solutiag,

served. =0 for all m, always satisfies the equations, though, as we
As for the single oscillator, we again try a steady-statehave seen in the case of a single oscillator, it is not always a
solution, this time of the form stable solution. Finally, one can also verify that whenever for
A a givenm, Aﬁnlr)nm —Aﬁnzr)nm-—o for all j#m, then a single-
An(T)=ae (2= mlT, (29 mode solution exists witfa,,#0 anda;=0 for all j#m.

These single-mode solutions have the elliptical shape of the
single-oscillator solution given in Eq17), and satisfy the
equation

so that the solutions to the EOM, after substitution of Eg.
(29) into Eq.(21), become

Al

X,(1) = €2 [a,sin(ngy,) e (@ot <2ty ¢ c]+0(e3?), 1 3 , =\2
m mmmm|am| -

(30) 4 sirf(q/2) | 4
2

where all modes are oscillating at half the parametric excita- =h2, (33

tion frequencyw /2.
As before, we are not interested in the corrections of the
order of €92, but only in the values of the fixed amplitudes Where for each solution we have set=wp, so thatdy,

1+ S”’TZ_A(Zanm7l|am|2

a,, as functions of all the parameters of the original EOM. =0 and rp=1. Note that gene'r.lca”yA%r)nmm—Aﬁqzr)nmm
Substituting the steady-state solutie?9) into the Eq.(27) =3, except when umklapp conditions are satisfied.

for the time-varying amplitude#(T), we obtain the re- Additional solutions, involving more than a single mode,
quired equations for the fixed complex amplitudgs exist in general but are hard to obtain analytically. We cal-

culate these multimode solutions below for the case of two

and three oscillators by finding the roots of the coupled al-
(Q—-205) wpay—2i ywmam3|n2< )+hamsmz( ) gebraic equations numerically. In Appendix B, we show the
explicit sets of coupled mode-amplitude equations for these
. A (D) . Om . cases. _ _ _
7 j%l ajaay Ajij.;m— 2 7SinS- ]_% wi[2a] ayay In Fig. 4, we show the solutions for the response intensity

of two oscillators as a function of frequency, for a particular

g G O choice of the equation parameters. The top graph s@ws the
—ajaaf ]smismEsm?Aw m=0- (3 square of the amplitude of the antisymmetric moeig

whereas the bottom graph shows the square of the amplitude

We can change to rescaled variables as we did in the cag# the symmetric mode&,. Solid curves indicate stable so-
of a single oscillator by dividing the equations for the ampli- lutions and dashed curves indicate unstable solutions. The
tudes (31) by (ywo)®? and defining as beforegj two elliptical single-mode solution branches, mentioned in
~a I \[yag, Q0=0l7y, 7=wyn, andh=h/2yw,, and in ad- ;[he previous paragraph are eaglly spotted. These pranches are
dition r ,= 0w/ wg and 6,,= 20,/ y. After doing so we ob- abeleq byS, anng [In Appendix B, Eqs(B4}, we give the
tain the rescaled equations ana!ytlcal expressions for these two solu_tlon branthks
addition, we find two double-mode solution branches, la-
beledD; and D,, involving the excitation of both modes
simultaneously. Note that the two branches of double-mode
solutions intersect at a point where they switch their stability.
L g o With two oscillators we obtain regions in frequency where
v E ajaka,*AJ(ﬂ;m—Zinsin?z r,[ZaJ-*aka| three stable solutions can exist. If all the stable solution
Lkl Lkl branches are accessible experimentally, then the observed ef-

m

(Q— 8 mAm— 2|rmsm2( am+2hsm2(

2

fects of hysteresis might be more complex than in the simple

q; . Ok . di ) - o B
ajaka, ]smism?sm—A]kl m=0. (32) case of a single oscillator. This is demonstrated in Fig. 5

where we compare our analytical solutions with a numerical

integration of the differential equations of moti@) for two
oscillators. The response intensity, plotted here, is the time
and space averages of the square of the oscillator displace-
ments,

This is the main result of the perturbative calculation. We
have managed to repladecoupled differential equation$)
for the oscillator coordinates,(t) by N coupled algebraic
equations(31) for the time-independent mode amplitudes
an - All that remains, in order to obtain the overall collective N
response of the array as a function of the parameters of the - i E (34)
original EOM, is to solve these coupled algebraic equations. N = )
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(V)
l
| J
w e (¢

Response
N

Ol e~

10 15

. FIG. 5. Hysteresis with two oscillators: Comparison of stable
- solutions, obtained analyticallsmall circleg, with a numerical

. integration of the equations of motiofsolid curve - frequency

. swept up; dashed curve - frequency swept dowrlotted is the

J averaged response intensity, defined in &4). Branch labels cor-

J respond to those in Fig. 4.

. squares of the amplitudes of the three different modes. Solid
. curves indicate stable solutions and dashed curves indicate
8 unstable ones. For three oscillators, there is only one ellipti-
. cal single-mode solution branch, of the form of H83),

: whose exact analytical expression is given in EBf). This
branch is labeled bg,. In addition, we find a host of non-
trivial multimode solution branches, including the one that is
disconnected from all other branches. We show these plots,
not only to demonstrate that it is possible to obtain such
Fe bl €solutions exactly, but also to emphasize the large number and
top graph showsa,|* and the bottom graph showay|”. Solid  nontrivial structure of the solution branches one finds, even
curves indicate stable solutions and dashed curves indicate unstaljlg, c\,ch a small number of oscillators. This can only serve as
solutions. The two elliptical single-mode solution branchiEsgs. a hint for the multimode solutions one can expect to find

(B4a) and (BAb)] are labeledS, and S,. The two double-mode e the number of oscillators is large, as in the BR experi-
solution branches are label®} andD,. ment

FIG. 4. Two oscillators: Response intensity of as a function of
frequency() for a particular choice of the equation parameters. Th

where the angular brackets denote time average, and here
N=2. A solid curve shows the response intensity for fre- V- RESPONSE OF PARAMETRICALLY DRIVEN
guency swept upwards, and a dashed curve shows the re-'\lO'\“'“\lE'A‘R COUPLED OSCILLATORS—NUMERICAL
: . ’ INTEGRATION OF THE EQUATIONS
sponse intensity for frequency swept downwards. Small
circles show the analytical response intensity, using the fact The equations of motiof6) were integrated numerically
that | =3(|a,|%+|a,|?)/2, for the stable regions of the four for an array ofN=67 oscillators, as in the BR experiment.
solution branches shown in Fig. 4. With the analytical solu-The results for the response intens{84) as a function of
tion in the background, one can easily understand all th@arametric drive frequency, (measured in units of the top
discontinuous jumps, as well as the hysteresis effects, thétand-edge frequenay,) are shown in Fig. 7. These results
are obtained in the numerical solution of the equations omust be considered illustrative only, since many of the pa-
motion. Note the theS; branch is missed in the upwards rameters of the experimental system are not known. The pa-
frequency sweep and is only accessed by the system in thrameters used to construct the figut€=0.02¢h=0.016,
downward frequency sweep. One could trace the wholey=0.004, and%=6.0, were chosen using the insights
stable region of th&,; branch by changing the sweep direc- gained from the two- and three-oscillator results. We should
tion after jumping onto the branch, thereby climbing all theemphasize that the structure of the response branches de-
way up to the end of th&, branch and then falling onto the pends strongly on the equation parameters. First of all, as in
tip of the D, branch or to zero. the case of a small number of beams, the overall height and
In Fig. 6, we show the solutions for the response intensitywidth of individual response branches depend on the strength
of three oscillators as a function of frequency for a particularof the driveh with respect to the linear damping coefficient
choice of the equation parameters. The graphs show the, and on the nonlinear dissipation coefficiemt Further-
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2 [ T T T T T T T T T T T T i 3
B . = +—s Sweep up
i ] X e--o Sweep down
: : NA: 2 I
-2 [ ] iy
lagl”™ 1} E 2
[ ] S 1 2
i ] o $
[ . 2 p
i i o .
i ] 3
B - 0
0 Janpmprssps = 1.94 1.96 1.98 2.00 2.02
i ] Drive Frequency o /w,
3 N ] FIG. 7. Response intensity as a function of the driving fre-
i ] guencyw, (measured in units of the top band-edge frequesngy
-2 | i for N=67 parametrically driven oscillatofsolid curve—frequency
|a2| 21 7] swept up; dashed curve—frequency swept dowihe response in-
B . tensity is defined aéx2) [Eq. (34)], with the bar denoting the av-
B ] erage over the space index and the brackets the average over
1 [ ] time. The parameters used aké=0.02, eh=0.016, ey=0.004,
- . and »=6.
0 ——+= L B LI B the parametric drive of a single mode at or very near the
i ] band edge atw/wy=0.98, analogous to the one mode re-
5 sponse shown in Fig. 1. Furthermore, the variation of the
i response with frequency shows abrupt jumps, particularly on
41 the high-frequency side of the features as the frequency is
- 12 | raised. Finally, the response extends to frequencies higher
|a1| 3 than the band edge for the linear modes, which would give a
i response only up ta,/wy=2.0. All these features are un-
2 derstood, now that we have seen the analytical solutions for
i small numbers of oscillators. In particular, the wide features
1 compared with the mode spacing are explained by the simple
0 L fact that as the frequency is swept upwards a particular so-
-10 lution branch is followed as long as it remains stable. In the

meantime many other stable solutions that may be as close to
each other as the mode spacing are simply skipped over.
FIG. 6. Three oscillators: Response intensity of three oscillators Comparing the two traces in Fig. 7 shows that the re-
as a function of frequenc§ for a particular choice of the equation Sponse for a downward frequency sweep is significantly dif-
parameters. The graphs show the squares of the amplitudes of tfierent with a less dramatic variation of the response. In par-
three different modes. Solid curves indicate stable solutions anticular, note that the downwards sweep was able to access
dashed curves indicate unstable ones. The only elliptical singleadditional stable solution branches that were missed in the
mode solution brancfEq. (B8)] is labeled bysS,. upwards sweep. There is also no response ahoyhw,
=2.0in this case. This is because the zero-displacement state
more, for example, if the width of the frequency responseis stable forw,/wy,>2.0, and the system will remain in this
band is taken to be much larger thirtimes the width of a state as the frequency is lowered, unless a large enough dis-
single-mode response, then very few multimode solutionsurbance kicks it onto another of the solution branches. The
exist, if any. hysteresis on reversing the frequency sweep was not looked
A number of the important features of the experimentalat in the first experiments, and it would be interesting to test
data are reproduced by these calculations. We concentrate tims prediction in further experiments.
the solid curve in the figure, which is for frequency swept
upwards, since this is the protocol that was used in the ex-
periment. In particular, the response intensity shows features
that span a range of frequencies that is large compared with We have calculated the response of nonlinear coupled os-
the mode spacin@which is about 0.0006 for the parameters cillators to parametric excitation. Our calculations agree
used. The lowest-frequency feature, from abouwi,/w,  qualitatively with the experimental measurements of Buks
=1.94 tow,/we=1.97, can be identified as the response toand Rouke$and explain the main features observed in the

VI. CONCLUSIONS
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experiment. The abrupt drops in the response as the fre- ) heP o C 5
quency is swept upwards, the response continuing beyond X+ X=T(9'(‘°H )+ c.c)x—eyx—x3—px3x,

the upper edge of the frequency band, and the large size of (A2)
the response features compared with the mode spacing are all
qualitatively explained. and we try an expansion of the solution of the form

Nevertheless, we propose that a more systematic study be =, ot p1/2 32
conducted on systems of coupled nonlinear resonators so thaX(t) = € (A(T)e +c.c)+eP "Xy (1) + Xy (D + - -
our theoretical predictions could be tested more quantita- (A3)
tively. For example, successive measurements on systenSbstituting this expansion into the equation of motiag),
containing only one, two, and three coupled resonatorsve obtain at the ordes™? the linear equation as usual, and at
which are made as identically as possible, could be used tthe ordereP* /2
extract the nonlinear parameters of the resonators. These
could then be used to predict and explain the response of a
large resonator array more quantitatively.

Furthermore, we have demonstrated that as the number of ) ) )
oscillators is increased, the number of the solution branche@S €xpected, there is no secular term on the right-hand side,
for the response of the system increases and the effects 80 We can immediately solve fox,
hysteresis become more and more complicated. This sug- .
gests that the appropriate experimental protocol for studying (t)= E( _ izei(zwt-%—QT)_'_ Aje‘erc.c.
a system with many oscillators should be—in addition to the " 2\ 3o 0]
standard up-sweep and down-sweep in frequency—to (AS)

change the direction of the sweep after every abrupt changg,pstituting the solution fax, into the expansioltA3), and
in the response intensity. Such a protocol may provide morg,, expansion back into the equation of moti@®), con-

information about the response curve by accessing additiongltes an additional term from the parametric driving that
branches of the solution and fully tracing them out. has the form

. h . .
X+ wzxpzz(Ae'(z‘””m) +A*eT+cc).  (Ad)

+0O(e).
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APPENDIX A: PARAMETRIC EXCITATION To contribute to the orde¢®? secular term, we see that we

OF A SINGLE OSCILLATOR must setp=1/2. This gives us the required contribution to
AT ITS SECOND INSTABILITY TONGUE the equation for the vanishing secular terms. All other terms

. : : . .. remain as they were in E¢12), so that the new equation for
For a single nonlinear oscillator, like the one studied mdeterminingA(T) becomes

Sec. lll, which is parametrically excited at its second insta-

bility tongue, Eq.(5) becomes dA h?2 (2 ,
2iw—=——>| A+ A*e22T | +iwyA+3|A]PA
%+ [02— APH cog @+ eQ)t]x+ eyk-+ 33+ mxPk=0, dT 40713
(A1) +iwy|Al2A=0. (A7)

where againw= y1—A* is the resonance frequency of the again, ignoring initial transients, and assuming that the non-
oscillator in the harmonic approximation, but the parametriginear terms in the equation are sufficient to saturate the

excitation is performed around and not around @. Inthis  growth of the instability, we try a steady-state solution, this
case, the scaling af?H with respect toe needs to be rede- time of the form

termined. The technical reason for this is that if we take
A%H=ch, as before, then the parametric driving term does A(T)=a€eT, (A8)
not contribute to the orde¢®? secular term that we use to
find the response, and the ord&f? term inx becomes iden-
tically zero. _ 12 (0t eQ)t

Tl’)l/e remedy for this situation is to lét’H scale likeeP x(t)=e"(ae "+e.c)+0(e), (A9)
with p<1, so that there will be a nonsecular correctiorxto where the correctior,, of ordere is given in Eq.(A5) and,
at an order lower thar®2 The value ofp will be chosen as before, we are not interested in the correctigt) of the
such that this correction will contribute to the ordéf secu-  order of €2 but rather in the fixed amplituda of the
lar term and will give us the required response. The equatiofowest-order term. We substitute the steady-state solution
of motion (A1) becomes (A8) into Eq. (A7) of the secular terms and obtain

The solution to the equation of motidAl) is therefore
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_2=.|2E 1 3
= 0i=1-3A%  w3=1-7A2 (B2)

1.2

/ and we choose the reference frequengyto be w,, so that
/s 52202:0, I’2=1, 51:2((1}1_(1}2)/’}/65 5>0, and rl
/ =w,lw,=r. For A<1, 6=A%ey andr=1+A?2. The
first mode is the symmetric one witky(t) =x,(t) and the
second mode is antisymmetric with (t) = —X,(t). Equa-
tions (32) for the rescaled complex amplitudas anda, are

. Got (O orar—iiat o (et 2la) ey aa)
= o) T > v 2 271 4 271

FIG. 8. Response intensitﬂ2 as a function of the frequen@
for fixed amplitudeﬁ= 1.5 in the second instability tongue. Solid
curves are stable solutions and dashed curves are unstable solutions.
Thin curves show the response without non-linear dampipg (
=0). Thick curves show the response for finite nonlinear damping

(n=1).

|

We divide both sides of the last equation Hw and de-

fine the rescaled variablea=a/\yw, Q=0/y, #=w7, The two single-mode solution branches, having the gen-

andh= h/2\/yw®, in terms of which we obtain after taking eral form of Eq.(33) and labeledS, and S, in Fig. 4, are

the magnitude squared of both sides, in addition to the trivial _ . . . .
: — g easily obtained by setting, or a; to zero in the coupled
solutiona=0, the nontrivial response

equations above, respectively. This yields the analytical
2 _ _ forms of these solutions, which are
+(1+glal®»?=n*  (A11)

3 . _
_gin[r|a1|2a1+2r|a2|2a1+(2—r)5§a’1‘]=0,
(B33
-_ 3= 3 9 _ — = —
Qa,—i5a,+5ha3 — 7 (|as|*a,+2|ay| %a, + afa3)
3lal2—=2wQ e i 2\ |4 — h *
laj*—2w 37292 +io(y+nlal?) a=,.2a
(A10)

3 - - -
— gi7l90azl*az+2[ay| @+ (2r —1)afa3 ] =0.

(B3b)

— — 2
3laj?—2Q— §h2

2
7

(B4a)

Figure 8 shows the response inten:’ﬁf as a function of S;:

the frequency() for fixed amplitudeh=1.5 in the second
instability tongue. The solution looks very similar to the re-
sponse shown in Fig. 1 for the first instability tongue, though
we should point out two important differences. The first is )
that the orientation of the ellipse, indicated by the slope of 2
the curves forp=0, is different. The slope here is 2/3,
whereas for the first instability tongue the slope is 1/3. The
second is the change in the definitiontaf The lowest am-
plitude required for having an instability is again on reso-

nance (1=0) and its value is agailm=1, but now this
implies thath=2/yw> or thath scales as/y. This is con-
sistent with the well-known resulsee, for example, Ref. 10
that the minimal amplitude for the instability of theth
tongue scales ag'".

3——1
1+ Z77|al|

9 __ o 2
§|a1|2—2r(Q—5)) +r?

(B4b)

2. Three coupled nonlinear oscillators

For three coupled oscillatordN(=3) we have
_ a _ a
AQi=7% 92=7%

2 2 AZ 2 2 2 2 AZ
APPENDIX B: EXPLICIT EQUATIONS wi=1-A +ﬁ, w;=1-A% w3=1-A —ﬁ’
FOR TWO AND THREE COUPLED OSCILLATORS

1. Two coupled nonlinear oscillators

For two coupled oscillatorsN=2), we have

T 2

CI1=§, q2=?, (B1)

and we choose the reference frequengyto be w,, so that
52:0, I’2= 1, and 51: 2((1)1_ (1)2)/’)/62 - 535 6>0. For
A<1, 6=A%\2ey andr,=1+A%22. Equations(32)
for the rescaled complex amplitudas, a,, anda; are
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_ _2-\2 _ 2- J_ B
(9—5)r1511_|Tr16‘1Jr > _—(3|al|231 |as|?az+4|ay|?as+ 2a%a% + 4[a,|%a, + 2a5a} + 6|as|%a,
o ds-2y2  _ _ \2+1 _ 2 -
+3§§a’1‘—2|a1|2a3—gia§)—|;[ 4 3rylay)?a; - 4 ralasl?as+ [2r1|a2|2a1+(2—r1)g§a’1‘]
V2-1 o124 ——, 1 175 et
+ 2 [2r3]a] a3+(2r1—r3)a1a3]+Z[2r1|a3| a;+(2rz—ry)azai ]|=0, (B7a)

3
Qa2—|a2+ha§—§(2|a2|2a2+2|a1|2a2+gfa’2‘+2|a3|2a2+E§a’2*+a’{a2a3+ala§a3+a1a2a§)

2— o 24N2 _
—in||ay%a,+ [2|al| a,+(2r, — 1)3133]4'T[2|33|2a2+(2r3_1)g§a§] =0, (B7b)
— — 2+2 — 2+ \/— o
(Q+)rzaz—i 5 Tadat —5— ——(3|a3|2a3 |a1|?a; +4|ay|%as+ 2a3a% + 4|a,|%a, + 2a2a* +6|ay|%a,
o 5 3+22 o PPy 7z o
+3aja 2|a3| a,— asay)—ing 7 3rglag|®as+ rias|?a; + [2r5ay/?asz+(2—rg)asal]
V2+1
——[2r1|a3| a,+(2rz—ry)azal ]+ - [2r3|a1| as+(2r,—ry)aas]|= (B70)

Only one single-mode solution of the form of E§3) exists in the case of three oscillators and involves the second mode.
It is obtained by sett|ng11—a3 0 in the coupled equations above. The analytical expression for this solution is

St (8lag’~ Q)+ (1+ 7]a,?)?=h? (B8)
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