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Within a one-particle approximation of the Dirac equation we investigate a defect system in a quantum wire.
We demonstrate that by minimally coupling a laser field of frequandy such an impurity system, one may
generate harmonics of multiples of the incoming frequency. In a double defect system one may use the distance
between the defects in order to tune the cutoff frequency.
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I. INTRODUCTION the conductance of quantum wires in this fashion, see, e.g.,
Ref. 10, and references therein. This also suggests that an
Since the early 1990s, the generation of high-order harexact relativistic treatment of the electrons in the wire in the
monics of a strong, low-frequency laser field has attracted &resence of the laser field is possible. Therefore such a treat-
lot of attention in the atomic physics community; see, e.g.ment constitutes an advantage over most approaches adopted
Refs. 1 and 2 for a fairly recent review. Indeed, high-in the literature, in the context of atoms in strong laser fields,
harmonic generation has opened a wide range of possibilitieghich involve a series of approximations. The first, and most
for obtaining high-frequency coherent sources, converting/eneral approximation performed in this context is that a
infrared input radiation of frequency into light in the ex- ~ Proper field-theoretical treatment is usually not taken into
treme ultraviolet regime whose frequencies are mu]tip]es oficcount. Furthermore, when dealing with a relativistic situa-
w (even up to order-1000; see, e.g., Ref. 2 for a recent tion, the Dirac equation is solved mostly by numerical meth-
review). ods, which by themselves involve a series of approximation
In gases, composed of atoms or small molecules, this phénd exhibit a good convergence only for high-frequency
nomenon is well understood and, to some extent, even corfields’™ Further approximations include the expansfoof
trollable in the sense that the frequency of the highest haithe Dirac equation for the weakly relativistic case, the solu-
monic] the so-called “CUtOﬂ:," can be tuned as well as thetion of the Klein-Gordon equati&ﬁ'u or of the relativistic
intensities of particular groups of harmonics. In more com-Schrainger equation, or purely classical treatmefitgor
plex systems, however, as for instance solids, or larger moSOme recent general reviews see, e.g., Ref. 16.
ecules, high-harmonic generation is still an open problem. In this paper, we solve the Dirac equation for an electron
This is due to the fact that, until a few years ago, such Sysi.n a quantum wire SUbjeCt to an external laser fleld, inCIUding
tems were expected not to survive the strong laser fieldd single and multiple defects. We investigate in various dif-
involved. However, nowadays, with the advent of ultrashortferent regimes the radiation emitted by an electron in this
pulses, there exist solid-state materials whose damage thresistem in connection with the transmission at the defects and
old is beyond the required intensities of!4@v/cn?.® As a demonstrate that the generation of harmonics is possible in
direct consequence, there is an increasing interest in sudch systems.
materials as potential sources for high harmonics. In fact,
several groups are currently investigating this phenomenon
in systems such as thin cryst4i3carbon nanotubesor or-

ganic molecules® _ , _ Since the work of Weyl” one knows that matter may be
Prototype solid-state devices are quantum wires, Wh'C'&oupled to light by means of a local gauge transformation,

nowadays do not only serve as a theoretical test ground, byfhich reflects itself in the usual minimal coupling prescrip-

may even be studied experimentally, e.g., Ref. 9. With regargon, ie.,d,—d,~ieA,, with A, being the vector gauge

to the previously outlined problematic it is of great interest topotential. For a free Fermion with massthis yields to the
investigate how such devices interact with laser light. In Pary agrangian density

ticular, the question of whether such systems are suitable
high-harmonic sources has not been dealt with up to now.
Thi;_is thg ce.ntral questjon which we shall be answering EAZE(iV“O",L—ereV"AM)l/I- (1)
positively in this manuscript.

A useful particularity of quantum wires is that they are the o ]
physical realization of models involving only one spatial di- We adopt here relativistic units lc=%i=m~e”137 as
mension. Considering theories in one space dimension h480Stly used in the particle physics context rather than atomic
the further virtue that it allowed for the development of vari- Units 1=e=%=m=~c/137 useful in atomic physics. As com-
ous powerful nonperturbative techniques, which exploit themon conventions we abbreviated here 4"1° and use the
integrability of the models. For instance, one may computdollowing realization for the gamma matrices:

Il. DEFECT SYSTEMS IN LASER FIELDS
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In the absence of the laser field the equations of motion for ﬁ 2=4U <1 (10)
the free Fermion may be solved by the well-known Fourier P
decomposition,

this classically, in which case the maximal amplitude is

0 1
. yt= ( 1 0), Y =y"yh ) eE,/w? and therefore the following constraint has to hold,

for the dipole approximation to be valid. Due to the fact that
do L L X is a function ofw, we have now a lower bound on the
lpjf(x,t) = f —[aj(ﬁ)uj(e)e"l)j'X+a1(9)vj(a)elpj'x]_ frequency rather than an upper one as is more common in the
Jam / context of atomic physics. We have also introduced here the
(©)) ponderomotive energy, for monochromatic light, that is
We parametrize the momentum as common through the rghe average kinetic energy transferred from the laser field to
pidity @ by p)=m;coshé, p;=m; sinhg and denote the an- the electron.

- . . S The solutions to the equations of motion of the free sys-
tlpartlcle_(posnror) of the Fermmr(ele_ctro_r)j by . For the tem and the one which includes the laser field are then re-
Weyl spinors we employ the normalization

lated by a factor similar to the gauge transformation from the
(e 0/2) length to the velocity gauge

4

@ YR (x, ) =exgdixe A(t) 1] (x). (12)

and the creation and annihilation operatarés), a/(6) for  In an analogous fashion one may use the same minimal cou-
a particle with rapidityd obey the usual Fermionic anticom- pling procedure also to couple in addition the laser field to
mutation relations {a;(6,),a;(6,)}=0, {ai(al),a;“(az)} the defect. One has to invoke the equation of motion in order
=276;;0(0,— 6,). When the laser field is switched on, we to carry this out, since as in Ref._lO, we assume here also that
can solve the equation of motion associated to (&g. the defect is linear in the fieldg¢ and . The Lagrangian
density for a complex free Fermiows with ¢ defects

D“(J, #,A,) of type a at the positiorx,, subjected to a laser
by a Gordon-Volkov type solutiotf field then reads

VAPEY =exr{iejxdsA1(s,t)

m;

ui(0)==ivvj(0)= \ 5| Lo

e

(iy*d,—m+ey”A,) =0, (5)

€
yl(x.b), (6) Lap=Lat }_}1 DY, h,A,) S(Xn). (12)

; Considering for simplicity first the case of a single defect
pi(X,1). (7)  situated ax=0, the solution to the equation of motion re-

t
=exr{ieJ dsAy(x,S)
) . . . ~ sulting from Eq.(12) is taken to be of the form
Using now a linearly polarized laser field along the direction

of the wire, the vector potential can typically be taken in the YD =00)¢) (XD +O(=x)¢) _(x,t). (13

dipole approximation to be a superposition of monochro-_, . . .
matic light with frequencyw, i.e., This means we distinguish here by notation the solutiats

on the left and right of the defect* _(x,t) and ¢\, (x,t),
1t respectively. This is also reflected in the corresponding cre-
A(t)=Aq(t)= ;J dsA(s) (8)  ation and annihilation operatoes .(6), a; _(6), etc. One
0 may then proceed according to standard potential scattering

1t £t theory and notes that these functions are not independent of
=— _f dsEs)=— _Of dsf(s)cog ws) (99  each other. Substitution of E(L3) into the equation of mo-
2Jo 2 Jo tion yields the constraints

with f(t) being an arbitrary enveloping function equal to IDap(F A

zero fort<0 andt>7, such thatr denotes the pulse length. [y~ (x,t)— g _(x,1)] Xzoz#

In the following we will always takef(t)=0(t)0(7—t), ' ' A (xt) |,
with ®(x) being the Heaviside unit step function. The sec- (14)

ond equality in Eq.(8), Ag(x,t) =xA(t), follows from the  thage restrictiong14) serve to determine the transmission
fact that we have to solve Eqe) and (7). and reflection amplitudes. The extension to multiple defects,

_ One comment is due with regard to the validity of the y,,¢ j5 having equations of the tyjge4) for each defect situ-
dipole approximation in this context. It consists usually ingeeq gt positiork=x,,, follows in an analogous straightfor-
neglecting the spatial dependence of the laser field, which i%ard manner.

justified whenxw<<c=1, wherex is a representative scale of
the problem considered. In the context of atomic physics this
is typically the Bohr radius. In the problem investigated here,
this approximation has to hold over the full spatial range in  Substituting the Fourier decompositi¢8), together with
which the Fermion follows the electric field. We can estimatethe free Fermion solution minimally coupled to a laser field

A. Transmission and reflection amplitudes
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(11) into the constraint14), one can determine the reflection *
and transmission amplitudes from the left to the righand |T|(¢9,Up ,w,t)|?= E tor( 0)(4Up)ksin2k(wt). (22)
T, respectively. They are defined in an obvious manner as k=0

2,-(0) Rj(a)aj’f( 0)+Tj(6)a"+(0)' 19 We shall refer to defects which admit such an expansion as
When parity invariance is broken, the corresponding ampli“type-I defects.” Assuming that the coefficients,(6) be-
tudes from the right to the left do not have to be identical anccome at most 1, we have to restrict our attention to the re-
are defined as gime 4U,<1 in order for this expansion to be meaningful
~ ~ for all t. Note that this is no further limitation, since it is
aj,+(~ Q)ZTJ( 0)aj,(—0)+Ri(0)a;.(6). (16 precisely the same constraint as already encountered for the

In this way the laser field parametdgs and o will be quan- validity of the dipole approximatiorf10). The first coeffi-
cient is always the transmission probability for vanishing

tities on which theR’s and T's depend upon at a particular ) . - T .
time t. When iterating these equations one obtains the correl—aser field, that igo(6) =|T(6,Eo=0)|*. The functional de-

sponding expressions for mulile defect systems . plaGei 1% O S UL LU O Rt o vaous oIt
ing for instance the defed” left from D# one obtains the ' q '

well-known expressions pute for such type of defect

TF“B(G):—TW)TF(Q) 17 Z(2K)H (U )Ksin( 7))ty ( 6)
YT ICRAGOR (D) T(Q.0Up0,0=3
B - ol 112-(0120)?
RECO)TE(0)T(0) Al (-0
R*(0)=RM )+ (18) (22)

1-RE(ORMH)

From our previous comment on th_e validity of the dipole It is clear from this expression that type-| defects will pref-
approximation it is clear that the distance between the tw%rabl let even multinles of the basic frequeney pass
defects introduces a new scale in the system, which has to b y b q Y pass,

constrained ag<w . In addition, to justify that the mul- Whose amplitudes will depend on the coefficienig(0).

tiple defect system can be treated effectively as a single On\é\/_hen we choose the pulse length to be integer cycles, i.e.,

requires that the sum of thg's is much smaller than the ~_2"/@=nTforneZ the expression in Eq22) reduces
) o . . . even further. The values at even multiples of the basic fre-
length of the wire. Similar expressions, which we will not uency are simpl
need in what follows, hold for the parity reversed situation y Py
and for more defects; see, e.g.,, Ref. 10 and references

therein. 0
- : P ; 2k
In addition with regard to the application of high har- _(_a\n K
monic generation, we shall be interested in the spectrum of 7i(2n®,8,Up)=(~1) g‘o t(0)(Up) k—n/’ @3

frequencies which are filtered out by the defect while the

laser pulse is nonzero. The Fourier transforms of the reflec-

tion and transmission probabilities provide exactly this infor-which becomes independent of the pulse lengthNotice

mation: also that the dependence &g and w occurs in the combi-
nation of the ponderomotive enerdy,. Further statements
require the precise form of the coefficieritg(#) and can
only be made with regard to a more concrete form of the

(190  defect.

1~
ﬂQ,G,EO,w,r)=;J dt|T(6,Eq,w,t)|?cog Qt),
0

R(Q,0,Eq, 0,7)= Ef dt|R(6,Eq,w,1)|2cog Qt). 2. Type-ll defects
7/o Clearly, not all defects are of the for(@1) and we have to
(20 consider also expansions of the type
When parity is preserved for the reflection amplitudes, we
have|T|?+|R|2=1, and it suffices to consideFin the fol-
lowing. 2k+p

ITu(6.Eo/e,wt)|2= > t8(0) ——=—coP(wt)siP(wt).
K20 w2k

1. Type-I| defects
yp (24)

Taking the laser field in form of monochromatic light in
the dipole approximatiori9), we may naturally assume that
the transmission probability for some particular defects catWe shall refer to defects which admit such an expansion as
be expanded as “type-1l defects.” In this case we obtain
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T (Q.0.E,/ ) i P p) Q sin(7Q) \S/Vi;?etl?]e help of these functions we obtain then for the defect
1 el 1 = _—
! s et kp=o0i=o \I (_1)I+17_w2+2k y
(2k+21)!1t3R(0) lal_(6))

=0(=X)[¥ y,0(x,1)

X 0.2 Pu (XD =y (x ,)W
ar-(g] |

I1
+ Wiy - (X ORF(O)]+O(X)T*(0)

q=0

(2k+2D) 121 0)E,

: ) B*(—
+ G Q > (2)k+2p' X[\Pl,u,a(xvt)+q}|,u,76(xat)Ri ( 0)] (30)
— 12—~
qﬂl (2a-1) (w) } and the same function with—v. Since this function re-

(25) sembles a free wave it cannot be normalized properly and we
have to localize the wave in form of a wave packet by mul-

We observe from this expression that type-ll defects willtiplying with an additional functionﬁ(p,t) in Eq.(3) and its

filter out all multiples ofw. For the pulse being once again counterparg(x,t) in Eq.(30), typically a Gaussian. Then for

of integer cycle length, this reduces to the function®, 4(x,t) =g(x,t) ¥’ ,(x,t), we can achieve
" that ||®||=1.
P [ 2k+2l
Ty(2n0,0,Up Eq)= > > il
kp=01=0 IIl. HARMONIC GENERATION
(-1 lint 5R(0) U, )kPE2P p As mentioned above, harmonic generation has attracted
(=1 92l - 2p( p) [ large attention in the atomic physics community in recent
years. It is the nonlinear response of a dipole moment, in
(26) general atomic, to an external laser field. Here we want to
and investigate whether such responses also exist for defect sys-
tems. We carry out our treatment relativistically. The time-
7,,(2n—1)w,0,Eq/€) dependent dipole moment is given by
= i Ep Lynea 2k (0 Xj.,0(0) = (@ (XD XD, (X, 1) (31)
_k,p:o = (1) 22| 2p+1

such that the emission spectrum is the absolute value of the

p\ (2k+21)1(2n— 1)Egp+l Fourier transform of the dipole moment
X (Up)rP (27)
P I (I+k—n+D)!(1+n+Kk)!
which are again independent of We observe that in this Xj,u,H(Q):fodtxj,u,e(t)eXpiQt : (32)

case we cannot combine tig andw into aU,. The ana-

lytical expressions presented in this section will not onIyWe localize now the wave packet in a region much smaller
serve as a benchmark for our analytical computation, but cap P 9
an the classical estimate for the maximal amplitude the

be used in addition to extract various structural information . . ) .
electron will acquire when following the laser field. We
as we see below.

achieve this with a Gaussiag(x,t) =exp(—x%/A), whereA
<eE,/w?. Placing the defect at the origin and neglecting its
extension, the computation of E¢31) with Eq. (30) then

In spite of the fact that we are dealing with a quantumboils down to the evaluation of
field theory, it is known that a one-particle approximation to
the Dirac equation is very useful and physically sen5|ble;( u ()
when the external forces vary only slowly on a scale of a few
Compton wavelengths; see e.g., Ref. 19. We may therefore
define the spinor wave functions

B. One-particle approximation

2ix sinh 6
e Ri(6
X 1+|Ri(0)]?+2R (0

at J’ coshé . +Jm
e |p] - 2 X
] u,o(X, 1) —lﬂj b |'—G( ) 0 ), (28 —» 2 re(28)[x+eAlt)] 0
277 pJ 27Tp] e2iX SinhHR.(a)*
- X T,(6)]?| 1+|Ri(0)2+ 2 R | }
i a2 al(0) e Pi % 2 coshé ix
Wi, 00T =gt ol o ﬁu, . 2 me(ZB)Ix+eAt)]
(29 (33

125405-4



RELATIVISTIC TREATMENT OF HARMONICS FROM . .. PHYSICAL REVIEW B57, 125405 (2003

The expressions for th@’s andT’s depend of course on the Eq. (21) analytically. For this purpose let us first bring the
form of the defect and further generic statements cannot bgansmission amplitude into the more symmetric form,
made at this point. We therefore turn to a concrete example.

ay(6,9) +a,(0,9)A%+a,(6,g)A*

20(6,9) +a2(6,9)A%+2a,(6,9) A"’
Localizing sharply the energy operate(x) =gy (Xx) , (37)

with g being a coupling constant, yields a defect which hasith

been studied extensively in the absence of a laser field. It

should be noted that this is only a particular example and one ao(0,9) = 16g%+ (4+ g2)?sini?6, (39)

may also consider other type of defects in a analogous fash-

ion; see Ref. 10 and references therein. One of the virtues of

2__
IV. ENERGY OPERATOR DEFECT |T.(6,9,Ale)|*=

this defect is that it is real, thus preserving parity invariance. a(0,9)=(g’—4)’sinit6, (39)
Coupling the vector potential minimally to this type of _
defect yields a,(0,9)=2g(4+g?)sinitg, (40
Dan(4,4,A,) = gu(L+e/my*A ), (34 a,(6,9)=g’sint?0. (41)
by invoking the equation of motion. We can now expanfll(6,g,A)|? in powers of the fieldA(t)
o . . and identify the coefficients,,(6,9) in Eq. (21) thereafter.
A. Transmission and reflection amplitudes To achieve this we simply have to carry out the series expan-

We are now interested in determining the reflection ancfion of the denominator in Eq37). The latter admits the
transmission amplitudes associated to this defect by the pdellowing compact form:
tential scattering method as outlined in Sec. Il A. Taking

o

from now onm=1, we compute for the various reflection 1

amplitudes = > cul6,9)A%,
P ag(0,9) +ay(0,9)A%+a,(0,g)A* k=0

Ri(68,9,Ale,y) with
=Ri(0.9,~Ale,=y)=Ri(0.g.Ale,~y) Co(0,9)=1/ag(6,9)
=R(6,9,—Ale,y) and

A_ —2iy sinhé
_ [yA~coshdle _ _ Ca-2(0,9)22(0,9) + Cora( 0,9)4(6,9)

CZk(evg): aO( e,g)

for k>0. We understand here that all coefficients with
(35 k<0 are vanishing, such that from this formula all the coef-

We denoted the differentiation with respect to time by a dotficientscy, may be computed recursively. Hence, by compar-

The transmission amplitudes turn out to be ing with the series expans!o@l), we f"?d the following
closed formula for the coefficients,(0,9):

[1—yAcosh0]—i% sinh@

4 :
—+1+A2—y2A2
gz

Ti(6,9,Aley) _
to(0,9)=[ao(6,9) —ag(6,9)]c(0,9) k>0. (42

=Ti(6.9.—Ale,~y)=Ti(0,9,~Ale,y) The first coefficients then simply read

=T,(6,9,Ale,~Y) N
ap(0,9)
. 2i\2 to(6,0)= =|T(6,Eq=0)|?, 43
| 1-y?A%+{ A= o] |sinhg (9= ag(ng) ~ T(#E=0) “
_i[l— Acoshf]—i i+1+A2— 2A2 sinhf). t2(6,9)= 82(0.9)[1_t (6,9)] (44)
g 7 g2 Y 27 ag0,9) 0 O
36
. o (36) _ 8g*(4+g?)sintr26 “5)
Locating the defect ay=0, the derivative ofA does not (1692+(4+92)25inhze)2’

appear anymore explicitly in Eq§35) and(36), such that it

is clear that this defect is of type | and admits an expansion
of the form Eq.(21). With the explicit expression&5) and L(6.9)= a,(0,9) ax(6.9)
(36) at hand, we can determine all the coefficientg 6) in A0.9 a(6,0) ag(6,0)

t2( 019)1 (46)
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FIG. 1. Absolute value squared of the Fourier transform of the i 2. Absolute value squared of the Fourier transform of the
transmission probability for a single defect willy=2.0, g=3.5,  transmission probability for a double defect wiy=2.0, g=3.5,

=12, =0.2. #=1.2, »=0.2, and varyingy.

and so on. It is now clear how to obtain also the higher terms Here we have only plotted a continuous spectrumyfor
=0.5, whereas for reasons of clarity, we only drew the en-

analytically, but since they are rather cumbersome we do not . . . .
y Y y veloping function which connects the maxima of the har-
report them here. ) - )
monics for the remaining distances. We observe that now not
only odd multiples of the frequency emerge in addition as
B. Harmonic generation harmonics, but also that we obtain much higher harmonics

. . . and the cutoff is shifted further to the ultraviolet. Further-
With the coefficientd,,, we can compute the seri€d2) 516 e see a periodic pattern in the enveloping function,
and( 23) in principle to any desired order. For some concrete, hich appears to be independentyofSimilar patterns were
values of the laser and defect parameters the results of oyf,seryed before in the literature, as for instance in the con-
evaluation are depicted in Fig. 1. _text of atomic physics described by a Klein-Gordon formal-
The main observation is that the defect acts as a fllterSm (see Fig. 2 in Ref. 14

selecting higher harmonics of even order of the laser fre- |y varying distance/ the new structures can be modu-
quency. Furthermore, from the zoom of the peak regions, Weyieq e, we can control the intensity of certain peaks and
see that there are satellite peaks appearing near the majfy, ghift the cutoff. Clearly for a concrete application one
harmonics. They reduce their intensity wheis increased, 4| like the control mechanism to be as simple as possible
such that with longer pulse length the harmonics becomeq therefore it is interesting to investigate precisely how the
more and more pronounced. , emission amplitude and the cutoff behave as functiong of
We also investigated that for different frequencieshe  (nfortunately, this function turns out to be not very simple
general structure will not change. Increasing the f|_eld amplius can be seen from Fig. 3, where we present our analysis for
tudeEy, simply lifts up the whole plot without altering very yaryingy and particular fixed harmonics. Nonetheless, there
much its overall structure. We support these findings in tWg 3 yniversal shape common to all harmonics of the same
alternative ways, either by computing directly H49) nu-  tyne As expected from the analytical expressions the overall
merically or, more instructively, by evaluating the su@8  pattern for the odd and even harmonics differs. We confirm

and(23). our previous observation, namely that for small values of the

Let us now carry out a similar analysis for a double defectyisiancey, which corresponds to the limit of a single defect,
system. We place one of the defectxatO and the other at tnere are no odd harmonics emerging.
x=y. The distance emerges now as a new scale in the sys- | et ys now come to the main point of our analysis and see
tem and note from our comment on the validity of the dipolepoyy this structure is reflected in the harmonic spectrum. The
approximation that is restricted §s< o~ *. In additiony has  resylt of the evaluation of E433) is depicted in Fig. 4.
to be much smaller_ than the total length (_)f the wire. The \ye observe a very similar spectrum as we have already
double defect amplitudes are computed directly from Eqscomputed for the Fourier transform of the transmission am-
(17) and (18) with the expression for the single defé®5)  pjitude, which is not entirely surprising with regard to the
and (36). Since now bothA and A appear explicitly in the expression33). The cutoff frequencies are essentially iden-
formulas forR’s andT s, it is clear that the expansion of the tical. From the comparison betweeti and the enveloping
double defect cannot be of type I, but it turns out to be offunction for 7 we deduce that the term involving the trans-
type Il, i.e., of the form(24). Hence we will now expect that mission amplitude clearly dominates the spectrum.

besides the even also the odd multipleswoWill be filtered Let us now turn to the computation of the emission spec-
out. This is confirmed by our explicit computations for two trum for a double defect system coupled to a laser field. We
identical defects as depicted in Fig. 2. depict the results of our analysis in Fig. 5.
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0.075F
sated, but for the conclusions we are trying to reach here that
is not important. The important general deduction from these
0.050L computations is of course that harmonics of higher order do
emerge in the emission spectrum of a defect system.
_— C. Relativistic versus nonrelativistic regime
In the previous sections we have been working in an in-
tensity regime which is close to the damage threshold of a
solid, according to the experimental observations in Ref. 3.
0.00

This allowed us to see the maximum effect with regard to

harmonic generation which at present might be visible from
FIG. 3. Absolute value squared of the Fourier transform of the€Xperiments. However, it is also interesting to investigate

transmission probability for a double defect wiy=2.0, g=3.5,  Situations which are not experimentally feasible at present

#=1.2, for even and odd multiples @f=0.2 and varyingy. and of course lower intensity regimes.

In order to judge in which regime we are working and

Once again, we observe a qualitatively similar behavior ay/hether there are relativistic effects, let us carry out various
for 7, in particular the occurrence of even and odd Orde,llmlts.. First of all we reca}ll a standard estimation accordlng
harmonics. We remark that in our approach for larger valued® Which the relativistic kinetic energy is close to the classi-
of y the normalization of the wave function becomes some<al one when one is dealing with velocitieé<3/4c®. This
what inaccurate and therefore the relative height in the intenS the same as saying that the kinetic energy is much smaller

L. ) . ) ) ) 2 . .
sities is not very precise. In principle this could be compen-{han the rest mags,;<moc®. Making now a rough estima-
tion for the system under consideration, we assume that the

total kinetic energy is the one obtained from the laser field,
i.e., the ponderomotive enerdy,. We also ignore for this
estimation any sophisticated corrections, such as possible
Doppler shifts in the frequency, etc. Then the nonrelativistic
regime is characterized by the conditibp<1.

Based on our previous observation tHand X’ exhibit a
very similar behavior, it will be sufficient here to study only
the 7 in the different regimes, which will be easier than an
investigation of the full emission spectru(83). From our
analytic expressioii23), we see that for a type-l defect the
quantity 7, becomes a function dfl ,, such that the regime
will be the same when we rescale simultaneoulsjyand .
Accordingly we evaluate numerically the Fourier transform
(19), or equivalently compare against our analytical expres-
sion (23), and depict our results in Fig. 6.

We observe that when passing more and more towards the

FIG. 4. Harmonic emission spectrum for a single defect withrelativistic regime the cutoff is increased. The other feature
Ey=2.0,0=3.50=12, w=0.2, A=6. one recognizes is that the modulating structure in the envel-
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FIG. 6. Absolute value squared of the Fourier transform of the FIG. 7. Absolute value squared of the Fourier transform of the
transmission probability for a single defect for various valueg pf  transmission probability for a double defect for varying values of
with g=3.5, =1.2. Eo with g=3.5, =1.2, w=0.2.

oping function of the harmonics becomes more pronounceccomputed by means of standard potential scattering theory
One should also note, in regard to E@O), that the multi-  the reflection and transmission amplitudes associated to such
pole structures might become more and more important ilype of defect. The amplitudes become functions of the de-
the relativistic regime. fect coupling constard, their separatios, and the laser field

Let us now perform a similar computation for the double parameter&,, », andt. We employed these amplitudes in
defect. From the expressio(26) and(27) we see that now order to evaluate the emission spectrum of a dipole moment
7, is not just a simple function obl,, and therefore even in such a system. Our findings for a single defect, taken to be
being in the same regime the behavior will be different wherthe energy operator coupled minimally to the laser field, are
Eo, and w are rescaled. We alter in that case the regimes byhat even multiples of the driving frequenay are emitted.
rescalinge, and keeping the frequency fixed. Our results arelnvestigating a double defect system of two of such defects,
depicted in Fig. 7. we observe the emission of odd as well as even multiples of

Similar as for the single defect we see that the cutoff isthe original frequency. These features may already be ob-
increased and the modulating structure in the envelopingerved qualitatively on the Fourier expansion of the trans-
function becomes more emphasized when we move towardwsission amplitude, even analytically. When carrying out the
the relativistic regime. In addition we note that the differencenonrelativistic and extreme relativistic limit we do not ob-
between the even and odd harmonic becomes larger witberve any special effect, the transition seems to be rather
increasingU, . This effect is more extreme for the low order smooth.
harmonics. As a general observation we state that there are There are various questions left for further investigation.
not any effects which seem to be special to the relativisticAs an interesting application one may for instance compute
regime, but the transition to that regime seems to be rathghe conductance in a similar fashion as in Ref. 10 and em-
smooth. ploy the laser to control it.
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