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Repulsion-mediated step wandering on a Si„001… vicinal face
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With a Si~001! vicinal surface in mind, we study step wandering instability on a vicinal surface with an
anisotropic surface diffusion whose orientation dependence alternates on each consecutive terrace. In a con-
served system step wandering takes place with step-up adatom drift. Repulsive interaction between steps is
found indispensable for the instability. Monte Carlo simulation with a strong repulsive step interaction confirms
the result of linear stability analysis, and further shows that in-phase step wandering produces straight grooves.
Grooves widen as their amplitudes increase in proportion to the square root of time.
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I. INTRODUCTION

On a vicinal surface of a crystal, steps undergo two ty
of dynamical instabilities: wandering and bunching. St
wandering is the instability for step deformation along t
step, and step bunching is the one for the interstep distan1

Both instabilities are caused by some asymmetry in the
face diffusion field. There are many effects which cause
asymmetry, and the drift flow of adsorbed atoms~adatoms! is
one of them. On Si~111! and Si~001! vicinal faces, a direct
electric current induces drift of adatoms and the instabilit
have been observed under its application.2

The Si~001! surface is reconstructed and forms rows
dimerized atoms arranged in a 231 unit cell ~Fig. 1!. On the
reconstructed surface, the adatom surface diffusion is an
tropic such that it takes place more easily perpendicula
the dimers~parallel to the dimer rows! than in parallel. On a
vicinal face terraces of different heights are bounded
steps. On consecutive terraces the dimer orientation a
nates, and we call the 132 terrace TA and the 231 terrace
TB .

Due to the alternation of the orientation of fast surfa
diffusion on different terraces, conditions of the step ins
bilities for a Si~001! vicinal face differ from those for a
Si~111! vicinal face. Experimentally, bunching is observ
on a~001! vicinal face with a finite current irrespective of it
direction3–5 and the step wandering with the step-up curren6

Since the drift is believed to be parallel to the current,7,8 the
drift direction that will cause the step wandering is oppos
to that on a Si~111! vicinal face.

Theoretically, step bunching on a Si~001! vicinal face has
been studied by one-dimensional step flow models9–11 and
by Monte Carlo simulations.12 When the alternation of an
isotropic surface diffusion is taken into account, the s
bunching instability is found irrespective of the drift dire
tion, in agreement with the experiments.3–5 On the contrary,
to our best knowledge, there is no theoretical study on
step wandering on a Si~001! vicinal face so far, which we
undertake in this paper.

We find that strong step repulsion prevents steps fr
colliding and maintains an alternating terrace structure.
these terraces, due to the step repulsion, a diffusion cur
0163-1829/2003/67~12!/125408~7!/$20.00 67 1254
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perpendicular to the average step direction arises if steps
tilted, and it causes a wandering instability. This step w
dering is unique, since it happens only on a vicinal face, a
therefore is truly a many-body effect.

A simple model for a Si~001! vicinal face with a drift of
adatoms is introduced in Sec. II. We show, by a linear s
bility analysis in Sec. III, that the steady state with step-
drift is unstable and wandering instability occurs. A heuris
analysis in Sec. IV shows that the wandering instability
similar to that found in other conserved systems.13,14 In Sec.
V, with Monte Carlo simulations, we confirm the above th
oretical predictions and also study the growth law of t
wandering amplitude. In Sec. VI we give a brief discussi
on the character of the present instability and interpret rec
experiments6 on Si~001!.

II. MODEL

Atoms detached from steps migrate on terraces and at
to some steps. For wandering instability, adatom drift is n
essary in addition to diffusive motion. Evaporation and im
pingement are omitted. Steps run parallel to thex direction
on average, and the positivey direction is chosen in the
step-down direction. The drift is assumed in they direction.
With the anisotropy of the diffusion coefficient, the diffusio
equation of adatom densityc(x,y,t) is expressed as

]c

]t
5Dx

]2c

]x2
1Dy

]2c

]y2
2 f Dy

]c

]y
, ~1!

whereDx is the diffusion coefficient in thex direction,Dy is
in they direction, andf (5F/kBT) is the force to induce the
drift divided by the temperature. The meaning ofDx andDy
depends on which terrace we are discussing, TA or TB , and
we come to this point later. For simplicity, we assume th
the step kinetics is fast enough that the adatom density
tains its local equilibrium value at each step:

cu65ceq
0 S 11

Vb̃

kBT
k1

V

kBT

]U

]y
D . ~2!
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Here1(2) indicates the lower~upper! side of the step,ceq
0

is the equilibrium adatom density of a free straight step,V

the atomic area,b̃ the step stiffness,k the curvature of the
step, andU the step-step interaction potential. We assu
that U is a function of the step distancel in the y direction
as15 U5A( l 1

221 l 2
22) with a positive constantA, correspond-

ing to step repulsion. There is a more detailed model wh
U is expressed by an integration of the force dipole along
step.16 But in the linear analysis the complication is shown
be incorporated into the renormalization of the stiffne
Therefore, we use the simple form forU here.

By solving Eq. ~1! with the boundary conditions in th
quasistatic approximation (]c/]t50), the adatom densityc
and then the adatom currentj are determined. The step ve
locity is given by

V5Vn̂•~ ju22 ju1!, ~3!

wheren̂ is the normal vector in the step-down direction.
Due to the different orientation of the dimer rows on TA

and TB , a set of diffusion coefficients (Dx ,Dy) corresponds
to different combinations: (Dx ,Dy)5(D i ,D') on TA and
(Dx ,Dy)5(D' ,D i) on TB , andD' is larger thanD i . Since
the step SB is rougher than SA on a Si~001! vicinal face, step
parameters are different in general for the two types of ste
SA and SB , but for simplicity, we neglect these difference

III. STABILITY ANALYSIS

On a flat vicinal face where parallel steps are arran
equidistantly, the adatom concentration is homogeneou
ceq

0 . The step velocitiesVA andVB of the steps SA and SB are
calculated as

VA52VB52
VF~D'2D i!ceq

0

kBT
. ~4!

Since the step velocitiesVA and VB are nonvanishing and
opposite for a finite drift (FÞ0), the flat vicinal face is
unstable against step pairing. Without the repulsive step-
interaction, the adatom concentration is as homogeneou
ceq

0 , irrespective of the step distance. The steps move w
the velocitiesVA and VB given above, and by coalescen
the surface is covered by one type of terrace, for instanceA
for positiveF sinceD'.D i .

If the repulsive interaction is granted, the difference
terrace widthsl A and l B of terraces TA and TB causes the

FIG. 1. A Si~001! vicinal face. Short lines on terraces represe
dimers.
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difference of the equilibrium adatom densitiescA andcB at
steps SA and SB . Then the steady state with vanishing st
velocities can be established even with the drift to be

D'~cAef l A2cB!

ef l A21
5

D i~cBef l B2cA!

ef l B21
. ~5!

Since the average terrace width of the vicinal face is fix
to l, wide and narrow terraces appear alternately asl A5 l
1d l /2 and l B5 l 2d l /2, and the equilibrium densities als
alternate ascA5ceq

0 2Dc/2 andcB5ceq
0 1Dc/2, respectively.

For a small driftf l and the strong repulsive interaction, E
~5! gives the density differenceDc5cB2cA as

Dc5
2~D i2D'!ceq

0 tanh~ f l A/2!tanh~ f l B/2!

D itanh~ f l B/2!1D'tanh~ f l A/2!
'

D'2D i

D'1D i
ceq

0 f l .

~6!

On the other hand, from the step-step repulsion,Dc is given
by

Dc'Dgd l , ~7!

whered l is the difference of the terrace width andDg is

Dg5
12AVceq

0

kBTl4
. ~8!

From Eqs.~6! and ~7!, the terrace width differenced l is
given by

d l

l
5

Fl 4~D'2D i!

12VA~D'1D i!
. ~9!

Without repulsive interactionA50, the terrace width canno
remain finite. Also the above equation indicates that the
viation of the terrace widthd l / l is small under a very strong
step repulsion.

We now study the stability of this steady state with alte
nating terrace widths under the adatom drift. The evolut
of the perturbationzA(t)eiqx to SA and zB(t)eiqx to SB are
governed by

dzA

dt
5

VD' f Dc

~ef l A21!
F f

2
zA1

aA~zAcoshaAl A2zBef l A/2!

sinhaAl A
G

1
VD i f Dc

~12e2 f l B!
F f

2
zA2

aB~zAcoshaBl B2zBe2 f l B/2!

sinhaBl B
G

2VD'Gq2F f

2
zA1

aA~zAcoshaAl A2zBe2 f l A/2!

sinhaAl A
G

1VD iGq2F f

2
zA2

aB~zAcoshaBl B2zBef l B/2!

sinhaBl B
G

2VD'Dg~zA2zB!F f

2
1

aA~coshaAl A1e2 f l A/2!

sinhaAl A
G

t
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REPULSION-MEDIATED STEP WANDERING ON A . . . PHYSICAL REVIEW B67, 125408 ~2003!
1VD iDg~zA2zB!F f

2
2

aB~coshaBl B1ef l B/2!

sinhaBl B
G ,

~10!

dzB

dt
5

VD i f Dc

~12ef l B!
F f

2
zB1

aB~zBcoshaBl B2zAef l B/2!

sinhaBl B
G

1
VD' f Dc

~e2 f l A21!
F f

2
zB2

aA~zBcoshaAl A2zAe2 f l A/2!

sinhaAl A
G

2VD iGq2F f

2
zB1

aB~zBcoshaBl B2zAe2 f l B/2!

sinhaBl B
G

1VD'Gq2F f

2
zB2

aA~zBcoshaAl A2zAef l A/2!

sinhaAl A
G

2VD iDg~zB2zA!F f

2
1

aB~coshaBl B1e2 f l B/2!

sinhaBl B
G

1VD'Dg~zB2zA!F f

2
2

aA~coshaAl A1ef l A/2!

sinhaAl A
G ,
~11!

whereG5Vceq
0 b̃/kBT, and

aA5Af 2

4
1

D i

D'

q2, ~12!

aB5Af 2

4
1

D'

D i
q2. ~13!

When the step distance is as small asa l !1, Eqs.~10! and
~11! are approximated as

dzA

dt
52

dzB

dt
5

VDc

l 2
~D'2D i!~zA2zB!2

V

l
~D'1D i!

3~Gq212Dg!~zA2zB!, ~14!

where we neglect the difference of the step distance. W
the fluctuationszA(x,t) and zB(x,t) increase proportionally
to evt, the amplification ratev is given by

v152
VDc

l 2
~D'2D i!22

V

l
~D'1D i!~Gq212Dg!,

~15!

v250. ~16!

v5v1 is the rate of amplification for the out-of-phase flu
tuation; zA52zB . Since we are considering the limit o
strong step repulsion~or weak drift!, Dg is quite large to
suppress the out-of-phase fluctuation andv1 is negative.v
5v2 is the amplification rate for the in-phase fluctuatio
zA5zB . v250 means the step is marginal to the in-pha
step wandering, since the step repulsion is ineffective for
deformation which does not alter the step separation. H
12540
n

;
e
e
-

ever, by assumingzA5zB , Eqs.~10! and ~11! can be easily
expanded one-order higher in the terrace widthsl.

For the fluctuationszA(x,t)5zB(x,t)5zqeiqxevqt, the
amplification rate for smallq is given by

vq5a2q22a4q4, ~17!

where the coefficientsa2 anda4 are

a252
V~D'2D i!Dc

2
, ~18!

a45
V2~D i1D'!ceq

0 b̃ l

2kBT
. ~19!

Here we have assumed that the terrace widths are as sm
ql!1. When the drift is in the step-down direction (F
.0), the quadratic term inq is negative and the steady sta
is stable. When the drift is in the step-up direction (F,0),
the quadratic term is positive. Then the steady state w
straight steps is unstable and in-phase step wandering oc
Thus the first term indicates an instability of the steady st
by changing its sign with the drift direction. Note that th
wandering is caused by the differenceDc of equilibrium
concentrations at the steps originated from the step repuls
Thus the step repulsion is indispensable for the establishm
of wandering instability on a Si~001! vicinal. Also note that
there is no critical value for the step-up drift. If the dri
changes from step down to step up, steps immediately s
the wandering instability, because the Gibbs-Thomson ef
gives only a quartic term, higher than the destabilizing q
dratic term.

The wavelength of the most unstable mode is given b

lmax52pA2a4

a2
52p

D'1D i

D'2D i
A2Vb̃

uFu
. ~20!

The characteristic wavelength is inversely proportional to
square root of the external fieldE which causes the drift:
lmax}1/AE.

IV. NONLINEAR ANALYSIS

After the instability sets in, the step deformation amp
fies, and a nonlinear analysis is called for. Assuming an
phase motion of steps due to the strong step repulsionzA
5zB5z(x,t), a heuristic argument is possible on the nonl
ear evolution of the step wandering. This simultaneously
veals the physical origin of the wandering.

We first assume that every step is tilted uniformly fro
the y direction with an angleu as

]z

]x
5tanu. ~21!

The adatom density on a terrace TA (x tanu,y, l A
1x tanu) is given by

c~x,y!5~cA2cB!
ef̃ A(y2tanux)2ef̃ Al A

12ef̃ Al A
1cB , ~22!
8-3
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where f̃ A is defined as

f̃ A5
f D'

D'1D itan2u
. ~23!

HerecA andcB are the adatom concentrations on terrace
and B, respectively, in the steady state. They differ from
values determined by Eq.~5! since the steps are uniforml
tilted.

Then adatom currentj x
A in the x direction andj y

A in the y
direction are given by

j x
A52D i

]c

]x
5D i~cA2cB!

ef̃ A(y2tanux) f̃ Atanu

12ef̃ Al A
, ~24!

j y
A52D'

]c

]y
1D' f c5

D'ef̃ A(y2tanux)

12ef̃ Al A
~cA2cB!~ f 2 f̃ A!

1D' f
cB2ef̃ Al AcA

12ef̃ Al A
. ~25!

From the above current components, the adatom current
pendicular to the step on a terrace TA is given by

j'
A52 j x

Asinu1 j y
Acosu5D' f cosu

cAef̃ Al A2cB

ef̃ Al A21
. ~26!

Similarly, on a terrace TB , the corresponding current is give
by

j'
B5D i f cosu

cBef̃ Bl B2cA

ef̃ Bl B21
, ~27!

where

f̃ B5
f D i

D i1D'tan2u
. ~28!

The steady state is determined by the conditionj'
A5 j'

B . For
strong repulsion withl A5 l B , the difference of the equilib-
rium adatom density depends on the step slope as

Dc5
D'2D i

D'1D i
f l cos2uceq

0 , ~29!

where we usef̃ l !1. By comparison with Eq.~6!, the step
tilting is found to make the amplitude of the concentrati
difference uDcu smaller by a factor of cos2u than the case
without tilting.

When the tilting angleu varies from place to place, th
nonuniformity causes the step instability, as described in
previous section. Since all steps move in phase and the n
ber of atoms is conserved, the in-phase step motion is c
trolled by the adatom current in thex direction. The drift
current has nox component so that only the diffusion curre
determines the evolution of step fluctuation.

There are two contributions in the diffusion current. O
is the current across the terrace induced by the dif
12540
A
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e
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ence of the equilibrium densities at both ends of the terra
From Eq. ~24!, the x component of the total flux on TA is
given by

Jx
A5E

0

l A
j x
A~0,y!dy52D i~cA2cB!tanu. ~30!

Similarly thex component of the flux on TB is given by

Jx
B52D'Dc tanu. ~31!

Then, the average flux per step is

Jx
(1)5

~Jx
A1Jx

B!

2
'2~D'2D i!

Dc

2

]z

]x
. ~32!

WhenDc,0 ~i.e., F,0), the flux is an increasing function
of the slope and an instability is expected.

The other diffusion current is along the steps due to
chemical-potential change with curvature. Considering t
the normal distance between steps for a tilted part
l A,Bcosu, the flux~per step! passing through the two terrace
induced by the chemical-potential gradient is

Jx
(2)52

~ l AcosuD i1 l BcosuD'!ceq
0 cosu

2kBT

]m

]x
. ~33!

The chemical potentialm is determined solely by the Gibbs
Thomson effectVb̃k and is independent of the step repu
sion in the present choice of interactionU since the terrace
width in they direction is constant for the in-phase modul
tion. A more general expression given by Paulin a
co-workers16 might modify the following result quantita
tively but not qualitatively.

With the two contributions together, mass conservat
leads to the following nonlinear time evolution of the in
phase step deformationz(x,t):

]z

]t
52

]@Jx
(1)1Jx

(2)#

]x

52
]

]x H 1

11zx
2 Fa2zx1a4

]

]x

zxx

~11zx
2!3/2G J , ~34!

wherezx5]z/]x andzxx5]2z/]x2. The coefficientsa2 and
a4 are those in Eq.~17!. With z5zqeiqx1vqt the linear am-
plification ratevq is recovered from Eq.~34!. Interestingly,
Eq. ~34! is the same as the nonlinear equation obtained
other conserved systems,13,14,16–18although the mechanism
looks very different.

V. MONTE CARLO SIMULATION

To study the behavior of wandering steps, we carry ou
Monte Carlo simulation.12,19,20 We use a square lattic
model, and the lattice constant is set ata51. The boundary
condition is periodic in thex direction and helical in they
direction in order to incorporate steps running in thex direc-
tion. We forbid two-dimensional nucleation and use solid-o
solid steps~the step position is a single-valued function
x). We choose the time increment for a diffusion trialDt
8-4
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FIG. 2. Snapshots of the ste
wandering with ~a! step-down
drift at t'5.03105, ~b! step-up
drift at t'2.53105, and ~c!
step-up drift att'12.43105. The
number of steps is 32 and the sy
tem size is 2563256.
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51/4Na (Na is the number of adatoms! and the diffusion
coefficient is chosen to beD'51. The long-range step re
pulsion is taken into account in they direction, but in thex
direction, only the short-range repulsion is taken accoun
forbidding overlap of steps.

In a terrace A, an adatom on the site (i , j ) moves to (i
61,j ) with the probability 1/4 and to (i , j 61) with the prob-
ability pd(16Fa/2kBT)/4, wherepd5D i /D'(<1) and F
represent the anisotropy of the surface diffusion and the
ternal force to induce the drift, respectively. In a terrace B,
adatom on the site (i , j ) moves to (i 61,j ) with the probabil-
ity pd/4 and to (i , j 61) with the probability (1
6Fa/2kBT)/4. We use the permeable steps: adatoms diff
over steps12 to the neighboring terraces without an extra p
tential barrier. The diffusion between neighboring terrace
assumed to occur with the transition probability of the up
side terrace.

When an adatom comes in contact with a step from
lower terrace, solidification occurs with the probability

ps5F11expS DEs1DU2f

kBT D G21

, ~35!

where DEs is the increment of the step energy andf the
potential gain by solidification. When there is no adatom
the top of a solid atom at the step position, melting occ
with the probability

pm5F11expS DEs1DU1f

kBT D G21

. ~36!

DEs is given byDEs5e3~the increment of the step perim
eter!, where half of the nearest-neighbor bond energye is
related to the step stiffnessb̃ as

2b̃

kBT
5sinh2

e

2KBT
. ~37!

DU is the change of step-step interaction potential. For
long-range interaction in they direction, we use the interac
tion potentialU5Al22. The equilibrium adatom density o
an isolated step satisfies the detailed balanceceq

0 ps5(1
2ceq

0 )pm at a kink site where the perimeter length does
change by solidification or by melting,DEs50. Then,ceq

0 is
given by20

ceq
0 5

1

11ef/kBT
. ~38!
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The theoretical analysis is now compared with the res
of Monte Carlo simulations. We study steps with an avera
distancel 58 on a square lattice system of size 2563256 or
512 3 128. Length hereafter is measured in units of t
lattice constanta, and time in units ofa2/D' . The param-
eters are so chosen to be equilibrium adatom densityceq

0

50.18, step stiffnessb̃/kBT50.13, D i50.5, andD'51.0.
There is no extra energy barrier for the over-step diffusi
The kinetic coefficient is large enough so that the local eq
librium condition is valid. The strength of the repulsive p
tentialA/kBT546 is large enough to suppress step bunch
in the following simulations.

In Fig. 2 we show snapshots of the step wandering un
various drift forces;f 50.1 for Fig. 2~a! and20.1 for Figs.
2~b! and 2~c!. Dotted lines represent the step SA and solid
lines represent the step SB . We start the simulation with an
equidistant train of straight steps. With step-down drift
Fig. 2~a! ~upward drift in the figure!, steps remain straight
With step-up drift in Figs. 2~b! and 2~c! step wandering oc-
curs, in agreement with the linear stability analysis. Beca
the wandering is in phase, grooves appear parallel to thy
axis.

Sinceu f l u50.8 is not very small, we have to use a gene
formula for the wavelength of the most unstable mode, an
is obtained to belmax'77, in good agreement with the resu
l'64 in Fig. 2~b!. There, the wandering amplitude~the av-
erage step fluctuation width! is w'14.5, wherew is defined
by

w~ t !5
1

N (
n51

N A1

L (
i 51

L F yn~ i !2
1

L (
i

L

yn~ i !G2

. ~39!

In a late stage shown in Fig. 2~c! the amplitude increases u
to w'37.2 when the wavelength of the grooves is about
Thus, the structure coarsens parallel as well as perpendic
to the steps.

Recently, Paulin and co-workers16 studied the step wan
dering induced by the Ehrlich-Schwoebel effect in a co
served system. They found perpetual enhancement of
wandering amplitude asw;tb with b;1/2, irrespective of
the step repulsion, but the coarsening of the wavelength
grooves took place only with a step repulsion. Although
take account of the long-range step repulsion only in thy
direction but not in thex direction as did Paulinet al., the
entropic repulsion may have caused an effective repulsio
thex direction and eventually the coarsening in our case, t

In Fig. 3 open circles represent the time evolution of t
wandering amplitudew for f 520.1. The result is obtained
8-5
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SATO, UWAHA, SAITO, AND HIROSE PHYSICAL REVIEW B67, 125408 ~2003!
by averaging over ten runs of the size 5123128 with 16
steps. In an early stage (t<23105), the step width increase
rapidly. Then, the width enhancement slows down tow
't1/2. The exponent is the same as the values obtained
the step wandering in other conserved systems.13,14,16–18The
slowing down of the fluctuation amplification is attributed
the suppression of the diffusion current due to the narrow
of the terrace width.16 The groove wavelengthl is obtained
by counting the number of grooves for ten samples, an
depicted by open squares in Fig. 3. The slow increase al
;ta with a50.1760.04 is consistent with the one foun
with the use of a generalized version of Eq.~4!.16

VI. SUMMARY AND DISCUSSION

In this paper, we studied the drift-induced step wander
on a vicinal face with an anisotropic surface diffusion who
orientation dependence alternates on consecutive terra
The step-step interaction is shown to play an essential
for the step wandering, since it not only prevents steps fr
coalescing but also creates the differenceDc of the equilib-
rium adatom density. The imbalance of the diffusion curr
between different steps induced byDc causes the step wan
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FIG. 3. Time evolution of the step width (s), w;t1/2, and the
groove wavelength (h), l;t1/6.
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dering. Thus the step repulsion mediates steps to esta
the asymmetry in the diffusion field. Due to this asymmet
the step wandering occurs with step-up drift. The in-pha
wandering leads to the formation of straight grooves on
vicinal face, in accordance with other conserv
systems.13,14,16–18

The present step wandering is unique since it happ
only on a vicinal face. A steady state with only one isolat
step pair is not possible in a conserved system. A sim
analysis shows that, with weak evaporation, a step pair m
be formed but a straight step pair isstable with step-up drift.
Wandering instability occurs only with step-down drif
Therefore it is truly a many-body effect. In contrast, wand
ing instabilities known in ordinary systems@like those21–23of
Si~111!# are essentially single-step instabilities. Wanderi
instabilities also occur on a vicinal face but the mechanism
the same for an isolated step and for a vicinal face.

Recently, in an experiment by Nielsen and co-workers6 a
dimpled specimen was used and step wandering on
Si~001! vicinal face was observed with the application of
direct electric current. Near the bottom of the dimple, whe
the inclination is very small, the step bunching occurs ir
spective of the current direction.24 The fluctuation of bunches
with the step-up current is larger than that with the ste
down current. On increasing the inclination, which mea
increasing the repulsive interaction, in-phase step wande
occurs and straight grooves parallel to the current app
with the step-up current. The step wandering was observe
a range of inclination angles between 0.08° and 0.5°. On
Si~001! vicinal face, the direction of the drift of adatoms
believed to be the same as that of the electric current,7,8 and
our results of step wandering under a step-up drift qual
tively agree with the experiment.6
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