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Model of charge-density-wave current conversion and phase-slip dynamics in mesoscopic samp
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A microscopic model of collective-to-normal current conversion in mesoscopic charge-density-wave~CDW!
conductors is presented. The current conversion is described in terms of phase slips induced by CDW strain
and thermal fluctuations. Cores of phase slips are described as dynamic solitons with suppressed order param-
eter centered at individual chains near current contacts. The size of the cores is of the order of the amplitude
coherence length, and they are surrounded by long-range perturbations of the CDW phase and of electric field
induced by the CDW distortion. If the contact spacing is shorter than decay length of the long-range pertur-
bations, the dynamics of phase slips at opposite contacts is correlated. In this case the phase-slip voltage
decreases with the contact spacing decreasing. The results are in qualitative agreement with experimental study
of current conversion in submicron NbSe3 wires. In the limit of a large applied electric field a decrease of the
phase-slip voltage is predicted even at large distances between current contacts.
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I. INTRODUCTION

Formation of the charge-density wave~CDW! below the
Peierls transition in quasi-one-dimensional conductors g
rise to a collective mechanism of electron transport relate
the sliding motion of the CDW~for a review, see Refs. 1 an
2!. At the interface between a CDW conductor and a norm
metal contact, the current must be converted from the sin
electron current in the normal metal to the collective CD
current inside the CDW conductor. This conversion occur
a form of phase-slip processes induced by a CDW strain n
current contacts that results in periodic suppression of
CDW amplitude while the CDW phase increases by 2p.3,4

Suppression of the CDW amplitude is induced by the CD
strain near current contacts. As a result of a phase slip
strain is removed and a wave front of the CDW is added
removed. The periodic suppression of the CDW amplitude
the phase-slip process may occur in the form of phase v
ces~dislocations! moving across the sample,5 in this case the
CDW amplitude is suppressed in the center of the vort
Phase-slip centers are also known in other systems with
lective transport such as narrow superconducting chann6

and superfluids.7

The current conversion near current contacts were ex
sively studied experimentally.8–15 The strain of the CDW
near contacts was found to induce an additional voltage d
called the phase-slip voltage,VPS. Initially, the phase-slip
voltage was experimentally studied in bulk crystals.8–11 It
was found thatVPS strongly decreases as the temperat
increases but is independent of spacing between current
tacts. First indications of modifications in the current conv
sion process on a submicron scale were obtained in exp
ments on arrays of NbSe3 antidots.14 Eventually, in a recent
experimental study15 of current conversion in submicro
NbSe3 wires a significant reduction of the phase-slip volta
was observed if the spacing between current contacts
smaller than 3mm.

The first theoretical studies of phase slips in the CD
materials were based on time-dependent Ginzburg-Lan
equations3,16 which are strictly valid for a gapless CDW con
0163-1829/2003/67~12!/125420~10!/$20.00 67 1254
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ductor in which the Peierls energy gap is suppressed by
purities~Dt!1, whereD is the amplitude of the CDW orde
parameter, andt is the scattering time!. This approach in-
volved a solution a closed set of equations for the or
parameter and the current density for a one-dimensional
ometry. Later the structure of phase-slip centers was stu
by means of microscopic approach for ordinary CDW co
ductors with nonzero energy gaps, and a solution describ
the phase-slip center as an oscillating soliton was foun17

This solution was also restricted to the one-dimensional
ometry in which phase slip occurred in the whole cross s
tion of a CDW conductor. The phase-slip voltage was fou
to be equal to 2D. This value does not agree with exper
mental data, because stimulation of phase slips by fluc
tions was not taken into account.

Description of phase slips in the form of vortices5 is based
on equation of motion for the CDW phase, the CDW bei
considered as an elastic medium with topological defe
More detailed study of current conversion by means of v
tices was given by Ong and Maki,18 and later by Ra-
makrishnaet al.19 and Requardtet al.12 In the model consid-
ered in these papers the CDW strain lowers the ene
barrier for thermal nucleation of phase vortices. None of
models mentioned above can explain the reduction of
phase-slip voltage in short samples observed by Ma
et al.15

In bulk samples a threshold field for the CDW sliding
determined by impurity pinning, and local CDW strains i
duced by pinning centers can compete with the CDW str
induced by the current conversion near contacts. Theref
phase-slip centers may be distributed over large distan
for example, a conversion length about 40mm was re-
ported13 in NbSe3. In very short samples the threshold fie
is determined by contacts, and a large strain of the CD
which is compressed near one contact and stretched nea
other dominates over local strains due to pinning cent
Therefore, one can expect that in short samples the impu
pinning can be neglected, and phase-slip centers are loc
near current contacts where the CDW strain is the larg
The theoretical model of current conversion from the norm
©2003 The American Physical Society20-1
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current to the CDW current in mesoscopic samples prese
in this paper ignores the impurity pinning. The present mo
is based on the microscopic approach,17 in which the cores of
the phase-slip centers were described as dynamic sol
which produced phase slips at all conducting chains simu
neously. Here, in contrast to Ref. 17, we consider phase-s
occurring at individual chains, and thermal fluctuatio
stimulating the phase slips are taken into account. To
scribe temporal evolution of the CDW an equation for
phase averaged over the sample cross section is der
while the evolution of individual phase slips is not studie
The phase-slip dynamics is found to depend on the sam
length when the latter becomes comparable to or sma
than a decay length of long-range perturbations of the CD
phase induced by phase slips. The decay length is enha
by a long-range electric field originating from charges
duced by the CDW strain near current contacts.

The decay length depends on a screening which is de
mined by a distribution of the charge density between
CDW and single-particle excitations. Therefore, to comp
the results with the measurements of current conversio
mesoscopic NbSe3 samples15 we focus on calculations
within the model in which the CDW conductor consists
two types of conducting chains; chains in the CDW state
chains in the metallic state with a zero Peierls gap.

There is an important difference of the present mo
from the models based on the concept of dislocations mov
across the sample.12,18,19That is, in our model we describ
the phase slip as a local suppression of the CDW order
rameter at conducting chains due to the combined actio
the CDW strain and thermal fluctuations, the value ofVPS
being related to an extra energy needed to suppress the C
amplitude. On the other hand, in the models of current c
version due to moving dislocations, the periodic suppress
of the CDW amplitude occurring when centers of disloc
tions cross the conducting chains is not considered, andVPS
is phenomenologically related to the energy barrier for
thermal nucleation of dislocations.

The paper is organized as follows. In Sec. II general eq
tions for the CDW order parameter, current and charge d
sities are presented, and basic approximations are discu
In Sec. III equations describing the dynamics of the CD
phase are derived and studied. First, equations describin
phase distribution in the quasiclassic region outside the c
of phase slips are derived, and a renormalization of the C
elasticity and damping by electric field induced by the CD
deformation is discussed. It is very difficult to solve the
equations and to match them at the cores of phase slips
realistic geometry of samples with side contacts typica
used in experimental studies of the phase-slip voltage. Th
fore, for simplicity we neglect the current spreading near
contacts and consider an unrealistic but simple geom
with a one-dimensional distribution of the current. Th
equations for the time dependence of variations of the CD
phase across the cores of the phase-slip centers are de
and studied. This variations consist of average and fluct
ing parts. An equation for the average phase variations
scribing the phase-slip dynamics is solved in Sec. IV, and
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phase-slip voltage is calculated. Finally, Sec. V sums up
principal results.

II. MODEL AND GENERAL EQUATIONS

Our approach to the problem is based on the kine
equations20,21 for quasiclassic Green’s functions combine
with self-consistency equations in which the CDW order p
rameter is expressed via the nonequilibrium Green’s fu
tions introduced by Keldysh.22 These equations were derive
within the mean-field approximation, and together with Ma
well’s equations they provided a close set of equations
scribing the CDW dynamics. Each Green’s function has
form of a matrix formed by the retarded,ĝR, and advanced
ĝA, Green’s functions, and by the Green’s function related
the distribution functions,ĝK, introduced by Keldysh:

ǧ5S ĝR ĝK

0 ĝAD .

Furthermore, each of the components, in turn, is a ma
with respect to indices related to two parts of the Fermi s
face of a quasi-one-dimensional metal at2pF and1pF . A
discrete presentation of the equations with respect to n
bers of conducting chains23 is used, so each Green’s functio
depends on two chain numbers.

The equations have a form

i\vF

dǧnm

dx
1t'(

i
~Ann1 i ǧn1 im2ǧnm1 iAm1 i ,m!

1 i\S sz

dǧnm

dt1
1

dǧnm

dt2
szD1~ isyDn2Fnsz!ǧnm

2ǧnm~ isyDm2szFm!1
i\

2
n f@szǧnnszǧnm

2ǧnmszǧmmsz#2
i\

4
nb@sxǧnnsxǧnm2ǧnmsxǧmmsx

1syǧnnsyǧnm2ǧnmsyǧmmsy#50, ~1!

where products assume a convolution with respect to t
and matrix indices,vF is the Fermi velocity in the chain
direction, x is the coordinate along the chains,Fn5efn
2(vF/2)(dwn /dx), fn is the matrix element of the electri
potential calculated with Wannier functions related to ch
numbern, andDn andwn are the amplitude and the phase
the order parameter at thenth chain, respectively:

Anm5szcos
wn2wm

2
1 i sin

wn2wm

2
.

sk are the Pauli matrices, andt' is the transfer integral de
scribing weak interchain interaction in the quasi-on
dimensional conductor; the summation in this term is limit
by the neighbor chains.
0-2
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The last terms in Eq.~1! describe the elastic scatterin
and n f and nb are forward scattering and backscatteri
rates.

The order parameter satisfies the self-consistency e
tion

i S 11
1

vQ
2

]2

]t2D ~sycoswn1sxsinwn!Dn

5l/2E ~ ĝnn
K 2szĝnn

K sz!de, ~2!

wherevQ is the frequency of phonons with a wave vect
equal to the wave vector of the Peierls instability, andl is
the electron-phonon coupling constant.

The charge and current densities at chainn can be calcu-
lated as

rn5
2

pvF
S 1

8E Sp~szĝnn
K !de2F D . ~3!

j n~x!5
1

4pE Spĝnn
K de. ~4!

It is very difficult to solve these equations for the gene
case; therefore, we find an approximate solution taking i
account thatD@nb ,n f@v (v is a typical frequency of the
problem!, and having in mind the large anisotropy of th
linear-chain compounds,D@t' . These inequalities permi
us to divide the problem into two parts related to differe
length scales. Perturbations of the CDW order paramete
short distances of the order ofj5vF /D, at individual chains,
are considered neglecting time derivatives, the terms pro
tional to scattering terms, and the terms related to the in
chain interaction. Then the short-range solution which
scribes a core of the phase slip must be matched wit
long-wavelength quasiclassic solution varying at large sc
like diffusion length orv/t' . The short-range solution pre
sents a soliton characterized by a rapid variation of the ph
and a local suppression of the amplitude of the CDW. S
tons of such a type, called chord solitons, were introduce
linear-chain conductors by Brazovskii24 as elementary exci
tations, and have already been used to describe the cor
phase slips.17 In contrast to a previous study17 the solution
we use here describes large perturbations of the CDW
plitude at one conducting chain, perturbations of the CD
amplitude at the adjacent chains being negligibly small:dD
}t'

2 . In the leading approximation the solitonic solution f
the order parameter and for the Green’s functions have
forms ~the chain numbers are dropped!

D~x!5D@cosu1 i sinu tanh~x/z!#, ~5!

ĝK5~ ĝR2ĝA!tanhS «2m

2T D1ĝ(a), ~6!
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ĝR(A)56F iD~x!sy1«sz

1~ isy2sz!
D2sin2u

2@«2D cosu#cosh2~x/z!
G YA«22D2,

~7!

wherez5j/sinu, andm is the shift of the chemical potentia
from the mid-gap position, it appears due to nonuniform
induced by the CDW strain. The singularities in the ener
«, must be circumvented assuming that the retarded~ad-
vanced! Green’s function is analytical in the upper~lower!
half-plane. The anomalous Green’s functionĝ(a) describes
nonequilibrium perturbations of electronic distributio
smoothly varying at quasiclassic distances.

Brazovskii24 found that only the soliton withu5p/2, cor-
responding to a zero CDW amplitude at the soliton cen
can exist in the equilibrium state, since foruÞp/2 the self-
consistency condition for the phase of the order paramete
not satisfied. Here we consider the case when the chem
potential is shifted from the midgap position due to strain
the CDW. Then the self-consistency condition@Eq. ~2!# re-
lates variation of the phase across the soliton, 2u, to the
position of the chemical potential. In the limit of low tem
peratures,T!D, the position of the chemical potential at th
soliton approximately coincides with the subgap electr
level localized at the soliton~7!, m5D cosu ~for more de-
tails, see Ref. 17!. Then the variation of the phase at the co
of the phase slip, 2u, and the related shift of the chemica
potential,m, in Eqs.~5!–~7! can be considered as paramete
slowly varying in time. These parameters will be determin
by matching the solution at the core,x&j, with quasiclassic
solutions at large distances from the phase-slip centex
@j.

A solution of Eq.~1! far from the soliton is described b
Eqs. ~5!–~7!, considered in the limit of large distancesx
@z. It gives a solutions for the retarded and advanc
Green’s functions in the quasiclassic region as well. The n
trivial problem here is to find the nonequilibrium partĝ(a).
Solutions forĝ(a) are available in different limits.21,23 How-
ever, we do not discuss the form of the anomalous Gree
function ĝ(a) here becausem andu are readily obtained from
the equation of motion for the CDW phase, and expressi
for current and charge densities derived from solutions
ĝ(a) in the quasiclassic region.21,23 These expressions ar
physically transparent and their different limiting forms a
well-known.1,2

To be more determined and closer to the experiment
studied case of NbSe3 we must consider a CDW conducto
which, in addition to quasiparticle excitations via the Peie
gap, contains also normal electrons at the Fermi level. Th
fore, we focus on a model in which in addition to the co
ducting chains with nonzero gap,D, there are chains of an
other type in which the CDW is absent in the lowe
approximation int' .

The equation for linear charge density in the CDW cha
reads~see Ref. 25!
0-3
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qn52NCDW

e

p

]w

]x
2NQ

2e2

p\vF
T sinh

mn

T
, ~8!

where the first term describes the CDW charge,NCDW is the
fraction of electrons condensed in the CDW, andNQ51
2NCDW is the fraction of the charge related to quasipartic
excited above the gap. The second term describes the co
bution to the charge density due to a variation of local va
of the chemical potential; this term has a form analogous
the case of ordinary semiconductors. The charge densit
the normal chains can be found from Eq.~8!, with NCDW
50.

Total current transported along a chain containing
CDW is equal to

j n52Ss i
]Vn

]x
1~12b!

2e3

p\vF

]wn

]t
. ~9!

Here the first term describes the single-particle current dri
by the gradient of the electrochemical potential

eVn5Fn2mn , ~10!

the conductivitys i is proportional to the density of quas
particles thermally activated over the Peierls gapNQ , andS
is the area per single conducting chain. The second t
describes the CDW current. Factor 12b reflects a decreas
of the CDW current at finite temperatures. TypicallyT!D,
and this factor can be approximated by unity. The express
for the current flowing along the chains which do not cont
the CDW gap is described by Eq.~8! with b51, i.e., without
the second term describing the CDW current, and the co
sponding single-particle conductivity is equal to a norm
metallic conductivity.

The current between neighbor chainsn and n1 i can be
modeled as

j n,n1 i5sn,n1 i~Vn1 i2Vn!/s, ~11!

where the conductivitysn,n1 i has different values for cur
rents between different types of chains~normal and normal,
CDW and normal, or CDW and CDW!. The equation for the
CDW phase reads

\

2vF

m*

m

]2wn

]t2
1g0

]wn

]t
2NCDW

\vF

2

]2wn

]x2

1J(
i

sin~wn2wn1 i !

5NCDWeEn1~b2NQ!
]Vn

]x
, ~12!

where m is the electron mass, andm* 5@1
14D2/(\2lvQ

2 )#m is ‘‘the effective mass of the CDW.’’ Be-
low, for simplicity, we consider the case of relatively lo
frequencies when this term can be omitted. FurtherJ
5NCDWt'

2 /(\vF), and g0 is the bare friction coefficient
Summation in the term withJ describing the interchain in
teraction is limited by the nearest neighbors. Pinning in
12542
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~12! is neglected because in the case of very short distan
between current contacts the onset of the sliding of the CD
is controlled by the phase-slip voltage rather than by
impurity pinning.

Note that, in principle, kinetic coefficients in equations f
the current, charge, and phase depend on relaxation time
a complicated way and may be frequency dependent. Sim
equations like Eqs.~8!–~12!, with constant kinetic coeffi-
cients, can be strictly derived from Eqs.~1! provided typical
frequencies of the problem are smaller than both the ene
and momentum relaxation rates of the electrons, and one
use the concept of the chemical potentialm ~see Ref. 26 for
details!.

In the right-hand side of Eq.~12! derived from the micro-
scopic approach there are two contributions to the force d
ing the CDW. The first contribution is due to the electric fie
in the chain direction,En , which includes both an externall
applied field and an electric field due to charges induced
deformations of the CDW. The second force is due to
gradient of the electrochemical potential. The latter contrib
tion is not included, usually, in phenomenological equatio
of motion for the phase.1,2 Below we assume the conditio
T!D, which usually holds true in CDW conductors in
wide temperature region. In this case the second term in
~12! is proportional to the exponentially small quasipartic
density, and can be neglected.

Thus the single-particle current and the CDW are driv
by different forces. The CDW is driven mainly by the ele
tric field, i.e., by the gradient of the electric potential, whi
the single-particle current is driven by the gradient of t
electrochemical potential described by Eq.~10!. Equiva-
lently, the single-particle current can be presented as a
of two components, one of which is the current driven by t
electric field and the other the diffusion current presented
the term proportional to the gradient of the chemical pot
tial. It is important to note that the voltage is equivalent
the difference of electrochemical potentials which drives
single-particle current, while the difference in the elect
potentials is not a voltage and cannot be measured by a
meter. For example, a difference of electric potentials ari
across the contacts of two different conductors even in
equilibrium case, but it produces neither voltage nor curre
Furthermore, the constancy of the electrochemical poten
in other words the constancy of the sum of the poten
energy and of the chemical potential, is the necessary co
tion of the equilibrium state27 in which current and voltage
are absent while the electric field can be nonzero.

So, according to Eq.~10!, shifts of the chemical potentia
m induced by the CDW strain near current contacts cont
ute to the voltage. The phase-slip voltageVPS is usually de-
termined~see, e.g., Refs. 8 and 15! as a difference of voltage
measurements in transposed and normal configurations
the transposed configuration presented in Fig. 1 curren
injected through the middle contacts 2 and 3 atuxu5a, while
the voltage is measured between contacts 1 and 4. In
configuration the current conversion occurs between the v
age probes and contributes to the measured voltage. In
normal configuration, current is injected at contacts 1 an
and voltage is measured between contacts 2 and 3 so tha
0-4
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MODEL OF CHARGE-DENSITY-WAVE CURRENT . . . PHYSICAL REVIEW B 67, 125420 ~2003!
current conversion occurs beyond the voltage probes and
phase-slip process does not contribute to the measured
age.

Now we can expressVPS in terms of shiftsm near current
contacts atuxu5a. We integrate Eq.~12! overx and average
it over sample cross-section. Then we use the obtained e
tion together with Eq.~10! to express the CDW current@the
second term in Eq.~9!# in terms of voltage and difference o
the chemical potentials. This enables us to calculate
phase-slip voltage as the difference of voltages measure
two configurations at the same values of the CDW curre

VPS5
12NQ

12b
@m~a!2m~2a!#'@m~a!2m~2a!#.

~13!

In the last equality we neglected factorsb and NQ , which
describe the quasiparticle contributions to the current
charge densities and are exponentially small atT!D. Thus
the phase-slip voltage is determined by the difference
chemical potentials at current contacts.17,28

III. EQUATIONS DESCRIBING PHASE-SLIP DYNAMICS

A. Renormalized equation for the CDW phase
in the quasiclassic region

In order to find solutions for phase distribution in th
quasiclassic region we insert expressions for the current
the Poisson and continuity equations. Then we exclude
tentialsm, V, and F from Eq. ~12! and find a quasiclassi
equation of motion for the CDW phase.

Below, assuming thatT!D, we neglect, where possible
factors like NQ and b proportional to the small density o
quasiparticles thermally excited over the Peierls gap. T
expressions for current and charge densities@Eqs. ~8!–~11!#
become linear, and one can use the Fourier transforma
with respect to time,t↔v, coordinate along the chains
x↔qi , and the chain numbers,n↔q' . At this stage we
must consider definite arrangements of the conducting ch
with and without the CDW distortion. The reason for this
the necessity to take into account screening by normal e
trons located at the chains in the normal state. The scree
may depend quantitatively on the chain arrangement, but
qualitative character of the screening is expected to be in
pendent of the details of the crystal structure. Therefore,
simplicity, we consider a square lattice with an alternat
sequence of normal and CDW chains. Furthermore, also
simplicity, we use a discrete form of space derivatives in
perpendicular direction, e.g.,]nf→(fn112fn)/s, wheres
5AS is the interchain spacing. Then inserting these exp
sions into the Poisson equation and continuity equations,

FIG. 1. The transposed configuration for study of the phase-
voltage.
12542
he
lt-

a-

e
in

:

d

f

to
o-

n

on

ns

c-
ng
he
e-
r

g
or
e

s-
nd

using the Fourier transformation, after some algebra we
press potentialsm, V, andF in terms of the CDW phase. In
particular, we find the relation between the shift of t
chemical potential and of the phase gradient:

mn52g
\vF

2

]wn

]x
. ~14!

Then we exclude potentials from Eq.~12! and find an equa-
tion of motion for the CDW phase that does not conta
potentials which, in turn, depend on the phase distributi
General expressions for coefficients in such equation of m
tion are rather complicated, but they are quite simple in
limit which we need,v!Dqi

2 ~whereD is the diffusion co-
efficient for the chain direction!. In this limit an equation
which is similar to Eq.~12! is obtained:

g̃
]wn

]t
1

\vF

2
~11g!

]2wn

]x2
1J(

i
sin~wn2wn1 i !5eĒ.

~15!

In contrast to Eq.~12!, the right-hand side of Eq.~15! con-
tains an externally applied electric fieldĒ only, while electric
fields induced by deformations of the CDW are represen
by a renormalization of the damping and elasticity coe
cients described by the operators which in the Fourier rep
sentation have a form

g5
2e2

\vF
, g̃5g01

vFk2qi
2

8p~sN'q'
2 1sNiqi

2!
, ~16!

wherek is the inverse Thomas-Fermi screening length,sN'

is the conductivity describing the current between the norm
chains, andsNi is the conductivity along the normal chain
The dimensionless parameterg looks like the fine structure
constant with the velocity of light substituted for the Ferm
velocity. For the typical value of the Fermi velocity1,2 vF
'23107 cm/s, the parameterg can be estimated asg'24,
so in contrast to the fine structure constant it is not sm
Therefore, we consider parameterg to be large, and the ex
pression forg @Eq. ~16!# is already presented under the a
sumptiong@1. Besides, Eq.~16! is presented in the long
wavelength limit, while a more accurate expression forg
contains the additional factor 4/(41eDqi

2S), where eD

'k2j2/6 is the CDW gap dielectric function.
The renormalization increases the damping coeffici

drastically as well. The bare damping coefficientg0 is small,
being proportional to the density of quasiparticles therma
excited via the Peierls gap.20,23 The renormalized damping
coefficient for the phase averaged over all chains is m
larger thang0, and equalsg5g̃(q'50)'\/ l , wherel is the
mean free path along the chains in the normal state.

Now we briefly discuss the case of a linear-chain cond
tor in which all conducting chains are in the CDW state li
in most CDW conductors, and there are no electrons fr
the chains in the normal state that can effectively screen
charge density induced by CDW distortions. Then one m
take into account the screening by quasiparticles therm
excited above the Peierls gap. In general, the problem

ip
0-5
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screening by such quasiparticles is more difficult than tha
screening by electrons from the chains in the normal s
because of the nonlinearity in the second term in Eq.~8! for
the charge density. However, the solution can be simplifie
high temperatures, when the quasiparticle density is la
enough to provide effective screening, so that the maxi
shift of the chemical potential is small enough,m!T. There-
fore, the second term in Eq.~8! can be linearized, and th
problem can be solved by means of the Fourier transfor
tion similar to the previous case of screening by electron
the normal chains. Note that in this limit the Poisson eq
tion is reduced to the quasineutrality condition. One obta
an equation for the CDW phase with renormalized stiffn
and damping, and relation between phase and chemica
tential resembling Eqs.~15! and ~16!:

S g01
2e4~12b!2

\vFSs i
D ]wn

]t
1

~12NQ!

NQ

\vF

2

]2wn

]x2

1J(
i

sin~wn2wn1 i !5e
j

s i
, ~17!

mn52
\vF

2NQ

]wn

]x
. ~18!

The total current densityj in the right-hand side of Eq.~17!
does not depend on coordinates in the case of the
dimensional current distribution considered below. Thus
structure of equations for the phase and of relations betw
the phase gradient and chemical potentialm is similar to Eqs.
~15! and~16!, but the role of the renormalization factorg of
the CDW stiffness is played by 1/NQ . A rapid exponential
decrease of the fractionNQ of single-electron excitations
with decreasing temperature leads to an increase ofm. There-
fore, the screening by quasiparticles becomes nonlinea
lower temperatures, and Eqs.~17! and ~18! are no longer
valid and a more thorough analysis is needed.

B. Equations for variation of the CDW phase
at current contacts

In this section we need to consider a definite geometry
the current distribution explicitly. As already mentione
above, we consider the simplest one-dimensional current
tribution, the current density being uniform between conta
2 and 3, atuxu,a, and equal to zero in the region outside t
contacts, atuxu.a ~Fig. 1!. It can be shown that the resul
obtained for this geometry are very similar to the case
current flowing between current contacts at butt ends o
sample, with the boundary condition at the contacts cons
ing of a constancy of the CDW phase. Such boundary c
ditions imply that the CDW current at the contacts equ
zero.

We denote the variation of the CDW phase across
chord solitons near the current contacts atx5a andx52a
as 2un1 and 2un2 , respectively. Each of these phase var
tions consist of an average part^u& and a fluctuating par
dun ~where it is possible we omit subscripts6 for brevity!.
To find the CDW current andI -V curves we need to calculat
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average valueŝu1& and ^u2&. We assume that the samp
consists of many chains, and that the statistical averagin
equivalent to ensemble averaging, so that^u& does not de-
pend on the chain indexn:

un5^u&1dun , ^cosun&5coŝ u&^cosdun&,

^cosdun&5exp~2^dun
2&/2!. ~19!

The last equality is valid if fluctuations are Gaussian.
In order to derive equations describing dynamics of ph

variationsun6 we have to solve Eq.~15! outside the region
of the chord solitons with an additional condition that pertu
bations of the phase decay atuxu→`, and to match the so
lutions atx56a. The matching conditions are the follow
ing: first, the phase variations at the solitons are equa
2un6 , and, second, the spatial derivative of the phase
continuous at each chord soliton and is related to the che
cal potential according to Eq.~14!, the chemical potentia
being equal to

mn65D cosun6 . ~20!

The main difficulty in solving Eq.~15! originates from the
nonlinear terms describing the interchain interaction. N
that this difficulty does not appear in the derivation of t
equations for the averaged values of^u6& because the spatia
averaging of the equations in the perpendicular direction
volves summation of the term describing the interchain
teraction in Eq.~15! over all conducting chains; this give
zero. To overcome this difficulty in the general equations
the nonaveragedun6 , we model the sum in the term propo
tional to J in Eq. ~15! by the discrete form of second spati
derivatives in the directions perpendicular to the chains.
noted above, this substitution does not affect equations
the average phase^u6&. In fact, such a model corresponds
a standard form of the equation for the phase in which
interchain interaction is presented by the elastic term.1,2 In
this case Eq.~15! becomes linear and one can use the Fou
representation with respect to frequency and chain num
and find equations for the Fourier transformsu6 ,

2u22
C21dm2 /D

jk
~21tanhak1cothak!

2
C11dm1 /D

jk
~ tanhak2cothak!5F,

2u12
C11dm1 /D

jk
~21tanhak1cothak!

2
C21dm2 /D

jk
~ tanhak2cothak!52F, ~21!

where C6 are the Fourier transforms of cosun6 , respec-
tively, anddm is an extraneous random force describing flu
tuations of the chemical potential in the quasiclassic reg
outside the phase-slip center. Correlation functions fordm
are discussed below. An incrementk describes spatial varia
tions of the phase along the chains, which may be prese
in the form of a linear combination of the exponen
0-6
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exp(6kx) with k25q'
2 S/ l'

2 22ivg/(\vFg) and l'
2

5g(\vF)2/(2t'
2 ). The lengthl' exceeds the amplitude co

herence length by factorAg/2(D/t') which can be estimated
as 10. The driving force in the right-hand side is proportio
to the applied electric fieldĒ and has the form

F5
eĒ

i\vg
2p3d~v!d~q'!.

Note that the decay length for the perturbations of
phase along the chains,L51/uku, depends onq' . This
length is relatively short, of the order ofl' , for perturbations
strongly varying from chain to chain~i.e. atq'

2 S;1). Nev-
ertheless,l'@j. For perturbations averaged over the sam
cross section, i.e., those withq'50, the decaying length
L(q'50) is much larger and diverges at small frequenci
If the distance between the contacts is smaller thanL(q'

50), one should expect that the average values^u1& and
^u2& would change synchronously. Equations~21! have syn-
chronously changing solutions which obey the condit
^u1&5p2^u2&. Below we will concentrate on such a ca
of synchronous oscillations of phase-slips near both cur
contacts. Taking the inverse Fourier transform, we find t
the time dependence ofu[^u2& for the synchronously
changing solutions is described by an equation

cosu5E
2`

t dt1

At2t1
F]u~ t1!

]t1
2 f GF12expS 2

,2

t2t1
D G ,

~22!

where dimensionless timet is measured in units o
2\vFgg/(pe2V`), and

V`5
D

e
^cosdun11cosdun2&, f 5

Ē

E0
, ,5

a

a0
,

E05
peV`

2

\vFg
, a05

\vFg

2ApeV`

. ~23!

Here f and, are the dimensionless driving electric field a
the half-distance between the contacts, respectively. I
shown below thatV` determines the phase-slip voltage
case of infinite spacing between the contacts and relati
low applied electric field,Ē,E0.

As noted above, the phase-slip voltage is determined
the difference of the shifts of the chemical potentialm at the
current contacts@see Eq.~10!#. According to Eqs.~13!, ~19!,
and ~20! the phase-slip voltage is equal to

VPS~ t !5~D/e!^cosun22cosun1&5V`cosu. ~24!

Below we concentrate on calculation of the dc componen
the phase-slip-voltage. Equation~24! shows that the maxi-
mum possible value ofVPS is equal to the energy gap 2D in
the quasiparticle spectrum, as obtained in Ref. 17. Howe
fluctuations decrease this value.

Thus the average phase-slip dynamics is described bu
obeying Eq.~22! and depends on the parameterV` deter-
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mined by fluctuations of the phase variations across
chord solitons. Fluctuationsdu are described by genera
equations~21!. Fluctuationsdun at different chains are more
or less independent, and typical wave vectors for the fluct
tions can be estimated asq';1/s. As noted above, the char
acteristic length for variations in the direction along t
chain direction is quite short for such values ofq' , L
; l' . If the distance between the contacts exceedsl' , typi-
cal values ofka in equations fordun are large and tanhak
'cothak'1. Then the interaction between fluctuating pa
of the phase variations across chord solitons atx52a and
x5a, presented by the second terms in the left-hand side
Eqs. ~21!, can be neglected. Therefore, the strength of fl
tuations and, hence, their effect on the phase-slip voltage
be found from an equation which does not depend explic
on the contact spacing if the latter exceeds the lengthl' .

Here we do not solve the complicated problem of fluctu
tions of the phase difference across the chord soliton. Ins
we roughly estimate reduction of the phase-slip voltage
thermal fluctuations. So consider Eqs.~21! in the limit a
→` for the fluctuating part of the phasedu. In the chain-
number representation we obtain

a(
m

Qmdun2m2@cos~^u&1dun!2^cos~^u&1dun!&#

5dmn /D, ~25!

wherea5t' /(A2gD), andQm is the inverse Fourier trans
form of (q's). Operator Q decays at largem, Qm
}sinpm/m3/2, while at m50 Q051. Therefore, for crude
estimates we can replace the sum overm in Eq. ~25! by the
term with m50, which gives

adun2cos~^u&1dun!5dmn /D. ~26!

Now we estimate the fluctuations of the chemical pote
tial in the right-hand part of Eq.~25!. To do this one can
apply the fluctuation-dissipation theorem to Eq.~15! for the
CDW phase and to relate phase fluctuations to fluctuation
the chemical potential by means of Eq.~14!. Upon integra-
tion of the spectral density of fluctuations over frequenc
we find

^dm2&q;
2pT\2vF

2g2qi
2S

\vF~11g!qi
21Jq'

2
. ~27!

Integration of this equation overq yields the mean squar
fluctuation of the chemical potential. In the integral overq'

the upper limit is of the order of 1/As, and in the integration
overqi one needs to take into account the additional facto
the renormalized longitudinal elastic coefficient mention
in the discussion after Eq.~16!. Note that characteristic wav
lengths of the fluctuations along the chain direction that g
the largest contribution to the integral are of the order
gj@j. So, after integration, we obtain

^dm2&;Ag TD. ~28!
0-7
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For typical experimental temperatures15 above 100 K this
estimate implies that mean-square fluctuations of the che
cal potential are of the order ofD. Hence the mean magn
tude of the random force in the right-hand side of Eq.~26! is
of the order of unity. It is difficult to find the solution for thi
case. Therefore, to make a crude estimate, we conside
case of a large right-hand side and extend the obtained r
to the case of interest. In this limit the cosine terms in E
~26! can be neglected since they cannot be larger than u
and one finds

^du2&;
^dm2&

a2D2
5

T

T0
. ~29!

Hence, according to Eqs.~23! and~24! the parameterV` can
be estimated as

V`5
2D

e
expS 2

T

T0
D , T0;

t'
2

Ag3D
. ~30!

The characteristic temperatureT0 is much smaller than both
the CDW amplitudeD and the interchain transfer integr
t' , and may be of the order of few tens of K. Our cru
estimate@Eqs. ~29! and ~30!# qualitatively agrees with the
experimental data.15

Now we briefly discuss the phase-slip process in mater
in which the Fermi surface is destroyed by the Peierls tr
sition completely. As noted above, in such materials
problem is complicated by the nonlinearity of the screen
by single-electron excitations thermally excited over the g
D. However, if the temperatures is high enough so that
typical shift of the chemical potential which is of the order
VPS is smaller than the temperature,VPS!T, then relatively
simple Eqs.~17! and ~18! are valid. These equations re
semble Eqs.~15! and~14! describing the case of NbSe3, the
main difference is that the parameterg in Eqs.~15! and~14!
is substituted for 1/NQ in Eqs.~17! and ~18!. Therefore, for
the case of semiconducting CDW materials one can ob
equations similar to Eqs.~22!–~30!, with g replaced by the
temperature-dependent parameter 1/NQ . This leads to a dif-
ferent temperature dependence of the characteristic volt
V` , the characteristic field,E0, and characteristic spacin
between current contacts,a0. As the temperature decreas
VPS increases, and eventually becomes larger than temp
ture T. Therefore, the screening becomes nonlinear, and
results based on the linearized equations for the quasipar
density cannot be directly applied. Thus the temperature
pendence of the phase-slip voltage in semiconducting C
conductors is more complicated due to the screening by t
mally excited quasiparticles.

IV. PHASE-SLIP DYNAMICS AND PHASE-SLIP VOLTAGE

In this section we consider the solution of Eq.~22! for the
phase-slip phaseu. According to Eq.~24!, time averaging
cosu determines the phase-slip voltage when phase slip
different current contacts take place synchronously on
average.

To solve Eq.~22! analytically is rather difficult. There-
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fore, we numerically solved the exact equation and anal
cally solved a model equation obtained from Eq.~22! by
substitution of cosine function for the sawtooth functio
Such a substitution converts the nonlinear equation~22! into
a linear equation with a driving force induced by the disco
tinuities of the sawtooth function. Such a substitution allo
one to solve the model equation exactly by means of
Fourier transformation. Both the solution of the model equ
tion and the numerical solution of the exact equation g
similar results.

First we discuss general properties of Eq.~22!, and of its
solutions. The equation resembles an equation of motion
an overdamped pendulum with retardation in damping
contains two dimensionless parametersf and ,, describing
the applied electric field and the distance between the c
tacts measured in units ofE0 and a0, respectively@see Eq.
~23!#. Using the explicit expression@Eq. ~16!# for the renor-
malization parameterg obtained within our model and a typi
cal value15 of the phase-slip voltage in NbSe3 , V`'1 mV,
the units can be estimated as

E05
pV`

2

2e
;10 V/cm, a05

2e

ApV`

;1 mm. ~31!

At f ,<1/(2Ap), which in dimensional units correspond
to 2aĒ<V` , Eq. ~22! has a stationary solution. This mean
that at voltages smaller than the critical value the phase s
are absent and the CDW current is equal to zero. At lar
voltages the phaseu starts to increase linearly with time an
acquires also an oscillating component. Both the freque
of the oscillations that determines the CDW current and
time average value of cosu that determines the dc compo
nent of the phase-slip voltage depend on the dimension
parametersf and ,. This dependence is the most simple
the following limiting cases.

In the limit ,→` and f !1 the solution has the form of a
steplike function, so that most of timeu is close to (2n
11)p wheren is an integer and exhibits periodic jumps b
2p. The averagecosu in this regime is close to21, andVPS
is equal toV` . ThusV` determines the phase-slip voltage
long samples with independent phase slips at the oppo
current contacts.

If both characteristic frequencies and intercontact dista
are small enough, so that the dimensionless frequencyv sat-
isfies the conditionv,2!1, Eq.~22! is reduced to a standar
equation of motion of an overdamped pendulum:

2Ap,S ]u

]t
2 f D2cosu50. ~32!

The solution of this equation, which describes many phys
models including resistively shunted Josephson junctions
well known. In particular, for the frequency of the oscilla
tions which determines the CDW current, and for the tim
averaged valuecosu which determines the dc component
the phase-slip voltage, in this limit one has

v5Af 221/~4p,2!, cosu5A4p,2f 22122Ap, f .
~33!
0-8
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The solution of Eq.~22! can be easily found also in th
limit of large electric field,f→`:

v5 f 2
1

4p,A2 f
, cosu5A 1

8p f
. ~34!

Thus the phase-slip voltage decreases with increasing e
tric field even in case when the distance between the con
is large @cf. Eq. ~24!#. This happens at large electric field
Ē@E0 @see Eq.~31!# when the driving force exerted on th
CDW is much larger than the threshold force related to
potential barrier producing the phase-slip voltage~also note
the analogy with a pendulum mentioned above!.

The general tendency of the solution is a decrease of
phase-slip voltage withf increasing and, decreasing. This
tendency also persists if the dimensionless parameters a
the order unity. The results of numerical calculations of
CDW current as a function of the total voltageV52Ēa
1VPS are shown in Fig. 2. At small voltages the curves ha
a region of negative differential conductivity originatin
from a rapid increase of the CDW current~i.e., of the fre-
quencyv) when Ē exceeds the critical value@cf. Eq. ~33!#.
In real experimental conditions such a dependence is
pected to be easily washed out by effects of pinning, and
a nonuniform distribution of the current density.

V. CONCLUSION

A theoretical model of the current conversion in mes
copic CDW conductors is presented. The model involve
microscopic treatment of the phase-slip process which c
sists of a periodic local suppression of the CDW amplitude
conducting chains. The cores are described as dynam
chord solitons in which the CDW order parameter varies
distances of the order of the amplitude coherence len
This variation is accompanied by quasiclassic perturbati

FIG. 2. Dependence of the CDW current~in arbitrary units! on
total voltage~in units of V`) for different values of the distanc
between the current contacts. Curve 1, 2, and 3 correspond t
infinite distance, and to distancesa54a0 anda5a0, respectively.
The respective phase-slip voltagesVPS are determined by differenc
of the voltages between the thick curves and straight line 4.
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of the phase decaying at large distances. The electric fi
induced by deformations of the CDW greatly enhances
decaying length@Eqs.~23! and~31!# of such perturbations. If
the distance between current contacts is smaller than or c
parable to this characteristic length, the phase slips near
ferent current contacts interact and the interaction decre
the phase-slip voltage. Phase slips are stimulated by fluc
tions. The crude estimate of suppression ofVPS by thermal
fluctuations @Eq. ~30!# suggests a strong decrease of t
phase-slip voltage. It was found that the phase-slip volt
may decrease also if the applied electric field greatly exce
the threshold force related to the potential barrier preven
the phase slippage.

In this study the inertial term in the equation of motion f
the CDW phase was neglected. This is valid if the CD
current is small enough, and corresponds to frequen
which can be estimated as

v!
1

t

m

m*
,

wheret is the electron momentum scattering time. This co
dition is fulfilled at current densities used in experiments
Ref. 15. However, at larger frequencies the inertial te
modifies the decay length, and hence Eq.~22!, describing the
average phase-slip dynamics. Therefore, the results of
study need modifications at large frequencies for which
inertial term becomes important.

As mentioned above, the phase-slip dynamics change
the distance between the current contacts becomes co
rable to the decay length of the CDW phase perturbati
that are enhanced by the long-range Coulomb effects.
latter depend on the distribution of the charge density
tween the CDW and single-particle excitations. Therefore
order to be closer to the experimentally studied case
NbSe3 the decay length was calculated within the model o
CDW conductor consisting of both normal-metal and CDW
state conducting chains. The possibility of a direct quant
tive comparison of our theoretical results with the expe
mental data is limited because we considered a simpli
one-dimensional distribution of the current density. In t
real experimental conditions15 side contacts are used, and th
samples have comparable transverse and longitudinal s
In this case the current distribution is rather complicated.
particular, due to a large anisotropy of the CDW compoun
the current injected into a sample perpendicularly to the c
ducting chains flows near the contacts in different directio
including the direction opposite to another contact. The
fore, effective sizes of regions with more or less unifor
current density along the chains are distributed in a w
range starting from the intercontact distance up to the len
of the order of the sample thickness multiplied by the squ
root of the large anisotropy factor of the conductivity. Ther
fore, it is difficult to make a quantitative comparison of th
theory with the experimental data. However, the theoret
values of the contact separation for which the phase-
voltage starts to decrease and the phase-slip voltage itse
in a qualitative agreement with the experimental data.

an
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