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Elimination of irradiation point defects in crystalline solids: Sink strengths
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The rate theory of irradiation effects in crystalline solids rests on a set of two ordinary differential equations
which, for each type of point defettacancy and self-interstitigldescribe the balance between the production
of defects on the one hand and their annihilation on the other. The latter process occurs either by mutual
recombination, a bimolecular reaction, or by elimination on point defect sinks, a first-order reaction. The
elimination rate is proportional to the defect concentration times the defect diffusion coefficient times a
geometrical factor, the “sink strength.” Thalassical expressionf sink strengths is obtained by solving the
diffusion equation of point defects in a cell, which contains the sink, and ensuring thateire valueof the
defect concentration in the cell equals the concentration in the rate theory. We pro@iteraative criterion
Since the amplitude of the irradiation effects of practical relevance is dictated Ipattigoning of the defect
annihilation between mutual recombination and elimination on sinks, we propose that the value of the sink
strength should give the correct value for the latter partitioning. The sink strengths so defined, scaled to their
classical value, are evaluated for sink geometries of practical interest and expressed as a function of one
dimensionless parameter, which is a function of the irradiation flux and temperature. Depending on the irra-
diation conditions, the correcting factors for individual sink strengths may be (asyeral orders of magni-
tude. When several types of sinks compete, we further impose that the partitioning of the elimination among
the various types of sinks has the correct value. The sink strengths, as defined in this work, are additive, at
variance with the classical ones. According to our definition, the dislocation bias, which measures the relative
difference between the sink strengths of dislocations respectively for interstitials and vacancies, is shown to
increase with the strength of neutral sinks around the dislocation. It ranges from zero when the dislocations are
the only sinks to several 10 when the neutral sinks have a strength much larger than that of dislocations. The
computation of the correcting factor is presented in such a way that it can be easily incorporated into the rate
theory of irradiation effects.
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I. INTRODUCTION ation of defect clusters, homogeneous irradiation induced
precipitation:™ etc) are favored in the first case. Those
We discuss here “high-temperature irradiation effects,”which imply the elimination of defects by sinkswelling,
i.e., effects which take place in crystalline solids under irra-growth, creep, irradiation induced segregation at sinks,
diation at temperatures and time scales where the irradiatioretc’ ) are favored in the second case.
produced point defects may migrate for large distances. Such The simplest theory of such effects is the so-called “rate
effects result from the competition between the production ofn€ory,” widely used because of its ability to yield very eas-
Frenkel pairs by nuclear collisions on the one hand and, offy orders of magnitudes and to point to basic couplings
the other hand, the annihilation of the point defects by twoAMong various irradiation effects. In its simplest form, the
distinct types of processef) the mutualrecombinationof ~ rate theory reduces to the two following coupled nonlinear
Frenkel pairs andi) the eliminationof point defects at sinks ©Ordinary differential equations for the concentratiansof
(surfaces, interfaces, dislocation cores, Jetthe yield of interstitials andc, of vacancies:
which needs not be the same for both types of defects, e.g.,

because of distinct interaction energies of the defects with %ZG—RQCU—k?DiCi,
the sink. dt
The partitioning of defect annihilation among the above
two processes is at the origin of a well-known fact: any high- de, _ 2 e
temperature irradiation effect occurs with a maximum inten- H_G Rac, kD, (c,—¢,). (1)

sity in some domain of irradiation flux and temperature. In- _ ) o
deed at high flux and low temperature, freshly createdn EQs.(1), G is the production rate of Frenkel pairs; in the

defects cannot migrate a long distance before the creation Gésent study, for the sake of simplicity, we do not consider
a new Frenkel pair and the probability for a defect to encounthe clustering of defects which may occur in the core of
ter another defect is larger than to encounter a sink: mutudfiSPlacement cascades and which results in distinct produc-
recombination dominates. The reverse is true at higher tenjf'—onz rates for isolated interstitials and vacancies. The term
perature and lower flux. At very high temperature, intersti- —KaD«C. represents the rate of loss af defects on the
tials recombine with thermal vacancies before reachinginks, and c; is the thermal equilibrium vacancy
sinks: the recombination regime again prevails. Those irraconcentratiot® The geometrical constark? is the sink
diation effects which imply defect-defect encounteucle-  strength fore defects: the higher the sink strength, the higher
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the rate of defect elimination at the sinks. The term the production and mutual recombination of Frenkel pairs in
—Rgc, represents the rate of loss of defects because dhe medium while computing defect fluxes to the stfiik?=2

mutual recombination with the rate const@tRef. 8: The way this latter correction has been derived is, how-
ever, questionable for reasons to be explained below. In Sec.

R=4zr,(D;+D,)/Q, (2 II, we derive a technique for evaluating the sink strengths, in
the presence of a homogeneous defect production and of the

where() is the atomic volume;, the recombination radius, \4cancy-interstitial recombination reaction. In Sec. Ill, the

andD,, (a=i,v), is the diffusion coefficient of defects.  (ochnique is applied to most sink geometries, while interfer-
Solving Egs.(1) under steady-state conditionsld/dt ~ gnce effects among sinks of distinct nature are studied in
=dc,/dt=0) yields the stationary vacancy and interstitial ge¢ v with special attention to the problem of dislocation
concentrations under irradiation, from which one may com+yias. The correction factors to the classical sink strengths can
pute the sink elimination yield: be given as a function afniversal parametersshich makes
5 o it easy to incorporate the present results into the rate theory
_kaDa(ca—cp) of irradiation effects.
ST o 3

Notice that, since the production rates of interstitials and Il. COMPUTATIONAL METHOD OF SINK STRENGTHS

vacancies are equal and since the recombination reaction de-I tersitial bination in th dium betw

stroys the same number of vacancies and of interstitials, th?‘ nterstiial-vacancy recombination in th€ medium between
il

defect loss rate to sinks is the same for vacancies and inte}-¢ S_mlf[f] aff_egts_tthef Shaﬁe kathe S?Led ;:oncentcrﬁlon tﬁro-
stitials, under steady-state condition&?D;c;=k’D,(c, €s in he vicinity ot each sink and theretore modiies the

—¢?) flux of defects to the sink. This fact was recognized in the

In practice, several types of sinks are fed from the defecearly 1970s by Foremahwho computed the defect concen-

. ; . . fect ation profiles in a thin foil under irradiation, with and with-
population, e.g., grain boundaries and other interfaces, dislg

i i df f S ink h.b.,[(iut internal sinks in the foil. The purpose of the study was to
cafions, cavilies, and free surfaces. some sinks may exnibit & ate to which extent the free surfaces do affect the defect
bias in favor of one of the defects while some are nedt4l.

F deling the mi tructural Ut der irradi concentration in the bulk of the foil, in order to assess the
__-ormodeling the microstructural evoiution under irra Ia'experimental conditions under which an irradiation of the
tion, one must first write the sink strengths in E¢B. as a

funcii f1h ) ructural feat ¢ int . thin foil is representative of that of a bulk sample. Later on,
unction of the microstructural teatures ot in ere(.graln . _Lam et al?° addressed the same problem, in both finite and
size, dislocation density, density of voids and dislocation

| A q | t Ea¢1) by rat i P semi-infinite media. They focused on the defect concentra-
oops, € G an compiemen q¢1) by rate equations for 4, profile, the value of the maximum defect concentration
the time evolution of the corresponding partial sink

2 and of the average concentration in the medium, as a func-
strength " . . tion of the sink density. In a most comprehensive paper,

_The simplest Expressions for the sink strengths aré o silsford and Bullougt showed that the concentrations en-
tained by assuming that the rate of defect loss on a sink '?ering the rate equatio€qs.(1)] can be viewed as average
diffusion controlled and by neglecting the recombination ré-.oncentrations in the mediljm between the siis,), pro-
action. : %)

Thus the sink strengih of the free surfaces of a thin Platgiie of Eqs(1) The authors amaithe iference between
with fch|ckr}esse IS Of. the order Of7T. /e, . and that_ of dis- the two quantities. The paper, however, does not discuss the
locations is appr0X|mate!y the d|s_|(_)cat_|on densgty The conditions under whicH is small. If such is the case, the
well-known result for unbiased cavities is procedure to compute the strength of a sink is simfle:

solve the diffusion equation in the cell around the sifiK),
4) compute the average defect concentrati@n,) in the cell,

and(iii) the value to be given to the sink strength in E(s.

is that which yields a defect concentratiop equal to the
with N the number of cavities per unit volume, the radius  latter averagécC,,).

3 AV

2 _ 12 _°Av
kic_kuc~47TNcrc_r§ VA&

of the cavities, and\V/V=r3/R? the void volume per unit The above procedure requires that, once the computation
volume (i.e., the swelling, R, being the mean half distance is done, the value of be checked and that the result is
between cavities. correct only in the case whetds small.

The strength of most sinks has been computed in this The present work introduces an alternative definition of
manner in the early 1970$or reviews, see Refs. 14—17 the sink strengths, which avoids the latter difficulty and
Moreover, at this level of approximation, the strengths of thewhich is based on the following remark. As discussed in Sec.
various types of sinks are supposed to be additive, so that tHe the quantity of interest, for practical issues, is the sink
two sink strengths entering Eq$l) are written as the elimination yieldYq, i.e., the fraction of the produced de-
weighted sum of the sink strengths of each component of théects which eliminate at the sinks. This quantity can be com-
microstructure. puted exactly in a cell around a given sink, taking into ac-

Two main corrections have been done to the simplest exeount the homogeneous production of defects by irradiation
pressions:(i) going beyond the hypothesis of additivity of and the mutual recombination. In doing so, we solve the set
the individual sink strengttié'® and (i) taking into account of coupled partial derivative of equations:
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dc ) 10* s ————" e
W_G_RCICU_FDIV Ci' :::gﬂ
o =k %’ D A
dCU _ 2 P P —e—a=5 /
T =G-RGC,+D,V-C,, (5) e —= |
whereC,, is thespace-dependerbncentration of thex-type //
defect at variance of, in Egs.(1), which is space indepen- o~
dent. Equation$5) require, to be solved, the specification of /:;;/
boundary conditions: these are the defect concentrations ggq? e e i &
the sink, which are fixed to their thermal equilibrium value H%ﬁ%
(Cf=0; C), and the zero-flux condition at the cell bound- : ﬁf?}‘( 4 4
ary in the case of a regular array of sinks. The initial condi- :::Z,f:«? © f0=e GR/DD
tion should also be specified. In the present paper, we restric Ry —
L., gee—erer H i .

ourselves to stationary regimed@,/dt=0). Solving Egs. 10" 0 10 10 10 10° 101! 1013

(5) W.it.h appr_opriate boundary conditions, under_ Steady-st_ate FIG. 1. Reduced sink strength of thin films. In the absence of
conditions, yields the steady defect flux at the sink. The sink o1 sinks 6=0), the fitted curve isw,=2.7174%2%311for x
i) p -

elimination yieldYy is simply —e*y>5x 10%.
jA_ D.VC.dA lIl. SINK STRENGTH REEXAMINED
Vs= GV ' ©) We now apply the novel technique to the most common

where the integral is taken over the surface of the siokis sink geometries: the free surfaces of a thin foil, the grain

the elementary surface area with its normal pointing towarcpoundary of a gram.descnbed as a plain sphere, a cavity
the sink core. an¥ is the volume of the cell around the sink. described as a spherical hole at the center of a spherical cell,

On the other hand, the sink elimination yield is straight—and a dislocation described as a hollow cylinder along the

forwardly obtained solving Eq€1) in the stationary regime: axis of a cylindrical cell. In the latter case, the drift of the
point defects towards the dislocation, as the result of defect-

0=G—Rgc,— kiZDici , dislocation interaction, is taken into account.
0=G—-Rcc,—k?D,(c,—c?). 7)
Simple algebra shows that a given valueYqfyields a rela- A. Free surfaces of a thin plate

tionship betweerk? andk?: Equations(5) are solved under stationary conditions in a
5 5 . slab bounded by two parallel planes, a distaa@gpart. The
_kiDic; k,D,(c,—c,) (g concentrations are fixed to their equilibrium value on the
S G G ' planes(0 for interstitials,c? for vacancies The integration
Since we focus oiY, rather than ort,,, we may impose that !s performed either with a Runge-Kutta algorithm ora shoot-
the sink strength be the same for vacancies and interstitial§)9 method of our ownY is then computed according to Eq.
ki2=k§=k2, which results inD;c;=D,(c,—c?). Equation (6), gnd the value of the sink strength of the foil surfacgs is
(7) then gives the sink strength as a functionvgfithe value  ©Ptained from Eq(9). In the parameter range we studied,
of which is given by Eq(6)]: which covers most cases of interest, X)) is an excellent
approximation, so that the sink strength is function of a
single parametefy. In Fig. 1, the curve labeled= 0 depicts

Ys

kzZm[AJF VAZ+4fo(1-Yy)], the variation of the sink strengitscaled toe™?) as a func-
° tion of f, scaled toe™*. The reduced sink strengttke?
foo . RG =ap) ranges fro.m an _asymptotic value of about 11 at low
A:T; Yo=D,c,; fO:D-D . (9)  values of the dimensionless parame#df, (<10), to a
I v

power dependence with the latter beyond abowt 1®w
Notice that, in the case wherd2<4fy(1—Y,), a very Vvalues ofe*f, correspond to a small recombination yield

simple expression holds fde: (high temperature, low irradiation flux, small foil thickngss
it is not surprising that, in this range, we fing, close to its
) [ fo classical valuer?, since the latter is computed neglecting
K*=Ys 1-Ys (100 the recombination reaction. High values@ff, correspond

to a large recombination yield: the sink strength when given
Notice that, since the value &£ given by Eq.(9) ensures its classical value can be underestimated by several orders of
that Y has the correct value, the recombination yidd  magnitude. Beyon@*f,>10°, the surface foil sink strength
=1-Y, also has its correct value. k? varies approximately af} /e (see Table)l
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TABLE |. Some values of the reduced sink strengt, 1000 . | . I ; g
= kﬁez, of the surfaces of a plate with thicknessas a function of 2 ——r
the dimensionless parameteff,, in the presence of secondary mc_kc /4nrch o /
sinks with strengtrk?=ak3(0). T ",@*

100
e*fora— 0 5 10 20 40 100 /,/
0.8873 11.01 20.28 2592 34.30 46.39 70.62 /"
33.761 11.67 20.73 26.54 35.16 47.62 7257 /
2.734x10"% 20.24 27.26 34.08 45.07 61.35 94.20 10 /
5.066<10"* 37.67 42.96 49.35 61.93 8291 127.17
1.068<10°® 77.06 8131 86.43 9813 12226 181.68 w% 4
5.402<10"7 200.71 204.38 208.43 217.53 238.68 308.95 — I'c fo
9.121x10"° 716.45 719.89 723.44 730.85 746.88 803.21 1 .
0.01 1 100 10* 10° 10° 10"

3.70x 10" 1805.3 1808.8 1812.3 1819.4 1834.1 1882.2 ' - , )
FIG. 3. Reduced sink strength of cavities. The fitted curve is

a=2.36615%C for x=r2f,<1.461x 10° and a = 1.359%"24113
for x>1.461x 10° where «. is independent of the swellings(
<10%).

B. Boundary of a spherical grain

We describe a grain as a plain sphere of radiys The

spherical surface represents th_e grain t_)ounda_ry _along Wh'cmat the number of cavities per unit volume M,
the defect concentrations are given their equilibrium values._ 3 . . .

o . . . =3/4mRZ. Note that the void volume fraction, i.e., the
The procedure is identical to that in the above section, but allin C.S AVIV=(r./R.)3. Equations(5) are solved in
the integration is performed in spherical geometry. Figure ZzwheL'C%I : eometr_( 'IEheC)défecqtucolncentrat'ons a;/e f Ied at
shows the result, with the radius of the spherical grajn, trf) . tlh 9 | l%) . | - for th ! ke of X
instead of the thickness of the foi, in the scaling factors “i Ii: \?vremr?a\?gli“ :mr'rlér; t\é?augisbgstc-"rhoorm iosr? eeffé)ctscljr:-the
(curvea=0). Much in the same way as for the thin plate, plicity, 9 P

the reduced sink strengthkgbr2=a ) ranges from an Fhermal equilibrium vacancy concentration. The defect flux
g 49 is set to zero aR;.

asymptotic value of about 12 at low values of the dimension- In the limit of swelling values of practical interest
4 .
less parameter,fo(<10) to a power dependence with the (AV/IV<10%), the void sink strength, scaled to its classical

latter beyond about £0 k3, shifts from #?/r] to f3%rg. |26 [ar=Kel4mNr = K2r2/(3AV/V)], mainly depends
When the recombination reaction becomes dominant, th% N

o . .0on the dimensionless parameirérfo, as shown in Fig. 3.
Za$3h1|3ag??2¥:nirzrrf§iilrgeObserved as in the plate, but wit gain, the classical valuea(.=1) is recovered for low val-

ues ofr‘c‘fo. The latter is underestimated by more than two

orders of magnitude in the high-recombination regime. No-
C. Cavity tice that the void sink strength depends both on the radius of

The computational cell is now a hollow sphere. The innefthe cavity and on the void volume fraction, but the scaling

cavity has a radius,, the outer sphere a radil,, such factorac only depends on the dimensionless paramelty,
in a broad range of void volume fractigop to 109, at least

10 for large values of the formerrﬂfo> 104).

gb_ sb g D. Dislocation

- ’j/ The computational cell is a hollow cylinder. The inner
cylinder with radiusry represents the dislocation core; the
outer radiusRy is fixed by the dislocation density: p
=1/wR3. The defect concentrations are given their thermal
equilibrium values at 4; the defect flux is set to zero By .
In a first step, the sink strength of the medium in the cylin-
drical cell is set to zero, and any defect-dislocation interac-
tion is ignored. Equation$5) are solved in the stationary
regime with cylindrical geometry. In the stationary regime,
since the cell contains a single sink, the dislocation core,
: vacancies, and interstitials are captured in equal amount at
10 the dislocation core. The result is depicted Fi¢g)4vhere
FIG. 2. Reduced sink strength of grain boundaries. In the apthe dislocation sink strength, scaled to its classical value
sence of internal sinks a=0), the fitted curve isag, P (ag=Kk?/p), is shown as a function off, for typical
=12.66K0015067fgr X:rgf0< 14.5a4,=8.46X%142?5for 14.5<x  values of the dislocation density. Up to a dislocation density
<1.197x10°, and arg,= 3.88624463for x>1.197x 10°. of 102 cm™2, the reduced sink strengti, is uniquely de-
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50 I T (11)], while the effect of the secondary sinfesg., cavities in
Z 0. —5—5=1.10" the grain is approximated by a lossy medium in the compu-
v e 5 f tation cell. The rate constant of the elimination reaction in
40 p=1.10 d the | . . . 2 .
e 2 e lossy medium is writteiK?,D,, by mere analogy with
p=1.10 ) .
the rate theory. We use a capit§] for the sink strength of
——p=5.10" (b) the effective medium, to remind us that the loss rate is pro-
30 i T portional to thdocal defect concentratio@ in the medium.
s One important question is as follows: would we get the same
——p=1.10" result exchanging the primary and secondary sinks in the
20 ——1.510° / com_putation procedur_e—i.e., smearing out th_e grain bound-
ary into the computation cell around the cavity rather than
—p=210° a smearing out the cavities in the grain? This will be discussed
(a)
10 e / in Secs. IVD and IVE.
,a—-ﬂ""ﬂ‘—a/ 4
0 = 40 A. Computational procedure
10* 107 10° 100 10* 100 107 10" 1 10 We first present the technique we use, taking cavities as

FIG. 4. Reduced sink strength of dislocatiof®: «q where the ~ an example. The cavity population is treated as the primary
defect-dislocation interaction is omitteth) Z, where the defect-  sink, the strength of which is namk@a (a=i,v) in the rate
dislocation interaction is taken into accouisee Sec. IVF The  theory. The secondary sinks, or sinks inside the cell sur-
fitted curves for densitiep<10' are ay=5.215%%%79%2 for x rounding each primary sink, are given a strenlgig in the
=r4fo<10"* and ag=9.708°1*3%8for x>10"* 2 ; ’

d'o = : rate theory, so thdt~ in Egs.(1) now represents the sum of

fined by the value of 4fo. For higher dislocation densities, tWO contrlbutlonsk_f:kfawtk%a (the subscript on the LHS
aqy also depends on the dislocation density, at least at small&tands for “total” sink strength As discussed in Sec. II, we
values ofr4f,. Depending on the irradiation conditions and chosek to be independent of the type of defeet Once
on the dislocation density, the classical valug€1) over- created, a defect either recombines or eliminates on a sink;
estimates or underestimates the actual sink strength by a fadie latter belongs either to the primary sink population or to
tor which can reach one order of magnitude. the secondary one. Thus, the sink elimination yield is the
The dislocation defect interaction introduces a drift termsum of two partial yieldsYs;=Yg,t Yoo, . Notice that the
in the expression of the defect flux towards the dislocationpartial yields may depend on the type of defectbecause
This term will be dealt with in Sec. IV where the effect of of some preferential interaction of one sink with one type of
internal sinks will be considered. defect, while thetotal sink elimination yield does not. Each
partial sink elimination yield can be computed according to
IV. MULTIPLE SINKS the procedure used in Sec. Ill. For doing so, we solve Egs.
The competition between several types of sinks is of par{11 with a cell geometry corresponding to the primary sink
ticular interest, i.e., cavities and dislocations. One cavity athere the cavityand with the secondary sink smeared out in
the center of a sphere approximates a regular array of cavihe cell[third term on the RHS’s of Eq$11)]. Y, iS given
ties with a given radius and a given spacing, while a cavityby Eq. (12), deduced from Eq(6),
population contains a spectrum of thése.
One might suppose that a random array could give a

rather different sink strength. Similarly, in the absence of f -D,VC,dA
other sinks, dislocations alone, despite their stronger interac- A
tion with interstitials compared to vacancies, eliminate equal Ysla:T (12)

numbers of interstitials and vacancies under stationary con-
ditions. For estimating the bias factor of dislocations for
eliminating interstitials, one must embed the dislocation
population among other sinks.

In the case where several types of sinks are present in the
cell, an effective medium approach is usédhe lossy me- f K2D,(C,—c%)dV
dium around the primary sink is modeled adding a first-order v

andYg,, by

ST . Yeoou= 13
elimination reaction on the RHS’s of Eq&): S2a GV (13
ﬁ:e_ RCC,— |<i2|3ic;i+|3ivzc;i , In Eq. (13), the integral is taken over the volume of the cell
dt V andC,, is the concentration of defeet at pointr.
d For finding the value to be given to the two sink strengths

Y =G-RGC,-K?D,(C,~c%)+D,V2C,. (11) ki, and k3, in the rate theory, we impose the following
dt condition: thetotal sink elimination yield given by the rate
In Egs.(11), we treat the defect elimination on the primary theory should be equal t¥s; as computed from Eq€12)
sink (e.g., a grain boundanby a diffusion equationEgs. and(13):
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TABLE II. Some values of the reduced sink strengtig,=k3,r 5, of the grain boundaries with radiug,

as a function of the dimensionless parame‘@ro, in the presence of secondary sinks with strenigth

=akj,.

rgfo\ a— 0 0.5 2 5 20 100 200 400
0.2557 12.50 15.00 20.40 28.10 53.41 106.91 146.28 204.66
4.0918 12.79 15.16 20.69 28.50 53.36 113.18 156.90 217.89
96.669 15.74 17.50 22.89 31.53 59.79 125.25 174.48 244.15
1197.0 24.06 25.30 29.76 38.87 72.43 153.37 214.26 300.42
96 958.0 64.15 65.03 68.07 75.43 117.31 246.75 346.01 486.65
1.126x 10’ 203.46 204.25 206.73 212.20 248.05 441.31 613.89 862.83
5.641x 10° 536.35 537.10 539.42 544.43 572.82 791.55 1018.5 1406.6
7.037x 10° 1005.1 1006.1 1008.4 1013.1 1038.7 1218.4 1479.4 1960.1

9.696x 10 1932.2 19334 19357  1940.3 1964.2  2120.7  2360.0  2880.7

k?Dic; k’D,(c,—cf) have a weak contribution to defect balance, compared to the
c G =YY= Ys1i T Ye2i = Y10+ Ye2u - recombination reaction, the effect of which controls the
(14) value of @, .
We find C. Grain boundary containing internal sinks
5 Yst The same qualitative trends are observed for the effect of
ki “21-vy) [A+VAT+4fo(1-Ys ], internal sinks on the grain boundary sink strength, but with a
s slightly different amplitude. In particular, the latter recovers
Yo its internal sink free value at much larger values of the di-
k.= ;’“[Aﬁr VAZ+4f0],  j=1,2, mensionles]s parameteff, than the thin platdsee Fig. 2
and Table I].

A=A+KZ, (15
D. Cavities together with other cavities

with A andf, defined in Eqs(9). The expression ok, as
given in Egs.(15) does indeed yield the correct partitioning
of sink elimination among the primary and secondary ones: We first check the consistency of the effective lossy me-

dium procedure for a population of cavities, by computing

K2, Yeia k2, ki, K? the sink strength of one cavity by two distinct routes.
= =5 (16) (i) Route 1: we consider one cavity of radiug at the

center of a sink free sphere of radiRs.

(i) Route 2: we consider the same cavity at the center a
large sphere of radiuR;;>R, (subscript 1 for the primary
§ink) containing many spheres of radiug, a distance R,
apart. The latter are treated as a lossy medium around the
central cavity.

) S _ As an example, with the parameter values=100a,
B. Thin plate containing internal sinks R.;=5000, R.,=600a, a=2.87X 108 cm, and réfo

In order to describe the effect of point defect sinks inside=7.038< 10°, we find a reduced sink strength of the cavity
the plate, on the defect loss at the foil surfaces, we solve Eqef 11.66 by route 1 and of 11.63 by route 2. Both values are
(11) ascribing to the sink strengtk? of the effective me- identical within 0.2%. In other words, if we estimate the sink
dium an arbitrary value. The latter is scaled klﬁ(O), the  strength of a single cavity at the center of a sink-free sphere
sink strength of the foil surfaces of the thin plate, in theof radius R; using the reduced sink strength obtained by
absence of internal sinki2=ak(0). Theresults obtained route 2, we findk?=11.63x3xr¢/R} instead of 11.683
with different values ofa are depicted in Fig. Isee also Xr./R% computed directly by route 1. For lower values of
Table ). Whenever?*f,<10°, the value of the sink strength f,, due to higher temperatures, the self-consistency still
of the foil surfaces is very sensitive to the presence of interholds although less accurate. For instance, with parameter
nal sinks. It increases rapidly with the inner sink strength and/alues typical of a iron (Djo=3x10 *cn? s LE,
can be multiplied by a factor of 7 when the strength of the=0.28 eV for interstitial diffusion,D,,=5.0 cnfs 1,E,
sinks inside the foil is 100 times of that of the foil surfaces.=1.36 eV for vacancy diffusion, anl;,=1.6 eV for va-

At larger values o&*f, the sink strength of the foil surfaces cancy formatioh, at a displacement rate of 10 dPas? as
becomes independent of the internal sinks: indeed, the lattebove and for a temperature of 773 K, we obtain a reduced

1. One cavity among identical cavities

kga YSZa' Ysla YsZa Yst.

The above relationshig€Eqgs. (16)] are important in de-
scribing the rate of microstructural evolution under irradia-
tion, since the latter depends on the detailed partitioning o
the defect elimination among competing sinks.
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FIG. 5. Total sink strength of cavities in the presence of internal F|G. 6. Sink strength of a cavity population with a size distri-
sinks with strengthi<?=ak?. bution (A): (a) Sink strength of each array of identical voidS).
(b) Total sink strength of the void distribution computed in nine
sink strength of 1.47 by route 1 and of 1.31 by routevth  different ways @) (see text
R.1 up to 500@). The sink strength of the cavity is thus 1.3
times larger than the classical value, to a consistency bettelistribution shown by the open triangles in Fig. 6. The latter

than 11%. The embedding procedure is thus justified. shows the number of voids per unit volume, as a function of
o _ the radius of the void; nine classes of void radius have been
2. One cavity with other sinks defined. The sink strength of each class of void in the ab-

As discussed above, the sink strengths as defined in th@ence of the other classes, has been computed according to
paper are additive. As an example, we consider a cavity o€ procedure given in Sec. IllQFig. 3 for f,=1.62
radiusr., at the center of a sphere of radiBs containing < 10°* cm™“. The result is sketched on Fig. 6 by the open
internal sinks, the strength of whichk& in Egs.(11). In the circles(“void array”). The total sink strength has then been

absence of internal sinks, the sink strength of the cavity is Computed following the procedure given in Sec. IV A, taking
the cavities of class as the primary sink and all other cavi-

k2=3a.(0)r /R, (17) ties (1 toi—1 andi+1 to 9 as the secondary sinks. The
) secondary sink strength was taken as the sum of the corre-
where a.(0) refers to the V?Iue Oacz'” the absence of  gnonding individual strengths. The total sink strength is thus
internal sinks. Let us writk® asaXk; and compute the computed in nine distinct manners, all of which give the
total sink strength in the sphereavity + internal sink$,  same resultsolid circles in Fig. 6.
using the procedure described in Sec. IV A. As shown in Fig.

5, in the explored range (9a<100) we find E. Cavities together with grain boundaries

kK2=(1+a)k?, ie., k=k3+K?2 (18 Consider a spherical graifwith radiusrg), containing
cavities (with radiusr., a distance R aparl. We want to
3. Cavities with a size distribution assess whether we get the same sink stren@ttal and

artia), embedding the grain boundafprimary sink into
he cavitiegsecondary sinkor doing the reverse, i.e., smear-
ing out the grain boundary sink strengtiecondary sink

The above additivity makes it easy to compute the sin
strength of a population of cavities of various sizes the
number of cavities of radius; per unit volume isN; (i Lo .
=1-p). We first embed the cavities of class 1 into the ef-aro.ll_J:;j tsr;r?kcasllrlteﬁprtlr?f]}/ tshlgléé:avit lone is k2= 3a,(0)
fective medium containing the cavities of class 2 as internal>< IR wh go i< the red ﬁd K tCO tC:]C ¢ th
sinks and compute the total sink strength, of this void Fe where a(0) is the reduced sink strength of the

o
subpopulation. We then embed class 3 into the effective mec;avity in _the absence of internal _sinks and is shqwn 20n Fig.
diumk? ,, etc. Itis easily found that the total sink strength of3‘ The szk strength of the gramn boundaa_jone IS Kgpo
the full ’cavity population is =agb(Q)/rg; here,a_gb(O) is the reducc_ed sink s;rength of
the grain boundary in the absence of internal sinks Q)
(Fig. 2). In a first step(procedure A we consider the cavity
k?=,2 agdmriN;, (19 as the primary sink and the grain boundary as the secondary
=L one. This means that we solve E@$1) for the cavity(hol-
where ay; is the internal sink free reduced sink strength oflow sphere geometjygiving to the internal sink strengt?
theith class of cavities, as given in Fig. 3, i.e., for the valuethe grain boundary strengltﬁbo. From Egs.(12)—(15), we
of the dimensionless variable (). get the two partial sink strengthe?, and kgbz where the
As an example, we have studied in more detail the totaSubscriptl andgb2 point to the fact that the cavity is the
sink strength of a population of cavities defined by the sizeprimary sink and the grain boundary is the secondary one. In
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TABLE lll. Some values of the reduced sink strengthy,= kﬁ/p, of dislocations as a function of the
dimensionless parameteﬁfo and of the dislocation density (cm™2).

rafovp— 1x10% 5x 10" 1x 10" 1x10" 1.5x10° 2.8x10°

1.068x10°® 0.039 0.079 0.358 0.734 0.718 0.716
1.068<10 ' 0.124 0.244 0.737 0.831 0.817 0.819
1.068<10°° 0.376 0.659 0.990 0.958 0.952 0.955
1.068x10°° 0.938 1.154 1.173 1.141 1.139 1.142
1.068<10 * 1.486 1.483 1.423 1.406 1.406 1.409
1.068x10° 1.905 1.856 1.814 1.805 1.805 1.808
1.068x 102 2.497 2.461 2.434 2.428 2.429 2.430
1.068x10°* 3.497 3.438 3.448 3.443 3.442 3.441
3.563<10* 4.276 4.249 4.228 4.222 4.220 4.216
1.649 5.711 5.649 5.601 5.589 5.585 5.578

a second stefprocedure B, we consider the grain boundary cal value. Typical results are given in Tables Ill and IV. The
as the primary sink and the cavities as the secondary one. Weain result is as follows. In the range where @ﬂéolk
therefore solve Eqg11) for the grain geometryplain sphere  <0.79 withk k20+ k2 gbo [see Tables IVa) and IV(b)], the
with the surface as grain boundaa,ngiving to the internal sink strength:{partlal and totalequal their internal sink free
sink strengthK? that of the cavitiesk? co- Equations(12)-  values ((,0) within less than 4%, and the above procedures A
(15 now yield kgbl andkZ, where the labels 1 and 2 have and B give the same result within better than 7%. This means
been permuted. that the self-consistency of the embedding procedure is veri-
We have performed the above calculations for a series died to better than 7%. When the grain boundary is the mi-
parameter values, varying the relative strength of the cavitiesority sink, k2 bo/kto\o 1[see Table I\¥c)], the above con-
versus that of the grain boundary, and for a broad range aflusion remams valid for the cavity and total sink strengths
reduced sink strengthsy,(0) anda(0), i.e., with ki, (x k& andkf, but not for the grain boundaikf,. For the latter,
=c or gb) values close to—or far away from—thelr ClaSSI the discrepancy Wlﬂkgbo as well as between procedures A

TABLE IV. Assessment of the self-consistency of the embedding procedure for cavities together with
grain boundaries. The strength of each individual sink alone appears in column 2. The strengths computed
embedding the cavity in a lossy medium representing the grain bouriagedure A are given in column
3; those obtained embedding the grain boundary in a lossy medium representing the gagtedure B
are given in column 4f, andy, are computed from the temperature and displacement rate, with parameter
values typical of a-Fe: D;p=3.0x10 *cnfs LE,=0.28 eV for interstitial diffusion, D,
=5.0 cnfs 1,En,=1.36 eV for vacancy diffusion, andl;,=1.6 eV for vacancy formation.

k? (cm ?) @ Isolated Procedure A Procedure B (k3—k3)/k4
Cavity 3.11210'° 3.115x< 10° 3.015x< 10° —0.032
Grain boundary 1.45710% 1.414x 10" 1.457< 10" +0.030
Total 1.768< 10" 1.725< 101 1.759< 101 +0.019
Cavity/total 0.176 0.181 0.171 —0.055
k? (cm 2) P Isolated Procedure A Procedure B (k3—Kk3)/Ki
Cavity 3.526< 10° 3.527x 10° 3.514x 10° —0.003
Grain boundary 9.49810° 9.156x 10° 9.552x 10° +0.043
Total 4.476<10° 4.443<10° 4.469< 10° +0.006
Cavity/total 0.788 0.794 0.786 —0.010
k? (cm 2 ¢ Isolated Procedure A Procedure B (k3—k3)/K4
Cavity 3.621x 10° 3.639x 10'° 3.500x 10'° —0.038
Grain boundary 4.50710° 4.381x 10° 6.622x 10° +0.512
Total 4.072< 10 4.077x10% 4.162< 100 +0.021
Cavity/total 0.889 0.893 0.841 —0.058

a'r =49.41 NmAV/V=102ry=1 um,f,=3.123< 107 cm™*, r{fo=1.862< 10°,r§fo=3.123< 10",
re=29.41 NmAV/V=0.005f ;=10 um,f=5.599< 107" cm™* r¢f,=0.419,rf=5.599< 10°.
rc=31.69 NMAV/V=5%r,=1 um,fo=2.144<10%° cm * r¢f,=2.161x 10*2 refo=2.144<10".
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and B can be as large as 50%. This is the case when the grai 12 0.6
boundary sink strength is close to its classical valugaf(( N
smal): in this case, the grain boundary sink strength is very . 10 0.5
sensitive to the presence of internal sirfkgy. 2). However, £ 'ig:r—e—f"h__e_ﬁr__k
this discrepancy is of low practical importance, since theg ¢ | [z 04
contribution of grain boundaries to the defect elimination is-é ——Zv P
small. For large values afgfo, the self-consistency is im- 03 A
proved (<13%, for kj,,~0.06&, andrgfo~3.109). The '
reason for this is that, in this domain, the grain boundary sink

. . . . 4 - 0.2
strength is less sensitive to the presence of internal sinks. +a|

. . . . 2 —-“‘"’"ﬁfd‘ 0.1
F. Dislocations together with other sinks /A//‘r"

When dealing with defect elimination on dislocations in i /r“"’/ .
the presence of other sinks, one must take into account th 0 0.5 1 1.5 2
dislocation-defect interaction since it has a distinct value for K4p(10" em™?)
vacancies and interstitials. The diffusion term in E(fL), FIG. 7. Sink strength of a dislocation network taking into ac-

D,V?C,, must be changed into a diffusion and drift term count the defect-dislocation interactiop10° cm2 and rafo

) =0.264x 10" 4 at 450 K. Bias factorsZ; (@), Z, (O), and dislo-
VC,VE,+C,V°E, cation biase (A) as a function of the internal sink strengtf.
kgT '

whereE,, is the interaction energy of the dislocation with the

a type defectkg is Boltzmann’s constant is the tempera- 0 to 20. The dimensionless parametérfo in this study
ture, and we have neglected stress effects on the diffusioranges from 2.64 10 ° to 1.14x<10 1%,

coefficientD . For simplicity, the dislocation-defect interac-  Figures 7 and 8 show a typical variation of the biaand

Da(vzcaJr

tion energy is assumed to have cylindrical symmetry, of the bias factorg; andZ, as a function of the strength of
the internal sinks, scaled to the dislocation density, in two
Ea(r) . EJF 1 ) (20  typical cases. The major trends are as follows.
kgT “\r 2Rg—r)’ In the absence of internal sink&2=0), Z;=2, and the

biase is zero. Notice thaZ , # a4, the reduced sink strength
of the dislocation discussed in Sec. ll[Big. 4a)], sinceay

ub(1+v)|v"|Q was computed in the absence of the dislocation-defect inter-
azm. (21)  action. The value oZ, as a function ofr§f, is given Fig.

B 4(b). The variation ofZ, (or Z;) as a function of the tem-

The latter is proportional to the relaxation volume of the perature and of the displacement rate follows the same quali-
point defect! ); u andv are, respectively, the shear modu- tative trends as that afy as a function of &f,. The higher
lus and Poisson’s rati@;is the position inside the cylindrical fq (i.e., the higher the displacement rate or the lower the
cell around the dislocation arfg; is the radius of the latter temperaturg the higherZ, .
cell, i.e., half the spacing between two parallel dislocations.
The form given to the interaction enerfigg. (20)] is taken 4 0.8
from Ref. 12 and has the virtue to give zero drift force at the
outer surface of the cylindrical computational cell. The fact N> ——7j
thatL;>L, is at the origin of the “bias” for defect elimina- &
tion on dislocations. In the classical theory, the sink strength
of dislocations are written a&;p andZ,p, respectively, for
interstitials and vacancies, and a “dislocation biis’' favor
of interstitial elimination is introduced as=(Z,—2,)/Z;. 2 0.4
We have computed;, Z,, ande for several sets of param-
eter values, following the procedure of Sec.IV A. For the
sake of definiteness, the dislocation-defect interactions have et s
been evaluated with parameter values typicakofron:
=8.3x 10" MPa, v=0.29 (Ref. 24, v/ =-0.22, v]{=1.1 ]
(Ref. 25, andb=0.202 nm. Three temperatures have been /
explored(450,573,773 Kwith, most of the time, a displace-
ment rate of 1.% 10 ° dPa s, for three distinct disloca-
tion densities 1% 10%°, and 16 cm™2 and with a secondary
sink strength ranging mostly from 0 to 2 times the disloca- FIG. 8. Same legends as in Fig. =10 cm 2 and rif,
tion density and in one case€ 10° cm 2, T=773 K) from  =0.1141x 10 ° at 773 K.

wherelL , scales the amplitude of the interaction energy:

rn
Bias factor Z
(V]

Bias &

0 0.5 1 1.5 2
K4p(10" em®)
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In the presence of internal sinkK?+#0), Z;#Z,, the  scribe the diffusion of defects, in the presence of a uniform
bias e is finite, increases wittk2, and seems to reach a defect production and a local bimolecular recombination re-
saturation value only for very large values &f (K2  action, under stationary conditions. When several types of
>20p). At small values oK ?/p, the bias increases linearly Sinks are active, the secondary sinks are modeled by a lossy
with the reduced internal sink strength, with a slope€ffective medium in the cell. The study has been performed
el 8(K2/p) which increases frord.1at 450 K to0.2at 773 for _the most common _smk geometries: thin plates, spherical
K, for p=10% cm 2. For a given dislocation density, the 9rains, cavities, and dislocations.
bias increases with the temperature and decreases with the 1N€ main results are the following. _
displacement rate. (i) The sink strengths,.scale.d to their classical value,

The biase thus depends both on the dislocation densityStrongly depend oif'fo, a dimensionless parameter, where
and on the internal sink strengthnd reaches large values IS @ characteristic lengtfthickness of the plate, radius of the
(typically 0.10-0.3 when the internal sink strength is twice 9rain, radius of the cavity, core radius of a dislocatiand
the dislocation density. On the contrary, the bias is smalfo depends on the displacement rate and on the temperature
whenever the internal sink strength is small. As an exampleYia the thermally activated defect diffusion coefficiefi).
in a material with a grain size of 1am and more Kg of the (9)]. The classical values of the S|r_1k strengths can be erro-
order of 10 cm™2 or less, with a dislocation density of the n4eous by_s_everal orde_rs of magnitude for .Iarge values of
order of 18 cm™2 or more, the bias will be negligible: e.g., I*fo. ET“P'”C*"}J expressions of the reduced sink strengths as
at 773 K,e=0.2 kS/p=2>< 1073, Similarly, at the very early a fu__nctlon ofl*f, are given(see captions of Figs. 134
stages of cavity nucleation, the bias is negligible. For in- (i) The presence of secondary '”te”“?" sinks increases the
stance, for a dislocation density of ®@m 2, if cavities strength of the primary one. The effect is larger the smaller

: . . . I4fo. Typical values are given in Tables I-IlI.
with a radius of 0.1 nm are 15 nm or more ap@#., k? is of 0. . . ..
the order of 18 cm 2 and the swelling ofp(the ocrder of (iii) The sink strengths as defined are additive.
10-2), the bias will be of the order of 210 2 at 773 K (iv) The self-consistency of the embedding procedure has

. . ) been studied in the case of cavities in a spherical grain.
Slnce_ we chose the total sink st_rength_m thg _rate theory ®Qhenever the cavities represent 18%—-78% of the overall
be identical for both defects, the dislocation béamduces a

. o ) o sink strength, the same values of the sink strengths are ob-
bias for_ the cavities. The 2slnk strength of a cavity in th(_a rate[ained, within better than a few percent, smearing out the
theory is now written aske, = ac,4mrN.. The above dis-  cyifies in the grain or the grain boundary sink strength in
cussed low values of the bias point tgassible mechanism he cell around the cavity. The sink strengths so obtained are
of the incubation _dose for_swelllng in cold-worked_ materials very close(to better than 196to the internal sink-free values
Indeed the swelling rate is proportional to the bias and they the sink strengths. If the contribution of the grain bound-
latter is very small for the initial microstructure; it however ary is very small compared to that of cavitiéslow 10%
increases with doge either b‘g%%azuse the dislocation densifie apove result still holds for the cavity and the total sink
decreasesso thatk“/p increases” ) or because the slowly  sirength, but not for the grain boundary strength: the discrep-
growing void sink strength increases the valu&dfp. This ancy may reach 50%, at least for small valued“6f,. For
point deserves further study. large values of“f,, the self-consistency is recovered.

Notice also that, in the classical rate theory, the high val- /) The dislocation bias is computed along the same line.
ues of the bia0.15-0.25 which are deduced from the elas- rqr 5 given dislocation density, it is found to be an increasing

tic theory of dislocation-defect interactions always conflictedsnction of the secondary sink strength: in the absence of
with the low valuesa few percentfound from empirical fits  oher sinks, the bias is zero, while it may reach large values
of swelling rates or defect cluster nucleation rates. The abovg, 1 tq 0.4 when the internal sink strength is several times
discussion sheds a new light on this long-standing controg4; of the dislocation network. Within the present frame-
Versy. work, the dislocation bias induces a bias for the elimination
of defects on neutral sinks such as cavities.

V. CONCLUSION The extension of the present method to more complex
\cases, such as the computation of the sink strengths when
several types of biased sinks are competing, remains to be
gone. The practical implications of the present interpretation
of the sink strengths are under study.

We propose that the values to be given to the sin
strengths in the rate theory of defect accumulation under ir
radiation should be such that they give the correct value o
thedefect elimination yielden each type of sink. Indeed, the
latter drive the evolution of the microstructure under irradia-
tion. The sink elimination yields are computed solving, in a
cell with appropriate geometry and boundary conditions, the The authors gratefully acknowledge fruitful discussions
set of coupled nonlinear differential equations which de-with Dr. J.L. Bocquet and Dr. J. Dalla-Torre.
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