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Ordering kinetics in an fcc A3B binary alloy model: Monte Carlo studies
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Using an atom-vacancy exchange algorithm, we investigate the kinetics of the order-disorder transition in an
fcc A3B binary-alloy model following a temperature quench from the disordered phase. We observe two clearly
distinct ordering scenarios depending on whether the final temperatureTf falls above or below the ordering
spinodalTsp , which is deduced from simulations at equilibrium. For shallow quenches (Tf.Tsp) we identify
an incubation timet inc which characterizes the onset of ordering through the formation of overcritical ordered
nuclei. The algorithm we use together with experimental information on tracer diffusion in Cu3Au alloys
allows us to estimate the physical time scale connected witht inc in that material. Deep quenches,Tf,Tsp ,
result in spinodal ordering. Coarsening processes at long times proceed substantially slower than predicted by
the Lifshitz-Allen-Cahnt1/2 law. Structure factors related to the geometry of the two types of domain walls that
appear in our model are found to be consistent with Porod’s law in one and two dimensions.

DOI: 10.1103/PhysRevB.67.134201 PACS number~s!: 05.50.1q, 64.60.Cn
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I. INTRODUCTION

Several face-centered-cubic binary metallic alloys, su
as Cu3Au, Cu3Pd, Mg3In, Co3Pt, etc., exhibit long-range
order with anL12 structure below some specific orderin
temperatureT0. In the L12 structure four equivalent phase
exist, where one of the four simple cubic sublattices build
the fcc lattice are preferentially occupied by the minor
atoms. In studying kinetic processes of phase ordering,
following general considerations must be taken into acco

~i! The transition is of first order. Hence, for small enou
supercoolings the disordered phase remains metastable
laxation at short times after a temperature quench is g
erned by the formation of ordered nuclei, which grow in
the disordered matrix. On the other hand, the concep
spinodal ordering has been advanced1 to characterize the
phase ordering processes under large supercoolings.

~ii ! The degeneracy of the ordered phase implies a fo
component order parameter,C5(c0 ,c1 ,c2 ,c3). Here,ca
with a51, 2, and 3, are nonconserved structural order
rameter components coupled to a conserved density,c0,
which describes the concentration of the two atomic spec

~iii ! The antiphase domain structure is anisotropic a
result of the existence of two types of antiphase dom
walls: low-energy~type-I! and high-energy~type-II! walls.

Under these conditions a rich spectrum of kinetic p
cesses is to be expected. In particular, there remain o
questions concerning scaling and universality in the la
stage growth kinetics. This has motivated several experim
tal investigations of ordering after a temperature quen
mostly on Cu3Au, where direct information has been o
tained from time-resolved x-ray diffraction and neutron sc
tering. On the other hand, only a few theoretical
computer-simulation studies on such materials have been
ported so far.2–4 Fronteraet al.3 have recently simulated th
growth of L12-ordered domains both within an atom-ato
exchange and the more realistic atom-vacancy excha
mechanisms, for quench temperatures below the expe
spinodal temperatureTsp . A similar model with atom-
0163-1829/2003/67~13!/134201~9!/$20.00 67 1342
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vacancy exchange was applied by Kessleret al.4 to surface-
induced kinetic ordering processes near Cu3Au(001).

In this paper we investigate the ordering kinetics in t
bulk of such alloys at quench temperaturesTf both below
and aboveTsp . In contrast to earlier Monte Carlo studies
nucleation in Ising-type models5,6 we again employ a three
state lattice gas (ABV model! with effective chemical inter-
actions between nearest-neighborA andB atoms on the fcc
lattice, and vacancy–driven kinetics. This allows us to co
pare our results directly with experiments on fcc alloy
where vacancy-driven processes prevail. In particular,
analyze the nucleation regime, where we find a well-defin
incubation time that sensitively depends on the depth of
quench,T02Tf . Moreover, forTf,Tsp , with Tsp deduced
from static correlations, we observe domain patterns typ
of spinodal ordering. In the long-time coarsening regime
extract anisotropic scaling functions. Our model is a limiti
case where type-I domain walls have exactly zero format
energy and therefore are extremely stable. Within our acc
sible time window we find coarsening exponents which
significantly smaller than the conventional exponentn51/2
for curvature-driven coarsening.7,8

After shortly explaining our model and simulation tec
niques in Sec. II, we compare in Sec. III ordering proces
that occur for shallow (T0.Tf.Tsp) and deep (Tf,Tsp)
quenches. In Sec. IV we define the incubation timet inc and
investigate its dependence on the depth of the quench.
isotropic scaling functions are discussed in Sec. V, while S
VI contains a short summary of our results.

II. MODEL AND SIMULATION METHOD

We consider a three-dimensional lattice ofL3L3L fcc
cells with cubic lattice constanta and periodic boundary con
ditions in all directions. Unless otherwise stated, we useL
5128. Each site,i, of the lattice is occupied either by a
atom of typeA, an atom of typeB, or a vacancy (ABV
model!, with an obvious condition that the correspondin
occupation numbers fulfillci

A1ci
B1ci

V51. In accord with
©2003 The American Physical Society01-1
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FIG. 1. ~a! Sublattice labeling
as used in Eq.~2!. ~b! Illustration
of type-I and type-II antiphase
boundaries. Across a type-I wa
the number of nearest-neighbo
AA or AB bonds connected to an
A or B atom is unchanged in com
parison with the ordered bulk
structure.
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the stoichiometry of theA3B alloys there are exactly thre
times as manyA atoms present asB atoms. The number o
vacancies is chosen small enough so that they do not a
static properties of the system.

In our simplified model4 only nearest-neighbor atom-ato
interactions are taken into account. The correspond
Hamiltonian then reads

H5(
^ i , j &

@VAAci
Acj

A1VBBci
Bcj

B1VAB~ci
Acj

B1ci
Bcj

A!#, ~1!

where the sum is restricted to nearest–neighbor pairs. S
each site has three states, corresponding toA, B, or V occu-
pation, Eq. ~1! can be reformulated in terms of a spin
model equivalent to the Blume-Emery-Griffiths model.9 We
are interested here in the transition to the orderedL12 struc-
ture in which minority atoms~B! predominantly occupy one
of the simple cubic sublattices of the original fcc lattice. It
then natural to assumeVBB.0, VAA,0, andVAB,0. The
ground state of theL12 phase is fourfold degenerate an
corresponds to allB atoms segregated to exactly one of t
simple cubic sublattices. For a stoichiometricA3B alloy the
transition occurs at a temperatureT0.1.83uJu/kB , with J
52 1

4 (VAA1VBB22VAB) as discussed in Ref. 4~cf. also
Refs. 3, 10, and 11!. The ordered phase is characterized
one conserved, scalar order parameter,c0, related to the
composition, and three nonconserved order-parameter c
ponents (c1 ,c2 ,c3). These are defined by the followin
equations:

c05m11m21m31m4 ,

c15m12m22m31m4 ,
~2!

c25m12m21m32m4 ,

c35m11m22m32m4 ,

where ma are the differences of the meanA- and
B-occupation numbers, andma5^ci

A&2^ci
B& for i Pa. The

index a51 . . . 4 enumerates the four equivalent simple c
bic sublattices of the fcc structure, illustrated in Fig. 1~a!. For
a homogeneousA3B alloy, c052. In the disordered phase
c15c25c350, while the four equivalent ordered phas
13420
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are described as (c1 ,c2 ,c3)/c̄5(21,1,1), (1,21,1),
(1,1,21), and (21,21,21), with a temperature depende
c̄ (c̄52 at T50). For a nonhomogeneous system Eq.~2!
gives the corresponding local order parameters for each~cu-
bic! elementary fcc cell in terms of weighted averages of
occupation numbers computed for all sites belonging to
cell. ~The weights are taken as the inverse of the number
neighboring fcc cells that ‘‘share’’ the site in question, i.e
functions 1

2 and 1
8 are taken for the ‘‘face’’ and ‘‘corner’’

sites, respectively.!
As can be seen from Eq.~2!, each of the nonconserve

components of the order parameter describes a modulatio
the B-atom concentration along one of the cubic axes. F
example,c1Þ0 means that the system contains alternat
B-enhanced andB-depleted atomic layers along thex axes.
As a consequence of such layerwise arrangement ofB atoms,
the ~100! peak shows up in an x-ray-diffraction experime
in addition to the~200!, ~020!, ~002!, and~111! peaks char-
acteristic of the underlying fcc–lattice. Similarly,c2- and
c3-type ordering leads to additional~010! and ~001! peaks,
respectively.12 For a distancekW from these superstructur
peaks the scattering intensity is described by the struc
factors

Sa~kW ,t !5^uCa~kW ,t !u2&, ~3!

which in a nonequilibrium state depend on timet. In Eq. ~3!,
Ca(kx ,ky ,kz ,t) denotes the Fourier transform of the ord
parameterca(x,y,z,t), anda51, 2, and 3. The widths of
these intensity profiles are determined by the sizes of
tiphase domains.12 As mentioned in the Introduction, thi
system displays two types of antiphase boundaries, l
energy type-I boundaries with no change in the arrangem
of nearest neighbors, and high-energy type-II boundarie13

As seen from Fig. 1~b!, a type-I wall merely causes a shi
~parallel to the wall! of the sublattice which is preferentiall
occupied by minority atoms, whereas a type-II wall chang
the number ofAA, AB, or BB bonds. Since the Hamiltonian
Eq. ~1!, involves only nearest-neighbor interactions, typ
boundaries in fact have zero energy.14 Let us remark that a
step defect in a type-I wall can be regarded as an elemen
a type-II wall and will cost energy. Interfacial fluctuation
hence give rise to a nonzero surface tension of type-I wa
1-2
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We assume here that the time evolution of our mo
occurs only through atom-vacancy exchange processes.
elementary move we first randomly single out one of
vacancies and, second, we choose at random one of its
est neighbors occupied by an atom. The standard Metrop
algorithm is then used to decide whether the atom-vaca
exchange for the chosen pair takes place or not. In
Monte Carlo step~MCS!, the system completes a series of
many such elementary moves as there are lattice sites in
system, i.e., 4L3, so that this time unit does not depend
the actual number of vacancies.

In previous simulations4 we chose the interaction param
eters such that they were consistent with the observed
segregation at the Cu3Au ~001! surface. Following Ref. 4,
we take VBB52VAA52VAB.0 and assumecV.6.1
31026 for the mean density of vacancies present in
system.15 For vacancy concentrations of that order we ha
verified that static properties are independent of the pre
value ofcV. The same also holds true with respect to kine
properties. In justifying that the vacancy concentration
that regime (cV&1025) indeed has no influence on the k
netics, care has to be taken for possible effects of cluste
or accumulation of vacancies in the antiphase boundaries
shown recently for an atom-vacancy exchange model,16 ac-
cumulation of vacancies in the boundaries enhances the
namics and can lead to an accelerated domain growt
comparison with the classical growth law.7,8 In the present
model with the above choice of the vacancy density and
interaction parameters, however, we have verified thro
seperate tests that vacancies show no tendency to form
ters or to enrich in the interfaces.17 This last observation is
consistent with the phase diagram explored by Portaet al.16

in a related two-dimensional model.
To simulate a sudden quench from high temperatures

final temperatureTf,T0 we start with a random distribution
of atoms at timet50 and let the system evolve in time
Tf . The ensuing equilibration process is analyzed by ca
lating energies, structure factors, and other ordering cha
teristics from averages over ten independent Monte C
runs.

As the first application of our atom–vacancy exchan
algorithm we have calculated tracer diffusion coefficients
A andB atoms in the disordered phase close toT0. Since in
our modelVAA5VAB , the jump of anA atom will leave the
interaction energy with its environment almost unchang
and henceDA is found to be nearly temperature independe
TheBB repulsion, on the other hand, gives rise to a tempe
ture dependentDB,DA , see the inset of Fig. 2. Since the
results refer to a fixed vacancy concentration, they canno
directly related to experiments, wherecV(T) normally is a
strong function ofT.15 Nevertheless, the ratioDA /DB.2 at
T/T051.7 very roughly agrees with the experimental val
DCu/DAu.1.45 for Cu3Au at the sameT/T0 ratio,18 thus
supporting our choice of nearest-neighbor interaction par
eters. Moreover, in an attempt to map the Monte Carlo ti
to the physical time scale, we can exploit experimen
knowledge ofcV(T) for Cu3Au.15 Since cV!1, hopping
rates of a tracer atom are simply proportional tocV. This
suggests introducing a new Monte Carlo time unit 1 MCS*
13420
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5cV(T)•1 MCS, where 1 MCS was defined above as o
attempted vacancy exchange per lattice site. Regarding
simulated mean–square displacements as a function of
new time scale~with units MCS* ) allows us to extract dif-
fusion constantsDA andDB as shown in Fig. 2. Scales on th
axes were obtained using the Cu3Au transition temperature
T05663 K, the lattice parametera53.74 Å, and an addi-
tional parameter, which is determined by equating the ca
lated diffusion constantDB with the experimentalDAu at
T/T051.27.19 The last parameter converts 1 MCS* directly
into seconds. Clearly, in the case considered here, this m
ping of Monte Carlo steps to the physical time scale impl
an extrapolation of our MC results~for cV.6.131026) to
the experimental vacancy density that is much lower than
simulated one.15 The favorable comparison between calc
lated and measured diffusion constants suggests that
above procedure, based on the atom-vacancy exchange
rithm and the knowledge of the experimentalcV(T) function,
provides a description of processes on the physical t
scale. We come back to this issue in Sec. IV in the contex
nucleation processes.

III. THERMALLY ACTIVATED VERSUS CONTINUOUS
ORDERING

At T5T0 the model system defined in the preceding s
tion undergoes a first-order phase transition3,4,10,11from the
disordered phase~for T.T0) to theL12-type ordered struc-
ture ~for T,T0). The correlation length of the disordere
phase,j, remains finite at coexistence, and approximat
fulfills the mean-field-type relationj2(T)}1/(T2Tsp), with
Tsp,T0. In our previous work4 we found Tsp5(0.967
60.003)T0 as the value best fitting our Monte Carlo data f
the correlation length aboveT0. Hence, within this proce-

FIG. 2. Tracer diffusion coefficients ofA ~squares! and B ~tri-
angles! atoms in anA3B fcc alloy. Physical units were assigned
the Monte Carlo data with the help of the experimentally kno
order-disorder transition temperature, T05663 K, and
temperature–dependent concentrations of vacancies~Ref. 15! in
Cu3Au. The dashed line represents measured Au tracer diffus
coefficients~Ref. 19!. The open circle marks the experimental poi
used to set the time scale. In the inset the corresponding ‘‘ra
Monte Carlo results are displayed.
1-3
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dure, our model displays a fairly well-defined temperatu
for the onset of spinodal ordering. A precise separation of
metastable~thermally activated ordering! from the unstable
regime~continuous ordering!, however, does not exist in sys
tems with short-range interactions.5,20

Below we demonstrate the role of that temperature
duced from equilibrium considerations, in nonequilibriu
ordering processes. It turns out that for temperaturesTf
.Tsp andTf,Tsp two contrasting transition scenarios occ
that lead to domain patterns typical of nucleation and sp
odal ordering, respectively. We shall illustrate this by o
example for each regime.

Let us start our description with thermally activate
growth of the ordered phase, i.e., with the case of a sha
quench, T0.Tf.Tsp . We then expect that the ordere
regions—nuclei of the new phase—are repeatedly form
and destroyed by thermal fluctuations unless a nucleus
ceeding a certain critical size is built. Once formed, such
overcritical nucleus will grow relatively quickly against th
surrounding disordered bulk until it meets another~growing!
ordered domain. Anxy section of a configuration with over
critical nuclei formed in a system of 12831283128 fcc cells
is shown in Figs. 3~a! and 3~b!. It emerged 7000 MCS afte
the quench toTf50.972T0.Tsp . The central nucleus see
in the figure is in fact composed of three ‘‘twinned’’ crysta
lites, corresponding toc1.2 @the large, nearly homoge
neous, bright spot in Fig. 3~a!# andc1.22 ~the neighboring
dark spot!. As shown in Fig. 3~b!, the homogeneous brigh
spot of Fig. 3~a! is in fact composed of two crystallites co
responding toc3.22 and c3.2, respectively. A second
nucleus characterized byc1.2 andc3.22 grows at the
right edge of the system. The configuration displayed in F
3 is quite typical for a quench temperature slightly abo
Tsp .

To follow the ordering process that takes place in
whole volume of the system we now introduce an additio
quantity3 F5(uc1u1uc2u1uc3u)/3 as a convenient indicato
of the degree of local order:F.0 in the disordered phas
andF<2 for any of the four equivalent ordered states. F
ther, we divide the system into blocs of 43434 fcc cells
and calculateF independently for each bloc to obtain a di
tribution functionP(F,t) for a series of time intervals afte
the quench. For a quench toTf50.972T0 the obtained histo-
grams are shown in Fig. 3~c!. In this figure we easily identify
three stages of the ordering process. First, up to several t
sand Monte Carlo steps, the whole system remains di
dered. The distribution ofF broadens with time but stay
concentrated close toF50. Then, after some incubatio
time, t inc , see Sec. IV, the second maximum close toF
52 appears. At that moment the first overcritical nuc
emerge in the system and start to grow. The second stag
which overcritical nuclei grow against the disordered bulk
realized by histograms for 73103<t<104 MCS in which
both peaks are clearly visible. In the third stage, practica
the whole system is already ordered and, as illustrated
curves fort523104 and 53104 MCS, the distribution ofF
changes very little with time. At that stage coarsening p
cesses take place.

In contrast to the above sequence of events, d
13420
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quenches (Tf,Tsp) result in continuous ordering, in which
shortly after the quench the whole volume of the syst
decomposes into ordered domains. As a representative
ample Figs. 4~a! and 4~b! display distributions ofc1 andc3,
respectively, for anxy section through the system att57
3103 MCS after a quench toTf50.5465T0. The two types
of domain walls that may be formed in the system2,13 appear
in Figs. 4~a! and 4~b!. The low-energy interfaces appear the
as straight lines parallel to thex or y axis. Across each of
these linesc1 andc3, or c2 andc3, simultaneously change
sign across line intervals parallel to thex or y axis, respec-
tively. Within the simple model used in this paper, formati
of such walls costs no energy and therefore they are v
stable. The curved interfaces seen in Fig. 4~a! consist of sec-
tors of high-energy domain walls across whichc1 and c2
change sign simultaneously. The histograms ofF values ob-
tained after averaging over ten independent runs forTf
50.5465T0 are shown in Fig. 4~c! for a sequence of time
intervals after the quench. There, in contrast to Fig. 3~c!, the

FIG. 3. Thermally activated ordering in a system of 1283128
3128 fcc cells atTf50.972T0.Tsp . ~a! c1 and ~b! c3 patterns
containing overcritical nuclei at a timet573103 MCS after the
quench from random initial conditions@grey scales indicate loca
values ofca (a51,3) between24 and 4#. ~c! Histograms of cor-
respondingF5(uc1u1uc2u1uc3u)/3 values averaged over blocs o
43434 fcc cells calculated at a series of times after the quen
1-4
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initial peak atF50 spreads out within the first 100 MC
and the maximum atF.2 starts to grow by 200 MCS to
reach a considerable height already at 23103 MCS. TheF
.2 peak is very narrow, indicating a nearly perfect loc
order in the system. Additional small, sharp peaks at m
tiples ofF50.5 may be traced back to the domain walls th
cross some of the blocs of 43434 fcc cells used to prepar
Fig. 4~c!. Slow coarsening processes, which in this case
ready occur for t.23103 MCS, result in considerable
sharpening of the mainF.2 peak.

To better illustrate the differences between the two ord
ing scenarios described above we show in Fig. 5 the wa
which Vord , the volume fraction of the ordered phase, gro
with time for a number of final temperatures. There,
counted as ordered all the blocs~of 43434 fcc cells each!
for which F.1.5. The character ofVord(t) changes from a
slowly increasing function oft for Tf<0.911T0 to a sharp,
nearly stepwise growth after some incubation time forTf
.0.972T0. In the next two sections we analyze in more d
tail the incubation time and the long time coarsening p
cesses.

FIG. 4. Continuous ordering in a system of 12831283128 fcc
cells atTf50.5465T0,Tsp . ~a! c1 and ~b! c3 patterns at a time
t573103 MCS after the quench from random initial condition
Two types of domain walls are clearly shown.~c! Histograms of
correspondingF values calculated at a series of times after
quench.
13420
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IV. INCUBATION TIME

In the preceding section we introduced the incubat
time t inc as the characteristic time interval between t
quench and the observed growth of ordered domains in
case of metastability,Tf.Tsp . Let us now look more pre-
cisely at the processes that take place in the system w
the initial stages of ordering. One relevant quantity here
the excess energy,DE(t)5E(t)2E(`), defined as the dif-
ference between the actual energy of the system,E(t), and
the energy it would reach after complete equilibration,E(`).
This means that we identifyE(`) with the energy of a single
ordered domain of the size of the whole system, equilibra
at Tf . In Fig. 6~a! DE(t) per lattice site is shown for a
number of final temperaturesTf . Initially, the relaxation of
DE(t) depends only weakly on temperature. Then, af
about 20 MCS, the curves in Fig. 6~a! split due to a consid-
erable slowing down of the relaxation rate with growing te
perature. In turn, for shallow quenches, ordering proceed
three stages, as already displayed in Fig. 3~c!. First, the sys-
tem remains disordered up to a certain incubation timet inc .
The metastability of the ordered phase is reflected by p
teaus inDE(t), which develop nearTf.Tsp , and extend
with increasingTf . Second,DE(t) drops markedly when
overcritical nuclei are produced by thermal fluctuations. W
definet inc(T) as precisely that moment after the quench
which, for a given temperatureT, DE(t) drops notably~by
about 10%! below its plateau value. The ordered nuc
formed within the incubation time grow against the diso
dered bulk until, in a third stage, ordered regions meet
slow coarsening processes set in.

In addition toDE(t), we also show in Figs. 6~b! and 6~c!
the way in which the corresponding first moments of t
structure factorsSa(kx ,ky ,kz ,t) change with time. To ac-
count for the anisotropy illustrated in the domain patterns
Figs. 4~a! and 4~b!, we consider the two kinds of structur
factors

Si~k,t !5
1

3
@S1~k,0,0,t !1S2~0,k,0,t !1S3~0,0,k,t !#, ~4!

and

FIG. 5. Volume fraction,Vord , of an ordered phase (F.1.5) as
a function of time after the quench for a series of temperaturesTf .
1-5
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S'~k,t !5
1

Nk
(

q1
2
1q2

2
5k2

@S1~0,q1 ,q2 ,t !1S2~q1,0,q2 ,t !

1S3~q1 ,q2,0,t !#, ~5!

where Nk denotes here the number of (q1 ,q2) pairs that
fulfill q1

21q2
25k2, as well as their first moments

FIG. 6. ~a! Excess energy per lattice siteDE, and the first mo-
ments~b! ki(t) and ~c! k'(t) of the structure factorsSi(k,t) and
S'(k,t) as functions of time after the quench, calculated for a se
of final temperaturesTf .
13420
ki~ t !5
( k.0 kSi~k,t !

( k.0 Si~k,t !

, ~6!

k'~ t !5
( k.0 kS'~k,t !

( k.0 S'~k,t !

. ~7!

In Eq. ~6! k denotes one wave-vector component, see
~4!, while in Eq. ~7! k is defined as in Eq.~5!. Clearly,
Si(k,t) is determined by structural modulations due to hig
energy walls, which are reflected, for example, by si
changes ofc1 when proceeding along thex axis, see Fig. 3.
The quantityki therefore characterizes the inverse distan
between such walls in one symmetry direction. On the ot
hand,S' is sensitive to the two-dimensional network of low
energy walls, andk' gives the inverse distance between su
walls, cf. Fig. 4.

Curves displayed in all three parts of Fig. 6 are striking
similar in form, confirming that relaxation processes are
deed dominated by ordered domains growing in size. Mo
over, DE, ki , and k' all start to drop below their platea
values at the same moment after the quench. This fact
roborates our linking the plateaus inDE(t) to the
temperature-dependent incubation time for the formation
overcritical ordered nuclei. In accord with the spatial patte
shown in Figs. 3~a!, 4~a!, and 4~b!, where high-energy walls
are much further apart from each other than the low-ene
ones,ki(t) is in most cases considerably smaller thank'(t)
calculated at the same temperature.

There are two effects restricting the range oft inc(Tf) ac-
cessible to simulations. First, the system sizeL must be con-
siderably larger than the size of overcritical nuclei which a
formed at temperatureTf . Second, obtaining smooth curve
in Fig. 6 requires a sufficiently large number of nucleati
events within the maximum computation timetmax. Again,
this becomes increasingly difficult to fulfill with growingTf
because botht inc and the dispersion of nucleation times ov
the different samples strongly increase withTf . Comparing
our results up totmax553104 for lattices of sizeL596 and
L5128 we findTf.0.973T0 to be roughly the highest tem
perature for whicht inc can be determined in a reliable wa

Results of our simulations fort inc(T), plotted in Fig. 7,
are consistent with the expression

ln t inc}~T02Tf !
22, ~8!

which is similar in form to the nucleation rates obtain
within classical nucleation theory5,21 and Monte Carlo
simulations.5,6 Note that the data point withTf /T050.911
falls well below the spinodal, but in Fig. 6 there still exists
shoulder at that temperature as a remnant of the plateau
higher temperatures.

Incubation times for Cu3Au have been measured by Nod
et al.22 from the width G}k'(t) of the ~110! x-ray-
diffraction peak. Close toT0 the width as a function of time

s
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develops plateaus qualitatively similar to Fig. 6~c!. Their
data, however, refer toTf /T0.0.981, whereas ours are fo
Tf /T0&0.976. Also one should note that experimentally t
ratio Tsp /T0 may be sample dependent. Because of the s
sitivity of t inc to temperature differences with respect
Tsp , this introduces considerable uncertainties in our co
parison. Nevertheless it is interesting to present experim
and simulations in one plot, as done in the inset of Fig.
There the simulation data were linked to the physical ti
scale exactly in the manner described towards the end of
II. Both sets of data display a remarkable similarity wi
respect to the order of magnitude in time and their trend w
temperature~and even seem to be a continuation of ea
other!. We conclude that the connection between time sca
for diffusion ~see Sec. II! and nucleation as implied by ou
algorithm roughly agrees with experiment.

V. COARSENING REGIME AND SCALING

As pointed out in the preceding sections, the distan
between high- and low-energy walls define two differe
length scales. Moreover, the high-energy walls that are m
further apart from each other than the low-energy ones
also less stable. As a consequence, we expect direc
dependent scaling laws to hold for the structure fact
Sa(kW ,t). This is made explicit by considering the function
Si andS' introduced in Eqs.~4! and ~5!. Due to their defi-
nitions we expect these structure factors to obey scaling l
for one-dimensional and two-dimensional systems, resp
tively. This is verified by our simulations atTf50.5465T0,
i.e., in the case of continuous ordering. As shown by thed
and 2d scaling plots in Figs. 8~a! and 8~b!, the data taken for
a number of timest>500 MCS after the quench indeed co
lapse onto single master curves. Moreover, the decay of
quantities at largek appears to be consistent with Porod’s la
in d51 andd52, respectively,23,24

ki~ t !Si~k,t !}@k/ki~ t !#22, ~9!

FIG. 7. Incubation timest inc versus reduced temperatureTf .
The inset shows the same data~full symbols! after conversion to the
physical time scale as described in the text, together with incuba
times measured~Ref. 22! in Cu3Au ~open symbols!.
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2 ~ t !S'~k,t !}@k/k'~ t !#23. ~10!

We now ask whether the same scaling laws apply to
results forTf.Tsp , i.e., to the case of thermally activate
ordering. Figure 9 contains the corresponding plots
Si(k,t), Fig. 9~a!, andS'(k,t), Fig. 9~b!, calculated forTf
50.972T0 at timest.t inc . In both parts of the figure, scal
ing regimes are observed which are consistent with Eqs.~9!
and ~10! in an intermediate range ofk values. BothSi and
S' , however, develop tails at largek which show significant
deviations from scaling. These deviations can be traced b
to irregular shapes of overcritical nuclei growing against
disordered bulk~cf. Fig. 3!. Such highly structured grain
boundaries eventually meet, leading to likewise structu
domain walls when the regime of slow coarsening
reached. Small inclusions of the disordered phase still rem
trapped between boundaries of ordered grains for quit
long time after the onset of coarsening processes in the
of the crystal.

Closer inspection of our data near the onset of those t
reveals that indeed, with increasing timet, the validity of
Porod’s law extends to largerk in both parts of Fig. 9. We
may take this as indication that Porod’s law, defined by E
~9! and~10!, will dominate in the late stages of continuous
well as thermally activated ordering processes.

n

FIG. 8. Scaled structure factors~a! kiSi(k,t) and~b! k'
2 S'(k,t)

calculated forTf50.5465T0,Tsp ; the slopes of the dashed straig
lines represent a decay according to~a! (k/ki)

22, and~b! (k/k')23.
1-7
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The last point we wish to address concerns the obse
growth rates of the characteristic domain size,l (t). Since the
transition considered here is described by a set of nonc
served order parametersc1 through c3, one might expect
that ordered domains grow according to the Lifshitz-Alle
Cahn law l (t)}tn with n51/2.7,8 Experiments on Cu3Au
indeed were interpreted in terms of this conventional grow
law.22,25,26In this context, however, one should be aware
the fact that systems of the type considered may show ef
tive growth exponents during relaxation different from t
Lifshitz-Allen-Cahn law. In the case of a vacancy mech
nism effective exponentsn. 1

2 , in principle, can arise in
models based on a nonconserved order parameter.27,28 In
these studies, an increasedn was ascribed to an accumula
tion of vacancies within the domain boundaries, leading
an enhancement of the interfacial dynamics. As mentione
Sec. II we have verified, however, that the interaction para
eters chosen in the present model do not favor segregatio
vacancies in the domain boundaries. Another modification
the Lifshitz-Allen-Cahn law that can act in the opposite
rection results from local changes in composition within a
tiphase boundaries so that the ordering process gets cou
to a ~slow! conserved order-parameter component.

In our simulations we systematically observe effect
growth exponentsn. 1

4 or even smaller~cf. Fig. 6 and
Kessleret al.4!. Moreover, within our accessible computin
times (33104253104 MCS!, these exponents depen
slightly on temperature. One possible source of these dif

FIG. 9. Same as in Fig. 8 but forTf50.972T0.Tsp .
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ences between simulations and the experimental data22,25,26

(n. 1
2 ) seems to be the existence of low-energy type-I wa

Specifically, let us recall that our model contains on
nearest-neighbor interactions, so that type-I walls have z
energy and thus are extremely stable. In that context re
work by Castan and Lindga˚rd29 and Deymieret al.30 de-
serves attention. These authors studied a two-dimensi
system involving both flat, essentially immobile interfac
and curved, mobile interfaces, leading to a coarsening ex
nentn5 1

4 at low temperatures. The present model, althou
similar in the domain structure, bears the additional feat
of a coupling of the nonconserved order parameters to
conserved densityc0. This coupling becomes active withi
type-II walls where the composition is locally changed. T
relaxation of a modified composition within type-II walls
slowed down further because type-II walls are interco
nected via type-I walls which have fixedc0 and do not allow
any exchange of composition. The slight upward bending
the low-temperature data in Fig. 6 at the longest times, in
cating an even slower growth, might be interpreted in t
way. To elucidate further the role of type-I walls in the coa
ening process, one may study an extended model tha
cludes next-nearest-neighbor~NNN! attractive interactions.
Type-I walls then acquire a nonzero energy. Preliminary
sults indicate that with increasing strength of NNN couplin
those walls get more curved, and the present coarsening
nario gradually passes over to the ordinary Lifshitz-Alle
Cahn behavior withn5 1

2 . Details will be given in a future
publication.

VI. SUMMARY AND CONCLUSIONS

Implementing the vacancy mechanism in a model for
atomic dynamics inA3B-type fcc alloys, we investigated th
growth of ordered domains after a temperature quench be
the transition temperatureT0. Depending on the depth of th
quench we observed two clearly distinct ordering scenar
thermally activated nucleation of the ordered phase for s
low quenches,T0.Tf.Tsp , and spinodal ordering, whe
Tf,Tsp . Here, the spinodal temperatureTsp was taken over
from independent simulations at equilibrium.

In the case of thermally activated processes there is s
characteristic incubation time,t inc , after which a small frac-
tion of the system is covered by overcritical nuclei. Detail
simulation results fort inc , based on vacancy-atom ex
change, were presented. The time periodt,t inc manifests
itself in plateau regions for energy relaxation and for the s
of ordered domains, when plotted versust. Clearly, t inc is
expected to diverge asTf approachesT0 from below. Within
the simple model investigated here and the available m
mum computing time,t inc grows more than 260 times in
narrow temperature interval aboveTsp—from about 90 MCS
at Tf50.911T0 to roughly 243103 MCS atTf50.976T0. In
comparison with measurements22 of t inc this seems to con-
stitute the correct order of magnitude when Monte Ca
times are converted to physical times with the help of exp
mental tracer diffusion coefficients. In the coarsening regi
we observed growth of the characteristic domain size t
was clearly slower than the conventionalt1/2 law expected
1-8
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for curvature-driven processes in the presence of nonc
served order parameters. This may be due to the enha
stability of the low-energy domain walls in the case
nearest-neighbor effective interactions assumed in
model. The enhanced stability of low-energy walls leads
strong anisotropies of the domain shapes observed in
system, and furthermore, to independent scaling laws for
correlation functionsSi(k,t) and S'(k,t). These two func-
tions scale according to Porod’s laws for dimensions one
two, respectively, whenTf!Tsp . For Tf.Tsp strong devia-
d
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ls

13420
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tions from these scaling laws are observed in the region
largek values, due to highly structured domain walls whi
originate from the stage of fast growth of ordered nuc
against the disordered bulk.
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