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Phase separation in the two-dimensional electron liquid in MOSFET’s

B. Spivak
Physics Department, University of Washington, Seattle, Washington 98195

~Received 9 July 2002; revised manuscript received 14 October 2002; published 24 March 2003!

We show that the existence of an intermediate phase between the Fermi-liquid and the Wigner crystal phases
is a generic property of the two-dimensionalpure electron liquid in MOSFET’s at zero temperature. The
physical reason for the existence of these phases is a partial separation of the uniform phases. We discuss
properties of these phases and a possible explanation of experimental results on transport properties of low-
density electron gas in Si MOSFET’s. We also argue that in a certain range of parameters, the partial phase
separation corresponds to a supersolid phase discussed in F. Andreev and I. M. Lifshitz@Sov. Phys. JETP48,
1107 ~1969!#.
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I. INTRODUCTION

This work is motivated by experiments1–13 on transport
properties of the two-dimensional electron system in h
mobility Si-MOSFET’s at small electron concentrationn.
These experiments raised doubts about the applicability
the Fermi-liquid theory and the conventional theory
localization14,15 to the two-dimensional disordered electro
liquid at low temperatures. The aim of this paper is to pro
the existence of zero-temperature phases of the t
dimensionalpure electron liquid in MOSFET’s which are
intermediate between the Fermi liquid and the Wigner cr
tal. These phases exist in some interval of concentrat
nW,n,nL . The values of the critical concentrationsnW and
nL are estimated below.

This phenomenon is due to a tendency for phase sep
tion which originates from the existence of a first-ord
phase transition between the Fermi-liquid and the Wig
crystal phases as a function ofn. The difference between th
crystal-liquid phase transition in MOSFET’s and the us
first-order phase transitions in neutral systems is the follo
ing. In neutral systems with first-order phase transitions,
energy of the surface between the phases is positive and
minimum of the free energy corresponds to a minimal s
face area and to a global phase separation. In charged
tems, such as electrons on a positive frozen background,
bal phase separation does not occur because of a
Coulomb energy associated with a nonuniform distribut
of electron density. The electron liquid in MOSFET’s, in
sense, is a system intermediate between these two lim
cases. Similarly to the neutral systems with first-order ph
transitions, the electron liquid in MOSFET’s exhibits pha
separation. On the other hand, the surface energy of a m
ity phase droplet of a large enough radius turns out to
negative. As a result at differentn there is a variety of inter-
mediate phases in this system which are different both fr
the Fermi liquid and from the Wigner crystal.

The electron system with phase separation demonstra
number of unusual features. If 0,(n2nW)!(nL2nW), the
state of the system corresponds to a small concentratio
Fermi-liquid droplets embedded into the Wigner crystal. T
main difference between such a state and the usual Wi
crystal is that it is not pinned by small disorder and c
0163-1829/2003/67~12!/125205~10!/$20.00 67 1252
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bypass obstacles, while the classical crystals at zero temp
ture are pinned by an infinitesimally small amount
disorder.16 Phenomenologically this state of matter is simil
to the supersolid phase proposed in Ref. 17 for the cas
He3 and He4. The difference is that in our case the origin
droplets of liquid embedded in the crystal is classical el
trostatic, whereas, in the case17 the existence of vacancie
and interstitials in the ground state of quantum crystals is
quantum origin.

If 0 ,(nL2n)!(nL2nW), then the state of the system
corresponds to a small concentration of Wigner crystal dr
lets embedded into the Fermi liquid. At small concentratio
and small temperatures, in principle, these droplets can
considered as quasiparticles.

Droplets of a minority phase interact at large distances
short-range dipole forces rather than via Coulomb forc
This means that atT50 and at small droplet concentratio
the system of such ‘‘droplet quasiparticles’’ should be in
liquid state similar to He3 and He4 which are also liquids at
small densities. Thus we can describe the system by t
fluid hydrodynamics. However, the statistics of these qua
particles remains unknown.

At zero temperature the one-dimensional boundary
tween the liquid and the solid is a quantum object itself. D
to zero-point oscillations of its position, there is a regi
where the wave function has a form which is intermedi
between the Fermi liquid and the Wigner crystal. Since
electron densities of the Wigner crystal and the Fermi liq
are slightly different, the fluctuations of the position of th
boundary is associated with the fact that the number of q
siparticles in the Fermi liquid is not conserved.

On the mean-field level this picture of droplet formatio
in the electron liquid in MOSFET’s is similar to the partia
phase separations which occur in ferromagnetic film18

charged polymers,19,20 neutron stars,21 doped manganites
~see for example, Refs. 22,23!, HTC superconductors24–27

and two-dimensional electron systems in the quantum H
regime.28 All these systems demonstrate a short-ranged
dency for phase separation which is thwarted by a long-ra
Coulomb interaction preventing global phase separation.

The paper is organized as follows. In Sec. II we show t
there is an interval of electron concentrations in which
system is unstable with respect to the phase separation
©2003 The American Physical Society05-1
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B. SPIVAK PHYSICAL REVIEW B 67, 125205 ~2003!
also estimate the size of minority phase droplets embed
into the majority phase and the temperature and magn
field dependences of the droplet concentration. In Sec. III
discuss transport properties of different nonuniform pha
associated with the phase separation. In Sec. IV we com
the theoretical and experimental results on transport pro
ties of the low-density electron gas in Si MOSFET’s.

II. PHASE SEPARATION NEAR THE POINT OF THE
FERMI-LIQUID-WIGNER CRYSTAL PHASE

TRANSITION

In this section we show that a partial phase separation
generic property of pure 2D electron liquids in MOSFET
Consider a two-dimensional electron liquid of densityn in a
MOSFET separated by a distanced from a metallic gate.
Electrons interact via Coulomb interaction while a glob
electric neutrality of the system is enforced by the meta
gate with a positive charge densityen. The energy density o
the system per unit areae(n)5e (C)1e (el) is a sum of the
energy density of the capacitore (C)5(en)2/2C and the in-
ternal energy density of the electron liquide (el). In the case
of a uniform electron distribution the capacity per unit area
C5C051/d.

At high electron densitiesnaB
2@1, the kinetic energy of

electrons is larger than the potential energy and the inte
tion can be taken into account by a perturbation theory.~Here
aB is the electron Bohr radius.! In this case the system can b
described by Fermi-liquid theory, the difference between
effective m* and the barem electron masses is small, an
e (el)5eL

(el);n2/m. On the other hand, in the opposite lim
naB

2!1 ~but still nd2@1), the potential Coulomb energy o
electrons is much larger than the kinetic energy and
ground state of the system is a Wigner crystal withe (el)

5eW
(el)52e2n3/2 ~see, for example, Ref. 29!. Thus, at zero

temperature there is a critical electron concentrationnc
where the phase transition between the Fermi-liquid and
Wigner crystal phases takes place. According to Lan
mean-field theory this transition is of the first order~see for
example, Ref. 30!. Then dependence of the energy densiti
of the Fermi liquideL(n)5eC1eL

(el) and the Wigner crysta
eW(n)5e (C)1eW

(el) phases near the critical densitync is
shown schematically in Fig. 1~a!.

FIG. 1. ~a! The dependence of the energy densities of
Wigner crystal and the Fermi-liquid phaseseW,L(n) on the electron
densityn. SymbolsW andL correspond to the Wigner crystal an
the Fermi-liquid phases, respectively.~b! The effective phase dia
gram of the 2D electron system at zero temperature.
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In the limit of small densitiesnd2!1, due to the exhis-
tence of the image charges in the gate, the interaction
tween adjacent electrons has a dipole character. In this
the ratio between the potential and the kinetic energy
creases asn decreases. Therefore, for the small electronn the
electron system is a weakly interacting Fermi liquid. Th
we arrive at the conclusion that there exists another crit
point nc

(1);1/d2 which corresponds to a second Wign
crystal-Fermi-liquid transition. The phase diagram of t
electron system atT50 is shown in Fig. 1~b!. If d,d*
;38aB , then the system is in the liquid state at any value
n. Here the factor of 38 is the result of numeric
simulations.31

A. The mean-field description of the phase separation.

In the approximation whenC5C0 the qualitative picture
of the phase transition is the same as the picture of
first-order phase transition in neutral systems. In particu
there is an interval of electron densitiesnW,n,nL shown in
Fig. 1~a! where there is a phase separation, which means
there is a spatially nonuniform distribution of the Wign
crystal and Fermi-liquid phases coexisting in equilibrium.
the case of larged, one can linearizeeL,W

(el) (n) near the point
n5nc . As a result, we have

nL,W5nc6
~mW2mL!

2e2d
, ~1!

wheremW,L5(deW,L
(el) /dn)un5nc

.

One can get from Eq.~1! an estimatencaB /d for the size
of the interval of electron densities where the phase sep
tion occurs. Values ofd/aB in various MOSFET’s range
from order of 1 to 50.

The relative fractions of these phasesxW and xL are de-
termined by the Maxwell rule. At (nL2n)!(nL2nW), the
fraction of the area occupied by the Wigner crystalxW!1 is
small while in the case of (n2nW)!(nL2nW), the fraction
of the area occupied by the Fermi liquidxL!1 is small.

xW,L56
n2nW,L

nc
. ~2!

The compressibility of the systemn5d2e/dn2 should ex-
hibit jumps of ordere2d at pointsn5nL ,nW .

The crucial difference between first-order phase tran
tions in neutral systems and in the system of electrons
MOSFET’s arises when one considers shapes of the mino
phases. In the case of neutral systems the surface-en
densitys is positive. Therefore, in equilibrium the syste
should have a minimal area of the surface separating
phases, leading to global phase separation. On the o
hand, in the three-dimensional charged systems the gl
phase separation is impossible because of the large Cou
energy associated with the charge separation. It is poss
however, that in this case the electron system consist
bubbles and stripes of different electron density,24–27 pro-
vided the tendency for phase separation is strong enoug

e
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PHASE SEPARATION IN THE TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 67, 125205 ~2003!
The situation in MOSFET’s is very different. On on
hand, in the approximation whenC5C0 global phase sepa
ration is possible at an arbitrary value of (mW2mL). On the
other hand, it turns out that for large droplets of the minor
phase the surface energy isnegative. To prove this one has to
take into account the finite-size corrections to the stand
formula for the capacitance32

C5C01
R

A
ln

16pR

d
, ~3!

whereA andd are the capacitor area and thickness, resp
tively, and R5AA is the capacitor size. Consider, for e
ample, the case whenxW!1. ThenxW can be determined by
the Maxwell rule in the approximation when the second te
in Eq. ~3! is neglected andC5C0. Expandinge(n) with
respect to the second term in Eq.~3! and taking into accoun
also the microscopic surface energy, we have an expres
for the energy of the surface

E(sur f)52
1

2
NWe2~nW2nL!2d2RWln

16pRW

d
1NWs2pRW .

~4!

We assume that the Wigner crystal phase embedded into
liquid consists of droplets of radiusRW and concentration
NW and take into account that inside the dropletn;nW .
Thus, at largeRW the surface energy, Eq.~4!, turns out to be
negative. We have to find a minimum of Eq.~4! at a given
total area occupied by the minority phase, which gives us
characteristic size of the droplet

RW;
d

16p
eg, ~5!

with g5(e2s)/2p(mW2mL)2. A similar expression was ob
tained in Ref. 33 for a different problem.

The analogous calculation for the casexL!1 gives the
expression for the radius of liquid droplets embedded i
the crystal which is identical to Eq.~5!.

At the point of the transition the values ofs and (mW
2mL)2/e2 are of the same order and at present nothing
known about the value of the dimensionless parameterg.
Even the fact thats.0 is not proven. I would like to also
note that in the case of the first-order phase transitions w
are close to the second-order one we always haveg!1.

In this paper we assume thatg>1. To illustrate the physi-
cal meaning of this inequality we consider the case wh
two-dimensional~2D! electron liquid is compensated by
uniformly charged positivefrozenbackground with a charge
density en. In this case, the Coulomb energy of a drop
associated with the phase separation is, roughly,R/d times
larger than in the MOSFET’s case. The most dangerous p
with respect to the phase separation instability isn5nc @see
Fig. 1~a!#. For example, let us compare the energies of
uniform liquid state withn5nc and a nonuniform state
which contains two droplets embedded into the liquid. T
first droplet is a liquid with electron concentrationn15nc
1dn, while the second term is a crystal with electron co
centrationn25nc2dn. Suppose the droplets have the sa
12520
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radiusR. LinearizingeL,W(n) with respect todn we estimate
the energy differencedE between these two states as

dE;~mL2mW!pR2dn1
~ednpR2!2

R
12pRs. ~6!

The first term in Eq.~6! corresponds to a decrease of t
energy due to the phase separation. The second one c
sponds to the positive Coulomb energy associated with
nonuniform distribution of the electron density and the th
term is the surface energy. A minimization of Eq.~6! with
respect todn gives usdn;(mW2mL)/Re2 and

dEmin;S 2ps2
~mW2mL!2

e2 D R. ~7!

The assumptiong.1 means thatEmin in Eq. ~7! is positive
and that 2D electron liquid on afrozenpositive background
does not exhibit a phase separation.

On the mean-field level our problem is similar to Re
18,19. Using this analogy we conclude that in the middle
the interval (nW ,nL) there is a stripe phase. The phase d
gram of the system is shown schematically in Fig. 3. T
main difference with Refs. 17,18 is the following. In Ref
18,19 all phase transitions between uniform, bubble, a
stripe phases are of the first order, whereas in our case
transitions between uniform~Fermi-liquid and Wigner crys-
tal! phases and the bubble phases are continuous. The
sitions between the bubble phases and the stripe phase w
be the first-order one. However, such a transition would h
an interval of concentrations where phase separation wo
take place. In this case, the presented above arguments c
be repeated. Thus we expect more complicated struct
than bubbles and stripes phase to exist between the bu
and the stripe phases. Since the complete solution of
problem remains to be found, we indicated this in Fig. 3
shaded lines.

Let us now estimate the dependence ofxW,L(T,H i) on the
temperatureT and the magnetic fieldH i parallel to the film.
It is determined by the corresponding dependence of the
energies for the Fermi-liquid and Wigner crystal phases.
smallT andH i one can neglect theT andH i dependences o
eW,L , and we have the following expression for the fre
energy densities of the liquid and the Wigner crystal pha

FIG. 2. ~a! TheH i dependence of the resistancer(H i). ~b! The
temperature dependence of the resistancer(T). The solid line cor-
responds to the caseH i50, while the dashed line corresponds
the caseH i.H i

c .
5-3
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B. SPIVAK PHYSICAL REVIEW B 67, 125205 ~2003!
FW,L~H i!5eW,L2MW,LH in2TnSW,L , ~8!

where SW and SL are the entropies of the crystal and t
liquid phases, respectively, whileMW andML are the corre-
sponding spin magnetizations per electron.

As a result, one can obtain howxW,L(T,H i) and
ncW,L(T,H i) depend onT and H i by making the following
substitution in Eqs.~1! and ~2!:

~mW2mL!→~mW2mL!2~MW2ML!H i2T~SW2SL!.
~9!

At small mBH i!T!EF we haveMW,L5xW,LH i , wherexW
andxL are linear susceptibilities of the crystal and the liqu
respectively.~Here mB is the Bohr magneton andEF is the
Fermi energy.! At low temperatureT!EF the spin suscepti-
bility of the Wigner crystalxW;mB

2/T@xL is much larger
than the spin susceptibility of the Fermi liquid. The entro
of the crystalSW; ln 2@SL;T/EF is mainly due to the spin
degrees of freedom and much larger than the entropy of
Fermi liquid. ThusxW increases linearly withT and quadrati-
cally with H i , which means that both the temperature a
the magnetic field parallel to the film drive the electron s
tem toward the crystallization.34 ~We assumed that the tem
perature is larger than the exchange energy between spi
the Wigner crystal!. These effects are known in the physi
of He3 as Pomeranchuk effects.

In the intermediate interval of magnetic fieldsT,mBH i
,EF spins in the Wigner crystal are completely polariz
while the Fermi liquid is still in the linear regime. In thi
casexW increases linearly withH i .

At high magnetic fieldH i.H i
c;EF /mB both Fermi liq-

uid and Wigner crystal are spin polarized andxW(T,H i)
saturates as a function ofH i . We assume thateL(H i50)
,eL(H.H i

c) and, thereforexW(H i50),xW(H.H i
c). On

the other hand, the spin entropy of the Wigner crysta
frozen in this case. As a result, atH i.H i

c the temperature
dependence ofxW,L(T,H i) is suppressed significantly.

B. Quantum properties of the droplets of minority phase
embedded into the majority one.

In principle, at small enough concentrations and at sm
temperature droplets of the minority phase embedded
the majority one should behave as quasiparticles. Since
system is translationally invariant, they should be charac
ized by momentum~or by quasi-momentum!. The momen-
tum coincides with the flux of mass. Thus these quasipa
cles carry a massM* , a chargeeM* /m, and a spin. The
characteristic temperature of quantum degeneracy isT*
;NW /M* .

The value ofM* depends on the mechanism of motion
the droplets, which in turn depends on whether the surf
between the crystal and the liquid is rough or smooth.

Consider, for example, the case of Wigner crystal drop
embedded into the liquid. In the case of a smooth surfa
motion of the droplet is associated with a redistribution
the liquid mass on the distance of orderRW . In this case we
can estimate the effective mass of the droplet as
12520
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M* ;mncpRW
2 . ~10!

In the case of rough surfaces the motion of the drople
associated with melting and crystallization of different pa
of it. Since the (nL2nW)!nC the liquid mass to be distrib
uted and, consequently, effective mass of the droplet

M* ;m~nL2nW!pRW
2 ~11!

in this case is much smaller than Eq.~10!.
Droplets of the minority phase interact at large distan

via short-range dipole forces rather than via Coulomb forc
At small enough concentration of the droplets the amplitu
of quantum~or classical! fluctuations of their positions is
larger than the typical distance between them. Thus the
uid droplets are distributed uniformly over the whole cryst
In other words, atT50 the system of such droplet quasipa
ticles should be in a liquid state similar to He3 and He4

which are also liquids at small densities. Thus we can
scribe the system by two-fluid hydrodynamics. In this ca
the statistics of the droplet quasiparticles becomes import
In this respect, we would like to mention a difference b
tween the droplets of the liquid embedded into the crys
and the droplets of the Wigner crystal embedded into
liquid.

~a! The droplets of the liquid are topological objec
which, in principle, are not different from vacancies or inte
stitials in quantum crystals He3 and He4. In order to create
such objects in Wigner crystal one has to add or to rem
from the lattice an integer number of electrons. Therefo
the liquid droplets have a definite statistics: they are eit
fermions or bosons.17

The main feature of the phase where there are droplet
liquid embedded into the crystal~supersolid! is its ability to
bypass static obstacles. In other words, unlike conventio
crystals supersolids are not pinned by disordered potentia
small amplitude. This will manifest itself in the finite con
ductivity of the system.

From the phenomenological point of view this is ve
similar to the scenario of ‘‘supersolid’’ which has been intr
duced by A. F. Andreev and I. M. Lifshitz17 for quantum
crystals of helium near the quantum melting point. They
sumed that the crystals contain zero point defects~vacancies
or interstitials! in the ground state, and therefore the numb
of atoms and number of sites in the crystals are different. T
difference with Ref. 17 is that the origin of the negativ
surface energy, Eq.~4!, is purely classical. Conversely
following17 the existence of point defects in the ground st
could be of quantum origin. Namely, the kinetic energy
the point defects can be larger than the energy required
their creation. Thus, the supersolid phase17 can be considered
as a particular case of a more general situation of the ph
separation when the radius of liquid droplets embedded
the crystal is of ordern22. This would mean that the surfac
energy is renormalized to a small~or negative! value. Indi-
cations of the existence of such a phase have been rep
in numerical simulations.35

~b! The case of droplets of the Wigner crystal embedd
into the Fermi liquid is different because they are not top
logical objects. In principle, such droplets can contain
5-4
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PHASE SEPARATION IN THE TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 67, 125205 ~2003!
additional charge and spin which can be fractional or e
irrational. A fundamental problem associated with this fac
that the statistics of such quasiparticles isunknown.

To illustrate this point we consider a process of tunnel
between two states: a state of uniform Fermi liquid and
state when there is one crystalline droplet embedded into
Fermi liquid. These two states have different total elect
charges. Thus the tunneling between these states is as
ated with a redistribution of this charge to~and from! the
infinity. It is important that the actionS associated with this
process in the pure two-dimensional case is finite. One
estimate it in a way similar to Ref. 36. On distances lar
than the droplet sizeRW one can write the action in terms o
the time-dependent electron densityñ(r ,t)

S;E dtdr
@eñ~r ,t !#2

C0
;E dt

~eM* !2d

m2

1

R2~ t !
. ~12!

Heret is the imaginary time andM* is given by Eq.~11!. We
approximate thatñ(r ,t);M* /mR2(t) at ur u,R(t) and ñ
50 at ur u.R(t). Equation~12! corresponds to the potentia
energy contribution to the action. As usual, the contribut
from the kinetic energy is of the same order. Assuming t
R(t)5vFt we get an estimateS;(eM* )2d/m2RWvF . Thus,
in principle, the wave function of the object is a cohere
superposition of the wave functions of a uniform Fermi li
uid and a Wigner crystal droplet. In this situation, it is qu
likely that the additional charge associated with such an
ject is not an integer. This is the reason why the nature of
ground state of the system remains unknown.

The quantum melting of the phases, which are interme
ate between the bubble and the stripe phases is even
complicated, and we leave this question for further inve
gation.

III. TRANSPORT PROPERTIES OF THE ELECTRON
SYSTEM WITH DROPLETS OF A MINORITY PHASE

EMBEDDED INTO THE MAJORITY ONE.

In this section I will consider cases when quantum sta
tics of the system of droplets of the minority phase is n
important.

The electron-electron scattering conserves the total
mentum of the electron system, and therefore does not
tribute to the resistance of the system. To estimate it we h
to consider the electron system in the presence of a ran
elastically scattering potential.

The electron transport picture in the electron liquid w
partial phase separation is quite rich. In particular, there
region of electron concentrations, where the hydrodynam
of the electron liquid is similar to the hydrodynamics of t
liquid crystals.26 In this paper we consider only cases whe
either there are crystalline droplets of small concentrat
embedded in the liquid (xL!1), or there are liquid droplets
with xW!1 embedded into the crystal. In these situations
principle, there are two types of current carriers in the s
tem: electron quasiparticles and charged droplets of the
nority phase. In this paper we will ignore the contribution
the droplet motion to the charge transport. To illustrate
12520
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possibleT and H dependence of the resistance we consi
below only several limiting cases leaving a detailed analy
for future investigation.

A. The case when crystal droplets of small concentration are
embedded in the electron liquid.

Let us consider the casexW!1 when crystalline droplets
of small concentration are embedded into a Fermi liquid.
will assume here that the Wigner crystal droplets are eit
pinned by a small scattering potential, or have a short me
free path. We also assume that otherwise the impurities
not affect the thermodynamic properties of the system. T
contribution to the resistance of the system from the scat
ing of quasiparticles on droplets has the form

r5
kF

e2nl (e,W)

, ~13!

where kF is the Fermi momentum of the Fermi liquid
l (e,W)51/NWRW is the quasiparticle mean-free path, a
NW5xW /RW

2 is the concentration of droplets of the Wign
crystal. Thus, followed from Eqs.~1!, ~2!, ~9!, and ~13! at
small T the resistance of the electron system increases
early inT. At smallH i it increases quadratically inH i , while
in the intermediate interval ofH i it increases linearly inH i .
The saturation of the magnetoresistance as a function oH i
takes place atH i.H i

c when the electron Fermi liquid get
polarized.

At H i.H i
c the spin entropy of the Wigner crystal is fro

zen. Therefore, as it has been discussed,xW(T) and the re-
sistance of the system do not have a significantT depen-
dence.

TheH i dependence of the resistancer(H i) of the metallic
phase at smallT is shown schematically in Fig. 2~a!. The T
dependences ofr(T) atH i50 andH i.H i

c are shown in Fig.
2~b!.

Eventually at high enough temperatures the crystall
droplets melt. Since at this pointr s@1, the melting tempera-
ture Tm!Vp is much smaller than the plasma frequency
the wave vector of order of the inverse interelectron distan
Here r S is the ratio between the potential and the kine
energies of electrons. Let us now discuss theT dependence
of r(T) in this temperature interval. Though in this case t
liquid is not degenerate, it is strongly correlated. Therefo
the electron-electron scattering in the liquid is very effect
and the local equilibrium is reached in a short time on
spatial scale of ordern21/2. As a result, the flow of the elec
tron liquid near an impurity can be considered in the fram
work of hydrodynamics. In the two-dimensional case, t

FIG. 3. The phase diagram of the 2D electron system atT50.
SymbolsWC and FL correspond to the Wigner crystal and th
Fermi-liquid phases, respectively. The shaded regions correspo
phases which are more complicated than the bubble and the s
phases.
5-5
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B. SPIVAK PHYSICAL REVIEW B 67, 125205 ~2003!
moving electron liquid exerts a force on an impurity, whi
is given by the Stokes formulaF;hu/ ln@(h/nua)#.37 Hereu,
h and a are the liquid hydrodynamic velocity, viscosity o
the electron liquid and the impurity radius, respectively. In
system with a finite concentration of impurities the logari
mic factor in the equation forF should be substituted fo
ln(1/aNi

1/2), where Ni is the concentration of impurities
Thus the resistance of the electron system has the form38,39

r~T!;
Nih~T!

e2n2
ln21

1

Ni
1/2a

. ~14!

The viscosity of the strongly correlated liquid in the sem
quantum regime has been considered theoretically in Ref
for the case of liquid He3. It was conjectured that

h;
1

T
. ~15!

We can apply this result to the case of electron liquid in
semiquantum regime (Tm!T!Vp) as well. Thus we arrive
at the conclusion that at high temperatures the resista
should decrease inversely proportional toT, and that it
should have a maximum atT;Tm;EF . It is interesting to
note that, as far as I know, the experimental data on thT
dependence of the viscosity of He3 in this relatively high-
temperature region are unavailable. However, we can loo
data for the viscosity of He4, which in this temperature in
terval is supposed to be similar to He3.40 Though the experi-
mental data for He4 are in a reasonable agreement with E
~15!, we would like to mention that the viscosity He4

changes only by a factor of 2 in the temperature inter
betweenEF and the evaporation point.

B. Strongly correlated Fermi liquid in the presence of a
scattering potential.

Let us consider the casen.nW , but r s@1. Then atEF
!Vp the electron system is a strongly correlated Fermi
uid. The main feature of such a liquid is that at small d
tances and at small~imaginary! times it behaves like a
solid.34 It has been suggested in Ref. 41 that the cross sec
of quasiparticle scattering on a short-ranged impurity wit
radius of order n22, is significantly enhanced by th
electron-electron interaction. The nature of the enhancem
becomes especially clear if we consider the interval of e
tron densities close to the critical point 0,n2nL!nL and
the case when the fluctuations of the external potential h
a relatively small amplitude. Then the system can beco
split into the regions of a Fermi liquid and a Wigner cryst
I would like to mention that the linearT andH i dependences
of the resistance mentioned above are generic for stro
correlated electron system and are valid in this case as w

The fractions of volume occupied by the Fermi liquid a
the Wigner crystal depend onn, and therefore the system
should exhibit a percolation-type zero-temperature me
insulator transition asn decreases and the area occupied
the Wigner crystal grows. There is, however, a signific
difference with respect to the percolation transition, wh
originates from the fact that the position of the Wign
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crystal-Fermi-liquid boundary has quantum fluctuations. I
these fluctuations which determine the character of the e
tron transport near the transition point. The properties of
current carriers in this region are very different from prop
ties of the Fermi-liquid quasiparticles.

The significance of quantum fluctuations becomes e
more clear if we consider quantum properties of the surf
between the Wigner crystal and the Fermi liquid. At ze
temperature the surface is a quantum object itself. There
at least two scenarios for the state of the surface atT50: it
could be quantum smooth or quantum rough. In the fi
case, the excitations of the surface are essentially the Ral
surface waves which conserve the charge inside the drop
In the second case there is a new type of excitations at
surface: crystallization waves that do not conserve the t
charge inside the droplets.42

The problem of quantum roughening has been discus
in the framework of the properties of the boundary betwe
solid and liquid He3 and He4.42 In the case of 2D surface
between a 3D quantum liquid and crystal it has been arg
that the surface is always quantum smooth.43 At the moment
nothing is known about the state of the boundary betw
two-dimensional liquid and solid. We would like to mentio
however, that quantum effects~including the quantum rough
ening! are more pronounced in the case considered ab
because it is two dimensional, and because the jump of
electron density in this case is small. In any case, due
quantum fluctuations, there is a region near the bound
whose properties are intermediate between the liquid and
solid properties.

In the conclusion of this section we would like to mentio
that the linear inT increase of the resistance at smallT is a
generic property of the model.

IV. A COMPARISON BETWEEN PREDICTIONS OF THE
THEORY AND EXPERIMENTAL RESULTS IN SI

MOSFET’S.

A. A review of the experimental results on Si-MOSFET’s.

In this subsection we present a short list of experimen
results on the high-mobility two-dimensional electron liqu
in Si MOSFET’s,1–13 which seem to be in contradiction wit
the Fermi-liquid theory and with the conventional singl
particle localization theory of disordered two-dimension
conductors.14,15

~A! The electron system exhibits a ‘‘transition’’ as a fun
tion of n from a metallic phase, where the resistance of
system saturates at low temperatures, to an insulating ph
where the resistance increases asT decreases. The value o
the critical concentrationnc

(MI ) of the transition depends o
the amount of disorder in the sample and corresponds tr s

5r s
c@1. Herer s is the ratio between the electron potent

and kinetic energies.
~B! At T50 and for the electron concentration sufficient

close to the critical one, increasing the magnetic fieldH i
parallel to the film drives the system toward the insulati
phase.3,5,12 Thus the critical metal-insulator concentratio
nc(H i) increases withH i .
5-6
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In the metallic phase@n.nMI(H i50)# and at smallT the
system exhibits a big positive magnetoresistance as a f
tion of H i . This magnetoresistance saturates atH i>H i

c(n)
andr(H i

c)/r(0)@1.3,5

~C! In the metallic phase atH i50 andT,EF the resis-
tancer(T) significantly increases with increasing tempe
ture. The characteristic value ofd ln r/dT.EF

21 at smallT is
large and depends on the value ofn2nc .

~D! If at H i.H i
c the system is still in the metallic phas

@n.nc(H i)#, the T dependence of the resistance is mu
weaker than in theH i50 case.6,8,9

~E! The value of H i
c decreases significantly asn ap-

proachesnc
MI .

B. Qualitative explanation of experimental results.

In this subsection we present a qualitative explanation
the experimental results.1–13

1. The existence of the metal-insulator phase transition

The theoretical picture presented above involves a tra
tion between the liquid and the crystal as a function ofn.
Therefore, it can explain qualitatively the existence of t
metal-insulator transition observed in the experimen
Namely, the fractions of volume occupied by the Fermi l
uid and the Wigner crystal depend onn, and therefore the
system should exhibit a percolation-type zero-tempera
metal-insulator transition asn decreases and the area occ
pied by the Wigner crystal grows. The transition takes pla
when the Wigner crystal droplets overlap and block the e
tron transport through the Fermi-liquid area.

The experimental values ofnc
(MI ) correspond tor s;10

220. At present it is difficult to say how close this value
to nL , or nc in the pure case. The critical value for th
transition r s,c538 ~Ref. 31! was obtained by numerica
simulations. However, it cannot be applied to the case
electrons in Si MOSFET’s because of the existence of
almost degenerate electron valleys. Another reason for
sible inapplicability of the results of Ref. 31 to Si MOSFET
is that the calculations31 were restricted to the case of ze
temperature, while the experiments have been performe
temperatures larger than the spin-exchange energy in
Wigner crystal. Thus the Pomeranchuck effect has not b
taken into account in Ref. 31. Finally, the critical value ofr s
can be different in the disordered case.

2. The positive magnetoresistance of the metallic phase in th
magnetic field parallel to the film

The large positive magnetoresistance of the metallic ph
in the parallel magnetic field is connected to the fact t
xW@xL , and therefore the magnetic field parallel to the fi
drives the electron system toward the crystallization33

@See Eqs.~1!, ~2!, ~9!, and ~13!#. The magnetoresistanc
should saturate whenH i.H i

c and the electron Fermi liquid
is polarized.
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3. The temperature dependence of the resistance in the metal
phase

The significant increase of the resistance as a function
temperature can be explained naturally as a consequen
the Pomeranchuk effect: The spin entropy of the Wign
crystal is larger than the entropy of the Fermi liquid an
therefore, the Wigner crystal regions grow with increasi
temperature.

At high temperatures the droplets of crystal melt. It fo
lows from Eqs.~13! and ~15! that in this temperature rang
the resistance decreases with increasingT. It is unclear at
present whether the experiments support this picture.

4. The temperature dependence of the resistance in the metal
phase at large Hi

The Pomeranchuk effect disappears whenH i.H i
c and

electron spins are fully polarized. In this case entropies
both the liquid and the solid are much smaller than the s
entropy of the crystal atH i50. This means that in the lead
ing approximation the areas occupied by the crystal and
liquid are T independent. This explains the fact that in t
metallic state atH i.H i

c the T dependence of the resistanc
is much smaller than in the case ofH i50.8,9 @The ratio
dr/dT(H i50)/dr/dT(H i.H i

c) can be as big as 102.#

5. Then dependence of Hi
c

Perhaps the most direct check of the concept of the Fe
liquid which is close to crystallization is the measurement
the n dependence of the magnetic fieldH i

c(n) which polar-
izes the liquid. In the case of a noninteracting Fermi liqu
H i

c5H i
c(0)5EF /mB is a smooth function ofn. The problem

of the n dependence of the critical magnetic fieldH i
c(n) in

strongly correlated liquids near the crystallization point a
the origin of the strong enhancement of the spin suscept
ity has been discussed in the context of the theory of liq
He3.34 It has been pointed out that there are two differe
scenarios for the origin of the significant~factor of 15! en-
hancement of the spin susceptibility of He3 near the crystal-
lization point.

~a! The system is nearly ferromagnetic which means t
it is close to the Stoner instability. In this case the linear s
susceptibilityxL is large, but other coefficientsam in the
expansion of the energy

eL5xL
21M21a4M41•••amMm, ~16!

with respect to the spin magnetizationM are not small. Here
m is an even integer. In this caseH i

c;H i
c(0) , which is rela-

tively large.
~b! The system is nearly solid. In this case bothxL

21 and
other coefficientsam in Eq. ~15! decrease significantly asn
approaches the crystallization pointnc . In this caseH i

c(n)
!H i

c(0) is small.
In the case of He3 the value ofH i

c(n) has never been
measured. In the case of electrons in Si MOSFET’s it h
been measured in Ref. 13 A dramatical decrease ofH i

c(n)
compared toH i

c(0) has been observed asn approachesnc . In
5-7
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B. SPIVAK PHYSICAL REVIEW B 67, 125205 ~2003!
our opinion these experimental results support the model
nearly solid Fermi liquid which is atr s@1. Conversely, it is
unlikely that the system is close to the Stoner instability.

C. A comparison with alternative explanations of experiments
on transport properties of the metallic phase of the

electron system in Si MOSFET’s.

In this section we compare the explanation presen
above with another explanation given in Refs. 44–49 It
based on the fact that a single short-range impurity in a m
creates Friedel oscillations of the electron density. Due to
electron-electron interaction the quasiparticles in the m
are scattered not only from the impurity, but also from t
modulations of the electron density. At finite temperature
Friedel oscillations decay exponentially at distances lar
than the coherence length of the normal metalvF /T. As a
result, at low temperatures@r(T)2r(0)#;CT with
C.0.44–47 The exchange contribution to the resistance
not been taken into account in.44–48 It has been shown49 that
in the presence of the exchange interaction att21!T!EF
the quantity@r(T)2r(0)# remains linear inT. However, at
r s!1 the coefficientC,0 has negative sign, which is dif
ferent from Refs. 44–48 On the other hand, the exprime
were performed in the regimer s.1. They yeald a positive
value of the coefficientC.0. At finite value ofr s;1 the
theory49 predicts, that the coefficientC changes its sign agai
and becomes positive.

At relatively high temperaturesT;EF , one can neglec
the interference corrections and the temperature depend
r(T) is determined by the corresponding dependence of
thermal velocity and the electron-scattering cross section
nondegenerate gas. In this regimer(T) decreases with in-
creasingT.47 At this point we would like to mention that a
low T Eqs.~1!, ~2!, ~9!, and~13! also predict the increase o
the resistance linear inT as well. Eqs.~14! and ~15! also
predict the existence of the maximum ofr(T) at T;EF and
decrease of the resistance atT.EF . Thus, both the theory
presented above and Refs. 44–49 in principle, could exp
qualitatively theT dependence of the resistance of the m
tallic state.

The situation with the magnetoresistance in the para
magnetic field is more delicate. Strictly speaking, the int
ference corrections to the Drude conductivity calculated
Refs. 44–49 are relevant only atr s!1 and at smallT and
H i , when the effects are small. On the other hand, atH i
.H i

c , when the effects are large, the interference correcti
are irrelevant, and the value of the magnetoresista
@r(H i)2r(0)# is determined by theH i dependence of the
Drude part of the resistance, which is due to theH i depen-
dences of the Fermi momentum and the scattering cross
tion of quasiparticles.~This part of the magneto resistanc
has not been taken into account in Refs. 49!. In this case a
single-electron theory yields a big and negative Drude m
netoresistance in contradiction with the experimental f
that it is big and positive.

In connection with this I would like to make sever
points.
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~a! At r s.1, where the diagrammatic calculations are n
under control. In the framework of the conventional diagra
technique it is difficult to account for all effects associat
with the strong correlations atr s@1, including the giant
renormalization of the electron-scattering cross section
impurities, the effects of phase separation, existence of
crystallization waves at the boundary between the t
phases, and, finally, the Wigner crystallization itself.

~b! The mechanism considered in Refs. 44–49 cannot
plain the increase of the resistance as a function ofH i andT
which is significantly larger than unity. This is because t
amplitude of the potential created by the Friedel oscillatio
of the density created by an impurity potential is smaller th
the impurity potential itself. This theory also cannot expla
why the temperature dependence of the resistancer(T) is
suppressed so dramatically by the magnetic field paralle
the film. On the other hand, the theory presented in this pa
can explain these facts.

~c! These mechanisms ofT and H i dependences of the
resistance are based on very different physics. This can
seen, for example, from the fact that all single-electron int
ference phenomena including the Friedel oscillations
smeared by finite temperature. Conversely, the fraction of
Wigner crystal increases with temperature.

~d! The amplitude of the Friedel oscillations is suppress
significantly in the case when the scattering potential i
smooth function of coordinates on the scale of the elect
wavelength. This is exactly what happens when the sca
ing cross section is significantly renormalized by the fact t
near a short-range impurity there are crystalline droplets
the position of the crystalline surface exhibits quantum flu
tuations. Thus, in one sense, the mechanisms based
single-electron interference and the mechanism based
quantum fluctuations of the solid-liquid boundary compe
with each other.

In order to distinguish between these two mechanisms
needs to perform experiments on samples with higher mo
ity, where effects considered in this paper will be mu
larger than unity.

Finally we would like to mention that the theory44–49may
be relevant to experiments on the two-dimensional elect
system in GaAS samples.50,51

V. CONCLUSION

We have shown that due to the existence of metallic ga
in MOSFET’s the phase separation is a generic property
pure electron liquids. The proof is based only on the assu
tion about the existence of the first-order phase transi
between the uniform Fermi liquid and the Wigner crys
phases and on electrostatic properties of two-dimensio
electron system. This distinguishes the theory presen
above from the theories,52,38 which attempted to explain the
experiments using the fact that in the 2D electron liquid th
is a first-order phase transition between the Fermi liquid a
the Wigner crystal which is destroyed by small disorder. T
difference, however, manifests itself only at relatively sm
values ofd and at relatively small amplitude of the disorde
Qualitative pictures of theT andH dependences of the resis
5-8
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tance of the ‘‘metallic’’ phase are, roughly speaking, t
same for the model presented above and for those consid
in Ref. 38.

It is an open question how a disorder of finite amplitu
affects the results presented above. In some regimes the
tem can demonstrate a glassy behavior characteristic
crystals in the presence of disorder. Experimental indicati
of glassy behavior of the electronic system in Si MOSFE
have been reported in Refs. 53,54.

In this paper we considered only bubble phases wh
exist near the critical concentrationsnL and nW . In the in-
terval nL,n,nW the system, will probably exhibit a se
quence of quantum phase transitions. In particular, it is lik
that at electron densities close tonc there is a stripe phase
which is similar to Refs. 24,27,28.

In conclusion, we would like to mention that the pictu
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presented above is in many respects similar to the quan
critical point of strongly correlated electron systems cons
ered in Refs. 55–57. In particular, the Fermi-liquid state w
densities close tonW will demonstrate very large sensitivit
to imperfections,53,54 which is a characteristic for the ‘‘al-
most critical’’ quantum state.55
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