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Disorder-induced vibrational localization
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The vibrational equivalent of the Anderson tight-binding electron Hamiltonian has been studied, with par-
ticular focus on the properties of the eigenstates at the transition from extended to localized states. The critical
energy has been found approximately for several degrees of force-constant disorder in an fcc lattice using
system-size scaling of the multifractal spectra of the eigenmodes, and the spectrum at which there is no
system-size dependence has been obtained. This is shown to be in good agreement with the critical spectrum
for the electronic problem, which has been derived both numerically and by analytic means. Universality of the
critical states is therefore suggested also to hold for the vibrational problem.
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The Anderson electron-localization probliis one that There are several methods for distinguishing extended
has attracted much attention over the past 40 yrs. The fadtom localized states, e.g., by looking at the properties of the
that the problem can be stated so simply, and yet have staHamiltonian, such as the transfer matrix metfiddybserv-
tling complex consequences, has made it a challenging topiag differences in the level-spacing statistficsising the
to work on? Indeed, only recently has it been possible toThouless criteriof, or by looking at the eigenstates them-
verify numerically many of the theoretical results on power-selves. The latter is not trivial though, since as the critical
ful supercomputerdHowever, the closely related vibrational energy is approached from the localized regime, the localiza-
problem has not been explored to the same degree, despiien length diverges. Thus, for a finite system size, the eigen-
being similar enough to use the same techniques, yet diffeimodes quickly become extended over a larger range than the
ent enough to produce new and interesting results. system size and it becomes difficult to assess whether a state

The phenomenon of localization is a second-order phasg truly localized or extended. These states are known as
transition between eigenstates that are spatially localized ange|ocalized state¥:'* and to characterize these as localized
those that are delocalized or extendeth the thermody- or extended, we can use multifractal analy®itFA).>2
namic limit, extended_ eigen_modes would cover the _Whole It has been suggested that the eigenmode at exactly the
Space, whereas localized eigenstates are thOSG.WhICh o critical energy will show multifractal characteristits.
involve a local subset of the system within a typical IOCal'The standard way of characterizing the multifractality is the

ization Iength. In the crystalline case for both thg electronic ingularity spectrum, which has been shown for elecitbns
and vibrational problems, the eigenstates are simple BIocﬁ

states due to translational invariance, and are therefore exc-J be universal for an isotropic systelsee Ref. 15 for treat-

tended. For the electronic problem, disorder is generally in-ment of an anisotropic systérand independent of the prob-

troduced either in the on-site energy terfaiagonal disor- ability di§tributipn of the disorder. The analytic predictions
den or the interaction termsoff-diagonal disorder? In a  for the singularity spectrurff, based on thel=2+ ¢ expan-
three-dimensional lattice with weak diagonal disorder, theréion of thf nonlinearr model, are in good agreement with
are two critical energies, at the top and bottom of the band, dtumerics.
which the localization-delocalizatiof.D) transition occurs. The aim of this paper is twofold. First, we use MFA in
As the degree of disorder is increased, these two criticaprder to identify the threshold energy of the LD transition for
energies approach, and finally meet. At this point, all thedifferent degrees of force-constant disorder and thus obtain a
eigenmodes are localized and the system becomes an electiphase diagram” in the frequency-disorder plane for vibra-
cal insulator. This transition is termed the metal-insulatortional excitations in disordered models. Second, we demon-
transition (MIT).> Off-diagonal disorder produces a funda- strate the universal features of the multifractal critical states
mentally different behavior: at no level of disorder are all theat the LD transitition for the vibrational problem.
eigenmodes localized, and hence there is no MIT for the We can use the idea of critical multifractality to determine
entire band. whether the states are extended or localized by looking at
Our approach to the problem of vibrational localization how the singularity spectrum, characterizing the eigenmode,
has been numerical, applying high-perfomance computers tchanges with simulation-system size. For a true multifractal
the task of obtaining the eigenmodes. The Anderson electrostate, assuming that finite-size effects are small, the singular-
Hamiltonian can be expressed on a site basis, giving a spargg spectrum will not depend on the simulation box size,
matrix representation of the problem, for which the eigen-whereas the spectra for states on either side of the LD tran-
vectors can then be found by using standard Lanczos metlsition will vary. Hence, by calculating the singularity spec-
ods. Modern computers can solve such eigenproblems fdrum for different system sizes, we can locate the critical
many millions of atomic sites. A bigger problem is how to energy**
recognize quantitatively the difference between localized and The harmonic vibrational problem that is addressed in this
extended states. paper can be formulated in a way very similar to the Ander-
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son electron problert. For vibrations, the equivalent of the low. To calculate the scaling exponents, we define the mea-
electronic Hamiltonian is the symmetric dynamical operatorsure Pi(Lb):Ejebo>g(Lb)|uj|2 as the sum of the squared

displacementsu;|? of all the atoms within the ith box of
D= > Diayip(li @) —1i,a)(i.8l—(.8D, @ sizeL,=<L for a particular eigenmode, and examine how this
(i)(iB) measure scales withy,, or equivalently, withh=L, /L. We
plit our system up intdN(\) boxes that completely and

with |i, @) being the site basis describing the displacement Oixactly cover the system so thi(\)—=A-¢. The standard

atomi (i=1,...N) along the Cartesian direction (« normalization of the eigenmodes leads to a scaling law for
=1,...d, with d as the dimensionalily The matrix ele- 9 d ; 9

N ~ X ) the measure of the foriP(Ly))_>\® averaging over all
mentsD ;)i ) = (kij/2) (rij) o(Tij) s are defined in terms of oy eas
force constantsq;; and unit vectorsr;;, connecting the at- The assumption underlying multifractal analysis is that,

omsi andj (for simplicity, all masses are taken to be equal,for a finite interval of\, theqth moments of thé>(L,) also
m;=1). The dynamical matrix consists dfxd blocks with  scale with power laws( Pq(Lb)>|_0<7\d+T(q), where 7(q) is
strong lattice symmetry-dictated correlations inside thQndependent of\. The range of\ in our case has a lower
blocks. Additionally, all elements of the on-diagonal blocks hound at the interatomic spacing, since we are dealing with a
are the sumswith opposite sighof similar elements of off-  discrete rather than a continuous system. The upper bound
diagonal blocks, reflecting the sum-rule correlations in the /2 is dictated by finite-size effects. In the thermodynamic
dynamical matrix. Therefore, in the case of nearest-neighbaimit, asL.— o (A —0), the states that satisfy the multifractal

interactions considered below, the number of correlations becondition are only found exactly at the critical energy, and
tween the elements in the dynamical matrix is comparablghus the exponents are defined uniquely as

with the number of independent random variables.
There are three main differences between the vibrational - In({(PY(Lp)))
and Anderson electron problems. First, when there are no 7(q) = lim ——~————
negative values ok;; , the system is mechanically stable, so A0
there are no negative eigenvalues, unlike the electron case.
Second, the basic Anderson formulation gives a symmetrigio

band structure. The vibrational case is asymmetric for th%btain the singularity spectrurfi{e), wherea is defined as
third reason: there ai@zero-frequency modes that cannot be a(q)=dr(q)/dg and f(a) can be ,obtained from the Leg-
localized since they correspond to bulk translational dis- ; _ _ i
placements of the systerfGoldstone modes Since the endre transformation of(q), f(a(q))=a(g)q-1(q). Cal

) , .culation of the singularity spectrum using the Legendre
lower bound of the spectrum is constrained to be extended i ansformation suffers from numerical errors, o it is more

character, we expggt thatina smgle-band model there will b onvenient to calculaté and « parametrically as a direct
only one LD transition near the high-frequency band edge.function of P(Ly):2°
There are two major classes of the model, which can be b7

@

In practice,r(q) is found by performing a linear regres-
n of the calculated exponents withNnFrom this, we can

used in studying localization: structures based on an under- 1 PI(L,)

lying crystalline lattice with introduced disorder, and struc- a(q)=— 2, =———=InP;(Ly), 3)
tures that have been created in an effort to recreate the dis- INA boxesZ(0,Lp)

tribution of atomic positions and bond angles found in real

amorphous materials. For our study, we have chosen to ana- 1 Pi(Lp) .

lyze lattice models from the first class, with an underlying fa) =1y 2sZ7(q.Ly) InP{(Ly), (4)

fcc geometry and with the;; in Eq. (1) taken from a prob-

ability distributionp(«). This is one of the simplest models whereZ(q,Lp) == poxedP(Lp)-

and can be easily compared with the established results for Since we cannot take the limit—0 in Egs.(3) and (4),

the electron-localization problem for similar models. Thethe values off(q) and«(q) are calculated by performing a
distribution p(«) has been chosen to be a unifoifilmox)  linear regression of the respective sums with respect %o In
distribution, centered at,=1 with a full width A<2ky in  The linearity of these graphs is a good check of the multi-
order to give both a simple random distribution and onefractal nature of the measure.

where there are no negative force constaht®ur models Care has to be taken about the box sizes used in the analy-
are face-centered cubic and range in size flom16 with  sis. For example, taking the box to include just one atomic
4096 atoms up td =48 with N=110592 atoms. site proved to skew the regression, as it did when taking the

A multifractal is a generalization of a standard geometricbox size to be that of the entire system. The reason for the
fractal for the case when a single fractal dimension cannoformer is that the multifractality must break down at some
characterize the systetiFor each point in our measure, we point, certainly for box sizes of the order of the atomic spac-
can define a valuex(r) that describes the scaling of the ing. Finite-size effects account for the discrepancy for the
measure with. around that point. We now take the set of all largest box size.
points with a specifiex, which itself is a fractal, with dimen- The singularity spectra of the eigenmodes around the
sionality f(a). The curvef («) is known as the multifractal critical energy fluctuate strongly, and so it becomes neces-
spectrum, or singularity spectrum, and can be used to chasary to take an average. Ideally, we would like to average
acterize eigenmodes as localized or extended, as shown bever different realizations of disorder, but in practice this is
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FIG. 1. Estimation of the localization edge far=1.5. Each FIG. 3. Phase diagram showing the boundary between extended
line is for a different frequency, frorw?=9.3 at the bottom to 9.5 and localized vibrational states for a force-constant disordered fcc
at the top in steps of 0.02. The critical frequency is the frequency afttice. The VDOS for the crystal and the lattice with=2.0 have
which this line has zero gradient. Note the bold line shown, with&/SC been plotted to show the location of the mobility edgg,

approximately zero gradient, corresponds d8=9.4 and is at within the band tail of the disordered system. The band edge calcu-
@(0)=4.0. lated with CPA is also shown for reference.

only realistic for the smaller size models. For larger models, . . ) ) ]
we take the computationally cheaper option of averagingiz€ independent, at whio(w?) crosses the abscissa. We

consecutive eigenmodes, which can be obtained simply ifan get addi_tional_ informa@ion by looking at different_vglues
the Lanczos algorithr®® In order to reduce errors, we have ©f 0. In practice, sincex(q) is strongly correlated for similar
used the gliding-box method, averaging over all possible ori: We have looked at the representative valges0 and 1,
gins when dividing the system into box¥s. for which g(w?) has opposite signsee Fig. 2

Once we have the spectra, we can find the frequency at Initially, the analysis was undertaken throughout the
which there is no change with the system size to locate th@coustic band. We did not expegt to find localization at the
mobility edge. Empirically, it was notédthat for the Ander-  lower (zero-frequencyband edgé? and indeed it was found
son case, a plot ak(q) against (IrL)~* gave a good linear that 'Fhere was only one LD phase transition, located in the
fit with a different sign of the gradierg=da(q)/d(InL)"? far high-energy ban_d tail. Th(_a ba_nd edge calculated within
on either side of the transition. The same holds true for vithe coherent-potential approximatioc@PA) was found to be
brational models, as clearly demonstrated in Fig. 1. We hav@uite close to the true Ipcallzatlon threshold, as can.be seen
therefore performed a linear regression on these curves, affd Fig- 3, and therefore it can be used as a rough estimate for
the gradients of these lines have been plotted at differerfh® frequency of the actual LD transition .

energies to find the point where the singularity spectrum is Having found the position of the mobility edge for several
values of the force-constant disordey we can plot these to

produce a phase diagram of the eigenmodes. This is shown
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FIG. 2. Plot ofg(w?)=da(q,w?)/d(InL)"* for g=0 and 1.
The squared critical frequenayi is given by the zero-crossing FIG. 4. Critical spectra for the force-constant disordered mod-
point of the graph. In this casmi is between 9.4 and 9.44. els. The PA to Wegner’s resulRef. 16 is shown for comparison.
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alongside the vibrational density of states and the CPA bantVegner result is for the electronic Anderson model, yet it
edge in Fig. 3. As the localization edge is in the band tail andstill fits well to the vibrational data, indicating a universality
we are limited to finite-size systems, few states are localizedor the two different systems. The large error bars at high
With increasingA, the mobility edge decreases in frequencyare in the region wherg is negative, wherd and o are

with respect to the CPA band edge. However, since the banstrongly dependent on the smallest values of the measure and

is broadening more rapidly with increasing disorder, the reyyhere the errors in the eigenmodes themselves are the
sult is that the critical frequency actually increases with disqargest.

order, and thus there is no vibrational analog to the electronic 14 conclude. we have investigated the localization phe-
MIT in this case, for the acoustic band of an fcc crystal. Angmenon for vibrational excitations in disordered structures,
similar behavior of the mobility edge with disorder can beging an fcc lattice model with force-constant disorder for
seen in the phase diagram of the Anderson electron modely,jysis. Using MFA, we have confirmed the existence of
with off-diagonal d|sord§‘?. _ » only one LD transition in the upper tail of the acoustic band,
For ea(;h degree of dlsorder,' we obtain a new critical specsng found the energy at which it occurs for different degrees
trum that is constant for each size. These critical spectra havg gisorder. The eigenmodes at the threshold have been
been plotted in Fig. 4, showing that for positive valuesipf - ghown to be multifractal states exhibiting a quantitatively

i.e., the left-hand side of the graph, all the spectra fit onto &;mjjar distribution function to that of the critical states in the
master curve. The parabolic approximati®®) to Wegner's  glactron Anderson model.

analytic resuft® is one which goes through the critical points

f(a=4)=3 andf(a=2)=2, where the latter corresponds = We are grateful to R. Ruer for supplying us with an
to the information dimension of the eigenmode. This PA hasViFA code?! and to M. Schreiber for instructive communi-
also been plotted on the graph for comparison. Note that theations.
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