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Elimination of irradiation point defects in crystalline solids: Sink strengths

N. V. Doan and G. Martin
Service de Recherches de Me´tallurgie Physique, Commissariat a` l’Energie Atomique, Centre de Saclay,

91191 Gif sur Yvette Cedex, France
~Received 16 July 2002; revised manuscript received 15 January 2003; published 15 April 2003!

The rate theory of irradiation effects in crystalline solids rests on a set of two ordinary differential equations
which, for each type of point defect~vacancy and self-interstitial!, describe the balance between the production
of defects on the one hand and their annihilation on the other. The latter process occurs either by mutual
recombination, a bimolecular reaction, or by elimination on point defect sinks, a first-order reaction. The
elimination rate is proportional to the defect concentration times the defect diffusion coefficient times a
geometrical factor, the ‘‘sink strength.’’ Theclassical expressionof sink strengths is obtained by solving the
diffusion equation of point defects in a cell, which contains the sink, and ensuring that themean valueof the
defect concentration in the cell equals the concentration in the rate theory. We propose analternative criterion.
Since the amplitude of the irradiation effects of practical relevance is dictated by thepartitioning of the defect
annihilation between mutual recombination and elimination on sinks, we propose that the value of the sink
strength should give the correct value for the latter partitioning. The sink strengths so defined, scaled to their
classical value, are evaluated for sink geometries of practical interest and expressed as a function of one
dimensionless parameter, which is a function of the irradiation flux and temperature. Depending on the irra-
diation conditions, the correcting factors for individual sink strengths may be large~several orders of magni-
tude!. When several types of sinks compete, we further impose that the partitioning of the elimination among
the various types of sinks has the correct value. The sink strengths, as defined in this work, are additive, at
variance with the classical ones. According to our definition, the dislocation bias, which measures the relative
difference between the sink strengths of dislocations respectively for interstitials and vacancies, is shown to
increase with the strength of neutral sinks around the dislocation. It ranges from zero when the dislocations are
the only sinks to several 1021 when the neutral sinks have a strength much larger than that of dislocations. The
computation of the correcting factor is presented in such a way that it can be easily incorporated into the rate
theory of irradiation effects.

DOI: 10.1103/PhysRevB.67.134107 PACS number~s!: 61.80.Az, 05.20.Dd, 66.30.2h, 61.72.Bb
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I. INTRODUCTION

We discuss here ‘‘high-temperature irradiation effect
i.e., effects which take place in crystalline solids under ir
diation at temperatures and time scales where the irradia
produced point defects may migrate for large distances. S
effects result from the competition between the production
Frenkel pairs by nuclear collisions on the one hand and
the other hand, the annihilation of the point defects by t
distinct types of processes:~i! the mutualrecombinationof
Frenkel pairs and~ii ! theeliminationof point defects at sinks
~surfaces, interfaces, dislocation cores, etc.!, the yield of
which needs not be the same for both types of defects,
because of distinct interaction energies of the defects w
the sink.

The partitioning of defect annihilation among the abo
two processes is at the origin of a well-known fact: any hig
temperature irradiation effect occurs with a maximum inte
sity in some domain of irradiation flux and temperature.
deed at high flux and low temperature, freshly crea
defects cannot migrate a long distance before the creatio
a new Frenkel pair and the probability for a defect to enco
ter another defect is larger than to encounter a sink: mu
recombination dominates. The reverse is true at higher t
perature and lower flux. At very high temperature, inters
tials recombine with thermal vacancies before reach
sinks: the recombination regime again prevails. Those i
diation effects which imply defect-defect encounter~nucle-
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ation of defect clusters, homogeneous irradiation indu
precipitation,1–3 etc.! are favored in the first case. Thos
which imply the elimination of defects by sinks~swelling,
growth, creep, irradiation induced segregation at sin
etc.4–7! are favored in the second case.

The simplest theory of such effects is the so-called ‘‘ra
theory,’’ widely used because of its ability to yield very ea
ily orders of magnitudes and to point to basic couplin
among various irradiation effects. In its simplest form, t
rate theory reduces to the two following coupled nonline
ordinary differential equations for the concentrationsci of
interstitials andcv of vacancies:

dci

dt
5G2Rcicv2ki

2Dici ,

dcv

dt
5G2Rcicv2kv

2Dv~cv2cv
e!. ~1!

In Eqs.~1!, G is the production rate of Frenkel pairs; in th
present study, for the sake of simplicity, we do not consi
the clustering of defects which may occur in the core
displacement cascades and which results in distinct prod
tion rates for isolated interstitials and vacancies. The te
2ka

2Daca represents the rate of loss ofa defects on the
sinks, and cv

e is the thermal equilibrium vacanc
concentration.28 The geometrical constantka

2 is the sink
strength fora defects: the higher the sink strength, the high
©2003 The American Physical Society07-1
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the rate of defect elimination at the sinks. The term
2Rcicv represents the rate of loss of defects because
mutual recombination with the rate constantR ~Ref. 8!:

R54pr r~Di1Dv!/V, ~2!

whereV is the atomic volume,r r the recombination radius
andDa (a5 i ,v), is the diffusion coefficient ofa defects.

Solving Eqs.~1! under steady-state conditions (dci /dt
5dcv /dt50) yields the stationary vacancy and interstit
concentrations under irradiation, from which one may co
pute the sink elimination yieldYs :

Ys5
ka

2Da~ca2ca
e !

G
. ~3!

Notice that, since the production rates of interstitials a
vacancies are equal and since the recombination reaction
stroys the same number of vacancies and of interstitials,
defect loss rate to sinks is the same for vacancies and in
stitials, under steady-state conditions:ki

2Dici5kv
2Dv(cv

2cv
e).
In practice, several types of sinks are fed from the def

population, e.g., grain boundaries and other interfaces, d
cations, cavities, and free surfaces. Some sinks may exhi
bias in favor of one of the defects while some are neutral.9–12

For modeling the microstructural evolution under irrad
tion, one must first write the sink strengths in Eqs.~1! as a
function of the microstructural features of interest~grain
size, dislocation density, density of voids and dislocat
loops, etc.! and complement Eqs.~1! by rate equations for
the time evolution of the corresponding partial si
strengths.2

The simplest expressions for the sink strengths are
tained by assuming that the rate of defect loss on a sin
diffusion controlled and by neglecting the recombination
action.

Thus the sink strength of the free surfaces of a thin p
with thicknesse is of the order ofp2/e2,13 and that of dis-
locations is approximately the dislocation densityr. The
well-known result for unbiased cavities is

kic
2 5kvc

2 '4pNcr c5
3

r c
2

DV

V
, ~4!

with Nc the number of cavities per unit volume,r c the radius
of the cavities, andDV/V5r c

3/Rc
3 the void volume per unit

volume ~i.e., the swelling!, Rc being the mean half distanc
between cavities.

The strength of most sinks has been computed in
manner in the early 1970s@for reviews, see Refs. 14–17#.
Moreover, at this level of approximation, the strengths of
various types of sinks are supposed to be additive, so tha
two sink strengths entering Eqs.~1! are written as the
weighted sum of the sink strengths of each component of
microstructure.

Two main corrections have been done to the simplest
pressions:~i! going beyond the hypothesis of additivity o
the individual sink strengths17,18 and ~ii ! taking into account
13410
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the production and mutual recombination of Frenkel pairs
the medium while computing defect fluxes to the sink.17,19–23

The way this latter correction has been derived is, ho
ever, questionable for reasons to be explained below. In S
II, we derive a technique for evaluating the sink strengths
the presence of a homogeneous defect production and o
vacancy-interstitial recombination reaction. In Sec. III, t
technique is applied to most sink geometries, while interf
ence effects among sinks of distinct nature are studied
Sec. IV with special attention to the problem of dislocati
bias. The correction factors to the classical sink strengths
be given as a function ofuniversal parameterswhich makes
it easy to incorporate the present results into the rate the
of irradiation effects.

II. COMPUTATIONAL METHOD OF SINK STRENGTHS

Interstitial-vacancy recombination in the medium betwe
the sinks affects the shape of the defect concentration
files in the vicinity of each sink and therefore modifies t
flux of defects to the sink. This fact was recognized in t
early 1970s by Foreman19 who computed the defect concen
tration profiles in a thin foil under irradiation, with and with
out internal sinks in the foil. The purpose of the study was
estimate to which extent the free surfaces do affect the de
concentration in the bulk of the foil, in order to assess
experimental conditions under which an irradiation of t
thin foil is representative of that of a bulk sample. Later o
Lam et al.20 addressed the same problem, in both finite a
semi-infinite media. They focused on the defect concen
tion profile, the value of the maximum defect concentrati
and of the average concentration in the medium, as a fu
tion of the sink density. In a most comprehensive pap
Brailsford and Bullough18 showed that the concentrations e
tering the rate equations@Eqs.~1!# can be viewed as averag
concentrations in the medium between the sinks,^Ca&, pro-
vided thatthe product̂ Ci&^Cv&'^CiCv& on the right-hand
sides of Eqs.~1!. The authors namedI the difference between
the two quantities. The paper, however, does not discuss
conditions under whichI is small. If such is the case, th
procedure to compute the strength of a sink is simple:~i!
solve the diffusion equation in the cell around the sink,~ii !
compute the average defect concentration^Ca& in the cell,
and~iii ! the value to be given to the sink strength in Eqs.~1!
is that which yields a defect concentrationca equal to the
latter averagêCa&.

The above procedure requires that, once the computa
is done, the value ofI be checked and that the result
correct only in the case whereI is small.

The present work introduces an alternative definition
the sink strengths, which avoids the latter difficulty a
which is based on the following remark. As discussed in S
I, the quantity of interest, for practical issues, is the si
elimination yieldYs , i.e., the fraction of the produced de
fects which eliminate at the sinks. This quantity can be co
puted exactly in a cell around a given sink, taking into a
count the homogeneous production of defects by irradia
and the mutual recombination. In doing so, we solve the
of coupled partial derivative of equations:
7-2
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ELIMINATION OF IRRADIATION POINT DEFECTS IN . . . PHYSICAL REVIEW B67, 134107 ~2003!
dCi

dt
5G2RCiCv1Di¹

2Ci ,

dCv

dt
5G2RCiCv1Dv¹2Cv , ~5!

whereCa is thespace-dependentconcentration of thea-type
defect at variance ofca in Eqs.~1!, which is space indepen
dent. Equations~5! require, to be solved, the specification
boundary conditions: these are the defect concentration
the sink, which are fixed to their thermal equilibrium valu
(Ci

e50; Cv
e), and the zero-flux condition at the cell boun

ary in the case of a regular array of sinks. The initial con
tion should also be specified. In the present paper, we res
ourselves to stationary regimes (dCa /dt50). Solving Eqs.
~5! with appropriate boundary conditions, under steady-s
conditions, yields the steady defect flux at the sink. The s
elimination yieldYs is simply

Ys5

E
A

2Da¹CadA

GV
, ~6!

where the integral is taken over the surface of the sink,dA is
the elementary surface area with its normal pointing tow
the sink core, andV is the volume of the cell around the sin

On the other hand, the sink elimination yield is straig
forwardly obtained solving Eqs.~1! in the stationary regime

05G2Rcicv2ki
2Dici ,

05G2Rcicv2kv
2Dv~cv2cv

e!. ~7!

Simple algebra shows that a given value ofYs yields a rela-
tionship betweenki

2 andkv
2 :

Ys5
ki

2Dici

G
5

kv
2Dv~cv2cv

e!

G
. ~8!

Since we focus onYs rather than onca , we may impose tha
the sink strength be the same for vacancies and interstit
ki

25kv
25k2, which results inDici5Dv(cv2cv

e). Equation
~7! then gives the sink strength as a function ofYs @the value
of which is given by Eq.~6!#:

k25
Ys

2~12Ys!
@A1AA214 f 0~12Ys!#,

A5
f 0y0

G
; y05Dvcv

e ; f 05
RG

DiDv
. ~9!

Notice that, in the case whereA2!4 f 0(12Ys), a very
simple expression holds fork2:

k25YsA f 0

12Ys
. ~10!

Notice that, since the value ofk2 given by Eq.~9! ensures
that Ys has the correct value, the recombination yieldYr
512Ys also has its correct value.
13410
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III. SINK STRENGTH REEXAMINED

We now apply the novel technique to the most comm
sink geometries: the free surfaces of a thin foil, the gr
boundary of a grain described as a plain sphere, a ca
described as a spherical hole at the center of a spherical
and a dislocation described as a hollow cylinder along
axis of a cylindrical cell. In the latter case, the drift of th
point defects towards the dislocation, as the result of def
dislocation interaction, is taken into account.

A. Free surfaces of a thin plate

Equations~5! are solved under stationary conditions in
slab bounded by two parallel planes, a distancee apart. The
concentrations are fixed to their equilibrium value on t
planes~0 for interstitials,cv

e for vacancies!. The integration
is performed either with a Runge-Kutta algorithm or a sho
ing method of our own.Ys is then computed according to Eq
~6!, and the value of the sink strength of the foil surfaces
obtained from Eq.~9!. In the parameter range we studie
which covers most cases of interest, Eq.~10! is an excellent
approximation, so that the sink strength is function of
single parameterf 0. In Fig. 1, the curve labeleda50 depicts
the variation of the sink strength~scaled toe22) as a func-
tion of f 0 scaled toe24. The reduced sink strength (kp

2e2

5ap) ranges from an asymptotic value of about 11 at lo
values of the dimensionless parametere4f 0 (,10), to a
power dependence with the latter beyond about 105. Low
values ofe4f 0 correspond to a small recombination yie
~high temperature, low irradiation flux, small foil thickness!;
it is not surprising that, in this range, we findap close to its
classical valuep2, since the latter is computed neglectin
the recombination reaction. High values ofe4f 0 correspond
to a large recombination yield: the sink strength when giv
its classical value can be underestimated by several orde
magnitude. Beyonde4f 0.105, the surface foil sink strength
kp

2 varies approximately asf 0
1/4/e ~see Table I!.

FIG. 1. Reduced sink strength of thin films. In the absence
internal sinks (a50), the fitted curve isap52.7174x0.24311 for x
5e4f 0.53103.
7-3
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N. V. DOAN AND G. MARTIN PHYSICAL REVIEW B 67, 134107 ~2003!
B. Boundary of a spherical grain

We describe a grain as a plain sphere of radiusr g . The
spherical surface represents the grain boundary along w
the defect concentrations are given their equilibrium valu
The procedure is identical to that in the above section,
the integration is performed in spherical geometry. Figur
shows the result, with the radius of the spherical grain,r g ,
instead of the thickness of the foil,e, in the scaling factors
~curve a50). Much in the same way as for the thin plat
the reduced sink strength (kgb

2 r g
25agb) ranges from an

asymptotic value of about 12 at low values of the dimensi
less parameterr g

4f 0(,10) to a power dependence with th
latter beyond about 103: kgb

2 shifts from p2/r g
2 to f 0

1/4/r g .
When the recombination reaction becomes dominant,
same qualitative trends are observed as in the plate, but
a slightly different amplitude.

C. Cavity

The computational cell is now a hollow sphere. The inn
cavity has a radiusr c , the outer sphere a radiusRc , such

TABLE I. Some values of the reduced sink strength,ap

5kp
2e2, of the surfaces of a plate with thicknesse, as a function of

the dimensionless parametere4f 0, in the presence of secondar
sinks with strengthK25akp

2(0).

e4f 0\a→ 0 5 10 20 40 100

0.8873 11.01 20.28 25.92 34.30 46.39 70.6
33.761 11.67 20.73 26.54 35.16 47.62 72.5
2.73431013 20.24 27.26 34.08 45.07 61.35 94.2
5.06631014 37.67 42.96 49.35 61.93 82.91 127.1
1.06831016 77.06 81.31 86.43 98.13 122.26 181.6
5.40231017 200.71 204.38 208.43 217.53 238.68 308.
9.12131019 716.45 719.89 723.44 730.85 746.88 803.
3.70310111 1805.3 1808.8 1812.3 1819.4 1834.1 1882

FIG. 2. Reduced sink strength of grain boundaries. In the
sence of internal sinks (a50), the fitted curve is agb

512.661x0.015067for x5r g
4f 0,14.5,agb58.463x0.14225for 14.5,x

,1.1973103, andagb53.886x0.24463for x.1.1973103.
13410
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that the number of cavities per unit volume isNc

53/4pRc
3 . Note that the void volume fraction, i.e., th

swelling, is DV/V5(r c /Rc)
3. Equations~5! are solved in

spherical geometry. The defect concentrations are fixed
their thermal equilibrium values atr c ; for the sake of sim-
plicity, we have ignored the Gibbs-Thompson effect on t
thermal equilibrium vacancy concentration. The defect fl
is set to zero atRc .

In the limit of swelling values of practical interes
(DV/V,10%), the void sink strength, scaled to its classi
value @ac5k2/4pNcr c5k2r c

2/(3DV/V)#, mainly depends
on the dimensionless parameterr c

4f 0, as shown in Fig. 3.
Again, the classical value (ac51) is recovered for low val-
ues ofr c

4f 0. The latter is underestimated by more than tw
orders of magnitude in the high-recombination regime. N
tice that the void sink strength depends both on the radiu
the cavity and on the void volume fraction, but the scali
factorac only depends on the dimensionless parameterr c

4f 0,
in a broad range of void volume fraction~up to 10%!, at least
for large values of the former (r c

4f 0.104).

D. Dislocation

The computational cell is a hollow cylinder. The inn
cylinder with radiusr d represents the dislocation core; th
outer radiusRd is fixed by the dislocation densityr: r
51/pRd

2 . The defect concentrations are given their therm
equilibrium values atr d ; the defect flux is set to zero atRd .
In a first step, the sink strength of the medium in the cyl
drical cell is set to zero, and any defect-dislocation inter
tion is ignored. Equations~5! are solved in the stationar
regime with cylindrical geometry. In the stationary regim
since the cell contains a single sink, the dislocation co
vacancies, and interstitials are captured in equal amoun
the dislocation core. The result is depicted Fig. 4~a! where
the dislocation sink strength, scaled to its classical va
r (ad5k2/r), is shown as a function ofr d

4f 0 for typical
values of the dislocation density. Up to a dislocation dens
of 1012 cm22, the reduced sink strengthad is uniquely de-

-

FIG. 3. Reduced sink strength of cavities. The fitted curve
ac52.366x0.15956 for x5r c

4f 0,1.4613103 and ac51.3595x0.24113

for x.1.4613103 where ac is independent of the swelling (s
<10%).
7-4



,
al
d

fa

rm
on
f

a
a

a
it

o
ra
ua
o

fo
io

t

de

ry

u-
in

ro-

me
the
nd-
an

sed

as
ary

ur-

f

ink;
to

the

of
h
to
qs.

nk
in

ll

ths
g
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fined by the value ofr d
4f 0. For higher dislocation densities

ad also depends on the dislocation density, at least at sm
values ofr d

4f 0. Depending on the irradiation conditions an
on the dislocation density, the classical value (ad51) over-
estimates or underestimates the actual sink strength by a
tor which can reach one order of magnitude.

The dislocation defect interaction introduces a drift te
in the expression of the defect flux towards the dislocati
This term will be dealt with in Sec. IV where the effect o
internal sinks will be considered.

IV. MULTIPLE SINKS

The competition between several types of sinks is of p
ticular interest, i.e., cavities and dislocations. One cavity
the center of a sphere approximates a regular array of c
ties with a given radius and a given spacing, while a cav
population contains a spectrum of these.29

One might suppose that a random array could give
rather different sink strength. Similarly, in the absence
other sinks, dislocations alone, despite their stronger inte
tion with interstitials compared to vacancies, eliminate eq
numbers of interstitials and vacancies under stationary c
ditions. For estimating the bias factor of dislocations
eliminating interstitials, one must embed the dislocat
population among other sinks.

In the case where several types of sinks are present in
cell, an effective medium approach is used:18 the lossy me-
dium around the primary sink is modeled adding a first-or
elimination reaction on the RHS’s of Eqs.~5!:

dCi

dt
5G2RCiCv2Ki

2DiCi1Di¹
2Ci ,

dCv

dt
5G2RCiCv2Kv

2Dv~Cv2cv
e!1Dv¹2Cv . ~11!

In Eqs. ~11!, we treat the defect elimination on the prima
sink ~e.g., a grain boundary! by a diffusion equation@Eqs.

FIG. 4. Reduced sink strength of dislocations:~a! ad where the
defect-dislocation interaction is omitted;~b! Zv where the defect-
dislocation interaction is taken into account~see Sec. IV F!. The
fitted curves for densitiesr<1011 are ad55.2155x0.070912 for x
5r d

4f 0,1024 andad59.708x0.14368for x.1024.
13410
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~11!#, while the effect of the secondary sinks~e.g., cavities in
the grain! is approximated by a lossy medium in the comp
tation cell. The rate constant of the elimination reaction
the lossy medium is writtenKa

2Da , by mere analogy with
the rate theory. We use a capitalK, for the sink strength of
the effective medium, to remind us that the loss rate is p
portional to thelocal defect concentrationC in the medium.
One important question is as follows: would we get the sa
result exchanging the primary and secondary sinks in
computation procedure—i.e., smearing out the grain bou
ary into the computation cell around the cavity rather th
smearing out the cavities in the grain? This will be discus
in Secs. IV D and IV E.

A. Computational procedure

We first present the technique we use, taking cavities
an example. The cavity population is treated as the prim
sink, the strength of which is namedk1a

2 (a5 i ,v) in the rate
theory. The secondary sinks, or sinks inside the cell s
rounding each primary sink, are given a strengthk2a

2 in the
rate theory, so thatk2 in Eqs.~1! now represents the sum o
two contributions:kt

25k1a
2 1k2a

2 ~the subscriptt on the LHS
stands for ‘‘total’’ sink strength!. As discussed in Sec. II, we
chosekt

2 to be independent of the type of defecta. Once
created, a defect either recombines or eliminates on a s
the latter belongs either to the primary sink population or
the secondary one. Thus, the sink elimination yield is
sum of two partial yieldsYst5Ys1a1Ys2a . Notice that the
partial yields may depend on the type of defecta, because
of some preferential interaction of one sink with one type
defect, while thetotal sink elimination yield does not. Eac
partial sink elimination yield can be computed according
the procedure used in Sec. III. For doing so, we solve E
~11! with a cell geometry corresponding to the primary si
~here the cavity! and with the secondary sink smeared out
the cell@third term on the RHS’s of Eqs.~11!#. Ys1a is given
by Eq. ~12!, deduced from Eq.~6!,

Ys1a5

E
A

2Da¹CadA

GV
~12!

andYs2a by

Ys2a5

E
V
Ka

2Da~Ca2ca
e !dV

GV
. ~13!

In Eq. ~13!, the integral is taken over the volume of the ce
V andCa is the concentration of defecta at point r .

For finding the value to be given to the two sink streng
k1a

2 and k2a
2 in the rate theory, we impose the followin

condition: thetotal sink elimination yield given by the rate
theory should be equal toYst as computed from Eqs.~12!
and ~13!:
7-5
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TABLE II. Some values of the reduced sink strength,agb5kgb
2 r g

2 , of the grain boundaries with radiusr g ,
as a function of the dimensionless parameterr g

4f 0, in the presence of secondary sinks with strengthK2

5akgb
2 .

r g
4f 0\a→ 0 0.5 2 5 20 100 200 400

0.2557 12.50 15.00 20.40 28.10 53.41 106.91 146.28 204.
4.0918 12.79 15.16 20.69 28.50 53.36 113.18 156.90 217.
96.669 15.74 17.50 22.89 31.53 59.79 125.25 174.48 244.
1197.0 24.06 25.30 29.76 38.87 72.43 153.37 214.26 300.
96 958.0 64.15 65.03 68.07 75.43 117.31 246.75 346.01 486.
1.1263107 203.46 204.25 206.73 212.20 248.05 441.31 613.89 862.
5.6413108 536.35 537.10 539.42 544.43 572.82 791.55 1018.5 1406
7.0373109 1005.1 1006.1 1008.4 1013.1 1038.7 1218.4 1479.4 1960
9.69631010 1932.2 1933.4 1935.7 1940.3 1964.2 2120.7 2360.0 2880
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G
5

kt
2Dv~cv2cv

e!

G
5Yst5Ys1i1Ys2i5Ys1v1Ys2v .

~14!

We find

kt
25

Yst

2~12Yst!
@A1AA214 f 0~12Yst!#,

kj a
2 5

Ys ja

2
@At1AAt

214 f 0#, j 51,2,

At5A1kt
2 , ~15!

with A and f 0 defined in Eqs.~9!. The expression ofkj a
2 as

given in Eqs.~15! does indeed yield the correct partitionin
of sink elimination among the primary and secondary on

k1a
2

k2a
2

5
Ys1a

Ys2a
,

k1a
2

Ys1a
5

k2a
2

Ys2a
5

kt
2

Yst
. ~16!

The above relationships@Eqs. ~16!# are important in de-
scribing the rate of microstructural evolution under irrad
tion, since the latter depends on the detailed partitioning
the defect elimination among competing sinks.

B. Thin plate containing internal sinks

In order to describe the effect of point defect sinks ins
the plate, on the defect loss at the foil surfaces, we solve E
~11! ascribing to the sink strengthK2 of the effective me-
dium an arbitrary value. The latter is scaled tokP

2 (0), the
sink strength of the foil surfaces of the thin plate, in t
absence of internal sinks:K25akP

2 (0). Theresults obtained
with different values ofa are depicted in Fig. 1~see also
Table I!. Whenevere4f 0,103, the value of the sink strengt
of the foil surfaces is very sensitive to the presence of in
nal sinks. It increases rapidly with the inner sink strength a
can be multiplied by a factor of 7 when the strength of t
sinks inside the foil is 100 times of that of the foil surface
At larger values ofe4f 0, the sink strength of the foil surface
becomes independent of the internal sinks: indeed, the la
13410
:

-
f

e
s.

r-
d

.

ter

have a weak contribution to defect balance, compared to
recombination reaction, the effect of which controls t
value ofap .

C. Grain boundary containing internal sinks

The same qualitative trends are observed for the effec
internal sinks on the grain boundary sink strength, but wit
slightly different amplitude. In particular, the latter recove
its internal sink free value at much larger values of the
mensionless parameterr g

4f 0 than the thin plate~see Fig. 2
and Table II!.

D. Cavities together with other cavities

1. One cavity among identical cavities

We first check the consistency of the effective lossy m
dium procedure for a population of cavities, by computi
the sink strength of one cavity by two distinct routes.

~i! Route 1: we consider one cavity of radiusr c at the
center of a sink free sphere of radiusRc .

~ii ! Route 2: we consider the same cavity at the cente
large sphere of radiusRc1.Rc ~subscript 1 for the primary
sink! containing many spheres of radiusr c , a distance 2Rc
apart. The latter are treated as a lossy medium around
central cavity.

As an example, with the parameter valuesr c5100a,
Rc155000a, Rc5600a, a52.8731028 cm, and r c

4f 0

57.0383103, we find a reduced sink strength of the cavi
of 11.66 by route 1 and of 11.63 by route 2. Both values
identical within 0.2%. In other words, if we estimate the si
strength of a single cavity at the center of a sink-free sph
of radius Rc using the reduced sink strength obtained
route 2, we findk2511.63333r c /Rc

3 instead of 11.6633
3r c /Rc

3 computed directly by route 1. For lower values
f 0, due to higher temperatures, the self-consistency
holds although less accurate. For instance, with param
values typical of a iron (Di05331024 cm2 s21,Emi
50.28 eV for interstitial diffusion,Dv055.0 cm2 s21,Emv
51.36 eV for vacancy diffusion, andEf v51.6 eV for va-
cancy formation!, at a displacement rate of 1025 dPa s21 as
above and for a temperature of 773 K, we obtain a redu
7-6
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sink strength of 1.47 by route 1 and of 1.31 by route 2~with
Rc1 up to 5000a). The sink strength of the cavity is thus 1
times larger than the classical value, to a consistency be
than 11%. The embedding procedure is thus justified.

2. One cavity with other sinks

As discussed above, the sink strengths as defined in
paper are additive. As an example, we consider a cavity
radiusr c , at the center of a sphere of radiusRc containing
internal sinks, the strength of which isK2 in Eqs.~11!. In the
absence of internal sinks, the sink strength of the cavity

kc
253ac~0!r c /Rc

3 , ~17!

where ac(0) refers to the value ofac in the absence o
internal sinks. Let us writeK2 as a3kc

2 and compute the
total sink strength in the sphere~cavity 1 internal sinks!,
using the procedure described in Sec. IV A. As shown in F
5, in the explored range (0<a<100) we find

kt
25~11a!kc

2 , i.e., kt
25kc

21K2. ~18!

3. Cavities with a size distribution

The above additivity makes it easy to compute the s
strength of a population of cavities of various sizesr i ; the
number of cavities of radiusr i per unit volume isNi ( i
51 –p). We first embed the cavities of class 1 into the
fective medium containing the cavities of class 2 as inter
sinks and compute the total sink strengthk1,2

2 of this void
subpopulation. We then embed class 3 into the effective
dium k1,2

2 , etc. It is easily found that the total sink strength
the full cavity population is

kt
25 (

i 51,p
a0i4pr iNi , ~19!

wherea0i is the internal sink free reduced sink strength
the i th class of cavities, as given in Fig. 3, i.e., for the val
of the dimensionless variable (r i

4f 0).
As an example, we have studied in more detail the to

sink strength of a population of cavities defined by the s

FIG. 5. Total sink strength of cavities in the presence of inter
sinks with strengthK25akc

2 .
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distribution shown by the open triangles in Fig. 6. The lat
shows the number of voids per unit volume, as a function
the radius of the void; nine classes of void radius have b
defined. The sink strength of each class of void in the
sence of the other classes, has been computed accordi
the procedure given in Sec. III C~Fig. 3! for f 051.62
31024 cm24. The result is sketched on Fig. 6 by the op
circles~‘‘void array’’ !. The total sink strength has then bee
computed following the procedure given in Sec. IV A, takin
the cavities of classi as the primary sink and all other cav
ties (1 to i 21 and i 11 to 9! as the secondary sinks. Th
secondary sink strength was taken as the sum of the co
sponding individual strengths. The total sink strength is th
computed in nine distinct manners, all of which give t
same result~solid circles in Fig. 6!.

E. Cavities together with grain boundaries

Consider a spherical grain~with radius r g), containing
cavities~with radiusr c , a distance 2Rc apart!. We want to
assess whether we get the same sink strengths~total and
partial!, embedding the grain boundary~primary sink! into
the cavities~secondary sink! or doing the reverse, i.e., smea
ing out the grain boundary sink strength~secondary sink!
around the cavity~primary sink!.

The sink strength of the cavityalone is kc0
2 53ac(0)

3r c /Rc
3 , whereac(0) is the reduced sink strength of th

cavity in the absence of internal sinks and is shown on F
3. The sink strength of the grain boundaryalone is kgb0

2

5agb(0)/r g
2 ; here,agb(0) is the reduced sink strength o

the grain boundary in the absence of internal sinks (a50)
~Fig. 2!. In a first step~procedure A! we consider the cavity
as the primary sink and the grain boundary as the secon
one. This means that we solve Eqs.~11! for the cavity~hol-
low sphere geometry!, giving to the internal sink strengthK2

the grain boundary strengthkgb0
2 . From Eqs.~12!–~15!, we

get the two partial sink strengthskc1
2 and kgb2

2 where the
subscriptsc1 andgb2 point to the fact that the cavity is th
primary sink and the grain boundary is the secondary one

l FIG. 6. Sink strength of a cavity population with a size dist
bution (n): ~a! Sink strength of each array of identical voids (s).
~b! Total sink strength of the void distribution computed in nin
different ways (d) ~see text!.
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TABLE III. Some values of the reduced sink strength,ad5kd
2/r, of dislocations as a function of the

dimensionless parameterr d
4f 0 and of the dislocation densityr (cm22).

r d
4f 0\r→ 131012 531011 131011 131010 1.53109 2.83108

1.06831028 0.039 0.079 0.358 0.734 0.718 0.716
1.06831027 0.124 0.244 0.737 0.831 0.817 0.819
1.06831026 0.376 0.659 0.990 0.958 0.952 0.955
1.06831025 0.938 1.154 1.173 1.141 1.139 1.142
1.06831024 1.486 1.483 1.423 1.406 1.406 1.409
1.06831023 1.905 1.856 1.814 1.805 1.805 1.808
1.06831022 2.497 2.461 2.434 2.428 2.429 2.430
1.06831021 3.497 3.438 3.448 3.443 3.442 3.441
3.56331021 4.276 4.249 4.228 4.222 4.220 4.216
1.649 5.711 5.649 5.601 5.589 5.585 5.578
y
. W

e

s
itie
e

i-

he

s A
ans
eri-
mi-

ths

A

a second step~procedure B!, we consider the grain boundar
as the primary sink and the cavities as the secondary one
therefore solve Eqs.~11! for the grain geometry~plain sphere
with the surface as grain boundary!, giving to the internal
sink strengthK2 that of the cavities,kc0

2 . Equations~12!–
~15! now yield kgb1

2 and kc2
2 where the labels 1 and 2 hav

been permuted.
We have performed the above calculations for a serie

parameter values, varying the relative strength of the cav
versus that of the grain boundary, and for a broad rang
reduced sink strengthsagb(0) andac(0), i.e., with kx0

2 (x
5c or gb) values close to—or far away from—their class
13410
e

of
s

of

cal value. Typical results are given in Tables III and IV. T
main result is as follows. In the range where 0.18<kc0

2 /kt0
2

<0.79 withkt0
2 5kc0

2 1kgb0
2 @see Tables IV~a! and IV~b!#, the

sink strengths~partial and total! equal their internal sink free
values (ki0

2 ) within less than 4%, and the above procedure
and B give the same result within better than 7%. This me
that the self-consistency of the embedding procedure is v
fied to better than 7%. When the grain boundary is the
nority sink, kgb0

2 /kt0
2 <0.1 @see Table IV~c!#, the above con-

clusion remains valid for the cavity and total sink streng
kc

2 andkt
2 , but not for the grain boundarykgb

2 . For the latter,
the discrepancy withkgb0

2 as well as between procedures
r with
mputed

meter
TABLE IV. Assessment of the self-consistency of the embedding procedure for cavities togethe
grain boundaries. The strength of each individual sink alone appears in column 2. The strengths co
embedding the cavity in a lossy medium representing the grain boundary~procedure A! are given in column
3; those obtained embedding the grain boundary in a lossy medium representing the cavities~procedure B!
are given in column 4.f 0 andy0 are computed from the temperature and displacement rate, with para
values typical of a-Fe: Di053.031024 cm2 s21,Emi50.28 eV for interstitial diffusion, Dv0

55.0 cm2 s21,Emv51.36 eV for vacancy diffusion, andEf v51.6 eV for vacancy formation.

k2 (cm22) a Isolated Procedure A Procedure B (kB
22kA

2)/kA
2

Cavity 3.11231010 3.11531010 3.01531010 20.032
Grain boundary 1.45731011 1.41431011 1.45731011 10.030
Total 1.76831011 1.72531011 1.75931011 10.019
Cavity/total 0.176 0.181 0.171 20.055

k2 (cm22) b Isolated Procedure A Procedure B (kB
22kA

2)/kA
2

Cavity 3.5263109 3.5273109 3.5143109 20.003
Grain boundary 9.4953108 9.1563108 9.5523108 10.043
Total 4.4763109 4.4433109 4.4693109 10.006
Cavity/total 0.788 0.794 0.786 20.010

k2 (cm22) c Isolated Procedure A Procedure B (kB
22kA

2)/kA
2

Cavity 3.62131010 3.63931010 3.50031010 20.038
Grain boundary 4.5073109 4.3813109 6.6223109 10.512
Total 4.07231010 4.07731010 4.16231010 10.021
Cavity/total 0.889 0.893 0.841 20.058

ar c549.41 nm,DV/V51022,r g51 mm,f 053.12331026 cm24, r c
4f 051.8623105,r g

4f 053.12331010.
br c529.41 nm,DV/V50.005,r g510 mm,f 055.59931021 cm24,r c

4f 050.419, r g
4f 055.5993105.

cr c531.69 nm,DV/V55%,r g51 mm,f 052.14431020 cm24,r c
4f 052.16131022,r g

4f 052.1443104.
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ELIMINATION OF IRRADIATION POINT DEFECTS IN . . . PHYSICAL REVIEW B67, 134107 ~2003!
and B can be as large as 50%. This is the case when the
boundary sink strength is close to its classical value (r g

4f 0

small!: in this case, the grain boundary sink strength is v
sensitive to the presence of internal sinks~Fig. 2!. However,
this discrepancy is of low practical importance, since
contribution of grain boundaries to the defect elimination
small. For large values ofr g

4f 0, the self-consistency is im
proved (,13%, for kgb0

2 ;0.06kt0
2 and r g

4f 0;3.1012). The
reason for this is that, in this domain, the grain boundary s
strength is less sensitive to the presence of internal sink

F. Dislocations together with other sinks

When dealing with defect elimination on dislocations
the presence of other sinks, one must take into accoun
dislocation-defect interaction since it has a distinct value
vacancies and interstitials. The diffusion term in Eqs.~11!,
Da¹2Ca , must be changed into a diffusion and drift term

DaS ¹2Ca1
¹Ca¹Ea1Ca¹2Ea

kBT D ,

whereEa is the interaction energy of the dislocation with th
a type defect;kB is Boltzmann’s constant,T is the tempera-
ture, and we have neglected stress effects on the diffu
coefficientDa . For simplicity, the dislocation-defect interac
tion energy is assumed to have cylindrical symmetry,

Ea~r !

kBT
52LaS 1

r
1

1

2Rd2r D , ~20!

whereLa scales the amplitude of the interaction energy:

La5
mb~11n!uva

r uV
3p~12n!kBT

. ~21!

The latter is proportional to the relaxation volume of t
point defectva

r V; m andn are, respectively, the shear mod
lus and Poisson’s ratio;r is the position inside the cylindrica
cell around the dislocation andRd is the radius of the latte
cell, i.e., half the spacing between two parallel dislocatio
The form given to the interaction energy@Eq. ~20!# is taken
from Ref. 12 and has the virtue to give zero drift force at t
outer surface of the cylindrical computational cell. The fa
that Li.Lv is at the origin of the ‘‘bias’’ for defect elimina-
tion on dislocations. In the classical theory, the sink streng
of dislocations are written asZir andZvr, respectively, for
interstitials and vacancies, and a ‘‘dislocation bias’’~in favor
of interstitial elimination! is introduced as«5(Zi2Zv)/Zi .
We have computedZi , Zv , and« for several sets of param
eter values, following the procedure of Sec.IV A. For t
sake of definiteness, the dislocation-defect interactions h
been evaluated with parameter values typical ofa iron: m
58.331011 MPa, n50.29 ~Ref. 24!, vv

r 520.22, v i
r51.1

~Ref. 25!, andb50.202 nm. Three temperatures have be
explored~450,573,773 K! with, most of the time, a displace
ment rate of 1.531025 dPa s21, for three distinct disloca-
tion densities 109, 1010, and 1011 cm22 and with a secondary
sink strength ranging mostly from 0 to 2 times the disloc
tion density and in one case (r5109 cm22,T5773 K) from
13410
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0 to 20. The dimensionless parameterr d
4f 0 in this study

ranges from 2.6431025 to 1.14310211.
Figures 7 and 8 show a typical variation of the bias« and

of the bias factorsZi andZv as a function of the strength o
the internal sinks, scaled to the dislocation density, in t
typical cases. The major trends are as follows.

In the absence of internal sinks(K250), Zi5Zv and the
bias« is zero. Notice thatZv5” ad , the reduced sink strengt
of the dislocation discussed in Sec. III D@Fig. 4~a!#, sincead
was computed in the absence of the dislocation-defect in
action. The value ofZv as a function ofr d

4f 0 is given Fig.
4~b!. The variation ofZv ~or Zi) as a function of the tem-
perature and of the displacement rate follows the same qu
tative trends as that ofad as a function ofr d

4f 0. The higher
f 0 ~i.e., the higher the displacement rate or the lower
temperature!, the higherZv .

FIG. 8. Same legends as in Fig. 7 (r51010 cm22 and r d
4f 0

50.1141310210 at 773 K!.

FIG. 7. Sink strength of a dislocation network taking into a
count the defect-dislocation interaction (r51010 cm22 and r d

4f 0

50.26431024 at 450 K!. Bias factorsZi (d), Zv (s), and dislo-
cation bias« (n) as a function of the internal sink strengthK2.
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In the presence of internal sinks(K25” 0), Zi5” Zv , the
bias « is finite, increases withK2, and seems to reach
saturation value only for very large values ofK2 (K2

.20r). At small values ofK2/r, the bias increases linearl
with the reduced internal sink strength, with a slo
d«/d(K2/r) which increases from0.1 at 450 K to0.2 at 773
K, for r51010 cm22. For a given dislocation density, th
bias increases with the temperature and decreases with
displacement rate.

The bias« thus depends both on the dislocation dens
and on the internal sink strengthand reaches large value
~typically 0.10–0.3! when the internal sink strength is twic
the dislocation density. On the contrary, the bias is sm
whenever the internal sink strength is small. As an exam
in a material with a grain size of 10mm and more (kg

2 of the
order of 107 cm22 or less!, with a dislocation density of the
order of 109 cm22 or more, the bias will be negligible: e.g
at 773 K,«.0.2 kg

2/r5231023. Similarly, at the very early
stages of cavity nucleation, the bias is negligible. For
stance, for a dislocation density of 1010 cm22, if cavities
with a radius of 0.1 nm are 15 nm or more apart~i.e.,kc

2 is of
the order of 109 cm22 and the swelling of the order o
1023), the bias will be of the order of 231023 at 773 K.

Since we chose the total sink strength in the rate theor
be identical for both defects, the dislocation bias« induces a
bias for the cavities. The sink strength of a cavity in the r
theory is now written as:kca

2 5aca4pr cNc . The above dis-
cussed low values of the bias point to apossible mechanism
of the incubation dose for swelling in cold-worked materia.
Indeed the swelling rate is proportional to the bias and
latter is very small for the initial microstructure; it howev
increases with dose either because the dislocation de
decreases~so thatK2/r increases26,27! or because the slowly
growing void sink strength increases the value ofK2/r. This
point deserves further study.

Notice also that, in the classical rate theory, the high v
ues of the bias~0.15–0.25! which are deduced from the ela
tic theory of dislocation-defect interactions always conflict
with the low values~a few percent! found from empirical fits
of swelling rates or defect cluster nucleation rates. The ab
discussion sheds a new light on this long-standing con
versy.

V. CONCLUSION

We propose that the values to be given to the s
strengths in the rate theory of defect accumulation unde
radiation should be such that they give the correct value
thedefect elimination yieldson each type of sink. Indeed, th
latter drive the evolution of the microstructure under irrad
tion. The sink elimination yields are computed solving, in
cell with appropriate geometry and boundary conditions,
set of coupled nonlinear differential equations which d
13410
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scribe the diffusion of defects, in the presence of a unifo
defect production and a local bimolecular recombination
action, under stationary conditions. When several types
sinks are active, the secondary sinks are modeled by a l
effective medium in the cell. The study has been perform
for the most common sink geometries: thin plates, spher
grains, cavities, and dislocations.

The main results are the following.
~i! The sink strengths, scaled to their classical val

strongly depend onl 4f 0, a dimensionless parameter, wherel
is a characteristic length~thickness of the plate, radius of th
grain, radius of the cavity, core radius of a dislocation! and
f 0 depends on the displacement rate and on the tempera
via the thermally activated defect diffusion coefficients@Eq.
~9!#. The classical values of the sink strengths can be e
neous by several orders of magnitude for large values
l 4f 0. Empirical expressions of the reduced sink strengths
a function ofl 4f 0 are given~see captions of Figs. 1–4!

~ii ! The presence of secondary internal sinks increases
strength of the primary one. The effect is larger the sma
l 4f 0. Typical values are given in Tables I–III.

~iii ! The sink strengths as defined are additive.
~iv! The self-consistency of the embedding procedure

been studied in the case of cavities in a spherical gr
Whenever the cavities represent 18%–78% of the ove
sink strength, the same values of the sink strengths are
tained, within better than a few percent, smearing out
cavities in the grain or the grain boundary sink strength
the cell around the cavity. The sink strengths so obtained
very close~to better than 1%! to the internal sink-free value
of the sink strengths. If the contribution of the grain boun
ary is very small compared to that of cavities~below 10%!,
the above result still holds for the cavity and the total si
strength, but not for the grain boundary strength: the discr
ancy may reach 50%, at least for small values ofl 4f 0. For
large values ofl 4f 0, the self-consistency is recovered.

~v! The dislocation bias is computed along the same li
For a given dislocation density, it is found to be an increas
function of the secondary sink strength: in the absence
other sinks, the bias is zero, while it may reach large val
~0.1 to 0.4! when the internal sink strength is several tim
that of the dislocation network. Within the present fram
work, the dislocation bias induces a bias for the eliminat
of defects on neutral sinks such as cavities.

The extension of the present method to more comp
cases, such as the computation of the sink strengths w
several types of biased sinks are competing, remains to
done. The practical implications of the present interpretat
of the sink strengths are under study.
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