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We show that the existence of an intermediate phase between the Fermi-liquid and the Wigner crystal phases
is a generic property of the two-dimensionaire electron liquid in MOSFET’s at zero temperature. The
physical reason for the existence of these phases is a partial separation of the uniform phases. We discuss
properties of these phases and a possible explanation of experimental results on transport properties of low-
density electron gas in Si MOSFET’s. We also argue that in a certain range of parameters, the partial phase
separation corresponds to a supersolid phase discussed in F. Andreev and I. M. [$shitPhys. JETHES,

1107(1969].
DOI: 10.1103/PhysRevB.67.125205 PACS nuni®er73.40—-c, 71.30:+h
[. INTRODUCTION bypass obstacles, while the classical crystals at zero tempera-

ture are pinned by an infinitesimally small amount of

This work is motivated by experimentd® on transport  disordert® Phenomenologically this state of matter is similar
properties of the two-dimensional electron system in highto the supersolid phase proposed in Ref. 17 for the case of
mobility Si-MOSFET'’s at small electron concentration  He® and Hé. The difference is that in our case the origin of
These experiments raised doubts about the applicability odroplets of liquid embedded in the crystal is classical elec-
the Fermi-liquid theory and the conventional theory oftrostatic, whereas, in the caddhe existence of vacancies
localizatiort**® to the two-dimensional disordered electron and interstitials in the ground state of quantum crystals is of
liguid at low temperatures. The aim of this paper is to provequantum origin.
the existence of zero-temperature phases of the two- If 0<(n_—n)<<(n_—ny), then the state of the system
dimensionalpure electron liquid in MOSFET’s which are corresponds to a small concentration of Wigner crystal drop-
intermediate between the Fermi liquid and the Wigner crysiets embedded into the Fermi liquid. At small concentrations
tal. These phases exist in some interval of concentrationand small temperatures, in principle, these droplets can be
nw<n<n, . The values of the critical concentratiomg and  considered as quasiparticles.
n_ are estimated below. Droplets of a minority phase interact at large distances via

This phenomenon is due to a tendency for phase separahort-range dipole forces rather than via Coulomb forces.
tion which originates from the existence of a first-order This means that afl=0 and at small droplet concentration
phase transition between the Fermi-liquid and the Wignethe system of such “droplet quasiparticles” should be in a
crystal phases as a functionmf The difference between the liquid state similar to H&¢and Hé which are also liquids at
crystal-liquid phase transition in MOSFET's and the usualsmall densities. Thus we can describe the system by two-
first-order phase transitions in neutral systems is the followfluid hydrodynamics. However, the statistics of these quasi-
ing. In neutral systems with first-order phase transitions, th@articles remains unknown.
energy of the surface between the phases is positive and the At zero temperature the one-dimensional boundary be-
minimum of the free energy corresponds to a minimal surtween the liquid and the solid is a quantum object itself. Due
face area and to a global phase separation. In charged syte- zero-point oscillations of its position, there is a region
tems, such as electrons on a positive frozen background, glevhere the wave function has a form which is intermediate
bal phase separation does not occur because of a largetween the Fermi liquid and the Wigner crystal. Since the
Coulomb energy associated with a nonuniform distributionelectron densities of the Wigner crystal and the Fermi liquid
of electron density. The electron liquid in MOSFET's, in a are slightly different, the fluctuations of the position of the
sense, is a system intermediate between these two limitingoundary is associated with the fact that the number of qua-
cases. Similarly to the neutral systems with first-order phassiparticles in the Fermi liquid is not conserved.
transitions, the electron liquid in MOSFET's exhibits phase On the mean-field level this picture of droplet formation
separation. On the other hand, the surface energy of a minom the electron liquid in MOSFET’s is similar to the partial
ity phase droplet of a large enough radius turns out to bghase separations which occur in ferromagnetic fiffns,
negative. As a result at differentthere is a variety of inter- charged polymers>?® neutron stard! doped manganites
mediate phases in this system which are different both frontsee for example, Refs. 22 23HTC superconductof$ 2’
the Fermi liquid and from the Wigner crystal. and two-dimensional electron systems in the quantum Hall

The electron system with phase separation demonstratesregime?® All these systems demonstrate a short-ranged ten-
number of unusual features. I<Q(n—ny)<<(n_.—ny), the  dency for phase separation which is thwarted by a long-range
state of the system corresponds to a small concentration éoulomb interaction preventing global phase separation.
Fermi-liquid droplets embedded into the Wigner crystal. The The paper is organized as follows. In Sec. Il we show that
main difference between such a state and the usual Wignéhere is an interval of electron concentrations in which the
crystal is that it is not pinned by small disorder and cansystem is unstable with respect to the phase separation. We
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In the limit of small densitiesid’<1, due to the exhis-
tence of the image charges in the gate, the interaction be-
tween adjacent electrons has a dipole character. In this case
the ratio between the potential and the kinetic energy de-
creases as decreases. Therefore, for the small electndhe
electron system is a weakly interacting Fermi liquid. Thus
we arrive at the conclusion that there exists another critical
point n{"~1/d?> which corresponds to a second Wigner
crystal-Fermi-liquid transition. The phase diagram of the

FIG. 1. (8 The dependence of the energy densities of the€l€ctron system aT=0 is shown in Fig. tb). If d<d*
Wigner crystal and the Fermi-liquid phaseg (n) on the electron ~38ag, then the system is in the liquid state at any value of
densityn. SymbolsW andL correspond to the Wigner crystal and N Here the factor of 38 is the result of numerical
the Fermi-liquid phases, respective{lp) The effective phase dia- simulations®*
gram of the 2D electron system at zero temperature.

e(n)

Ilw neny, n

a)

A. The mean-field description of the phase separation.
also estimate the size of minority phase droplets embedded In th oo he@=C- th litati .
into the majority phase and the temperature and magnetic- n the approximation whel = C, the qualltative picture
. . of the phase transition is the same as the picture of any
field dependences of the droplet concentration. In Sec. I we
discuss transport properties of different nonuniform phase ere is an interval of electron densitigs<n<n. shown in
associated with the phase separation. In Sec. IV we compa 1R L

. - ig. 1(a) where there is a phase separation, which means that
t_he theoretical and gxpenmental res.ults.on transport PrOPehere is a spatially nonuniform distribution of the Wigner
ties of the low-density electron gas in Si MOSFET's.

crystal and Fermi-liquid phases coexisting in equilibrium. In
the case of largé, one can Iinearize(,_‘f\',)\,(n) near the point

rst-order phase transition in neutral systems. In particular,

Il. PHASE SEPARATION NEAR THE POINT OF THE n=n.. As a result, we have
FERMI-LIQUID-WIGNER CRYSTAL PHASE
TRANSITION (pew— for)
: . . e nLw=Net—/——, (1)
In this section we show that a partial phase separation is a 2e“d

generic property of pure 2D electron liquids in MOSFET’s.

Consider a two-dimensional electron liquid of densitin a WhefeMw,F(dfﬁs,l)L/d”ﬂn:nc-

MOSFET separated by a distandefrom a metallic gate. One can get from Edq1) an estimatan.ag/d for the size
Electrons interact via Coulomb interaction while a globalof the interval of electron densities where the phase separa-
electric neutrality of the system is enforced by the metalliction occurs. Values ofd/ag in various MOSFET’s range
gate with a positive charge densiéy. The energy density of from order of 1 to 50.

the system per unit area(n)=¢e(©)+ €©) is a sum of the The relative fractions of these phaseg andx, are de-
energy density of the capacitef®) =(en)?/2C and the in- termined by the Maxwell rule. At{_ —n)<(n_—ny,), the
ternal energy density of the electron liquitf". In the case fraction of the area occupied by the Wigner crystgksl is

of a uniform electron distribution the capacity per unit area issmall while in the case ofn(—ny,) <(n_—n,,), the fraction

C=Cy=1M. of the area occupied by the Fermi liguig<<1 is small.
At high electron densitieaaﬁ»l, the kinetic energy of

electrons is larger than the potential energy and the interac- n—nNy

tion can be taken into account by a perturbation theigre Xw,L= in—c'- 2

ag is the electron Bohr radiusin this case the system can be

described by Fermi-liquid theory, the difference between the

effective m* and the barem electron masses is small, and . .. . 3 . —

€)= ¢V ~n?/m. On the other hand, in the opposite limit hibit jumps of ordere"d at pointsn=n ,nu- ,
> .t S ! The crucial difference between first-order phase transi-

nag<1 (butstill nd®>1), the potential Coulomb energy of tiong in neutral systems and in the system of electrons in

electrons is much larger than the kinetic energy and thg 0SFET's arises when one considers shapes of the minority

The compressibility of the system=d?e/dn? should ex-

. . . I
gro(uerI;d statze 3?; the system is a Wigner crystal Wi’  phases In the case of neutral systems the surface-energy
=€y =—en”* (see, for example, Ref. 29Thus, at zero  gensity o is positive. Therefore, in equilibrium the system

temperature there is a critical electron concentration  should have a minimal area of the surface separating the
where the phase transition between the Ferml-lqu|d and thghaseS’ leading to global phase separation. On the other
Wigner crystal phases takes place. According to Landawand, in the three-dimensional charged systems the global
mean-field theory this transition is of the first ordeee for  phase separation is impossible because of the large Coulomb
example, Ref. 30 Then dependence of the energy densitiesenergy associated with the charge separation. It is possible,
of the Fermi liquide, (n)= e+ €(*” and the Wigner crystal however, that in this case the electron system consists of
ew(n)=e©+ €Y phases near the critical density, is  bubbles and stripes of different electron den&ity?’ pro-
shown schematically in Fig.(a). vided the tendency for phase separation is strong enough.
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The situation in MOSFET'’s is very different. On one p p
hand, in the approximation wheb=C, global phase sepa-
ration is possible at an arbitrary value q@i\{,— ). On the
other hand, it turns out that for large droplets of the minority
phase the surface energynisgative To prove this one has to
take into account the finite-size corrections to the standarc
formula for the capacitance

X
R 167R i f b T T
C=Cy+ Kln q (3) a)

FIG. 2. (a) TheH| dependence of the resistanegH)). (b) The
whereA andd are the capacitor area and thickness, respecemperature dependence of the resistgn(@. The solid line cor-
tively, and R= \/K is the capacitor size. Consider, for ex- responds to the cadd;=0, while the dashed line corresponds to
ample, the case whey<<1. Thenx,, can be determined by the caseH>H;|.
the Maxwell rule in the approximation when the second term
in Eq. (3) is neglected andC=C,. Expandinge(n) with radiusR. Linearizinge_(n) with respect tasn we estimate
respect to the second term in E@) and taking into account the energy differencéE between these two states as
also the microscopic surface energy, we have an expression

for the energy of the surface , . (esnmR?)?
SE~ (L — pw) ™R 5H+T+27TRO'. (6)
E e = — = NyeZ(ny— ) 2d2RyIT e 4 Nyo2R
(surfhi™ 5 we (Mw="y) win d WOIETRW - The first term in Eq.(6) corresponds to a decrease of the

(4) energy due to the phase separation. The second one corre-
onds to the positive Coulomb energy associated with the
nuniform distribution of the electron density and the third
term is the surface energy. A minimization of E&) with
respect tosn gives usén~ (uy— u)/R€* and

We assume that the Wigner crystal phase embedded into ttps{%
liquid consists of droplets of radiuR,, and concentration
Ny and take into account that inside the droptetny.
Thus, at larger,y the surface energy, E@), turns out to be
negative. We have to find a minimum of E@) at a given 5
total area occupied by the minority phase, which gives us the SE i~ ( 2o — (mw— )

R. 7
characteristic size of the droplet e? @)

The assumptiony>1 means thakE,;, in Eq. (7) is positive

Rw~ Ee% ) and that 2D electron liquid on frozenpositive background
does not exhibit a phase separation.
with y=(e®c)/2m(uw— p )% Asimilar expression was ob-  On the mean-field level our problem is similar to Refs.
tained in Ref. 33 for a different problem. 18,19. Using this analogy we conclude that in the middle of

The analogous calculation for the cage<1l gives the the interval f,n,) there is a stripe phase. The phase dia-
expression for the radius of liquid droplets embedded intgyram of the system is shown schematically in Fig. 3. The
the crystal which is identical to Eg5). main difference with Refs. 17,18 is the following. In Refs.

At the point of the transition the values of and (uw 18,19 all phase transitions between uniform, bubble, and
—w)?/e? are of the same order and at present nothing isstripe phases are of the first order, whereas in our case the
known about the value of the dimensionless parameter transitions between uniforrtFermi-liquid and Wigner crys-
Even the fact thatr>0 is not proven. | would like to also tal) phases and the bubble phases are continuous. The tran-
note that in the case of the first-order phase transitions whickitions between the bubble phases and the stripe phase would
are close to the second-order one we always hagd . be the first-order one. However, such a transition would have

In this paper we assume thg=1. To illustrate the physi- an interval of concentrations where phase separation would
cal meaning of this inequality we consider the case whenake place. In this case, the presented above arguments could
two-dimensional(2D) electron liquid is compensated by a be repeated. Thus we expect more complicated structures
uniformly charged positivérozenbackground with a charge than bubbles and stripes phase to exist between the bubble
densityen. In this case, the Coulomb energy of a dropletand the stripe phases. Since the complete solution of this
associated with the phase separation is, roudgRig, times  problem remains to be found, we indicated this in Fig. 3 by
larger than in the MOSFET's case. The most dangerous poirghaded lines.
with respect to the phase separation instabilitpisn,. [see Let us now estimate the dependencegf, (T,H;) on the
Fig. 1@]. For example, let us compare the energies of theemperaturél and the magnetic fielt| parallel to the film.
uniform liquid state withn=n. and a nonuniform state It is determined by the corresponding dependence of the free
which contains two droplets embedded into the liquid. Theenergies for the Fermi-liquid and Wigner crystal phases. At
first droplet is a liquid with electron concentration=n.  smallT andH| one can neglect th€ andH dependences of
+ on, while the second term is a crystal with electron con-¢,, |, and we have the following expression for the free-
centrationn,=n;— én. Suppose the droplets have the sameenergy densities of the liquid and the Wigner crystal phases
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Fw.o(H)=ew =My, HNn=TnSy ., (8) M* ~mn,7RZ, . (10)

where S, and S, are the entropies of the crystal and the In the_ case <_)f rough surfaces the _rnot_ion of t_he droplet is
liquid phases, respectively, whiM,, andM, are the corre- as;ocu;ted with melting and crys'galll_zatlon of dlfferent parts
sponding spin magnetizations per electron. of it. Since the (. —ny)<nc the liquid mass to be distrib-

As a result, one can obtain how, (T,H)) and uted and, consequently, effective mass of the droplet
New,(T,Hy) depend onT andH; by making the following 5
substitution in Eqs(1) and (2): M ~m(n, = nw) 7Ry, (1)
in this case is much smaller than EGO).

(pw= D)= (pw—p) = (My=MpH = T(Sy—=S)- Droplets of the minority phase interact at large distances
(9 via short-range dipole forces rather than via Coulomb forces.
At small enough concentration of the droplets the amplitude
of quantum(or classical fluctuations of their positions is
3 , : 'larger than the typical distance between them. Thus the lig-
respectively.(Here wg is the Bohr magneton anie is the i droplets are distributed uniformly over the whole crystal.
Fermi energy. At low temperaturel <Eg the spin suscepti- |, gther words, aT =0 the system of such droplet quasipar-
bility of the Wigner crystalyy~ &/ T x_ is much larger icjes should be in a liquid state similar to Hand Hé
than the spin susceptibility of the Fermi liquid. The entropyhich are also liquids at small densities. Thus we can de-
of the crystalSy,~In 2>§ ~T/Er is mainly due to the spin  gcripe the system by two-fluid hydrodynamics. In this case,
degrees of freedom and much larger than the entropy of thghe statistics of the droplet quasiparticles becomes important.
Fermi liquid. Thusxy increases linearly witfi and quadrati- | this respect, we would like to mention a difference be-
cally with H;, which means that both the temperature andyeen the droplets of the liquid embedded into the crystal
the magnetic field parallel to the film drive the electron Ssys-gnd the droplets of the Wigner crystal embedded into the
tem toward the crystallizatioff. (We assumed that the tem- liquid.
perature is larger than the exchange energy between spins in (3) The droplets of the liquid are topological objects
the Wigner crystal These effects are known in the physics which, in principle, are not different from vacancies or inter-
of He’ as Pomeranchuk effects. stitials in quantum crystals Heand Hé. In order to create

In the intermediate interval of magnetic fields<ugH|  such objects in Wigner crystal one has to add or to remove
<Eg spins in the Wigner crystal are completely polarizedfrom the lattice an integer number of electrons. Therefore,
while the Fermi liquid is still in the linear regime. In this the liquid droplets have a definite statistics: they are either
casexyy increases linearly with . fermions or boson¥’

At high magnetic fieldH|>H|~Eg/ug both Fermi lig- The main feature of the phase where there are droplets of
uid and Wigner crystal are spin polarized arg(T,H) liguid embedded into the crystéupersolidl is its ability to
saturates as a function &f. We assume that (H =0) bypass static obstacles. In other words, unlike conventional
<eL(H>Hﬁ) and, therefore<W(H||=0)<xW(H>Hﬁ). On  crystals supersolids are not pinned by disordered potential of
the other hand, the spin entropy of the Wigner crystal issmall amplitude. This will manifest itself in the finite con-
frozen in this case. As a result, blq‘>H“|"‘ the temperature ductivity of the system. . . . o
dependence oty (T,H)) is suppressed significantly. ~ From the phenomenological point of view this is very
similar to the scenario of “supersolid” which has been intro-
duced by A. F. Andreev and I. M. LifshitZ for quantum
crystals of helium near the quantum melting point. They as-
sumed that the crystals contain zero point defécagancies

In principle, at small enough concentrations and at smalbr interstitialg in the ground state, and therefore the number
temperature droplets of the minority phase embedded intof atoms and number of sites in the crystals are different. The
the majority one should behave as quasiparticles. Since thgifference with Ref. 17 is that the origin of the negative
system is translationally invariant, they should be charactersurface energy, Eq(4), is purely classical. Conversely,
ized by momentunfor by quasi-momentuin The momen-  following'’ the existence of point defects in the ground state
tum coincides with the flux of mass. Thus these quasiparticould be of quantum origin. Namely, the kinetic energy of
cles carry a masd*, a chargeeM*/m, and a spin. The the point defects can be larger than the energy required for
characteristic temperature of quantum degeneracyl*is their creation. Thus, the supersolid phidsmn be considered
~Nw/M*. as a particular case of a more general situation of the phase

The value ofM* depends on the mechanism of motion of separation when the radius of liquid droplets embedded into
the droplets, which in turn depends on whether the surfacthe crystal is of orden 2. This would mean that the surface
between the crystal and the liquid is rough or smooth. energy is renormalized to a smatir negative value. Indi-

Consider, for example, the case of Wigner crystal dropletations of the existence of such a phase have been reported
embedded into the liquid. In the case of a smooth surfacdn numerical simulations®
motion of the droplet is associated with a redistribution of (b) The case of droplets of the Wigner crystal embedded
the liquid mass on the distance of ord®y,. In this case we into the Fermi liquid is different because they are not topo-
can estimate the effective mass of the droplet as logical objects. In principle, such droplets can contain an

At small ugH|<T<Eg we haveMy, | = xw, . H|, wherexy
andy, are linear susceptibilities of the crystal and the liquid

B. Quantum properties of the droplets of minority phase
embedded into the majority one.
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additional charge and spin which can be fractional or even wC Bufbgfs Stripe Bl;l{glés FL
irrational. A fundamental problem associated with this fact is } OF " g PDASC puy © }
[— [— n

that the statistics of such quasiparticlesirknown

To illustrate this point we consider a process of tunneling . 3. The phase diagram of the 2D electron systeffi=a0.
between two states: a state of uniform Fermi liquid and asymholswC and FL correspond to the Wigner crystal and the
state when there is one crystalline droplet embedded into theermi-liquid phases, respectively. The shaded regions correspond to
Fermi liquid. These two states have different total electrorphases which are more complicated than the bubble and the stripe
charges. Thus the tunneling between these states is assogiases.
ated with a redistribution of this charge tand from the
infinity. It is important that the actio® associated with this possibleT andH dependence of the resistance we consider
process in the pure two-dimensional case is finite. One capelow only several limiting cases leaving a detailed analysis
estimate it in a way similar to Ref. 36. On distances largeffor future investigation.
than the droplet siz&,,, one can write the action in terms of

the time-dependent electron dens?it&r,t) A. The case when crystal droplets of small concentration are
embedded in the electron liquid.

™ 2 *\2
SNJ dtdr MWJ' dtw ! . (12 Let us consider the casgy<1 when crystalline droplets
Co m?  R?(1) of small concentration are embedded into a Fermi liquid. We
Heret is the imaginary time anM* is given by Eq(11). We vvjll assume here that the_ Wigner qrystal droplets are either
, ~ ~ pinned by a small scattering potential, or have a short mean-
approximate than(r,t)~M*/mRé(t) at |[r[<R(t) andn  free path. We also assume that otherwise the impurities do
=0 at|r|>R(t). Equation(12) corresponds to the potential- not affect the thermodynamic properties of the system. The

energy contribution to the action. As usual, the contributioncontribution to the resistance of the system from the scatter-
from the kinetic energy is of the same order. Assuming thafng of quasiparticles on droplets has the form

R(t)=vgt we get an estimats~ (eM*)?d/m?Ryve . Thus,

in principle, the wave function of the object is a coherent k

L. . . . F
superposition of the wave functions of a uniform Fermi lig- p= (13
uid and a Wigner crystal droplet. In this situation, it is quite enlew

likely that the additional charge associated with such an ob;

c o . his is th hv th ¢ hWhere ke is the Fermi momentum of the Fermi liquid,
jectis not an integer. This is the reason why the nature of t ?(eW):]-/NWRW is the quasiparticle mean-free path, and
ground state of the system remains unknown. '

; . . .NWIXW/R\ZN is the concentration of droplets of the Wigner
The quantum melting of the phases, which are 'ntermed"c(r%stal. Thus, followed from Eqgd), (2), (9), and (13) at

ate between the bubble and the stripe phases is even MOLfall T the resistance of the electron system increases lin-

Sgi?oprilcated, and we leave this question for further InVes'“'early inT. At smallH, it increases quadratically i, while

in the intermediate interval dfl it increases linearly i .
The saturation of the magnetoresistance as a functid) of
takes place aH “>Hﬁ when the electron Fermi liquid gets
polarized.

At H||>Hﬁ the spin entropy of the Wigner crystal is fro-

In this section | will consider cases when quantum statiszen. Therefore, as it has been discussgg,T) and the re-
tics of the system of droplets of the minority phase is notsistance of the system do not have a significardepen-
important. dence.

The electron-electron scattering conserves the total mo- TheH| dependence of the resistansig)) of the metallic
mentum of the electron system, and therefore does not cofthase at small is shown schematically in Fig.(@. The T
tribute to the resistance of the system. To estimate it we havéependences @f(T) atH;=0 andH > Hﬁ are shown in Fig.
to consider the electron system in the presence of a rando(b).
elastically scattering potential. Eventually at high enough temperatures the crystalline

The electron transport picture in the electron liquid with droplets melt. Since at this poin{>1, the melting tempera-
partial phase separation is quite rich. In particular, there is &ure T,<(}, is much smaller than the plasma frequency at
region of electron concentrations, where the hydrodynamicthe wave vector of order of the inverse interelectron distance.
of the electron liquid is similar to the hydrodynamics of the Here r g is the ratio between the potential and the kinetic
liquid crystals?® In this paper we consider only cases whereenergies of electrons. Let us now discuss Théependence
either there are crystalline droplets of small concentratiorof p(T) in this temperature interval. Though in this case the
embedded in the liquidx( <1), or there are liquid droplets liquid is not degenerate, it is strongly correlated. Therefore,
with x,y<<1 embedded into the crystal. In these situations, irnthe electron-electron scattering in the liquid is very effective
principle, there are two types of current carriers in the sysand the local equilibrium is reached in a short time on a
tem: electron quasiparticles and charged droplets of the mipatial scale of orden™*2. As a result, the flow of the elec-
nority phase. In this paper we will ignore the contribution of tron liquid near an impurity can be considered in the frame-
the droplet motion to the charge transport. To illustrate thevork of hydrodynamics. In the two-dimensional case, the

IIl. TRANSPORT PROPERTIES OF THE ELECTRON
SYSTEM WITH DROPLETS OF A MINORITY PHASE
EMBEDDED INTO THE MAJORITY ONE.
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moving electron liquid exerts a force on an impurity, which crystal-Fermi-liquid boundary has quantum fluctuations. It is
is given by the Stokes formula~ nu/In[(7/nua].>" Hereu,  these fluctuations which determine the character of the elec-
» and a are the liquid hydrodynamic velocity, viscosity of tron transport near the transition point. The properties of the

the electron liquid and the impurity radius, respectively. In acurrent carriers in this region are very different from proper-

system with a finite concentration of impurities the logarith-ties of the Fermi-liquid quasiparticles.

mic factor in the equation foF should be substituted for The significance of quantum fluctuations becomes even
In(1/aNi1’2), where N; is the concentration of impurities. more clear if we consider quantum properties of the surface

Thus the resistance of the electron system has the*fofm  between the Wigner crystal and the Fermi liquid. At zero
temperature the surface is a quantum object itself. There are

Nin(T) _, 1 at least two scenarios for the state of the surfack=a0: it

(14)  could be guantum smooth or quantum rough. In the first
case, the excitations of the surface are essentially the Ralaigh
The viscosity of the strongly correlated liquid in the semi- surfﬁ\ce waves which conserve the charge '”S'd.e the droplets.
guantum regime has been considered theoretically in Ref. 46] the §econd case there is a new type of excitations at the
for the case of liquid H& It w niectured that surface._ cr_ystalhzatlon waves that do not conserve the total

qu as conjectured tha
charge inside the droplets.
1 The problem of quantum roughening has been discussed
n~=. (15) in the framework of the properties of the boundary between
T solid and liquid Hé and Hé.%? In the case of 2D surfaces

We can apply this result to the case of electron liquid in theP€tween a 3D quantum liquid and crystal it has been argued
semiquantum regimeT(,<T<Q,) as well. Thus we arrive that _the ;urface is always quantum smdbtitAt the moment

at the conclusion that at high temperatures the resistand®thing is known about the state of the boundary between
should decrease inversely proportional T and that it two-dimensional liquid and splld. We would like to mention,
should have a maximum &t~T,,~Eg. It is interesting to  however, that quantum effedtisicluding the quantum rough-
note that, as far as | know, the experimental data onTthe €ning are more pronounced in the case considered above,
dependence of the viscosity of Hé this relatively high- because it is t_wo.dlmgnsmnal,_ and because the jump of the
temperature region are unavailable. However, we can look g&€ctron density in this case is small. In any case, due to
data for the viscosity of He which in this temperature in- duantum fluctuations, there is a region near the boundary
terval is supposed to be similar to H#& Though the experi- whose properties are intermediate between the liquid and the

mental data for Heare in a reasonable agreement with Eq.SClid properties. . _ . .
(15), we would like to mention that the viscosity He In the conclusion of this section we would like to mention

changes only by a factor of 2 in the temperature intervafhat the linear inT increase of the resistance at smihlis a
betweenEr and the evaporation point. generic property of the model.

B. Strongly correlated Fermi liquid in the presence of a

scattering potential. IV. A COMPARISON BETWEEN PREDICTIONS OF THE
Let us consider the cage>nyy, butr1. Then atEe THEORY AND EXPERIMENTAL RESULTS IN SI
<), the electron system is a strongly correlated Fermi lig- MOSFET'S.

uid. The main feature of such a liquid is that at small dis-
tances and at smallimaginary times it behaves like a
solid3* It has been suggested in Ref. 41 that the cross section In this subsection we present a short list of experimental
of quasiparticle scattering on a short-ranged impurity with aesults on the high-mobility two-dimensional electron liquid

radius of order nfz, is Signiﬁcanﬂy enhanced by the in Si MOSFET’S}_ISWhiCh seem to be in contradiction with

electron-electron interaction. The nature of the enhancemete Fermi-liquid theory and with the conventional single-
becomes especially clear if we consider the interval of elecparticle localization theory of disordered two-dimensional
tron densities close to the critical poinkh—n, <n, and conductors:*®
the case when the fluctuations of the external potential have (A) The electron system exhibits a “transition” as a func-
a relatively small amplitude. Then the system can becomé&on of n from a metallic phase, where the resistance of the
split into the regions of a Fermi liquid and a Wigner crystal. System saturates at low temperatures, to an insulating phase,
I would like to mention that the lineaF andH | dependences Where the resistance .lncr;\aﬂasesTadecreas.e:‘s. The value of
of the resistance mentioned above are generic for stronglihe critical concentratiom™" of the transition depends on
correlated electron system and are valid in this case as wellhe amount of disorder in the sample and corresponds to
The fractions of volume occupied by the Fermi liquid and =r$>1. Hererg is the ratio between the electron potential
the Wigner crystal depend om, and therefore the system and kinetic energies.
should exhibit a percolation-type zero-temperature metal- (B) At T=0 and for the electron concentration sufficiently
insulator transition as decreases and the area occupied byclose to the critical one, increasing the magnetic field
the Wigner crystal grows. There is, however, a significantparallel to the film drives the system toward the insulating
difference with respect to the percolation transition, whichphase®>'? Thus the critical metal-insulator concentration
originates from the fact that the position of the Wignern(H)) increases wittH.

A. A review of the experimental results on Si-MOSFET'’s.

125205-6



PHASE SEPARATION IN THE TWO-DIMENSIONAL . . . PH®ICAL REVIEW B 67, 125205 (2003

In the metallic phas§n>nM'(HH:0)] and at smalll the 3. The temperature dependence of the resistance in the metallic

system exhibits a big positive magnetoresistance as a func- phase
tion of Hj. This magnetoresistance saturatesigtHj(n) The significant increase of the resistance as a function of
andp(Hﬁ)/p(O)>1.3'5 temperature can be explained naturally as a consequence of

(C) In the metallic phase & =0 andT<Eg the resis- the Pomeranchuk effect: The spin entropy of the Wigner
tancep(T) significantly increases with increasing tempera-crystal is larger than the entropy of the Fermi liquid and,
ture. The characteristic value dfin p/dT>E-* at smallTis  therefore, the Wigner crystal regions grow with increasing
large and depends on the valuerof n. temperature.

(D) If at HH>H|<|: the system is still in the metallic phase At high temperatures the droplets_of crystal melt. It fol-
[n>n.(H,)], the T dependence of the resistance is muchIows from Eqgs.(13) and (15) that in this temperature range

Al - 8.9 the resistance decreases with increasingt is unclear at
weaker than in théd;=0 case®

- resent whether the experiments support this picture.
(E) The value ofH|‘|3 decreases significantly as ap- P P PP P

M
proaches; . 4. The temperature dependence of the resistance in the metallic
phase at large H

The Pomeranchuk effect disappears whe> Hﬁ and

. . o . electron spins are fully polarized. In this case entropies of
In this subsection we present a qualitative explanation ofoth the liquid and the solid are much smaller than the spin

B. Qualitative explanation of experimental results.

. 13 . .
the experimental results: entropy of the crystal atlj=0. This means that in the lead-
ing approximation the areas occupied by the crystal and the
1. The existence of the metal-insulator phase transition liquid are T independent. This explains the fact that in the

metallic state aH ||>Hﬁ the T dependence of the resistance

The theoretical picture presented above involves a transis |\ ich smaller than in the case B =0 89 [The ratio

tion between the quuid.and the c_:rystal as a.functiomof dp/dT(H||=0)/dp/dT(HH>Hﬁ) can be as big as 10
Therefore, it can explain qualitatively the existence of the
metal-insulator transition observed in the experiments.
Namely, the fractions of volume occupied by the Fermi lig- ] )
uid and the Wigner crystal depend on and therefore the P_erhaps the most direct chr—_zck pf the concept of the Fermi
system should exhibit a percolation-type zero-temperaturgqu'd which is close to crystalllza_t|op is the measurement of
metal-insulator transition as decreases and the area occu-€ N dependence of the magnetic fieitf(n) which polar-
pied by the Wigner crystal grows. The transition takes placé?S> thgol;qwd. In the case of a noninteracting Fermi liquid
when the Wigner crystal droplets overlap and block the elecH [ =H|" = Er/xg is @ smooth function of. The problem
tron transport through the Fermi-liquid area. of then dependencg of the critical magnet!c f|.é+t#(n)' in
The experimental values mcgw) correspond tar~ 10 strongly correlated liquids near the crystallization point and

—20. At present it is difficult to say how close this value is f[he origin of th_e strong e_nhancement of the spin suscept|b_|l-
. " ity has been discussed in the context of the theory of liquid
to n_, or n. in the pure case. The critical value for the

L . . He*3* It h n poin hat there are two differen
transition rs =38 (Ref. 3) was obtained by numerical © t has been pointed out that there are two different

imulati H it tb lied 1o th Ecenarios for the origin of the significatfactor of 15 en-
simulations. However, It cannot bé applied 10 In€ Case Ofancement of the spin susceptibility of Heear the crystal-

electrons in Si MOSFET's because of the existence of tWCfization point.

almost degenerate electron valleys. Another reason for pos- (5) The system is nearly ferromagnetic which means that
sible mapphcablllty_o%téhe results of Ref. 31 to SiMOSFET'S j; i close to the Stoner instability. In this case the linear spin
is that the calculation's were restricted to the case of zero susceptibility x, is large, but other coefficienta,, in the

temperature, while the experiments have been performed %&pansion of the energy
temperatures larger than the spin-exchange energy in the
Wigner crystal. Thus the Pomeranchuck effect has not been
taken into account in Ref. 31. Finally, the critical valuergf
can be different in the disordered case.

5. Then dependence of i

e =x. ‘M2+a,M*+...a,M™, (16)

with respect to the spin magnetizatibhare not small. Here

mis an even integer. In this caskq‘“~Hﬁ(°), which is rela-
2. The positive magnetoresistance of the metallic phase in the tively large.
magnetic field parallel to the film (b) The system is nearly solid. In this case bgth® and

The large positive magnetoresistance of the metallic phasgther coefficientsy, in Eq. (15) decrease S|gn|f|cantlcy as
in the parallel magnetic field is connected to the fact tha@PProaches the crystallization poing. In this caseH;(n)
Yw™ XL, and therefore the magnetic field parallel to the film <H[® is small.
drives the electron system toward the crystallizafbn.  In the case of H&the value ofH[(n) has never been
[See Egs.(1), (2), (9), and (13)]. The magnetoresistance measured. In the case of electrons in Si MOSFET’s it has
should saturate wheH|>Hf and the electron Fermi liquid been measured in Ref. 13 A dramatical decreasel ¢h)
is polarized. compared tdH “‘:(O) has been observed aspproaches.. In
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our opinion these experimental results support the model of a (a) At r¢>1, where the diagrammatic calculations are not
nearly solid Fermi liquid which is at;>1. Conversely, itis under control. In the framework of the conventional diagram
unlikely that the system is close to the Stoner instability. technique it is difficult to account for all effects associated
with the strong correlations at;>1, including the giant

renormalization of the electron-scattering cross section on

C. A comparison with alternative explanations of experiments  impurities, the effects of phase separation, existence of the
on transport properties of the metallic phase of the crystallization waves at the boundary between the two

electron system in Si MOSFET's. phases, and, finally, the Wigner crystallization itself.

. . . (b) The mechanism considered in Refs. 44—49 cannot ex-

n th's. section we compare the e>_<p|anat|on presentgglain the increase of the resistance as a functioH cand T
above with another explf_;lnanon given in Refs. _44__49 It iSyhich is significantly larger than unity. This is because the
based on the fact that a single short-range impurity in a meta} j\hjitude of the potential created by the Friedel oscillations
creates Friedel os_C|IIat|on_s of the elect_ron Qensn_y. Due to thgf the density created by an impurity potential is smaller than
electron-electron interaction the _quas[partlcles in the metae impurity potential itself. This theory also cannot explain
are scattered not only from the impurity, but also from thewhy the temperature dependence of the resistar@ is
modulations of the electron density. At finite temperature thesuppressed so dramatically by the magnetic field parallel to
Friedel oscillations decay exponentially at distances largethe film. On the other hand, the theory presented in this paper
than the coherence length of the normal metalT. As a  can explain these facts.
result, at low temperatureqp(T)—p(0)]~CT with (c) These mechanisms af and H| dependences of the
C>0.*-*The exchange contribution to the resistance hasesistance are based on very different physics. This can be
not been taken into account #-*8It has been showithat  seen, for example, from the fact that all single-electron inter-
in the presence of the exchange interactiom at<T<Eg ference phenomena including the Friedel oscillations are
the quantity[ p(T) — p(0)] remains linear inT. However, at smeared by finite temperature. Conversely, the fraction of the
r«<1 the coefficientC<0 has negative sign, which is dif- Wigner crystal increases with temperature.
ferent from Refs. 44—48 On the other hand, the expriments (d) The amplitude of the Friedel oscillations is suppressed
were performed in the regime>1. They yeald a positive significantly in the case when the scattering potential is a
value of the coefficienC>0. At finite value ofr~1 the  smooth function of coordinates on the scale of the electron
theory®® predicts, that the coefficieft changes its sign again wavelength. This is exactly what happens when the scatter-
and becomes positive. ing cross section is significantly renormalized by the fact that

At relatively high temperature$~Eg, one can neglect near a short-range impurity there are crystalline droplets and
the interference corrections and the temperature dependenttee position of the crystalline surface exhibits quantum fluc-
p(T) is determined by the corresponding dependence of thtuations. Thus, in one sense, the mechanisms based on
thermal velocity and the electron-scattering cross section in &ingle-electron interference and the mechanism based on
nondegenerate gas. In this regim€T) decreases with in- quantum fluctuations of the solid-liquid boundary compete
creasingT.*’ At this point we would like to mention that at Wwith each other.
low T Egs.(1), (2), (9), and(13) also predict the increase of In order to distinguish between these two mechanisms one
the resistance linear il as well. Egs.(14) and (15) also  nheeds to perform experiments on samples with higher mobil-
predict the existence of the maximum @fT) at T~E and  ity, where effects considered in this paper will be much
decrease of the resistanceTat Ex. Thus, both the theory larger than unity.
presented above and Refs. 44—49 in principle, could explain Finally we would like to mention that the thedfy *°may
qualitatively theT dependence of the resistance of the me-be relevant to experiments on the two-dimensional electron
tallic state. system in GaAS samplég>!

The situation with the magnetoresistance in the parallel
magnetic field is more delicate. Strictly speaking, the inter-
ference corrections to the Drude conductivity calculated in
Refs. 44-49 are relevant only a{<1 and at smalll and We have shown that due to the existence of metallic gates
H), when the effects are small. On the other handHat in MOSFET's the phase separation is a generic property of
> Hﬁ, when the effects are large, the interference correctionpure electron liquids. The proof is based only on the assump-
are irrelevant, and the value of the magnetoresistancgon about the existence of the first-order phase transition
[p(H))—p(0)] is determined by théd; dependence of the between the uniform Fermi liquid and the Wigner crystal
Drude part of the resistance, which is due to Hhedepen-  phases and on electrostatic properties of two-dimensional
dences of the Fermi momentum and the scattering cross seelectron system. This distinguishes the theory presented
tion of quasiparticles(This part of the magneto resistance above from the theorie¥;*® which attempted to explain the
has not been taken into account in Refs).48 this case a experiments using the fact that in the 2D electron liquid there
single-electron theory yields a big and negative Drude magis a first-order phase transition between the Fermi liquid and
netoresistance in contradiction with the experimental facthe Wigner crystal which is destroyed by small disorder. This

V. CONCLUSION

that it is big and positive. difference, however, manifests itself only at relatively small
In connection with this | would like to make several values ofd and at relatively small amplitude of the disorder.
points. Qualitative pictures of th& andH dependences of the resis-
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tance of the “metallic” phase are, roughly speaking, thepresented above is in many respects similar to the quantum
same for the model presented above and for those consideredtical point of strongly correlated electron systems consid-
in Ref. 38. ered in Refs. 55-57. In particular, the Fermi-liquid state with

It is an open question how a disorder of finite amplitudedensities close ta,, will demonstrate very large sensitivity
affects the results presented above. In some regimes the syts- imperfections>°* which is a characteristic for the “al-
tem can demonstrate a glassy behavior characteristic fanost critical” quantum state”
crystals in the presence of disorder. Experimental indications
of glassy behavior of the electronic system in Si MOSFET's
have been reported in Refs. 53,54,

In this paper we considered only bubble phases which This work was supported by Division of Material Sci-
exist near the critical concentrations andny,. In the in-  ences, U.S. National Science Foundation under Contract No.
terval n_.<n<nyy, the system, will probably exhibit a se- DMR-9970999. We would like to thank A.F. Andreev, E.
qguence of quantum phase transitions. In particular, it is likelyAbrahams, S. Chakrovarty, A. Efros, M. Gershenson, S. Kiv-
that at electron densities close i@ there is a stripe phase, elson, S. Kravchenko, L. Levitov, D. Maslov, V. Pudalov, B.
which is similar to Refs. 24,27,28. Shklovskii, M. Sarachik, and S. Vitkalov for useful discus-

In conclusion, we would like to mention that the picture sions.
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