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Fractional plateaus in the Coulomb blockade of coupled quantum dots

Karyn Le Hur
Département de Physique and CERPEMA, Universite´ de Sherbrooke, Que´bec, Canada J1K 2R1

~Received 7 January 2003; published 24 March 2003!

Ground-state properties of a double-large-dot sample connected to a reservoir via a single-mode point
contact are investigated. When the interdot transmission isperfectand the dots controlled by the same dimen-
sionless gate voltage, we find that for any finite backscattering from the barrier between the lead and the left
dot, the average dot charge exhibits a Coulomb-staircase behavior with steps of sizee/2 and the capacitance
peak period is halved. The interdot electrostatic coupling here is weak. For strong tunneling between the left
dot and the lead, a conspicuous intermediate phase is observed in which the fractional plateaus get substantially
altered by an increasing slope.
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I. INTRODUCTION

At low temperature, the charge on an isolated meta
grain~micronmetric dot! is known to be quantized in units o
the electron chargee. Even when the grain is weakly couple
to a bulk lead, so that electrons can occasionally hop fr
the lead to the dot and back, the grain charge remains
large extent quantized.1 This is commonly referred to as th
Coulomb blockade.2 In the opposite limit of perfect transmis
sion between the reservoir and the dot, the average
charge now depends~in a continuous manner! linearly on the
applied gate voltage and the Coulomb blockade disappe3

However, Matveev has shown that a crossover from the
ear charge-voltage dependence to aCoulomb-staircasefunc-
tion occurs for any finite backscattering from the quant
point contact~QPC! between the grain and the lead.4 The
physics remains qualitatively unchanged by increasing
reflection amplitude at the QPC.

Furthermore, close to the steps, the charge exhibit
nonanalytic logarithmic dependence on the voltage due
the presence oftwo spin channels entering the dot, resultin
in an underlying two-channel Kondo model.5

Note also that the Coulomb blockade can be smeared
by applying an in-plane magnetic field.6

A direct measurement of the average grain charge
been made possible using a single-electron transistor~SET!
that has a sensitivity well below a single charge as well a
small input capacitance.2,7 In particular, some of the predic
tions above have been checked experimentally and its s
riority to conductance measurements of charge fluctuat
demonstrated.8Here, we investigate exotic Coulomb sta
cases with fractional plateaus.

The simplest system we consider comprises twolarge
symmetric dots, which can be viewed as an artificial m
ecule, connected to a single reservoir via a single-mode Q
~Fig. 1!. For a recent review on artificial molecules built u
with two dots, see Ref. 9. Here, each dot is coupled with
same capacitanceCgd to a side gate. The term ‘‘large dot
implies that the spacingD;L22 of the energy levels on eac
dot vanishes compared to the dot’s charging energyEc
5e2/(2CS);L21, whereCS'Cgd . We already stress tha
strong tunneling between the dots~‘‘covalent binding’’! is
0163-1829/2003/67~12!/125311~6!/$20.00 67 1253
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required in order to find Coulomb staircases with fraction
steps.

For example, when the interdot transmission isperfect
and dot 1 isweaklycoupled to the lead, the interdot charg
fluctuations are so strong that only the total charge of the
dots,eQ5e(Q11Q2), can bequantized~but not the charge
eQi on an individual dot!. Thus, the electrostatic Hamil
tonian of the two dots can be rewritten more conveniently
~for details, see Refs. 10 and 11!

Hc@N#5
Ec

2
~Q22N!212EcS Q12

Q

2 D 2

22EcN
2. ~1!

The interdot capacitive coupling isweak in order to maxi-
mize the interdot charge fluctuations.12 Moreover, the sym-
metric dots are controlled by the same gate voltageVG and
N5VGCgd /e. From the electrostatic Hamiltonian, it can b
easily inferred that the double dot behaves as a single c
posite conductor of quantized chargeeQ52eQ̄1 determined
by the total gate voltage 2N. When an electron tunnels int
the left dot, i.e.,Q51, this implies that a chargee is fluctu-
ating back and forth between the dots and clearlyQ̄i 51,2@N#
exhibits steps of size 1/2.13 Moreover, close to a point 2N*
5(2n11)/2 (nPN), the charge states withQ5n(Q̄1

5n/2) andQ5n11(Q̄15n/211/2) are degenerate resul

FIG. 1. A two-dimensional electron gas~2DEG! is coupled to
two large dots via a single-mode QPC. The number of electronsQi

on each dot is controlled via the dimensionless gate voltageNi . The
case of interest here isN15N25N. The auxiliary gates can be use
to adjust the conductances at the QPC’s. A SET may probe
average charge on a single dot.
©2003 The American Physical Society11-1
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ing in ~sharp! peaks in the single dot capacitanceC1

}]Q̄1 /]N ~Fig. 2!. Similar to theconductancepeaks for two
large dots tunnel coupled to leads,10,11 we then observe tha
strong interdot charge fluctuations produce thehalvingof the
capacitance peak period. For an experimental proof, see,
Ref. 14.

Based on two-impurity two-channel Kondo mode
~2CKM’s! @small dots coupled to leads are described b
two-impurity 1CKM ~Ref. 15!#, below we thoroughly ana
lyze the evolution of the fractional steps as a function of
hopping parameterst1 and t2 ~Fig. 1!. Some aspects of th
problem will join up with previous works on the conductan
through a double~large! dot structure.10,11

From here on, we assume that a single orbital chan
with two spin polarizationsa5↑,↓ enters the double dot
Again, we assume that the level spacing on each dot~almost!
vanishes, which means that we consider acontinuousspec-
trum in each dot and we neglect the mesoscopic correct
to the capacitanceCgd ; the size of a dot can thus exceed t
effective Bohr radius (;mm in Refs. 8 and 14!. Temperature
will be taken to be zero (T50).

II. WEAK COUPLING WITH LEAD

Weak tunneling (t1!1) between the lead and the com
posite dot produces corrections to the Coulomb-staircase
havior found above.

More precisely, for perfect interdot transmission (t2
→1), we can describe thecomposite dotin the vicinity of
the two QPC’s by the same field operatorCca(x). Addition-
ally, close to a degeneracy pointN* 5(2n11)/4, only the
states withQ5n and Q5n11 are allowed and, thus, fol
lowing Ref. 1, the tunneling Hamiltonian for this truncate
system takes the form

FIG. 2. Charging energies (1dE) of the ‘‘composite’’ dot as a
function ofN given in units ofEc ; t1 is small. Each eigenstate with
Q5n gives rise to a parabola. The solid lines correspond tor 2

50 and dashed lines to increasingr 2 couplings. Forr 1512t1

→1, Q is quantized and for symmetric dots this guaranteesQ̄1

5n/2 until r 2→1 @Eqs.~11! and ~24!#.
12531
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Ht5(
a

@ t1Cca
† ~0!C ra~0!S11H.c.#. ~2!

C ra stands for the electron operator in thelead, and the spin
operatorS1 guarantees that when an electron tunnels into
double dot, the total chargeQ only changes fromn to n
11;1,6 we then have the equalities16

Q̄52Q̄15~n11/2!1S̄z . ~3!

Following the route of the single-dot problem,1,6 now we can
identify sa

2(0)5Cca
† (0)C ra(0) as an electron pseudosp

operator acting on the~orbital! indices j 5r ,c and finally
recover a 2CKM.5,17The two channels are the two spin stat
of an electron. In particular, Eq.~1! can be viewed as a loca
magnetic fieldhSz with h}(2n1124N). This results in

Q̄12
2n11

4
}~2n1124N!lnS UN2

2n11

4 U D . ~4!

To sum it up, we recover a standard logarithmic form

dC15C12Cgd}2 lnS UN2
2n11

4 U D , ~5!

for the capacitance peaks.
We now discuss the situation in which the interdot tunn

ing is strongly decreased, (t1 ;t2)!1. Each dot is described
by its own operatorC ia and the Coulomb term should b
written in a more common way as11,12

Hc
1@N#1Hc

2@N#5Ec (
i 51,2

~Qi2N!222EcN
2. ~6!

When t2→0, we converge to a single-dot problem:1,6 Q1 is
quantized and we could not useQ̄1;Q/2 in Eq. ~1!. The
degeneracy points now occur forNs* 5(2k11)/2(kPN) and
obviously the period of the capacitance peaks thendoubles
~Fig. 2!.

As soon ast2 is finite (t2;t1) andN'1/2, we propose to
modify the tunneling Hamiltonian as

Ht5(
a

@ t1C1a
† ~0!C ra~0!1t2C2a

† ~L !C1a~L !1H.c.#

5(
a

@ t1sa
2~0!S1

11t2sa
2~L !S2

11H.c.#, ~7!

whereS1
1(S2

1) emphasizes that the charge on dot 1~2! only
changes from 0 to 1. For more details, see Ref. 18.

Again, the indexj 51,2,r—which designates the locatio
of an electron in the setup—in theC j a operator can mimic
an internal ‘‘orbital’’ degree of freedom. It is then straigh
forward to define two spin operators atx5(0,L) acting on
the orbital space, as in Ref. 1,

sa
2~0!5C1a

† ~0!C ra~0!,

sa
2~L !5C2a

† ~L !C1a~L !. ~8!
1-2
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This two-impurity ~two-channel! Kondo model is particu-
larly convenient to revisit the behavior of charge fluctuatio
close to the degeneracy pointsNs* ; the crucial point being
that a finite bare couplingt2 ~like t1) will be strongly renor-
malized at low temperatures.19

At the fixed point (T50) and, e.g., close to thedegen-
eracypoint Ns* 51/2, the two dots willmergeinto one and
therefore by analogy to Eq.~3! we must correctly reidentify

Q̄5~ j 11/2!1S̄z52Q̄1 , ~9!

wherej 5(0;1).20 Moreover, the Coulomb term in the fixed
point basis takes the formhSz whereh}(122N72kT2) for
j 5(0;1); T25(t2)2 and k.0. Away from the pointNs*
51/2, second-order perturbation theory int2 is accurate, and
we have taken into account the relative energy shift betw
evenandodd Qstates:10,11

dE}24T2ln 2. ~10!

Similar to Eq. ~4!, we are thus led to~for j 50,1, respec-
tively!

Q̄15H 1

4
2bS N2

1

2
1kT2D lnS UN2

1

2
1kT2U D ,

3

4
2bS N2

1

2
2kT2D lnS UN2

1

2
2kT2U D .

~11!

b.0 is a parameter that is inversely proportional to t
Kondo energy scale. By continuity, a tiny step appears
Q̄151/2, and the single-dot capacitance peaks are alre
split by ;2kT2 ~Fig. 2!.

The progressive pairing of the capacitance subpeaks c
to t251 will be studied later@Eq. ~24!#.

III. STRONG COUPLING WITH LEAD

Now, we mainly consider the case where all the junctio
have conductances close to 2e2/h, i.e., reflection amplitudes
are small (r 1 ;r 2)!1.

In this case, the whole system can be viewed as a si
conductor and, for convenience, we will use the unique fi
operatorC ra(x).21 We can writeC ra(x)5exp(ikFx)C1a(x)
1exp(2ikFx)C2a(x), C1a andC2a describe right- and left-
moving fermions, respectively. The kinetic energy obeys

Hk5 ivFE
2`

12L

dx~C1a
† ]xC1a2C2a

† ]xC2a!, ~12!

vF being the Fermi velocity. The backscattering term~s! takes
the standard form

Hb5vF(
a

@r 1,2C1a
† ~0,L !C2a~0,L !1H.c.#, ~13!

and interactions in a grain are embodied via the general C
lomb HamiltoniansHc@N1#1Hc@N2#, in Eq. ~6!.

At low energy, we proceed with this model by bosoniz
tion of the one-dimensional Fermi fields.6 In those variables,
the kinetic energy yields a separation of the spin and cha
12531
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and the resulting Hamiltonians have plasmonlike excitatio
Here, ]xf j with j 5(c,s) measures fluctuations of charg
spin density,P j5]xu j being its conjugate momentum. Th
Coulomb Hamiltonians take the forms@We could also em-
ploy Eq. ~1!#

Hc
1@N1#5

2Ec

p S fc~0!2fc~L !2Ap

2
N1D 2

2EcN1
2 ,

Hc
2@N2#5

2Ec

p S fc~L !2fc~2L !2Ap

2
N2D 2

2EcN2
2 .

~14!

To minimize the Coulomb energies when the transmissi
at the two QPC’s arebothperfect, we easily recover that th
dot’s charges evolve continuously~linearly! as a function of
the gate voltages:3,4

Q̄15
A2

p
@fc~0!2fc~L !#5N1 ,

Q̄25
A2

p
@fc~L !2fc~2L !#5N2 . ~15!

Remember that forr 15r 250, the Coulomb blockade phys
ics is totally suppressed. In our geometry there are no ch
fluctuations atx52L and thenfc(2L)5cst.

Furthermore, following the traditional route of the singl
dot problem for this regime,4,6 the backscattering term ma
be rewritten as

Hb5
AgaEcvF

pa
4r 1cos@p~N11N2!#cos@A2pfs~0!#T1x

1
AgaEcvF

pa
4r 2cos~pN2!cos@A2pfs~L !#T2x . ~16!

Since the charge fluctuations on each dot cannot depen
the precise size of a dot, we must equatefc(2L)
52kFL/A2p and rescalefc(0)→fc(0)12kFL/A2p. Here
g obeys g5eC where C'0.5772 . . . is the Euler-
Mascheroni constant anda is a short-distance cutoff. We
have introduced twocommutingimpurity spinsT1 and T2
~which here are not related to the charge on each d!.
Clearly, theT1x and T2x spin operators both commute wit
the Hamiltonian and must be simply identified asc numbers,
i.e.,T1x51/2 ~or 21/2) and similarly forT2x . Equation~16!
must be viewed as an extension of the 2CKM at the Eme
Kivelson lign.22

To compute the correction to the average dot charge~s!,
here we must ‘‘debosonize’’ the problem as4,6

Hb'
iJ1x

A4pa
@c~0!1c†~0!#z11

iJ2x

A4pa
@c~L !1c†~L !#z2 .

~17!

z1 and z2 are two Majorana fermions, and the Kondo e
changes above readJ1x54r 1AagEcvFcos@p(N11N2)# and
J2x54r 2AagEcvFcos(pN2). In the absence of an applie
1-3
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KARYN LE HUR PHYSICAL REVIEW B 67, 125311 ~2003!
magnetic field, there is no net magnetization and no s
current on the whole region@2L;L# and, thus, we have
approximated21 c(L)'exp@iA2pfs(L)# ~For more explana-
tion, see Ref. 6!. The fermionic model here generates tw
Kondo resonances

G15
J1x

2

4pavF
5

Ecg

p
~2r 1!2cos2@p~N11N2!#,

G25
J2x

2

4pavF
5

Ecg

p
~2r 2!2cos2~pN2!, ~18!

and all the quantities of interest will be now inferred fro
the quantum correction of the ground-state energy

dE52
G1

p
ln~Ec /G1!2

G2

p
ln~Ec /G2!, ~19!

which implies that impurities areindependentlyscreened.
Let us discuss the case of symmetric dots:N15N25N. The
correction to the average charge on each dotdQ̄i and the
dot’s differential capacitancedCi obey: dQ̄i5Q̄i2N}

2]dE/(Ec]N) anddCi}]dQ̄i /]N. For the sake of clarity,
results have been summarized in Figs. 3 and 4.

A. r 2\0

For a double dot connected by a reflectionless constric
0←r 2!r 1(!1), using the formulas above, we easily r
cover fractional charge plateaus with steps 1/2 and cap

FIG. 3. Dot’s differential capacitance forsmall r150.4. Forr 2

'0 the system behaves as a singlecomposite conductorwhereas
for r 2→1 we must recover asingle-dotproblem. Forr 2'r 1!1 the
system cannot decide between those two ground states givi
‘‘three-peak’’ capacitance profile, i.e., unstable fractional steps@Fig.
4 and Eq.~22!#. Charge fluctuations are important atN51/4 and at
N51/2 as well.
12531
in

n
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tance peaks with halved period. Again, the double dot
haves as a single composite conductor ofquantizedcharge
Q'2Q̄1. In particular, we predict that the logarithmic sin
gularity dCi}2 ln(uN21

4u) should be observed at any value
t1Þ1 ~as nicely illustrated in Figs. 3 and 4!.

B. r 2\1

In the opposite limitr 1!r 2→1, the interdot constriction
considerably impedes the charge spreading between the
Q2 becomes an integer-valued operator describing elect
that tunnel into dot 2@Eq. ~6!# and charge fluctuations in do
1 closely resemble the ones of a single dot that is stron
coupled to one lead:

Hb}r 1~21!Q2cos~pN!cos@A2pfs~0!#T1x . ~20!

The Kondo energy scale

G15
Ecg

p
~2r 1!2cos2~pN!, ~21!

is identical to the one of the single-dot problem,4 and assum-
ing r 1Þ0, Q1 becomes alsoquantized.

The small termt2C2a
† (L)C1a(L)S2

11H.c. here mostly
produces slight charge fluctuations in dot 2, anddC2}
2 ln(uN21/2u).

C. r 1Ér 2™1

For r 1'r 2, a strong opposition between the single-d
(Qi is quantized forr 2@r 1) and the composite-dot groun
state (Q̄i5Q/2 for r 1@r 2) arises giving a fascinating ‘‘hy-
brid’’ regime where the fractional plateaus become gradua

a

FIG. 4. Evolution of the fractional plateaus forsmall r1. @Note,
e.g., that forr 250 we have only taken into account the main lea
ing term when taking the derivate of Eq.~19!, which explains the
‘‘slightly’’ negative slope in the middle of a plateau#. The solid line
is for r 150.2 andr 250, the dashed line forr 15r 250.15 ~frac-
tional plateaus now acquire apositiveslope! and the dotted line for
r 150.3 andr 2→1.
1-4
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FRACTIONAL PLATEAUS IN THE COULOMB BLOCKADE . . . PHYSICAL REVIEW B 67, 125311 ~2003!
destroyed by acquiring apositiveslope~Fig. 4!; Close toN
51/2, exploiting Eqs.~18! and ~19!, we can approximate
@ f (R1)5 ln R11const.#

dQ̄1}~N21/2!@R1f ~R1!2R2ln~ uN21/2u!#, ~22!

then inducing an exotic ‘‘three-peak’’ capacitance profi
Ri5(r i)

2 ~inset in Fig. 4!. The central peak becomes mo
pronounced by slightly increasingr 2, whereas the externa
peaks only depend onr 1 ~as long asr 2!1).

D. r 1\1 and r 2™1

It is worthwhile to compare with the caser 1→1 andr 2

!1. Here, Q5A2/pfc(0)5n must be aninteger-valued

operator that guaranteesQ̄15n/2. The fractional plateaus re
main by decreasing the interdot coupling and only th
widths progressively reduce:N* (n51)2N* (n50)51/2
22hR2ln(1/R2); h.0 is a constant parameter. More pr
cisely, for N15N25N, it is easy to rewrite the backscatte
ing term as

Hb5
AgaEcvF

pa
4r 2cosS np

2 D cos@A2pfs~L !#T2x , ~23!

to Eqs. ~1! and ~2! which then produces a Kondo energ
scaleG25Ecg(2r 2)2cos2(np/2)/p, and then a relative en
ergy shiftdE}R2ln(1/R2) betweenevenandoddstates.10,11

This engenders that the positions of the capacita
~sub-!peaks@furnished by Eq.~1!# are shifted as

N* 5~2n11!/41~21!nhR2ln~1/R2!. ~24!

The capacitance~sub-!peaks are not equally spaced anymo
and progressively pair around the pointsNs* 5(2n11)/2
~Fig. 2!. Finally, we have checked that integer plateaus
come more prominent: N* (n52)2N* (n51)51/2
12hR2ln(1/R2).
t

a
e
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y
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IV. CONCLUSION

In closing, based on two-impurity two-channel Kond
models, we have presented a detailed discussion on the
lution of the fractional plateaus as a function of the hopp
parameterst1 and t2 for a double dot coupled via a single
mode QPC to a reservoir.

Again, forperfectinterdot transmission, Coulomb steps
size 1/2 occur for any finite backscattering between the l
and the left dot. When an electron enters the artificial m
ecule, a charge 1 is fluctuating back and forth between
two dots. We are hopeful that this can be observed via
pacitance measurements.12,13

Substantially decreasing the interdot coupling inevita
restores the single-dot Coulomb blockade and the cap
tance peak perioddoubles.

For strong coupling between the lead and the left
(r 1!1), we find a striking intermediate range (r 2'r 1)
where the fractional steps become progressively unsta
i.e., show an increasing positive slope; this happens du
the strong competition between asingle-dotand acomposite-
dot ground state. On the contrary, whenr 1→1, Q must be

quantized andQ̄15Q/2; the fractional steps persist. Fo
asymmetricdots, e.g., with different gate-dot capacitances
report that the Coulomb staircase with halved steps is gra
ally altered.
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12531
or:

is negligible.
19A. Georges and A. Sengupta, Phys. Rev. Lett.74, 2808~1995!.
20Q;2Q̄1 takes the values 0, 1, or 2 andC1a→Cca .
21We could also introduce two different wave functions for the tw

QPC’s @c(0)→c1(0), c(L)→c2(0) in Eq. ~17!#.
22V.J. Emery and S. Kivelson, Phys. Rev. B46, 10 812 ~1992!;

A.M. Sengupta and A. Georges,ibid. 49, 10 020~1994!.
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