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Model of charge-density-wave current conversion and phase-slip dynamics in mesoscopic samples
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A microscopic model of collective-to-normal current conversion in mesoscopic charge-density@izwe
conductors is presented. The current conversion is described in terms of phase slips induced by CDW strain
and thermal fluctuations. Cores of phase slips are described as dynamic solitons with suppressed order param-
eter centered at individual chains near current contacts. The size of the cores is of the order of the amplitude
coherence length, and they are surrounded by long-range perturbations of the CDW phase and of electric field
induced by the CDW distortion. If the contact spacing is shorter than decay length of the long-range pertur-
bations, the dynamics of phase slips at opposite contacts is correlated. In this case the phase-slip voltage
decreases with the contact spacing decreasing. The results are in qualitative agreement with experimental study
of current conversion in submicron NbSeires. In the limit of a large applied electric field a decrease of the
phase-slip voltage is predicted even at large distances between current contacts.
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[. INTRODUCTION ductor in which the Peierls energy gap is suppressed by im-
purities (A7<1, whereA is the amplitude of the CDW order
Formation of the charge-density wat€DW) below the  parameter, and- is the scattering time This approach in-
Peierls transition in quasi-one-dimensional conductors givegolved a solution a closed set of equations for the order
rise to a collective mechanism of electron transport related tparameter and the current density for a one-dimensional ge-
the sliding motion of the CDWfor a review, see Refs. 1 and ometry. Later the structure of phase-slip centers was studied
2). At the interface between a CDW conductor and a normaby means of microscopic approach for ordinary CDW con-
metal contact, the current must be converted from the singleductors with nonzero energy gaps, and a solution describing
electron current in the normal metal to the collective CDWthe phase-slip center as an oscillating soliton was fdind.
current inside the CDW conductor. This conversion occurs ifThis solution was also restricted to the one-dimensional ge-
a form of phase-slip processes induced by a CDW strain neaymetry in which phase slip occurred in the whole cross sec-
current contacts that results in periodic suppression of théon of a CDW conductor. The phase-slip voltage was found
CDW amplitude while the CDW phase increases hy.¥*  to be equal to A. This value does not agree with experi-
Suppression of the CDW amplitude is induced by the CDWmental data, because stimulation of phase slips by fluctua-
strain near current contacts. As a result of a phase slip thigons was not taken into account.
strain is removed and a wave front of the CDW is added or Description of phase slips in the form of vorti¢és based
removed. The periodic suppression of the CDW amplitude iron equation of motion for the CDW phase, the CDW being
the phase-slip process may occur in the form of phase vortieonsidered as an elastic medium with topological defects.
ces(dislocationy moving across the samplén this case the More detailed study of current conversion by means of vor-
CDW amplitude is suppressed in the center of the vortextices was given by Ong and MaKl, and later by Ra-
Phase-slip centers are also known in other systems with colnakrishnaet al'® and Requardet al? In the model consid-
lective transport such as narrow superconducting chahnelgred in these papers the CDW strain lowers the energy
and superfluid$. barrier for thermal nucleation of phase vortices. None of the
The current conversion near current contacts were extermodels mentioned above can explain the reduction of the
sively studied experimentalf7.*> The strain of the CDW phase-slip voltage in short samples observed by Mantel
near contacts was found to induce an additional voltage dropt al*®
called the phase-slip voltag¥,-5. Initially, the phase-slip In bulk samples a threshold field for the CDW sliding is
voltage was experimentally studied in bulk crysfait It determined by impurity pinning, and local CDW strains in-
was found thatVpg strongly decreases as the temperatureduced by pinning centers can compete with the CDW strain
increases but is independent of spacing between current comduced by the current conversion near contacts. Therefore,
tacts. First indications of modifications in the current conver-phase-slip centers may be distributed over large distances,
sion process on a submicron scale were obtained in experfier example, a conversion length about 40n was re-
ments on arrays of Nb§entidots'* Eventually, in a recent ported? in NbSe. In very short samples the threshold field
experimental study of current conversion in submicron is determined by contacts, and a large strain of the CDW
NbSe wires a significant reduction of the phase-slip voltagewhich is compressed near one contact and stretched near the
was observed if the spacing between current contacts wasther dominates over local strains due to pinning centers.
smaller than 3um. Therefore, one can expect that in short samples the impurity
The first theoretical studies of phase slips in the CDWpinning can be neglected, and phase-slip centers are located
materials were based on time-dependent Ginzburg-Landawear current contacts where the CDW strain is the largest.
equationd'®which are strictly valid for a gapless CDW con- The theoretical model of current conversion from the normal
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current to the CDW current in mesoscopic samples presentguhase-slip voltage is calculated. Finally, Sec. V sums up the
in this paper ignores the impurity pinning. The present modeprincipal results.

is based on the microscopic appro&ém which the cores of

the phase-slip centers were described as dynamic solitons
which produced phase slips at all conducting chains simulta-
neously. Here, in contrast to Ref. 17, we consider phase-slips Our approach to the problem is based on the kinetic
occurring at individual chains, and thermal fluctuationsequation&’?! for quasiclassic Green’s functions combined
stimulating the phase slips are taken into account. To dewith self-consistency equations in which the CDW order pa-
scribe temporal evolution of the CDW an equation for itsrameter is expressed via the nonequilibrium Green’s func-
phase averaged over the sample cross section is derived@ns introduced by Keldysff. These equations were derived
while the evolution of individual phase slips is not studied. Within the mean-field approximation, and together with Max-
The phase-slip dynamics is found to depend on the sampl\é(e”'s_ equations they proyided a close set of eq_uations de-
length when the latter becomes comparable to or smallefcribing the CDW dynamics. Each GreAeRn’s function has the
than a decay length of long-range perturbations of the cDWorm of a matrix formed by the retardeg,’, and advanced,

A , H ) H
phase induced by phase slips. The decay length is enhancéd: Green'’s functions, and by the Green’s function related to
by a long-range electric field originating from charges in-

the distribution functionsg®, introduced by Keldysh:
duced by the CDW strain near current contacts.

The decay length depends on a screening which is deter- . g® g«

mined by a distribution of the charge density between the “lo gr/

CDW and single-particle excitations. Therefore, to compare

the results with the measurements of current conversion i thermore, each of the components, in turn, is a matrix

mesoscopic NbSe sample$® we focus on calculations with respect to indices related to two parts of the Fermi sur-

within the model in which the CDW conductor consists of face of a quasi-one-dimensiona| meta|—apF and +pe. A

two types of conducting chains; chains in the CDW state andiiscrete presentation of the equations with respect to num-

chains in the metallic state with a zero Peierls gap. bers of conducting chaif$is used, so each Green’s function
There is an important difference of the present modedepends on two chain numbers.

from the models based on the concept of dislocations moving The equations have a form

across the sampfé:'®1°That is, in our model we describe

the phase slip as a local suppression of the CDW order pa- d8nm

rameter at conducting chains due to the combined action ofithWHLE (Ann+i9n+im— Onm+iAm+i.m)

the CDW strain and thermal fluctuations, the valueVefs '

being related to an extra energy needed to suppress the CDW _ d8nm  dGnm

amplitude. On the other hand, in the models of current con- +ih| o, at + at

version due to moving dislocations, the periodic suppression ! 2

II. MODEL AND GENERAL EQUATIONS

0z +(i0'yAn_(Dn0'z)gnm

of the CDW amplitude occurring when centers of disloca- i%
tions cross the conducting chains is not considered \gnd ~Onm(i0yAn— 0, Pm) + S Vil 0 8nn02Gnm
is phenomenologically related to the energy barrier for the
thermal nucleation of dislocations. . B if . . . .
The paper is organized as follows. In Sec. Il general equa- _gnma'zgmma'z]_zVb[a'xgnno'xgnm_gnmo'xgmmg'x
tions for the CDW order parameter, current and charge den-
sities are presented, and basic approximations are discussed.  +0,8,,0yInm— OnmTyImmoy] =0, D

In Sec. lll equations describing the dynamics of the CDW

phase are derived and studied. First, equations describing th¢here products assume a convolution with respect to time
phase distribution in the quasiclassic region outside the coresnd matrix indicespg is the Fermi velocity in the chain
of phase slips are derived, and a renormalization of the CDWirection, x is the coordinate along the chain®,,=ed¢,
elasticity and damping by electric field induced by the CDW — (y/2)(d¢,/dX), ¢, is the matrix element of the electric
deformation is discussed. It is very difficult to solve thesepotential calculated with Wannier functions related to chain
equations and to match them at the cores of phase slips forimbem, andA, and¢,, are the amplitude and the phase of

realistic geometry of samples with side contacts typicallythe order parameter at timth chain, respectively:
used in experimental studies of the phase-slip voltage. There-

fore, for simplicity we neglect the current spreading near the _ _

contacts and consider an unrealistic but simple geometry Apn= 0,005 " EM 4 ginfn_¥m.

with a one-dimensional distribution of the current. Then 2 2

equations for the time dependence of variations of the CDW

phase across the cores of the phase-slip centers are derived are the Pauli matrices, arid is the transfer integral de-
and studied. This variations consist of average and fluctuascribing weak interchain interaction in the quasi-one-
ing parts. An equation for the average phase variations dedimensional conductor; the summation in this term is limited
scribing the phase-slip dynamics is solved in Sec. IV, and théy the neighbor chains.
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The last terms in Eq(l) describe the elastic scattering,
and »; and v, are forward scattering and backscatteringgR(® =+ iA(X)oy+eo,

rates.
The order parameter satisfies the self-consistency equa- AZsirPo
tion i — ) / —
+(ioy—0 JeZ—AZ,
(foy “2[&— A cosf]cosR(x/{)
(7

. 1 & .
[ ( 1+ — —2) (0yCOSQ,+ oy,Sine,) A,
g at
wherel=¢/sin#, and u is the shift of the chemical potential
:)‘/Zf (Qﬁn—az@ﬁ]%)de, ) from the mid-gap position', it appears duglto l_wonuniformity
induced by the CDW strain. The singularities in the energy,
e, must be circumvented assuming that the retar¢het
where wq is the frequency of phonons with a wave vectorvanced Green’s function is analytical in the uppéower)
equal to the wave vector of the Peierls instability, anés  half-plane. The anomalous Green’s functigf®) describes

the electron-phonon coupling constant. nonequilibrium perturbations of electronic distribution
The charge and current densities at chaican be calcu-  smoothly varying at quasiclassic distances.
lated as Brazovskif* found that only the soliton witl#= /2, cor-

responding to a zero CDW amplitude at the soliton center,
2 /1 can exist in the equilibrium state, since fé# #/2 the self-
pn=—(—f S azgnn)de—¢>). (3)  consistency condition for the phase of the order parameter is
7R\ 8 not satisfied. Here we consider the case when the chemical
potential is shifted from the midgap position due to strain of
1 the CDW. Then the self-consistency conditidgqg. (2)] re-
Jn(X)= Ef Spdn, de. (4)  lates variation of the phase across the solitod, ® the
position of the chemical potential. In the limit of low tem-
peraturesT<<A, the position of the chemical potential at the
Itis very difficult to solve these equations for the generalspliton approximately coincides with the subgap electron
case; therefore, we find an approximate solution taking intQevel localized at the solitoi7), u=A cosé (for more de-
account that\>vy,,vi>w (o is a typical frequency of the taijls, see Ref. 17 Then the variation of the phase at the core
problem, and having in mind the large anisotropy of the of the phase slip, @ and the related shift of the chemical
linear-chain compoundsA>t, . These inequalities permit potential,x, in Eqs.(5)—(7) can be considered as parameters
us to divide the problem into two parts related to differentsjowly varying in time. These parameters will be determined
Iength scales. Perturbations of the CDW order parameter @y matching the solution at the cores &, with quasiclassic
short distances of the order bf:UF/A, at individual chains, solutions at |arge distances from the phase-s]ip center,
are considered neglecting time derivatives, the terms propok. ¢,

tional to scattering terms, and the terms related to the inter- A solution of Eq.(1) far from the soliton is described by
chain interaction. Then the short-range solution which deEqS_ (5)—(7), considered in the limit of large distancas
scribes a core of the phase slip must be matched with & |t gives a solutions for the retarded and advanced
long-wavelength quasiclassic solution varying at large scalegreen’s functions in the quasiclassic region as well. The non-

like diffusion length orv/t, . The short-range solution pre- trivial problem here is to find the nonequilibrium par®.
sents a soliton characterized by a rapid variation of the phasgg|ytions forg® are available in different limit&-2* How-

and a local suppression of the amplitude of the CDW. Solieyer, we do not discuss the form of the anomalous Green’s
tons of such a type, called chord solitons, were introduced ifiynction §(® here becausg and @ are readily obtained from
linear-chain conductors by BrazovsKiias elementary exci- the equation of motion for the CDW phase, and expressions

tations, and have already been used to describe the cores @ cyrrent and charge densities derived from solutions for
phase Sllpé. In contrast to a previous StUHythe solution g(a) in the qU&SiClaSSiC regicﬁjnzg These expressions are

we use here describes large perturbations of the CDW ankpysically transparent and their different limiting forms are
plitude at one conducting chain, perturbations of the CDWye|l-known12

an";phtude at the adjacent chains being negligibly sméal: To be more determined and closer to the experimentally
*t] . In the leading approximation the solitonic solution for stydied case of Nbgeve must consider a CDW conductor
the order parameter and for the Green’s functions have th@hich, in addition to quasiparticle excitations via the Peierls

forms (the chain numbers are dropped gap, contains also normal electrons at the Fermi level. There-
fore, we focus on a model in which in addition to the con-
A(x)=A[cosh+i sinftanh(x/{)], (5)  ducting chains with nonzero gap, there are chains of an-

other type in which the CDW is absent in the lowest
approximation int, .
+g@® ©6) The equation for linear charge density in the CDW chains
' reads(see Ref. 2b

AK_ aR_ AA ETH
g"=(G"-9 )tanl‘( 5T
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e do 2e2 M (12) is neglected because in the case of very short distances

dn=—Ncow_ 70~ NQﬂ_ﬁ—UFT sinh—, (8)  between current contacts the onset of the sliding of the CDW
is controlled by the phase-slip voltage rather than by the

where the first term describes the CDW chafggpw is the  impurity pinning.

fraction of electrons condensed in the CDW, aNgd=1 Note that, in principle, kinetic coefficients in equations for

—Ncpw is the fraction of the charge related to quasiparticleshe current, charge, and phase depend on relaxation times in

excited above the gap. The second term describes the contd-complicated way and may be frequency dependent. Simple

bution to the charge density due to a variation of local valugquations like Eqs(8)—(12), with constant kinetic coeffi-

of the chemical potential; this term has a form analogous t@jents, can be strictly derived from Eq4) provided typical

the case of ordinary semiconductors. The charge density §lequencies of the problem are smaller than both the energy

the normal chains can be found from E@), with Ncow  and momentum relaxation rates of the electrons, and one can

=0. use the concept of the chemical potenjialsee Ref. 26 for
Total current transported along a chain containing thejetailg.
CDW is equal to In the right-hand side of Eq12) derived from the micro-
oV 26?4 _scopic approach th_ere are tyvo c.:ont.ributions to the for.ce ldriv-
jn="—"50 "4 (1-b) #n. (99  ing the CDW. The first contribution is due to the electric field
X mhug ot in the chain directionE,,, which includes both an externally

Here the first term describes the single-particle current drivefPPlied field and an electric field due to charges induced by
by the gradient of the electrochemical potential deformations of the CDW. The second force is due to the

gradient of the electrochemical potential. The latter contribu-
eV,=®,— up, (10)  tion is not included, usually, in phenomenological equations
o _ _ _ ~ of motion for the phasé? Below we assume the condition
the ponduct|V|tya|| is propornonal to the.densny of quasi- T<A, which usually holds true in CDW conductors in a
particles thermally activated over the Peierls §&p, andS  \yide temperature region. In this case the second term in Eq.
is the area per single conducting chain. The second termy ) is proportional to the exponentially small quasiparticle
describes the CDW current. Factor-b reflects a decrease density, and can be neglected.
of the CDW current at finite temperatures. Typically<A, Thus the single-particle current and the CDW are driven
and this factor can be approximated by unity. The expressioBy different forces. The CDW is driven mainly by the elec-
for the current flowing along the chains which do not containyric field, i.e., by the gradient of the electric potential, while
the CDW gap is described by E@) withb=1, i.e., without  the single-particle current is driven by the gradient of the
the second term describing the CDW current, and the correajectrochemical potential described by EQO). Equiva-
sponding single-particle conductivity is equal to a normaljently, the single-particle current can be presented as a sum

metallic conductivity. . _ . of two components, one of which is the current driven by the
The current between neighbor chaim&indn+i can be  electric field and the other the diffusion current presented by
modeled as the term proportional to the gradient of the chemical poten-

. tial. It is important to note that the voltage is equivalent to
Inn+i=0nn+i(Vari=Valls, (D) the difference of electrochemical potentials which drives the
where the Conductivity;—n’nJri has different values for cur- single—particle current, while the difference in the electric
rents between different types of chairmal and normal, Potentials is not a voltage and cannot be measured by a volt-
CDW and normal, or CDW and CDWThe equation for the meter. For example, a difference of electric potentials arises

CDW phase reads across the contacts of two different conductors even in the
equilibrium case, but it produces neither voltage nor current.
hom* PP, den hve %@, Furthermore, the constancy of the electrochemical potential,

2vp M g2

in other words the constancy of the sum of the potential
energy and of the chemical potential, is the necessary condi-
tion of the equilibrium stafé in which current and voltage
+‘]Z SIN(@p—@ns 1) are absent while the electric field can be nonzero. _

. So, according to Eq10), shifts of the chemical potential
w induced by the CDW strain near current contacts contrib-
ute to the voltage. The phase-slip voltaggs is usually de-
termined(see, e.g., Refs. 8 and J1&s a difference of voltage
measurements in transposed and normal configurations. In
where m is the electron mass, andm*=[1  the transposed configuration presented in Fig. 1 current is
+4A?/ (12N wp) Im is “the effective mass of the CDW.” Be-  injected through the middle contacts 2 and 3t a, while
low, for simplicity, we consider the case of relatively low the voltage is measured between contacts 1 and 4. In this
frequencies when this term can be omitted. Furthkr, configuration the current conversion occurs between the volt-
=Ncpwt?/(Ave), and vy, is the bare friction coefficient. age probes and contributes to the measured voltage. In the
Summation in the term witld describing the interchain in- normal configuration, current is injected at contacts 1 and 4
teraction is limited by the nearest neighbors. Pinning in Eqand voltage is measured between contacts 2 and 3 so that the

Yoo T NeowTo Ix2

NV,
ox '

=NcoweEn+(b—Ng) (12)
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using the Fourier transformation, after some algebra we ex-
press potentialg., V, and® in terms of the CDW phase. In
3 4 particular, we find the relation between the shift of the

l1 1 2 ;’ 2
oA 5 2 X chemical potential and of the phase gradient:
FIG. 1. The transposed configuration for study of the phase-slip _ hvg do,
voltage. Mn= =05 (14)

current conversion occurs beyond the voltage probes and then we exclude potentials from E@.2) and find an equa-
phase-slip process does not contribute to the measured vofion of motion for the CDW phase that does not contain
age. potentials which, in turn, depend on the phase distribution.
Now we can expres¥ps in terms of shiftsu near current Qeneral expressions 'for coefficients in such'equ'ation qf mo-
contacts atx|=a. We integrate Eq(12) overx and average tion are rather complicated, but they are quite simple in the
it over sample cross-section. Then we use the obtained equiimit which we needw<Dgf (whereD is the diffusion co-
tion together with Eq(10) to express the CDW currefithe  efficient for the chain direction In this limit an equation
second term in Eq9)] in terms of voltage and difference of Which is similar to Eq(12) is obtained:
the chemical potentials. This enables us to calculate the

phase-slip voltage as the difference of voltages measured in _d¢, #Ave 7 on . =

two configurations at the same values of the CDW current: 7 gt +T(l+g) Ix2 +‘]§i: Sin(¢n = @n+i) =€E
1-N (19
VPS=TbQ[,u(a)—,u(—a)]~[,u(a)—,u(—a)]. In contrast to Eq(12), the right-hand side of Eq15) con-

(13 tains an externally applied electric fieldonly, while electric
fields induced by deformations of the CDW are represented
In the last equality we neglected factdssand Ng, which by a renormalization of the damping and elasticity coeffi-
describe the quasiparticle contributions to the current andients described by the operators which in the Fourier repre-
charge densities and are exponentially smallT&A. Thus sentation have a form
the phase-slip voltage is determined by the difference of
chemical potentials at current contattg® 22 vek?qf

= —_— = +
g fivg’ Y= %Yo

, (16
8m(on, 7+ UNHQﬁ)

wherek is the inverse Thomas-Fermi screening lengtly,
is the conductivity describing the current between the normal
chains, andry is the conductivity along the normal chains.
In order to find solutions for phase distribution in the The dimensionless parametgiooks like the fine structure
guasiclassic region we insert expressions for the current intoonstant with the velocity of light substituted for the Fermi
the Poisson and continuity equations. Then we exclude porelocity. For the typical value of the Fermi velocityv g
tentials x, V, and® from Eq. (12) and find a quasiclassic ~2x10’ cm/s, the parametey can be estimated ap~ 24,
equation of motion for the CDW phase. so in contrast to the fine structure constant it is not small.
Below, assuming that <A, we neglect, where possible, Therefore, we consider parametgto be large, and the ex-
factors likeNg and b proportional to the small density of pression forg [Eq. (16)] is already presented under the as-
quasiparticles thermally excited over the Peierls gap. Thesumptiong>1. Besides, Eq(16) is presented in the long
expressions for current and charge densitiegs. (8)—(11)]  wavelength limit, while a more accurate expression dor
become linear, and one can use the Fourier transformatiotontains the additional factor 4/(|=4€Aqf8), where €,
with respect to timet< w, coordinate along the chains, ~ «?£%/6 is the CDW gap dielectric function.
x+(q, and the chain numbersi—q, . At this stage we The renormalization increases the damping coefficient
must consider definite arrangements of the conducting chaingrastically as well. The bare damping coefficiegtis small,
with and without the CDW distortion. The reason for this is being proportional to the density of quasiparticles thermally
the necessity to take into account screening by normal eleexcited via the Peierls g&B?% The renormalized damping
trons located at the chains in the normal state. The screeningpefficient for the phase averaged over all chains is much
may depend quantitatively on the chain arrangement, but thiarger thany,, and equalyy=%(q, =0)~#/l, wherel is the
qualitative character of the screening is expected to be indenean free path along the chains in the normal state.
pendent of the details of the crystal structure. Therefore, for Now we briefly discuss the case of a linear-chain conduc-
simplicity, we consider a square lattice with an alternatingtor in which all conducting chains are in the CDW state like
sequence of normal and CDW chains. Furthermore, also foh most CDW conductors, and there are no electrons from
simplicity, we use a discrete form of space derivatives in thehe chains in the normal state that can effectively screen the
perpendicular direction, e.g?,¢— (¢n+1— ¢n)/s, wheres  charge density induced by CDW distortions. Then one must
= /S s the interchain spacing. Then inserting these exprestake into account the screening by quasiparticles thermally
sions into the Poisson equation and continuity equations, anexcited above the Peierls gap. In general, the problem of

Ill. EQUATIONS DESCRIBING PHASE-SLIP DYNAMICS

A. Renormalized equation for the CDW phase
in the quasiclassic region
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screening by such quasiparticles is more difficult than that ohverage value$d.) and(6_). We assume that the sample
screening by electrons from the chains in the normal stateonsists of many chains, and that the statistical averaging is

because of the nonlinearity in the second term in @y for

equivalent to ensemble averaging, so tt¥tdoes not de-

the charge density. However, the solution can be simplified gbend on the chain index
high temperatures, when the quasiparticle density is large

enough to provide effective screening, so that the maximal

shift of the chemical potential is small enough<T. There-

fore, the second term in E@8) can be linearized, and the

0,=(0)+356,, (cosb,)=cogd){cossb,),

(cos80,)=exp(—(562)/2). (19)

problem can be solved by means of the Fourier transformarpe |ast equality is valid if fluctuations are Gaussian.

tion similar to the previous case of screening by electrons in

In order to derive equations describing dynamics of phase

the normal chains. Note that in this limit the Poisson equaygriationsg,. we have to solve Eqi15) outside the region
tion is reduced to the quasineutrality condition. One obtaingf the chord solitons with an additional condition that pertur-
an equation for the CDW phase with renormalized stiffnesgyations of the phase decay|at—, and to match the so-
and damping, and relation between phase and chemical PRjiions atx=+a. The matching conditions are the follow-

tential resembling Eqg15) and (16):

( 2e4(1—b)2) dgn (1= No) fivg #¢y

ﬁUFSO'H &t NQ 2 (9)(2
. j
> SN gn— @) =€ (17)
hvg 0
_ F (Pn. (18)

Fn™ 7 2Ng ox

The total current densityin the right-hand side of Eq17)

ing: first, the phase variations at the solitons are equal to
260,~, and, second, the spatial derivative of the phase is
continuous at each chord soliton and is related to the chemi-
cal potential according to Eq14), the chemical potential
being equal to

(20)

The main difficulty in solving Eq(15) originates from the
nonlinear terms describing the interchain interaction. Note
that this difficulty does not appear in the derivation of the
equations for the averaged valueg 6f ) because the spatial
averaging of the equations in the perpendicular direction in-

Mn+=A COSH,- .

does not depend on coordinates in the case of the oneolves summation of the term describing the interchain in-
dimensional current distribution considered below. Thus theeraction in Eq.(15) over all conducting chains; this gives
structure of equations for the phase and of relations betweezero. To overcome this difficulty in the general equations for

the phase gradient and chemical potentia similar to Eqgs.
(15 and(16), but the role of the renormalization factgrof
the CDW stiffness is played by N4 . A rapid exponential

decrease of the fractioNy of single-electron excitations

with decreasing temperature leads to an increage dhere-

the nonaveraged,- , we model the sum in the term propor-
tional to J in Eq. (15) by the discrete form of second spatial
derivatives in the directions perpendicular to the chains. As
noted above, this substitution does not affect equations for
the average phag@..). In fact, such a model corresponds to

fore, the screening by quasiparticles becomes nonlinear at standard form of the equation for the phase in which the

lower temperatures, and Egel7) and (18) are no longer
valid and a more thorough analysis is needed.

B. Equations for variation of the CDW phase
at current contacts

interchain interaction is presented by the elastic tefrin

this case Eq(15) becomes linear and one can use the Fourier
representation with respect to frequency and chain numbers
and find equations for the Fourier transforis,

C_+d6u_IA
In this section we need to consider a definite geometry of 20_— T(2+tanhak+ cothak)
the current distribution explicitly. As already mentioned
above, we consider the simplest one-dimensional current dis- C,+d8u,lA

tribution, the current density being uniform between contacts £k (tanhak—cothak) =F,

2 and 3, atx|<a, and equal to zero in the region outside the

contacts, atx|>a (Fig. 1). It can be shown that the results C.+6u, /A

obtained for this geometry are very similar to the case of 20, K (2+tanhak+ cothak)
current flowing between current contacts at butt ends of a ¢
sample, with the boundary condition at the contacts consist- C_+du_IA

ing of a constancy of the CDW phase. Such boundary con- £k (tanhak—cothak)=—F, (21
ditions imply that the CDW current at the contacts equals
zero. where C.. are the Fourier transforms of cés., respec-

We denote the variation of the CDW phase across theively, anddu is an extraneous random force describing fluc-
chord solitons near the current contactxata andx=—a  tuations of the chemical potential in the quasiclassic region
as 20,. and 29,_, respectively. Each of these phase varia-outside the phase-slip center. Correlation functions dar
tions consist of an average pdr) and a fluctuating part are discussed below. An incremedntlescribes spatial varia-
80, (where it is possible we omit subscripts for brevity).  tions of the phase along the chains, which may be presented

To find the CDW current anttV curves we need to calculate in the form of a linear combination of the exponents
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exp(tkx) with k2:qfs/|f_2iwy/(ﬁvFg) and |f mined by fluctuations of the phase variations across the
=g(#ive)?%(2t%). The lengthl, exceeds the amplitude co- chord solitons. Fluctuation$6é are described by general

herence length by factafg/2(A/t, ) which can be estimated equatio.ns(21). Fluctuationsﬁb'_n at different chains are more
as 10. The driving force in the right-hand side is proportional®f 1€ss independent, and typical wave vectors for the fluctua-
to the applied electric fiel and has the form “O”S.Ca!” be estimated g5~ Ls. AS noted_ abo_ve, the char-
acteristic length for variations in the direction along the
oE chain direction is quite short for such values of , L
F=—2m38(w)d(q,). ~1, . If the distance between the contacts excdedstypi-
ihwy cal values ofka in equations forsé,, are large and tandk

Note that the d lenath for th wurbai f th ~cothak~1. Then the interaction between fluctuating parts
ote that Ine decay length for the perturbations of theye o phase variations across chord solitong-at-a and
phase along the chaing,=1/k|, depends onq, . This

I his relativelv sh t the order bf . f bai x=a, presented by the second terms in the left-hand sides of
engthis re at_lvey short, o the or er bf, orzpertur ations Egs.(21), can be neglected. Therefore, the strength of fluc-
strongly varying from chain to chaifi.e. atq;S~1). Nev-

X tuations and, hence, their effect on the phase-slip voltage can
erthelessl, >¢. For perturbations averaged over the samplé,e found from an equation which does not depend explicitly
cross section, i.e., those wiity, =0, the decaying length on, the contact spacing if the latter exceeds the lehgth

L(q, =0) is much larger and diverges at small frequencies. Here we do not solve the complicated problem of fluctua-
If the distance between the contacts is smaller th&a,  tions of the phase difference across the chord soliton. Instead
=0), one should expect that the average valies) and \ye roughly estimate reduction of the phase-slip voltage by
(6-) would change synchronously. Equatid@d) have syn-  thermal fluctuations. So consider Eq&1) in the limit a
chronously changing solutions which obey the condition_, » for the fluctuating part of the phas#. In the chain-
(6,)=m—(6_). Below we will concentrate on such a case nymper representation we obtain

of synchronous oscillations of phase-slips near both current

contacts. Taking the inverse Fourier transform, we find that

the time dependence of=(#_) for the synchronously az Qmd0n_m—[cog{6)+ 56,)—(cog(O)+ 56,))]
changing solutions is described by an equation m

t dt 20(t
cos¢9=J ! { (ta) —f}
—e t—t, | It

=08unlA, (29

2
1=exp == /| wherea=t, /(\2gA), andQ,, is the inverse Fourier trans-
1
(22) form of (ghs). _Operator Q decays at largem, Q,
_ _ _ _ _ _ «sinmm/m*?, while at m=0 Qu,=1. Therefore, for crude
2hiveygl(me?V.,), and term with m=0, which gives

Ve (cosd6,, +cosdb, ), f= o (=2 @86, cog(0) + 86,) = Sy /A, (26)
e Eo ag
Now we estimate the fluctuations of the chemical poten-
meV? hveg tial in the right-hand part of Eq(25). To do this one can
= fiveg’ ap= 2Jmev,’ (23) apply the fluctuation-dissipation theorem to Efj5) for the
* CDW phase and to relate phase fluctuations to fluctuations of
Heref and¢ are the dimensionless driving electric field and the chemical potential by means of Ed4). Upon integra-
the half-distance between the contacts, respectively. It i§on of the spectral density of fluctuations over frequencies
shown below thatV,. determines the phase-slip voltage in W€ find
case of infinite spacing between the contacts and relatively
low applied electric fieldE < E. , 27 Th%Eg?qfS
As noted above, the phase-slip voltage is determined by (6n%)q~ hoe(1+9)P+I (27)
the difference of the shifts of the chemical potenjiaht the F 9T
current contactssee Eq(10)]. According to Eqs(13), (19),  |ntegration of this equation ovey yields the mean square
and (20) the phase-slip voltage is equal to fluctuation of the chemical potenlt/i_al. In the integral oger
_ _ the upper limit is of the order of 5, and in the integration
Ves(t) = (A/e){cosby—— COSOy.) = V..COSO.  (24) overq one needs to take into account the additional factor in
Below we concentrate on calculation of the dc component ofhe renormalized Iongitudinal elastic coefficient mentioned
the phase-slip-voltage. Equatig@4) shows that the maxi- in the discussion after E@16). Note that characteristic wave
mum possible value 0¥ is equal to the energy gapA2in lengths of the fluctuations along the chain direction that give
the quasiparticle spectrum, as obtained in Ref. 17. Howevethe largest contribution to the integral are of the order of

Eo

fluctuations decrease this value. gé>¢. So, after integration, we obtain
Thus the average phase-slip dynamics is described by
obeying EQ.(22) and depends on the parametéy deter- (8u?)~ @ TA. (28
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For typical experimental temperatutesabove 100 K this fore, we numerically solved the exact equation and analyti-
estimate implies that mean-square fluctuations of the chemeally solved a model equation obtained from E2) by
cal potential are of the order &. Hence the mean magni- substitution of cosine function for the sawtooth function.
tude of the random force in the right-hand side of B2f) is ~ Such a substitution converts the nonlinear equati& into
of the order of unity. It is difficult to find the solution for this a linear equation with a driving force induced by the discon-
case. Therefore, to make a crude estimate, we consider thiauities of the sawtooth function. Such a substitution allows
case of a large right-hand side and extend the obtained resuthe to solve the model equation exactly by means of the
to the case of interest. In this limit the cosine terms in Eq.Fourier transformation. Both the solution of the model equa-
(26) can be neglected since they cannot be larger than unityion and the numerical solution of the exact equation give
and one finds similar results.
First we discuss general properties of E2R), and of its
(du?) T solutions. The equation resembles an equation of motion of
P2 _T_o' (29) an overdamped pendulum with retardation in damping. It
contains two dimensionless parametérsnd ¢, describing
Hence, according to Eq&23) and(24) the parameteY.,, can  the applied electric field and the distance between the con-

(66%)~

be estimated as tacts measured in units &, anda,, respectively{see Eq.
(23)]. Using the explicit expressigrEqg. (16)] for the renor-
2A T t2 malization parameteg obtained within our model and a typi-
Ve=—gexg — )" ~ m (300 cal valué® of the phase-slip voltage in Nb$eV..~1 mV,

the units can be estimated as

The characteristic temperatufg is much smaller than both
the CDW amplitudeA and the interchain transfer integral 2e

t, , and may be of the order of few tens of K. Our crude NV

estimate[Eqgs. (29) and (30)] qualitatively agrees with the

experimental dat& At f€<1/(2\/r), which in dimensional units corresponds

~ Now we briefly discuss the phase-slip process in materialgy 2aE<V.,, Eq.(22) has a stationary solution. This means
in which the Fermi surface is destroyed by the Peierls tranthat at voltages smaller than the critical value the phase slips
sition completely. As noted above, in such materials theare absent and the CDW current is equal to zero. At larger
problem is complicated by the nonlinearity of the screening,gjtages the phase starts to increase linearly with time and
by single-electron excitations thermally excited over the gapycquires also an oscillating component. Both the frequency
A. However, if the temperatures is high enough so that thef the oscillations that determines the CDW current and the
typical shift of the chemical potential which is of the order of time average value of casthat determines the dc compo-
Vpsis smaller than the temperatuléps<T, then relatively  nent of the phase-slip voltage depend on the dimensionless
simple Egs.(17) and (18) are valid. These equations re- parameters and €. This dependence is the most simple in
semble Eqs(15) and(14) describing the case of Nb§ethe  the following limiting cases.

main difference is that the parametgin Egs.(15) and(14) In the limit {— andf<1 the solution has the form of a

is substituted for Mq in Egs.(17) and(18). Therefore, for  steplike function, so that most of timeé is close to (2

the case of semiconducting CDW materials one can obtain. 1)z wheren is an integer and exhibits periodic jumps by
equations similar to Eqs22)—(30), with g replaced by the = 5 ‘7 ayerageosd in this regime is close to-1, andVps
temperature-dependent parametdd/ This leads toa dif- g equal toV,,. ThusV.,, determines the phase-slip voltage in
ferent temperature dependence of the characteristic voltagﬁmg samples with independent phase slips at the opposite
V.., the characteristic fields,, and characteristic spacing . rrent contacts.

between current contactay. As the temperature decreases |t hoth characteristic frequencies and intercontact distance
Vpsincreases, and eventually becomes larger than tempergge gmal enough, so that the dimensionless frequenst-
ture T. Therefore, the screening becomes nonlinear, and tthies the conditiono¢2<1, Eq.(22) is reduced to a standard

results based on the linearized equations for the quasiparticlgquation of motion of an overdamped pendulum:
density cannot be directly applied. Thus the temperature de-

pendence of the phase-slip voltage in semiconducting CDW 960
conductors is more complicated due to the screening by ther- 2\t T —f|—coso=0. (32
mally excited quasiparticles.

2

V5
Eq=——~10 Vicm, ap=

5s ~1pum. (31

The solution of this equation, which describes many physical
models including resistively shunted Josephson junctions, is
well known. In particular, for the frequency of the oscilla-
In this section we consider the solution of E82) for the  tions which determines the CDW current, and for the time-
phase-slip phas#. According to Eq.(24), time averaging averaged valueos# which determines the dc component of
cose determines the phase-slip voltage when phase slips ahe phase-slip voltage, in this limit one has
different current contacts take place synchronously on the
average. w=\2=1(47€?), cosO= JAme*f2—1-2\mef.
To solve Eq.(22) analytically is rather difficult. There- (33

IV. PHASE-SLIP DYNAMICS AND PHASE-SLIP VOLTAGE
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of the phase decaying at large distances. The electric field
induced by deformations of the CDW greatly enhances the
decaying lengthEgs.(23) and(31)] of such perturbations. If
1 the distance between current contacts is smaller than or com-
parable to this characteristic length, the phase slips near dif-
ferent current contacts interact and the interaction decreases
1 the phase-slip voltage. Phase slips are stimulated by fluctua-
tions. The crude estimate of suppressiorvek by thermal
fluctuations[Eq. (30)] suggests a strong decrease of the
phase-slip voltage. It was found that the phase-slip voltage
may decrease also if the applied electric field greatly exceeds
the threshold force related to the potential barrier preventing
the phase slippage.
L Y In this study the inertial term in the equation of motion for
\Y the CDW phase was neglected. This is valid if the CDW
current is small enough, and corresponds to frequencies
which can be estimated as

RNW b

Jeaw

FIG. 2. Dependence of the CDW currditt arbitrary unitg on
total voltage(in units of VV.,) for different values of the distance
between the current contacts. Curve 1, 2, and 3 correspond to an
infinite distance, and to distancas-4a, anda=ag, respectively. 1m
The respective phase-slip voltagéss are determined by difference 0<——F,

. . . M
of the voltages between the thick curves and straight line 4.

The solution of Eq(22) can be easily found also in the wherer is the electron momentum scattering time. This con-

limit of large electric field,f —oo: dition is fulfilled at current densities used in experiments of
Ref. 15. However, at larger frequencies the inertial term
1 _ 1 modifies the decay length, and hence &%), describing the
=f-—F—=, cosf=\/g¢ (34  average phase-slip dynamics. Therefore, the results of this
4776\/? Saf ge p p ay

study need modifications at large frequencies for which the

Thus the phase-slip voltage decreases with increasing elelp-ertlal term becomes important.

tric field even in case when the distance between the contac% Angentionbedt abovr—.;,hthe phaste-slipt dytnatr)nics changes as
is large[cf. Eq. (24)]. This happens at large electric fields € distance between the current contacts becomes compa-

- rable to the decay length of the CDW phase perturbations
E>EO_[see Eq(31)] when the driving force exerted on the that are enhanced by the long-range Coulomb effects. The
COw |_s|rrt1)uch Iarge(rj th‘.fjm thhe thLeshoIdr forC(Ie rellsted 1o theatter depend on the distribution of the charge density be-
potential barrier producing the phase-slip voltdgeso note  yeen the CDW and single-particle excitations. Therefore, in
the analogy with a pendulum mentioned above

T order to be closer to the experimentally studied case of
The general tendency of the solution is a decrease of th b Y

RbSe the d length Iculated within th del of
phase-slip voltage wittf increasing and’ decreasing. This &P § the decay lengin was cacL/aled within the moce” o a
al

d | ists if the di ionl CPW conductor consisting of both normal-metal and CDW-
tendency also persists It the dimensionless parameters are Qb conducting chains. The possibility of a direct quantita-

the order unity. The results of numerical Calculatlons_of thetive comparison of our theoretical results with the experi-
CDW current as a function of the total voltagé=2Ea  mental data is limited because we considered a simplified
+Vpgare shown in Fig. 2. At small voltages the curves havepne-dimensional distribution of the current density. In the
a region of negative differential conductivity originating real experimental conditiofsside contacts are used, and the
from a rapid increase of the CDW currefite., of the fre-  samples have comparable transverse and longitudinal sizes.
guencyw) whenE exceeds the critical valdef. Eq. (33)]. In this case the current distribution is rather complicated. In
In real experimental conditions such a dependence is exsarticular, due to a large anisotropy of the CDW compounds
pected to be easily washed out by effects of pinning, and byhe current injected into a sample perpendicularly to the con-
a nonuniform distribution of the current density. ducting chains flows near the contacts in different directions,
including the direction opposite to another contact. There-
fore, effective sizes of regions with more or less uniform
current density along the chains are distributed in a wide

A theoretical model of the current conversion in mesos—+ange starting from the intercontact distance up to the length
copic CDW conductors is presented. The model involves af the order of the sample thickness multiplied by the square
microscopic treatment of the phase-slip process which corroot of the large anisotropy factor of the conductivity. There-
sists of a periodic local suppression of the CDW amplitude afore, it is difficult to make a quantitative comparison of the
conducting chains. The cores are described as dynamicgieory with the experimental data. However, the theoretical
chord solitons in which the CDW order parameter varies avalues of the contact separation for which the phase-slip
distances of the order of the amplitude coherence lengthioltage starts to decrease and the phase-slip voltage itself are
This variation is accompanied by quasiclassic perturbationg a qualitative agreement with the experimental data.

V. CONCLUSION
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