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Fractional plateaus in the Coulomb blockade of coupled quantum dots
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Ground-state properties of a double-large-dot sample connected to a reservoir via a single-mode point
contact are investigated. When the interdot transmissipetlifectand the dots controlled by the same dimen-
sionless gate voltage, we find that for any finite backscattering from the barrier between the lead and the left
dot, the average dot charge exhibits a Coulomb-staircase behavior with steps @®s@al the capacitance
peak period is halved. The interdot electrostatic coupling here is weak. For strong tunneling between the left
dot and the lead, a conspicuous intermediate phase is observed in which the fractional plateaus get substantially
altered by an increasing slope.
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[. INTRODUCTION required in order to find Coulomb staircases with fractional
steps.

At low temperature, the charge on an isolated metallic For example, when the interdot transmissionperfect
grain (micronmetric dokis known to be quantized in units of and dot 1 isweaklycoupled to the lead, the interdot charge
the electron charge Even when the grain is weakly coupled fluctuations are so strong that only the total charge of the two
to a bulk lead, so that electrons can occasionally hop fron§lots,eQ=¢(Q,+Q;), can bequantized(but not the charge
the lead to the dot and back, the grain charge remains to @Q ©n an individual dot Thus, the electrostatic Hamil-
large extent quantizedThis is commonly referred to as the tonian of_ the two dots can be rewritten more conveniently as
Coulomb blockad@.In the opposite limit of perfect transmis- (for details, see Refs. 10 and)11
sion between the reservoir and the dot, the average dot E
charge now depend# a continuous mannglinearly on the HJ[N]= 7C(Q— 2N)%+2E,
applied gate voltage and the Coulomb blockade disappears.

However, Matveev has shown that a crossover from the linThe interdot capacitive coupling iseakin order to maxi-

ear charge-voltage dependence t6aulomb-staircaséunc-  mize the interdot charge fluctuatiotfsMoreover, the sym-
tion occurs for any finite backscattering from the quantummetric dots are controlled by the same gate voltsgeand
point contact(QPQ between the grain and the lehdhe = N=VsCyq/e. From the electrostatic Hamiltonian, it can be
physics remains qualitatively unchanged by increasing theasily inferred that the double dot behaves as a single com-
reflection amplitude at the QPC. posite conductor of quantized charg®=2eQ, determined

Furthermore, close to the steps, the charge exhibits by the total gate voltagel. When an electron tunnels into
nonanalytic logarithmic dependence on the voltage due tthe left dot, i.e.Q=1, this implies that a chargeis fluctu-
the presence dfvo spin channels entering the dot, resulting ating back and forth between the dots and cle@y; {N]
in an underlying two-channel Kondo model. exhibits steps of size 1/2.Moreover, close to a point\*

Note also that the Coulomb blockade can be smeared out on+1)/2 (neA), the charge states witlQ=n(Q,
by applymg an in-plane magnetic field. . =n/2) andQ=n+ 1(61= n/2+1/2) are degenerate result-

A direct measurement of the average grain charge has
been made possible using a single-electron trans{S&ai)
that has a sensitivity well below a single charge as well as a
small input capacitance’ In particular, some of the predic-
tions above have been checked experimentally and its supe
riority to conductance measurements of charge fluctuations
demonstratefiHere, we investigate exotic Coulomb stair-
cases with fractional plateaus

The simplest system we consider comprises tage
symmetric dots, which can be viewed as an artificial mol-
ecule, connected to a single reservoir via a single-mode QPC
(Fig. 1. For a recent review on artificial molecules built up
with two dots_, see Ref. 9. H_ere, each dot is coupled with the 715 1 A two-dimensional electron gd&DEG) is coupled to
same capacitanc€gg to a side gate. The term “large dot” o Jarge dots via a single-mode QPC. The number of electi@ns
implies that the spacing~ L~ of the energy levels on each o each dot is controlled via the dimensionless gate volagdhe
dot vanishes compared to the dot's charging enegy case of interest here I$; = N,=N. The auxiliary gates can be used
=e?/(2Cs)~L "1, whereCy~Cgyq. We already stress that to adjust the conductances at the QPC’s. A SET may probe the
strong tunneling between the dot&ovalent binding”) is  average charge on a single dot.
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> gﬁd Hi=2 [t W{,(0)¥,,(0)S" +H.c]. @
@

omposite Dot ¥, , stands for the electron operator in lead and the spin

» operatorS* guarantees that when an electron tunnels into the
_:’:. double dot the total chargeQ only changes frorm to n

: 1y +1;1® we then have the equalitis

+0.5
Ji i & Q=2Q,=(n+1/2)+S,. 3
(s
0 - 0!5 1 Following the route of the single-dot probletfinow we can
Oy quantized identify s;(0)=‘lfza(0)\lfm(0) as an electron pseudospin

Yy operator acting on théorbital) indicesj=r,c and finally
@ @ recover a 2CKM1" The two channels are the two spin states
of an electron. In particular, Eq1) can be viewed as a local

Single Dot oV ! - ]
magnetic fieldhS, with hoc(2n+1—4N). This results in
1
: : : — 2n+1 2n+1
FIG. 2. Charging energies{SE) of the “composite” dot as a Q;— «(2n+1—4N)In (4)
function of N given in units ofE ; t; is small Each eigenstate with 4 4

Q=n gives rise to a parabola. The solid lines correspond to
=0 and dashed lines to increasing couplings. Forr;=1—t;

—1, Q is quantized and for symmetric dots this guarant€gs
=n/2 until r,—1 [Egs.(11) and(24)]. 0C1=C;—Cggx—In

To sum it up, we recover a standard logarithmic form

2n+1

N=—%

: ®

ing in (sharp peaks in the single dot capacitan&®  for the capacitance peaks.

«9Q,/dN (Fig. 2). Similar to theconductanceeaks for two ~ We now discuss the situation in which the ir_1terdot tl_mnel-
large dots tunnel coupled to leatfs'! we then observe that ing is strongly decreasedt,(t,)<1. Each dot is described
strong interdot charge fluctuations produce hlaévingof the DY its own operator¥;, and the Coulomb term should be
capacitance peak period. For an experimental proof, see, e.§Vfitten in a more common way
Ref. 14.
Based on two-impurity two-channel Kondo models 1 2r N — N2 2
(2CKM’s) [small dots coupled to leads are described by a HelNI+HCN] Eci—E (Q=N"—2EN~ (®)
two-impurity 1CKM (Ref. 15], below we thoroughly ana- ] )
lyze the evolution of the fractional steps as a function of theVhent,—0, we converge to a single-dot probléiQ; is
hopping parameters, andt, (Fig. 1). Some aspects of the quantized and we could not u@l Q/2 in Eq. (1). The
problem will join up with previous works on the conductance degeneracy points now occur fg = (2k+1)/2(ke N) and
through a doublglarge dot structure®* obviously the period of the capacitance peaks tHenbles
From here on, we assume that a single orbital channglFig. 2).
with two spin polarizationse=1,] enters the double dot. As soon ag, is finite (t,~t;) andN~1/2, we propose to
Again, we assume that the level spacing on eachi@otos}  modify the tunneling Hamiltonian as
vanishes, which means that we consideroatinuousspec-
trum in each dot and we neglect the mesoscopic corrections
to the capacitanc€q; the size of a dot can thus exceed the
effective Bohr radius { um in Refs. 8 and 14 Temperature
will be taken to be zeroT=0).

t=§ [t, 0] ,(0)V, ,(0)+t,P] (L)W, (L)+H.c]

=2 [t15,(0)S] +1,8, (L)S; +H.c], @)

Il. WEAK COUPLING WITH LEAD whereS; (S;) emphasizes that the charge on d@®)Ionly

Weak tunneling {;<1) between the lead and the com- changes from 0 to 1. For more details, see Ref. 18.

posite dot produces corrections to the Coulomb-staircase be- A9@in, the index = 1,2y —which designates the location
havior found above. of an electron in the setup—in th¥;, operator can mimic

More precisely, for perfect interdot transmissiom, ( &N internal “orbital” degree of freedom. It is then straight-
—.1), we can describe theomposite dotn the vicinity of forward to define two spin operators xat(0,L) acting on
the two QPC'’s by the same field operat®g,(x). Addition-  the orbital space, as in Ref. 1,
ally, close to a degeneracy poiNt* =(2n+1)/4, only the _
sta){tes withQ=n ar?d Q=n¥rf are all(owed ;nd, thgs, fol- Sa(o):\ﬂa(o)wm(o)'
lowing Ref. 1, the tunneling Hamiltonian for this truncated B
system takes the form S, (L)=W] (L)W y,(L). )
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This two-impurity (two-channel Kondo model is particu- and the resulting Hamiltonians have plasmonlike excitations.
larly convenient to revisit the behavior of charge fluctuationsHere, 9,¢; with j=(c,s) measures fluctuations of charge/
close to the degeneracy poirtg ; the crucial point being spin density,Il;=d,6; being its conjugate momentum. The
that a finite bare coupling, (like t;) will be strongly renor-  Coulomb Hamiltonians take the fornjsVe could also em-

malized at low temperaturés. ploy Eq.(1)]

At the fixed point T=0) and, e.g., close to théegen- 5
eracy point N* =1/2, the two dots willmergeinto one and 1y 1. 2Ec B 3 \/E e
therefore by analogy to E@3) we must correctly reidentify HCN.] T ¢e(0) = belL) 2N1 EcN1,

Q=(j+1/2+5,=2Q, (9) I 2EC( L) b2l \/;N )2 -2
wherej =(0;1).2° Moreover, the Coulomb term in the fixed- T g\ ¢ 2°? o
point basis takes the forimS, whereho (1— 2N+ 2«7) for (14)

j=(0;1); T,=(t)* and x>0. Away from the pointNI  To minimize the Coulomb energies when the transmissions
=1/2, second-order perturbation theonytjris accurate, and  at the two QPC'’s ar&oth perfect, we easily recover that the
we have taken into account the relative energy shift betweegot's charges evolve continuouslinearly) as a function of

evenandodd Qstates%! the gate voltage®*
SEx—47T5In 2. (10 _ 2

Similar to Eq.(4), we are thus led tdfor j=0,1, respec- Qu="71e(0) = ¢e(L)]=Ny,

tively)
1 1 1 E—ﬁ[qs(u ¢c(2L)]=N (15
Z—b<N—§+K/T2 In( N—E‘l'K'Tz), 2 m ¢ ¢ z

Q.= 3 1 (11 Remember that for,=r,=0, the Coulomb blockade phys-

- b( N——=— KTz) In( N—=—«T, ) ics is totally suppressed. In our geometry there are no charge
4 2 2 fluctuations atx=2L and then¢.(2L)=cst.

b>0 is a parameter that is inversely proportional to the Furthermore, following the traditional route of the single-

Kondo energy scale. By continuity, a tiny step appears ot prot_)lem for this regimé® the backscattering term may
— a e rewritten as

Q.=1/2, and the single-dot capacitance peaks are already
split by ~2«7, (Fig. 2. [vaEoe
The progressive pairing of the capacitance subpeaks close Hb=%4rlcoi w(N1+Ny)]cog V27 ds(0)]71y
to t,=1 will be studied latefEq. (24)]. ™
\V 'yaE Vg
lll. STRONG COUPLING WITH LEAD + 77—ac4r2005{ mNp)cog§ V2mhs(L)] 7oy (16)

Now, we mainly consider the case where all the junction
o : .
have conductances close te“2h, i.e., reflection amplitudes the precise size of a dot, we must equate(2L)

are small (q;r,)<1. _ . —
In this case, the whole system can be viewed as a single 2';';):/3/327;322 r?;ﬁ::g)cgi); 5¢;°7(20)+2kiFSL/th2ew'Eng

conductor and, for convenience, we will use the unique ﬁelqz//lascheroni constant and is a short-distance cutoff. We
21 . _ ! .
iperat(_)l_‘ll(lfmg(). WEI can V\érgfe\l,fé(x)_.SXp.Qk;;()‘PH‘(IX)ﬁ have introduced twaommutingimpurity spins7; and 7,
eXpikeX)W_o(x), ¥ , and¥_, describe right- and left- (which here are not related to the charge on each. dot

moving fermions, respectively. The kinetic energy obeys Clearly, theT;, and T, spin operators both commute with
oL the Hamiltonian and must be simply identifiedasumbers,
Hk:ivFJ dx(¥! oW, W' o W_)), (12 ie.,Ty,=1/2(or —1/2) and similarly forZ;, . Equation(16)

SSince the charge fluctuations on each dot cannot depend on

- must be viewed as an extension of the 2CKM at the Emery-
ve being the Fermi velocity. The backscattering tesntakes ~ Kivelson lign: _
the standard form To compute the correction to the average dot chajge

here we must “debosonize” the problem*4s

Hb=vF§ [r,®t (OL)W_ (OL)+H.c], (139 PR
and interactions in a grain are embodied via the general Cou- an

lomb HamiltoniansH [ N;]+HN,], in Eq. (6).

At low energy, we proceed with this model by bosoniza-¢{; and {, are two Majorana fermions, and the Kondo ex-
tion of the one-dimensional Fermi fielfisn those variables, changes above readh,=4r,\ayE.vrco§m(N;+N,)] and
the kinetic energy yields a separation of the spin and chargé,,=4r,\ayE.cos@N,). In the absence of an applied
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2

o 1

N, =N,

FIG. 4. Evolution of the fractional plateaus femall r;. [Note,
e.g., that for ,=0 we have only taken into account the main lead-
N = N ing term when taking the derivate of E(L9), which explains the

1 2 “slightly” negative slope in the middle of a plate&urhe solid line
is for r;=0.2 andr,=0, the dashed line for,=r,=0.15 (frac-
tional plateaus now acquirepmsitiveslope and the dotted line for
r,=0.3 andr,—1.

FIG. 3. Dot's differential capacitance femall r,=0.4. Forr,
~0 the system behaves as a singtamposite conductowhereas
for r,—1 we must recover aingle-dotproblem. Forr,~r;<1 the
system cannot decide between those two ground states giving a
“three-peak” capacitance profile, i.e., unstable fractional sféig. ~ tance peaks with halved period. Again, the double dot be-
4 and Eq.(22)]. Charge fluctuations are importanthit=1/4 and at haves as a single composite conductorqofntizedcharge

N=1/2 as well. Q~2Q;. In particular, we predict that the logarithmic sin-
gularity 6C;= —In(|]N—%|) should be observed at any value of

magnetic field, there is no net magnetization and no spim,+1 (as nicely illustrated in Figs. 3 and.4

current on the whole regiop—L;L] and, thus, we have

approximatet! (L) ~exdi\27¢<(L)] (For more explana-

tion, see Ref. § The fermionic model here generates two

Kondo resonances In the opposite limitr;<<r,—1, the interdot constriction
considerably impedes the charge spreading between the dots.

B. I’2—>1

Jix Ecy Q, becomes an integer-valued operator describing electrons
F1:477av - (2r1)%cosm(N1+Ny)], that tunnel into dot 2Eq. (6)] and charge fluctuations in dot
F 1 closely resemble the ones of a single dot that is strongly
12 £ coupled to one lead:
=2 ==Y o1 \2co@(aN,), (18)
Amave  m Hpoer 3(— 1) @008 mN)cog \2mbs(0)To. (20)

and all the quantities of interest will be now inferred from

the quantum correction of the ground-state energy The Kondo energy scale

EeY (a1 )2c02(aN), 21)

1—‘1 FZ =
SE= -~ In(Ec/Ty)~—In(Ec/Ty), (19 s

which implies that impurities aréndependentlyscreened. s identical to the one of the single-dot problérand assum-
Let us discuss the case of symmetric ddts=N,=N. The  ingr,+#0, Q,; becomes alsgquantized

correction to the average charge on each 551 and the The small termtzllfga(L)\Pla(L)S;wLH.c. here mostly
dot's differential capacitancesC; obey: 5Q,=Q,—Nx=  produces slight charge fluctuations in dot 2, ad@,x
— 9SEI(E,oN) and 5C;x35Q; /N. For the sake of clarity, —NIN=1/2).
results have been summarized in Figs. 3 and 4
C.ri=r<l1
A.1r;—0 For ry~r,, a strong opposition between the single-dot

For a double dot connected by a reflectionless constrictiohQi iS quantized forr,>r;) and the composite-dot ground
0+r,<r4(<1), using the formulas above, we easily re- state Q;=Q/2 for r;>r,) arises giving a fascinating “hy-
cover fractional charge plateaus with steps 1/2 and capacbrid” regime where the fractional plateaus become gradually
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destroyed by acquiring positiveslope(Fig. 4); Close toN IV. CONCLUSION
=1/2, exploiting Egs.(18) and (19), we can approximate
[f(R1)=InR,+const] In closing, based on two-impurity two-channel Kondo

_ models, we have presented a detailed discussion on the evo-
6Q1%(N—1/2)[Ryf(Ry) —RoIN(IN—1/2)],  (22)  |ution of the fractional plateaus as a function of the hopping
then inducing an exotic “three-peak” capacitance profile;Parameters; andt, for a double dot coupled via a single-
R;=(r;)? (inset in Fig. 4. The central peak becomes more Mode QPC to a reservoir. o
pronounced by slightly increasing, whereas the external Again, for perfectinterdot transmission, Coulomb steps of

peaks only depend on, (as long ag,<<1). size 1/2 occur for any finite backscattering between the lead
and the left dot. When an electron enters the artificial mol-
D.r,—1 andr,<1 ecule, a charge 1 is fluctuating back and forth between the

two dots. We are hopeful that this can be observed via ca-

It is worthwhile to compare with the case—1 andr, pacitance measuremerits:?

<1 Here’Q:\/ﬂd’CQ):n must be aninteger-valued Substantially decreasing the interdot coupling inevitably
operator that guarante€ =n/2. The fractional plateaus re- restores the single-dot Coulomb blockade and the capaci-
main by decreasing the interdot coupling and only theirgnce peak periodoubles

widths progressively reduceN* (n=1)—N*(n=0)=1/2
—27R,In(1/R,); >0 is a constant parameter. More pre-
cisely, forN;=N,=N, it is easy to rewrite the backscatter-

For strong coupling between the lead and the left dot
(ry<<1), we find a striking intermediate range,tr,)
, where the fractional steps become progressively unstable,
Ing term as i.e., show an increasing positive slope; this happens due to
the strong competition betweersegle-dotand acomposite-
vyaEw nw
Hb=%4rzcos<7) cos[ V2mds(L)]THy, (23 dot ground state. On the contrary, whep—1, Q must be
_ quantized andQ;=Q/2; the fractional steps persist. For
to Egs. (1) and (2) which then produces a Kondo energy asymmetricdots, e.g., with different gate-dot capacitances, |

scalel',= Ecy(2r;)%cos(nm/2)/m, and then a relativ% €N~ report that the Coulomb staircase with halved steps is gradu-
ergy shift SExR,In(1/R,) betweenevenandodd states:” ally altered.

This engenders that the positions of the capacitance
(subjpeaks[furnished by Eq(1)] are shifted as

N* =(2n+1)/4+ (= 1)"R,IN(1/R,). (24) ACKNOWLEDGMENTS
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