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Disorder-induced vibrational localization
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The vibrational equivalent of the Anderson tight-binding electron Hamiltonian has been studied, with par-
ticular focus on the properties of the eigenstates at the transition from extended to localized states. The critical
energy has been found approximately for several degrees of force-constant disorder in an fcc lattice using
system-size scaling of the multifractal spectra of the eigenmodes, and the spectrum at which there is no
system-size dependence has been obtained. This is shown to be in good agreement with the critical spectrum
for the electronic problem, which has been derived both numerically and by analytic means. Universality of the
critical states is therefore suggested also to hold for the vibrational problem.
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The Anderson electron-localization problem1 is one that
has attracted much attention over the past 40 yrs. The
that the problem can be stated so simply, and yet have
tling complex consequences, has made it a challenging t
to work on.2 Indeed, only recently has it been possible
verify numerically many of the theoretical results on pow
ful supercomputers.3 However, the closely related vibrationa
problem has not been explored to the same degree, de
being similar enough to use the same techniques, yet di
ent enough to produce new and interesting results.

The phenomenon of localization is a second-order ph
transition between eigenstates that are spatially localized
those that are delocalized or extended.4 In the thermody-
namic limit, extended eigenmodes would cover the wh
space, whereas localized eigenstates are those which
involve a local subset of the system within a typical loc
ization length. In the crystalline case for both the electro
and vibrational problems, the eigenstates are simple Bl
states due to translational invariance, and are therefore
tended. For the electronic problem, disorder is generally
troduced either in the on-site energy terms~diagonal disor-
der! or the interaction terms~off-diagonal disorder!.2 In a
three-dimensional lattice with weak diagonal disorder, th
are two critical energies, at the top and bottom of the band
which the localization-delocalization~LD! transition occurs.
As the degree of disorder is increased, these two crit
energies approach, and finally meet. At this point, all
eigenmodes are localized and the system becomes an el
cal insulator. This transition is termed the metal-insula
transition ~MIT !.5 Off-diagonal disorder produces a fund
mentally different behavior: at no level of disorder are all t
eigenmodes localized, and hence there is no MIT for
entire band.6

Our approach to the problem of vibrational localizati
has been numerical, applying high-perfomance computer
the task of obtaining the eigenmodes. The Anderson elec
Hamiltonian can be expressed on a site basis, giving a sp
matrix representation of the problem, for which the eige
vectors can then be found by using standard Lanczos m
ods. Modern computers can solve such eigenproblems
many millions of atomic sites. A bigger problem is how
recognize quantitatively the difference between localized
extended states.
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There are several methods for distinguishing exten
from localized states, e.g., by looking at the properties of
Hamiltonian, such as the transfer matrix method,5,7 observ-
ing differences in the level-spacing statistics,8 using the
Thouless criterion,9 or by looking at the eigenstates them
selves. The latter is not trivial though, since as the criti
energy is approached from the localized regime, the local
tion length diverges. Thus, for a finite system size, the eig
modes quickly become extended over a larger range than
system size and it becomes difficult to assess whether a
is truly localized or extended. These states are known
prelocalized states,10,11 and to characterize these as localiz
or extended, we can use multifractal analysis~MFA!.12

It has been suggested that the eigenmode at exactly
LD critical energy will show multifractal characteristics.13

The standard way of characterizing the multifractality is t
singularity spectrum, which has been shown for electron14

to be universal for an isotropic system~see Ref. 15 for treat-
ment of an anisotropic system! and independent of the prob
ability distribution of the disorder. The analytic prediction
for the singularity spectrum,16 based on thed521e expan-
sion of the nonlinears model, are in good agreement wit
numerics.14

The aim of this paper is twofold. First, we use MFA
order to identify the threshold energy of the LD transition f
different degrees of force-constant disorder and thus obta
‘‘phase diagram’’ in the frequency-disorder plane for vibr
tional excitations in disordered models. Second, we dem
strate the universal features of the multifractal critical sta
at the LD transitition for the vibrational problem.

We can use the idea of critical multifractality to determi
whether the states are extended or localized by looking
how the singularity spectrum, characterizing the eigenmo
changes with simulation-system size. For a true multifrac
state, assuming that finite-size effects are small, the singu
ity spectrum will not depend on the simulation box siz
whereas the spectra for states on either side of the LD t
sition will vary. Hence, by calculating the singularity spe
trum for different system sizes, we can locate the criti
energy.14

The harmonic vibrational problem that is addressed in t
paper can be formulated in a way very similar to the And
©2003 The American Physical Society03-1
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son electron problem.17 For vibrations, the equivalent of th
electronic Hamiltonian is the symmetric dynamical opera

D̂5 (
( ia)( j b)

D ( ia)( j b)~ u i ,a&2u j ,a&)~^ i ,bu2^ j ,bu!, ~1!

with u i ,a& being the site basis describing the displacemen
atom i ( i 51, . . . ,N) along the Cartesian directiona (a
51, . . . ,d, with d as the dimensionality!. The matrix ele-
mentsD ( ia)( j b)5(k i j /2)(r̂ i j )a( r̂ i j )b are defined in terms o
force constantsk i j and unit vectors,r̂ i j , connecting the at-
oms i and j ~for simplicity, all masses are taken to be equ
mi51). The dynamical matrix consists ofd3d blocks with
strong lattice symmetry-dictated correlations inside
blocks. Additionally, all elements of the on-diagonal bloc
are the sums~with opposite sign! of similar elements of off-
diagonal blocks, reflecting the sum-rule correlations in
dynamical matrix. Therefore, in the case of nearest-neigh
interactions considered below, the number of correlations
tween the elements in the dynamical matrix is compara
with the number of independent random variables.

There are three main differences between the vibratio
and Anderson electron problems. First, when there are
negative values ofk i j , the system is mechanically stable,
there are no negative eigenvalues, unlike the electron c
Second, the basic Anderson formulation gives a symme
band structure. The vibrational case is asymmetric for
third reason: there ared zero-frequency modes that cannot
localized since they correspond to bulk translational d
placements of the system~Goldstone modes!. Since the
lower bound of the spectrum is constrained to be extende
character, we expect that in a single-band model there wil
only one LD transition near the high-frequency band edg

There are two major classes of the model, which can
used in studying localization: structures based on an un
lying crystalline lattice with introduced disorder, and stru
tures that have been created in an effort to recreate the
tribution of atomic positions and bond angles found in r
amorphous materials. For our study, we have chosen to
lyze lattice models from the first class, with an underlyi
fcc geometry and with thek i j in Eq. ~1! taken from a prob-
ability distributionr(k). This is one of the simplest mode
and can be easily compared with the established results
the electron-localization problem for similar models. T
distribution r(k) has been chosen to be a uniform~box!
distribution, centered atk051 with a full width D,2k0 in
order to give both a simple random distribution and o
where there are no negative force constants.18 Our models
are face-centered cubic and range in size fromL516 with
4096 atoms up toL548 with N5110 592 atoms.

A multifractal is a generalization of a standard geome
fractal for the case when a single fractal dimension can
characterize the system.19 For each point in our measure, w
can define a valuea(r ) that describes the scaling of th
measure withL around that point. We now take the set of a
points with a specifica, which itself is a fractal, with dimen-
sionality f (a). The curvef (a) is known as the multifracta
spectrum, or singularity spectrum, and can be used to c
acterize eigenmodes as localized or extended, as shown
13220
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low. To calculate the scaling exponents, we define the m
sure Pi(Lb)5( j Pboxi (Lb)uuj u2 as the sum of the square

displacementsuuj u2 of all the atomsj within the i th box of
sizeLb<L for a particular eigenmode, and examine how th
measure scales withLb , or equivalently, withl5Lb /L. We
split our system up intoN(l) boxes that completely and
exactly cover the system so thatN(l)5l2d. The standard
normalization of the eigenmodes leads to a scaling law
the measure of the form̂P(Lb)&L}ld, averaging over all
boxes.

The assumption underlying multifractal analysis is th
for a finite interval ofl, theqth moments of theP(Lb) also
scale with power laws:̂Pq(Lb)&L}ld1t(q), wheret(q) is
independent ofl. The range ofl in our case has a lowe
bound at the interatomic spacing, since we are dealing wi
discrete rather than a continuous system. The upper bo
L/2 is dictated by finite-size effects. In the thermodynam
limit, asL→` (l→0), the states that satisfy the multifract
condition are only found exactly at the critical energy, a
thus the exponents are defined uniquely as

t~q!5 lim
l→0

ln~^Pq~Lb!&L!

ln l
2d. ~2!

In practice,t(q) is found by performing a linear regres
sion of the calculated exponents with lnl. From this, we can
obtain the singularity spectrum,f (a), wherea is defined as
a(q)5dt(q)/dq and f (a) can be obtained from the Leg
endre transformation oft(q), f „a(q)…5a(q)q2t(q). Cal-
culation of the singularity spectrum using the Legend
transformation suffers from numerical errors, so it is mo
convenient to calculatef and a parametrically as a direc
function of P(Lb):19

a~q!5
1

ln l (
boxes

Pi
q~Lb!

Z~q,Lb!
ln Pi~Lb!, ~3!

f ~q!5
1

ln l (
boxes

Pi
q~Lb!

Z~q,Lb!
ln Pi

q~Lb!, ~4!

whereZ(q,Lb)5(boxesPi
q(Lb).

Since we cannot take the limitl→0 in Eqs.~3! and ~4!,
the values off (q) anda(q) are calculated by performing
linear regression of the respective sums with respect to ll.
The linearity of these graphs is a good check of the mu
fractal nature of the measure.

Care has to be taken about the box sizes used in the an
sis. For example, taking the box to include just one atom
site proved to skew the regression, as it did when taking
box size to be that of the entire system. The reason for
former is that the multifractality must break down at som
point, certainly for box sizes of the order of the atomic spa
ing. Finite-size effects account for the discrepancy for
largest box size.

The singularity spectra of the eigenmodes around
critical energy fluctuate strongly, and so it becomes nec
sary to take an average. Ideally, we would like to avera
over different realizations of disorder, but in practice this
3-2
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only realistic for the smaller size models. For larger mode
we take the computationally cheaper option of averag
consecutive eigenmodes, which can be obtained simpl
the Lanczos algorithm.20 In order to reduce errors, we hav
used the gliding-box method, averaging over all possible
gins when dividing the system into boxes.19

Once we have the spectra, we can find the frequenc
which there is no change with the system size to locate
mobility edge. Empirically, it was noted15 that for the Ander-
son case, a plot ofa(q) against (lnL)21 gave a good linear
fit with a different sign of the gradientg5da(q)/d(ln L)21

on either side of the transition. The same holds true for
brational models, as clearly demonstrated in Fig. 1. We h
therefore performed a linear regression on these curves,
the gradients of these lines have been plotted at diffe
energies to find the point where the singularity spectrum

FIG. 1. Estimation of the localization edge forD51.5. Each
line is for a different frequency, fromv259.3 at the bottom to 9.5
at the top in steps of 0.02. The critical frequency is the frequenc
which this line has zero gradient. Note the bold line shown, w
approximately zero gradient, corresponds tov259.4 and is at
a(0)54.0.

FIG. 2. Plot of g(v2)5da(q,v2)/d(ln L)21 for q50 and 1.
The squared critical frequencyv

*
2 is given by the zero-crossing

point of the graph. In this case,v
*
2 is between 9.4 and 9.44.
13220
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size independent, at whichg(v2) crosses the abscissa. W
can get additional information by looking at different valu
of q. In practice, sincea(q) is strongly correlated for similar
q, we have looked at the representative valuesq50 and 1,
for which g(v2) has opposite signs~see Fig. 2!.

Initially, the analysis was undertaken throughout t
acoustic band. We did not expect to find localization at
lower ~zero-frequency! band edge,18 and indeed it was found
that there was only one LD phase transition, located in
far high-energy band tail. The band edge calculated wit
the coherent-potential approximation~CPA! was found to be
quite close to the true localization threshold, as can be s
in Fig. 3, and therefore it can be used as a rough estimate
the frequency of the actual LD transition .

Having found the position of the mobility edge for sever
values of the force-constant disorderD, we can plot these to
produce a phase diagram of the eigenmodes. This is sh

at

FIG. 3. Phase diagram showing the boundary between exten
and localized vibrational states for a force-constant disordered
lattice. The VDOS for the crystal and the lattice withD52.0 have
also been plotted to show the location of the mobility edge,v

*
2 ,

within the band tail of the disordered system. The band edge ca
lated with CPA is also shown for reference.

FIG. 4. Critical spectra for the force-constant disordered m
els. The PA to Wegner’s result~Ref. 16! is shown for comparison.
3-3



an
n
e
cy
a
re
is
n
A

be
od

e
a

o

ts
s
a
th

t it
ty

and
the

he-
es,
for
of
d,
es
een
ly
e

i-

BRIEF REPORTS PHYSICAL REVIEW B67, 132203 ~2003!
alongside the vibrational density of states and the CPA b
edge in Fig. 3. As the localization edge is in the band tail a
we are limited to finite-size systems, few states are localiz
With increasingD, the mobility edge decreases in frequen
with respect to the CPA band edge. However, since the b
is broadening more rapidly with increasing disorder, the
sult is that the critical frequency actually increases with d
order, and thus there is no vibrational analog to the electro
MIT in this case, for the acoustic band of an fcc crystal.
similar behavior of the mobility edge with disorder can
seen in the phase diagram of the Anderson electron m
with off-diagonal disorder.6

For each degree of disorder, we obtain a new critical sp
trum that is constant for each size. These critical spectra h
been plotted in Fig. 4, showing that for positive values ofq,
i.e., the left-hand side of the graph, all the spectra fit ont
master curve. The parabolic approximation~PA! to Wegner’s
analytic result16 is one which goes through the critical poin
f (a54)53 and f (a52)52, where the latter correspond
to the information dimension of the eigenmode. This PA h
also been plotted on the graph for comparison. Note that
13220
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Wegner result is for the electronic Anderson model, ye
still fits well to the vibrational data, indicating a universali
for the two different systems. The large error bars at higha
are in the region whereq is negative, wheref and a are
strongly dependent on the smallest values of the measure
where the errors in the eigenmodes themselves are
largest.

To conclude, we have investigated the localization p
nomenon for vibrational excitations in disordered structur
using an fcc lattice model with force-constant disorder
analysis. Using MFA, we have confirmed the existence
only one LD transition in the upper tail of the acoustic ban
and found the energy at which it occurs for different degre
of disorder. The eigenmodes at the threshold have b
shown to be multifractal states exhibiting a quantitative
similar distribution function to that of the critical states in th
electron Anderson model.

We are grateful to R. Ro¨mer for supplying us with an
MFA code,21 and to M. Schreiber for instructive commun
cations.
ev.

e

lly
1P.W. Anderson, Phys. Rev.109, 1492~1958!.
2B. Kramer and A. MacKinnon, Rep. Prog. Phys.56, 1469~1993!.
3M. Schreiber, inComputational Physics, edited by M. S. K. H.

Hoffmann ~Springer, Berlin, 1996!, pp. 147–165.
4M. Janssen, Phys. Rep.295, 1 ~1998!.
5A. MacKinnon and B. Kramer, Phys. Rev. Lett.47, 1546~1981!.
6P. Cain, R. Ro¨mer, and M. Schreiber, Ann. Phys.~Leipzig! 8, 507

~1999!.
7J.L. Pichard and G. Sarma, J. Phys. C.14, L127 ~1981!.
8P. Carpena and P. Bernaola-Galvan, Phys. Rev. B60, 201~1999!.
9J. Edwards and D. Thouless, J. Phys. C5, 807 ~1972!.

10V.I. Fal’ko and K.B. Efetov, J. Math. Phys.37, 4935~1996!.
11A.D. Mirlin, Phys. Rep.326, 259 ~2000!.
12M. Janssen, Int. J. Mod. Phys. B8, 943 ~1994!.
13M. Schreiber and H. Grussbach, Phys. Rev. Lett.67, 607 ~1991!.
14H. Grussbach and M. Schreiber, Phys. Rev. B51, 663 ~1995!.
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