PHYSICAL REVIEW B 67, 125114 (2003

Controlling the accuracy of the density-matrix renormalization-group method:
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We have applied the momentum space version of the density-matrix renormalization-group method
(k-DMRG) in quantum chemistry in order to study the accuracy of the algorithm in this new context. We have
shown numerically that it is possible to determine the desired accuracy of the method in advance of the
calculations by dynamically controlling the truncation error and the number of block states using a novel
protocol that we dubbed dynamical block state selection protocol. The relationship between the real error and
truncation error has been studied as a function of the number of orbitals and the fraction of filled orbitals. We
have calculated the ground state of the molecules,G#,0, and i as well as the first excited state of GH
Our largest calculations were carried out with 57 orbitals, the largest number of block states was 1500—2000,
and the largest dimensions of the Hilbert space of the superblock configuration was 800 000—1 200 000.
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[. INTRODUCTION system. Within our approach, described in the next section,
we will be able to show that if the number of block states is
Since its first appearance in 1992, the density-matrixadjusted dynamically, a linear relationship is obtained be-
renormalization-group(DMRG) method? has witnessed tween the logarithm of the real error and the truncation error,
great deve]opments and it soon became one of the mogthiCh, in turn, can be used to derive a novel method to
widely applied numerical methods in one-dimensional soligextrapolate to the full Cl result.
state physics. Within a short period of time, the real space Our main goal in this paper is to determine the accuracy
renormalization method had been further extended and th@f thek-DMRG method in quantum chemistry and show that
momentum space version of the methé@MRG) was in- the algorithm converges_to the error margin that was_set up in
troduced by Xiangin 1996. Unfortunately, test calculations ad"%”ce of the calculation. We have therefore carrleo_l out a
on the Hubbard model indicated relatively poor performancéje“’me‘j DMRG study of Chi H,0, and k molecules with

compared to the real space version which hindered furtheyarous numbers of orbitals, each representing different test

s cases. We have also addressed problems related to the initial
application of the method for several years.

it tv. DMRG d to stud dels of cvcli block state configuration that arise within the framework of
Quite recently, was used 1o study models of CyCliCy,q  pMRG method. Since the focus of the paper is on the
polyene$ and models of polyacetylerieS. R. White and

g ) dynamic scaling of the density matrix and parameters of the
co-workers have successfully applieDMRG in quantum  pyvRG method, we recall only those main definitions and
chemistry to calculate the ground state energy of moleculegy mulas in this paper that are relevant to the question and

represented in the framework of the usual linear combinatiopot well known in guantum chemistry. Therefore, details of
of atomic orbitals(LCAO) approximation, using small basis our numerical procedure and developments will be published
sets>’ His results seemed challenging and attracted consicelsewhere. Although we have analyzed the general trend of
erable attention, which stimulated various grétip® start  the numerical error of thek-DMRG method through
to work on the new field. quantum-chemical calculations, our results can be generally
Among all the various models studied with the DMRG applied to other quantum system as well.
method during the past decade the accuracy of the algorithm The setup of the paper is as follows. In Sec. Il we briefly
has always been a problem that is still not satisfactorilydescribe the main steps of the DMRG method and recall the
solved. The recent application of DMRG in quantum chem-main sources of the numerical error. Section Il is devoted to
istry gives further grounds for benchmark investigations ofthe details of the numerical procedure used to determine the
this question within the new framework. In all attempts sodynamic scaling behavior of the density matrix and to the
far, the accuracy of the method was analyzed a posteriori bgroblems that appear in the context of quantum chemistry.
means of comparison with the corresponding full Section IV contains the numerical results and analysis of the
configuration-interactionFCI) benchmark results. For in- observed trends of the numerical error. The summary of our
stance, recently, Chan and Head-Gortloeexamined the conclusions and a few general comments about the algorithm
scaling behavior of the real error, developing an extrapolaare presented in Sec. V.
tion approach as a function of the number of block states
(M). . . . Il. BACKGROUND OF THE NUMERICAL ERROR
In this paper we show that in contrast to previous ap-
proaches, the desired accuracy of a DMRG calculation can A detailed description of the DMRG algorithm can be
be established in advance if we take into account the dyfound in the original papers, Refs. 1-3, and 10 and its appli-
namic change of the reduced density matrix of the sube€ation in the context of quantum chemistry is summarized in
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two recently published papers Refs. 8 and 9. Therefore, we (@) BRG
present only the most important formulas and definitions that

are relevant to the question of accuracy. 2&2 A 2&2 A h.ilg A ﬁllz
The main purpose of the DMRG method is to treat the

electron-electron correlation in a rigorous way that allows L Jol X I

the minimization of the energy and calculation of measurable

guantities. Since the DMRG method is a variational proce-
dure, it always provides an upper bound for all the calculated h”’ A’ h
guantities. In the context of quantum chemistry, a one- ®
dimensional chain that is studied by the DMRG procedure is

built up from the molecular orbitals that were obtained, e.g., (b) Wilson’s
in a Hartree-Fock calculation. The electron-electron correla- ® e L=2
tion is taken into account by an iterative procedure that mini- IR L=
mizes the Rayleigh quotient corresponding to the Hamil- (e oo L=
tonian describing the electronic structure of the molecule,
given by (¢ DMRG
[e]e ofe] L=
H=2 TijclCiot > ViCloCl,CiorCly, (1) BL, ML BR, MR

ijo ijkloo’ XX I L=6
and thus determines the full Cl wave function. In EY. T; |o® ®o 0o0/® © 0 L=8
denotes the matrix elements of the one-particle Hamiltonian (oo eooj0oe/0ee @0 L=10
comprising the kinetic energy and the external electric field —
of the nuclei, and/;; stands for the matrix elements of the |o® o ® o0 o0 00| [0
electron repulsion operator. In order to show the key con- ([0® oo 0o® /@ /0] =10
cepts and parameters of the numerical renormalization pro- PR—

cedure and the drawbacks that hinder the analytical study of
the method, we have included a brief overview of the
renormalization-group methods.

FIG. 1. Schematic plot of the spin couplings in the BRG, Wil-
son’'s and DMRG renormalization methods.

analytically. When subsequent iteration of the renormaliza-
tion steps leaves the coupling constants unchanged, the algo-
In order to determine the eigenvalue spectrum of theithm has reached a fix point that represents the infinite
Hamiltonian corresponding to an infinite long quantum chainlength (thermodynamig limit of the model.
(in the context of quantum chemistry, this means infinitely
many orbital$ built up from quantum sites represented @y
basis states, blocks were formed from each of two adjacent ) ) )
sites, and the Hamiltonian was determined from the new Besides a few analytically solvable models it turned out
configuration as is shown on Fig. 1. First the Hamiltonian ofthat the block renormalization-grou8RG) method can be
the model is diagonalized for two sites and thendfiewest- used only numerically anq |ts_ systematically increasing inac-
energy states are selected out of ffestates, whereby the curacy hindered the application of the method. In _1975 Wil-
so-called block site will represent the two-site problem in theSON introduced anoltzher procedure for the numerical renor-
subsequent iteration step. Operators defined on the sekgctedh@lization mgthoh" in which a quantum chain with finite
basis states are obtained from the original site operators alengthL is built up systematically from quantum sites repre-

cording to a renormalization procedure given by the equatiof€Nted byq basis states by keeping the size of the Hilbert
space fixed as is shown on Fig. 1.

A= OAO', 2) The main idea of the method was again to solve the
Hamiltonian of the model for two sites and to seleft

where operato© is constructed from the selectedeigen- lowest-energy states out of thg states, whereg’ was in-
functions of the two-site problem. In order to retain the origi-creased systematically up to a maximum value during the
nal structure of the Hamiltonian operator, on-sitethe fig-  first few iteration steps based on the energy spectrum and
ure labeled byh) and intersite(denoted by\) coupling  kept constant afterwards. Operators were renormalized ac-
constants are renormalized as well, showrhagnd\’. In  cording to Eq.(2). The key difference of Wilson’s method
the subsequent step thé-dimensional Hamiltonian operator compared to the BRG method is that Wilson did not retain
is diagonalized for two adjacent block sites, and again the original structure of the Hamiltonian operator but ana-
states with lowest energy are selected for the block site thdyzed the scaling behavior of the energy as a function of the
will represent four sites in the following iteration step. Sincechain length. Systematical application of the renormalization
the structure of the original Hamiltonian operator is retainedprocedure introduces new terms and coupling constants.
and the number of coupling constants is unchanged, changékwever, many of them become irrelevant for longer chains,
of the coupling constantéflow equationg can be studied and the method also drives the system into the fixed point.

A. Block renormalization-group method

B. Wilson’s renormalization-group method
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The major drawback of the method is that since the structure ML

of the Hamiltonian changes with increasing chain lengths, TRE=1- 2 W, . (5)
flow equations cannot be defined and the method cannot be a=1

studied analytically.

The initial B, andBg configurations contain one site per
C. Density-matrix renormalization-group method block each; thus the superblock Hamiltonian is determined
on g* basis states restricted to the conserved quantum num-

In spite of the powerful properties of Wilson’s procedure, X
the numerical error of the method grew systematically wit _bers _SUCh as the toFaI spin or the _nu_mper of electrons. In e_ach
eration step the size of the chain is increased by two sites

increasing chain length, a drawback that has led to the fadl | the desired chain | hi hed as is sh .
that longer chains could not be studied numerically. Beside ntil the desired chain length Is reached as is shown on Fig.
. This procedure is the so-call@dinite latticealgorithm. In

the truncation of the Hilbert space through the renormaliza: .
rder to average out long-wavelength fluctuations, the super-

tion procedure, the numerical error had another main sourc ook p S ized by i ina the si f
When an additional unrenormalized site was added to th0CK configuration is asymmetrized by increasing the size o

block site, the coupling was taken into account only betweerpt 2nd decreasiplg thehsiz:a E until the Ief; block contains
the block site and this new site. In each iteration step thé-—3 Sites and the right block one site. The same procedure

problem was therefore reduced to an isolated two-site prodS then carried out in the reverse way and when the configu-

lem with open boundary conditions. These observations ha@ion IS symmetric again, the first sweep of the so-called

led White to construct a larger auxiliary systésuperblock fm!tg Iatticealgqrithm end_s. This procedure can be repeated
configuration that contains an environment in addition to the INfinitely many times and is usually stopped when the energy

original block site problem to take care of the boundary ef-d0€S not change within two subsequent sweeps. There is

fects in a more reliable way, as shown in Fig. 1. According to®92in @ major difference between the BRG and DMRG

the figure the structure of the superblock configuration ignethods that makes the analytical study of the scaling be-
defined asB,+*Br, whereB, represents the block site, * havior of the latter method very compllcateq: In the DMRG
represents the new site under consideration, the additiond1€thod the number of selected block statésis larger then
«Bg, configuration represents the environment, and and 9 'and the original structure of the Hamlltonlan is not re-
Mg denote the number of block states, respectively. In ordee[j)a'ned' thu_s flow equations of the coupling constants cannot
to minimize the error introduced in the representation of th e determined.

block state in the truncation process, White has constructed According to the two key ingredients of the method, the

the O matrix using the eigenfunctions of the reduced densitwumencal error of the DMRG. algorithm has bqsmally two
matrix of the subsysternB, «. It has been recognized in a mdepen'dent components, whlgh are the.truncatlon error gnd
different context® that the reduced subsystem density matrixthe envwonml_en'E[gI err?r. T(r;e f':St te;:ro; IS getnerate]cqull:)rmtg
describes the interactions of two subsystems in a particularl € renormalization step due 10 the truncation of Hilber
efficient way. Using these two key ingredients, the DMRG pace, wh|_le the environmental error appears _becaus_e the
iteration step first includes the diagonalization of the HamiI—Ch""In is built up from blocks and the long-range interactions

tonian constructed on the superblock configuration to ObtaiﬁretﬁugOThAs itwas shov;/nl in Ref. 14 ubsmg theite Igttlc? q
the target state. The target state is chosen from the eigeﬁj‘je IIOtH N enwronmel'n a errcl)rtpan h'e averellgel out, aln
value spectrum of the Hamiltonian that we want to calculate inafly there remains a finear relationship on a log-iog scale

It can also be a linear combination or even an incoherentl)et\"’een the r_eal error and truncation error.
superposition of more eigenstates as welll}fand|J) de- The truncation error, on the other hand, strongly depends

note basis states fdB + and By, respectively, then the on the shape of the eigenvalue spectrum of the reduced sub-
target state is written ;S R ' system density matrix and on the number of block states kept

for the subsequent iteration step. It has also long been known

M_a.Mgq that the structure of the density matrix depends on the criti-
W targe= > slld), (3  cality of the model. For systems with finite energy gap and
J coherence length the density-matrix eigenvalue spectra de-

cays exponentially, while for critical models with infinite co-
where ¢ ; is determined by diagonalization of the super-herence length it has a power-law tail. Besides these, in the
block Hamiltonian. After the target state is Obtained, the re-Case of ana'ytica”y solvable mode'sy the structure of the ei-
duced density matrix of thB » subsystem genvalue spectra of the density matrix determines the energy
spectrum of the model as was shown in Ref. 15.

In addition to all the points discussed above, the decay of
the eigenvalue spectrum also changes as the target state gets
closer to the exact solution. It is therefore evident that select-
is diagonalized and thbl eigenstates with largest eigenval- ing out theM most probable states with highest eigenvalues
ues (,) are selected to build up th® matrix. The site  will be an insufficient condition to control the accuracy of
operators are renormalized according to &). The error of the DMRG method. Instead, one has to take care of the dy-
the truncation procedure in the DMRG method can be meanamic changes of the spectrum of the density matrix and
sured by means of the deviation of the total weight of thekeep the truncation error below a given threshold. Since the
selected states from unity, which is defined as structure of the density matrix represents the whole system

pl,l’zg b gty (4)
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as well, it naturally arises that the number of block stateso adjust DM, dynamically; thus the number of selected
should be selected out in such a way that the truncation erraitates is increased as long as the integrated weight of ne-
satisfies an initial condition that was introduced in advancgyjlected states is larger then a maximum value FRE

of the calculation. which can be fixed at the beginning of the calculation. This
enables us to set up the desired accuracy of the DMRG al-
D. Quantum-chemical DMRG method gorithm at the beginning of the calculation. The number of

, states will be adjusted by this protocol in a dynamical fash-

_In the context of quantum chemistfQC), a one- 5 gepending on the structure of the density-matrix spec-
dimensional chain containing molecular orbitals is gener- . ,m.

ated by ordering the orbitals employed to build up the mul-" " gjnce the truncation error is not immediately connected to

tiparticle states with increasing energy ordgby other ruleS¢ye error in energy, one can control only the relative error in

analogous td points in thek-DMRG method: These mo-  his \way. In order to control the absolute error in energy,

lecular orbitals are calculated by standard numerical methodt,sREm should be scaled by the Hartree-Fock energy or by

. ax
of quantum chemlstry. . . . . the energy value calculated by the DMRG method, which
It worth noting that the optimal ordering of the orbitals in usually has the same order of magnitude as the exact value

the chain is still an open field of research. Note that the,en after the first few iterations. We then expect the relative
initial chain length of the QC-DMRG method Isfrom the  g6r of the energy to converge to this scaled threshold

very beginning and the block operators for the left and right ithin a few sweeps of the DMRG procedure.
blocks are generated by a “warm up” procedumestead of From a technical point of view, dynamic selection of
the infinite lattice algorithm. The effect of the electron- y,ck states has another important advantage. In the standard
electron correlation is taken into account by the systematigy\\rG calculation the number of block states is fixed. With
sweeps in the framework of tHmite latticealgorithm. Smg:e use of our dynamical adjustment, the largest number of block
the overall performance of the QC-DMRG method differs g51e required to guarantee a given truncation error devel-
from the real-space version, it is also expected that newns however, only close to the symmetric configuration dur-
problems arise due to the inaccuracy of the starting waveg,, the sweep. For most of the remaining steps the threshold
function. These will be also investigated in detail in the ”eXtTREm is reached with a considerably smaller number of
H ax

section. . block states, leading to substantial gains in efficiency in the

The most straightforward procedure to represent the Unenormaization step and the construction of the next super-
renormalized site operators is to define them on spin-orbitalo i Hamiltonian, when dynamic block state selection is
basis states, in which casgis equal to two. The phase op- | ,5aq.
erator is then taken care of automatically by the standard Within the framework of our procedure, it is also evident
definition of fermion creation and annihilation operators. O”why previously developed extrapolation methods based on

the other hand, if orbitals from, e.g., a restricted Hartreey, tions of the number of block states failed to estimate the
Fock (RHF) calculation are employed, it is possible to define g5 jing hehavior of the error in a rigorous way. The value of
a supersite b_u||t up fro_m the ord_ered tensor _product of sping, is only one of the factors that determines the largest value
down and spin-up basis states, in which cgse 4 and the ¢ \he truncation error during a full sweep. By using it ex-
phase factor must be explicitly taken care of. This methodgjyely changes of the density matrix are not taken care of.
offers considerable efficiency gains because in this way they, ;s it is almost impossible to derive a reliable formula to

chain is only half the size compared to an unrestricted HFygtimate the real error as a function of the number of block
(UHF) type formulation, using spin orbitals for each site. gi5ias for the general case.

Thus the number of multiplications using quadratic auxiliary
operators during the superblock Hamiltonian diagonalization
procedur is roughly reduced by a factor of 4 compared to B. Initial condition for the number of block states
the spin-orbital formulation. In our implementation we have

built up the chain from supersites. The straightforward application of dynamical control of

DM, during the first few sweeps is complicated by the fact
that there is a major difference between the wave function of
Ill. CONTROLLING THE ABSOLUTE ERROR a given chain length generated by timdinite lattice algo-

OF THE DMRG METHOD rithm of the real-space version and that generated by order-
ing the orbitals in the case of theDMRG procedure. In the
first method, the wave function of the target state is always

In order to control the accuracy of the DMRG procedure,very close to the wave function that is obtained after several
the selection of the multiparticle states of the superbloclsweeps of thdinite lattice method; however, this is not true
Hamiltonian that are used for renormalization is obviouslyin general for the momentum space version when the wave
the decisive issue. With all states featuring eigenvalues of thiunction strongly depends on the ordering of the orbitals. For
subsystem reduced density matrix kept larger than a fixedxample, it typically happens that during the first few steps
parameter that we called DJ\] during the renormalization the density-matrix eigenvalue spectra will have very few
procedure, the truncation error can be as small ag QMut  states with large eigenvalues and many states with almost
it can be larger if the integrated contribution of the neglectedzero weight. In this case, the number of selected states will
states is still significant. To avoid such a problem we proposée cut drastically, which will limit seriously the size of the

A. Dynamic adjustment of the number of block states
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Hilbert space in the subsequent iterations, causing the alg@hanges during the first few sweeps. It is possible, for ex-
rithm being trapped in a local minimum. This situation hap-ample, that with targeting the second level, the coefficients
pens in other optimization methods as well, and, for ex-of the wave function of the ground state and excited states
ample, in the case of simulated annealing, the so-callethay mix and the spin symmetry of the target state will
adiabatic heating is used to move the algorithm out from thehange randomly. Thus the energetically lowest level will be
attractor of a local minimum. In the context of the DMRG lost and the third level will become the target state.

method the introduction of virtual states is required in this
situation, which means that we also keep those states that
had almost zero eigenvalue up to a fixed number that we ] _
called M, during the first two sweeps. Usually after the In order to avoid the random change of the spin symme-
first sweep the decay of the density-matrix spectrum belly, we have introduced partial spin adaption, making sure

comes smooth and it changes dynamically as the target stafigat the permutational symmetry of the spins is odd for even
gets closer to the exact one. S and even for odd5, which implements the spin-reversal

operator that flips the spins along thelirections, as was
shown in Ref.19. In case of theDMRG method the starting
block wave function is constructed in such a way that it
contains basis states with,, and N, quantum numbers,

Up to now the condition for the number of sweeps wasthus fixingmg and their symmetric componentse., states
determined in an empirical way, using the condition that theyith —m,) as well. During the renormalization procedure a
algorithm is stopped when the energy value obtained by twetate and its partner belong to same eigenvalue of the density
subsequent sweeps no longer changes. Within the framewogKatrix; thus the dynamic selection rule automatically ensures
of the dynamical block state selection we have a new critethat both of them are kept. It worth noting that this is not the
rion for the convergence. We have found that after converfy|| adaption of S> symmetry, which would be clearly be
gence not only the energy value remains stable, but also thgesirable but more complicated to achieve in the framework
eigenvalue spectrum of the density matrix and thus the bloclf the DMRG method. Thus, components of the singlet and
states selected out by the algorithm for a gidn+Bg con-  quintet levels can still mix, but this would not be a problem
figuration are the same during all subsequent sweeps. Akince they are usually well separated. Application of the cor-
though all subsequent sweeps leave the density matrix uresponding spin-reversal operator effectively ensures that the
changed, still a fixed point is not obtained since the structurgarget state will remain in the spin symmetry sector that was
of the density matrix and thus the truncation error and theixed at the beginning of the calculation.
relative error after convergence can slightly charipet From a technical point of view, this has the additional
within the same order of magnitudelepending on the initial  advantage that one needs to target only the first level in both
condition, for example, on differené ,. On the other spin symmetry sectors, which always requires less block
hand, we can treat the energy values obtained for varioustates to achieve a given accuracy. In addition, the number of
TREnax values as points on a flow equation that converge tauxiliary operators needed during the diagonalization of the
the fixed point at the end, which is the FCI energy. Based omuperblock Hamiltonian is decreased by a factor of 2, which
previous results'***~*%and those presented in the next sec-doubles the speed of the algorithm. For the half-filled case
tion, we can extrapolate to the FCI energy using the equatiothe particle-hole symmetry operator can be introduced in the

same way. Details of the numerical procedure will be pub-
lished elsewhere.

E. Introduction of local symmetry operators

C. New criteria for convergence and better stability
for extrapolation of the FCI energy

n—FCl:aIn(TRE)er, (6)

Erci F. Error of the expectation value of one- and two-particle
operators

wherea, b, andE¢, are parameters determined from the fit  The expectation value of the one- and two-electron opera-
of the numerical result. As discussed below, our numericators can be calculated from the one-particle density matrix
results show that the value afis close to 1. according to

D. Error of the excited states due to the inaccuracy of starting (A)=Tr(pA). (7)

block states

Besides th bl f the initial struct f the densit where A is a L by L matrix of operator for a first-order
t('as'thes 1€ prothemdqﬁ. (Ttmtlhlat struc u][e 0 the densl yproperty(e.g., dipole momentn the same representation as
matrix there 1S another cifficuty that stems from the InacCu-y, originalT;; andVj;,, were. So withA=T;; Eq. (7) pro-
racy of the starting block wave functions. In contrast to t.hevides the kinetic energy of the FCI wave function. Once the
%arget state is obtained, the one-particle reduced density ma-

in the same spin symmetry or changes sign periodically as fix can be formed for an,+ configuration as

function of the chain length’ the symmetry of the target
state depends on the initial ordering in the case of the

k-DMRG method. This can lead to a major error, because the N oo |w g
DMRG algorithm can lose the target state if its symmetry pij=( targelg 1oCiol Vet ®
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TABLE |. Geometries and benchmark energy values for the calculated molecules. The number of correlated orbitals is given in
parentheses, unless it agrees with the total number of orbitals.

Basis set Bond distance Bond angle Electrons Orbitals HF energy FCI energy
(a.u) (deg (a.u) (a.u)
H,O Double¢ (Dz2)? 1.84345 110.565 10 14 —76.009 838 —76.157 866
H,O DzP 1.88973 104.500 8 2B4) —76.040551 —76.256634
CH, 1A, DZz¢d 2.022 30 129.4667 6 143 —38.909 437 —38.932 107
CH, °B, 6 14(13 —38.979 393
CH, A, cc-pvDZ® 2.043240 129.112 075 6 423 —38.865 895 —39.006 652
CH, °B, 6 24(23) —38.921 824 —39.041774
CH, 1A, cc-pVTZ 2.022 30 129.4667 6 567) —38.932575 —39.087 006
F, Dz¢d 2.64373 14 2q149) —198.707822  —198.915252
F, Split valencé 2.68797 18 18 —198.484167  —198.761551

:Reference 23.

Reference 24. DZP denotes a double-zeta basis set with polarization functions.

ZReference 25.

Reference 26.

‘Reference 27. cc-pVDZ denotes the correlation-consistent polarized valence double-zeta basis set, cc-pVDZ denotes the correlation-
fconsistent polarized valence triple-zeta basis set.

Reference 28.

wherei andj denote sites in the left block. The one-particle a function of the number of orbitals and the fraction of filled
density matrix for the right block is determined in a similar orbitals on molecules CH H,O, and k. The Hartree-Fock
way. If i is in the left block ang in the right block, therp;;  orbitals in a given basis of Gaussian orbitals were calculated,
is constructed from the one-particle operators of the twaand theT;; andV;, matrix elements were transformed to the
blocks. The latter case was used to calculate two-point cofartree-Fock basis using theoLPrO program packagé,
relation functions in real-space DMRG and showed that thevhich was also used for the calculation of the benchmark
error of the one- and two-point correlation function is larger(FC energies: i _ ]

by one or two orders of magnitude compared to the error of Ve used various basis sets and geometries for the mol-
the ground state energy. Since the dynamic block state seleE€Ules that we selected for benchmark calculations. The ge-
tion rule controls the accuracy of the ground state, it alsPmetries, references to the basis sets employed, and results

ensures the same scaling behavior of the correlation fun -tg?:]ﬁgr'?esseg;gogsgﬁg E:ftfa%'lz Cial_lcfﬁg‘tr'ﬁgjeﬁ‘g ‘é"r‘;” f(‘)s ed
tions as well. Besides that, the fluctuation of the error show 9 : ploy

) ; ; or the water molecule have also been used in the White-
in Ref. 14 because of the fluctuation of the truncation error . . i

L Martin study’® We include these cases here in order to enable
within a full sweep caused by to the constant valu®icdlso

L ) . . a direct comparison with previous work. A more interesting

diminishes. The two-particle reduced density matrix can b .
. . - est case was to study the ghholecule, for which we report

obtained in a similar way,

energies for the triplet ground state as well as for the first

excited (singley state. Hartree-Fock orbitals of the closed-

shell singlet configuration were employed in all calculations

Tk =V argel 2 C?”C;r(,fcka'0k|(r|‘I’targeP, (99  on CH,. Calculations of the FCI energy of the triplet state
oo’ were carried out in both thea;=0 andmg¢= + 1 spin sectors.

In order to show that the relative error scales to TRE

where the four-operator term is decomposed into four ingeindependently of the fraction of filled orbitals we have stud-

pendent terms depending on the distribution of thek, | ied the half-filled chains by calculating the ground state pf F

indices along the chain, making use of the usual partiall ith 14 eIectrpns af‘d 14 orbita(sﬁ_reezing.the fluorine &
contracted o%erators dxFDMRG3.g P >}(l)vrbltals and discarding the two highest virtual orbitedsd

with 18 electrons and 18 orbitals. The latter calculation pro-
vides evidence that QC-DMRG method is capable of provid-
ing cutting-edge complete active space SCRASSCH cal-

In order to study the performance of tkddMRG method ~ culations with the potential to push their limits to active
in quantum chemistry, we followed a route similar to the oneSPaces well beyond a size that is feasible nowadays by stan-
we used to study the accuracy of the real-space DMR@ard methods.
method!* We performed calculations on molecules with dif-
ferent properties for which the DMRG method is expected to
possess different scaling behavior. Thus we have carried out QC-DMRG calculations on the water molecule demon-
a detailed DMRG study of the absolute error of the energy astrate the dynamic selection of block states. In the first two

IV. NUMERICAL RESULTS

A. Dynamic selection of Block states
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FIG. 2. Dynamically selected number of left and right block  FIG. 3. Eigenvalue spectrum of the reduced subsystem density
statesB, and Bg, respectively, for two values of the minimum matrix obtained for the Fmolecule after the end of the sweeg([®
threshold valueM .,j,= 16,64 and the relative error as a function of of thefinite lattice method. In the legend we have also included the
iteration obtained wittM ,;,=16,64,164. In all cases the 10 elec- number of selected block statell( ,Mg) as a function of sweeps.
trons of _the HO molecule were correl_alt(?d in the _doulﬂeNater
tmh:df;m;iﬁgb"als’ and TRig,=10 " was set in advance of figure that the minimum value d¥l occurs in the region of

the plateaus, resulting in a very fast transverse of these re-
] gions. In addition, the maximum values Mf, andM g occur
panels of Fig. 2 we have plotted the number of block stateg gitferent iteration steps. Thus for a given superblock con-
that were selected in a calculation correlating 10 electron_s IRguration we find that even if one of them is very large, the
14 orbitals by means of the QC-DMRG method, startingqer js ysually much smaller. These two facts finally opti-

with different values oM ;5. . : . I
The number of block states for the left and right blocks iSmlze the computational time and memory resources within a

denoted byM, andMpg, respectively. In the third panel of full sweep of the method.
L R P Y. P In order to show the dynamic change of the structure of

Fig. 2 we give the relative errdi(Eppmrg— Erc)/Erc] of . . .
the calculation as a function d¥l,,, and the the iteration '::h_e r;?#giq zﬁb;?lsézrgf?ﬁgsrgﬁ T:g';(’ bvz\;es?:n\fne dg:g.tte dm'g_
step. The value of TRE, was set to 10'°in advance of the '9. € eigenvalu reduced subsy Sity

trix obtained at the symmetric configuratidleft and right

calculations. It is evident from the figure that the maximum . i )
J cks contained 6 orbitalsfrom a calculation of the F

number of block states does not depend on the prescribe}a0 ,
minimum value M,,.), although it is reached faster for molecule represented by 14 electrons and 14 orbitals. There

largerM ;. In order to show that the converged value of the@'® Several conclusions that one can draw from the figure.
accuracy does not depend on the threshold véhree a First, the density-matrix spectrum decays very rapidly during
large enough value was takewe have also included the the first few sweeps§=0 is part of the “warm up” proce-
result obtained withVl ;= 164. It can be seen in the figure dure, which clearly implies the requirement of the introduc-
that the relative error converges to the error margin detertion of virtual states. On the other hand, as the target state
mined by TRE,. in all cases, but the speed of convergencegets closer to the FCI limit, the fraction of eigenvalues larger
strongly depends oM ,,,. In order to show that the QC- then 10 %° increases significantly. It can be seen from the
DMRG algorithm is trapped in a local minimum M, is  figure that the decay of the spectrum can be fitted by a linear
chosen too small, we carried out calculations whth,, line on a semilogarithmic scale for the largest eigenvalues.
=4,8 and found indeed the number of block states beinghus the density-matrix spectrum decays exponentially,
hindered to increase. Similar test calculations on longewhere the slope is related to the finite coherence length of the
chains indicated that a larger value bf,;,,=64-100 is model. On the other hand, the slope of the line changes as a
needed. Thus we suggest that in order to to avoid problenisinction of sweeps until the algorithm converges. Once the
related to local attractors and to obtain a faster performanceelative error converged to the error margin determined by
a value ofM i, no less than 150—200 should be taken for TRE,,, (which means foS>7 in the case at handhe slope
longer chains. of the decay remains the same, and this is the reason why the
Investigating the scaling of the relative error shown in thenumber of selected block states are the same for the subse-
third panel of Fig. 2, one can find long plateaus where thegjuent sweeps. It is worth noting that since the decay of the
accuracy of the method is not improved. In the usual DMRGdensity matrix can be fitted by a straight line in this model,
calculations going through such plateaus costs almost thilme truncation error can be estimated as a function of the
same amount of time as calculating the region where thélock states. However, in order to obtain a rigorous scaling
error drops significantly. By contrast, it can be seen in thebehavior of the error as a function of block states, one has to
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® 00y ' ' ' ' ' ' ' rithm has converge@he energy is unchanged, and the num-
e sesesng Oy 1M eE DS ber of block states are unchanged, the slope of the density
5 PR $0000000000008000,0080000g0aE0ERED matrix remains the sam&@REy,, can be adjusted by an or-
§ « o 14 N | der of magnitude until the desired maximum value of the
& y 134 Tt i accuracy is reached. Using the calculated energy values and

o H XX % XXXy x XXXXXXXX XA . . .
o 10° 00099, 1600060000000000 the truncation error obtained for various values of
: o9 Q .

o 5 10 15w = 0 » 4 & %0 (which is slightly below TRE_) the FCI energy can be
Heration estimated by Eq(6). This equation contains three free pa-
rameters Ercj,a,b) to determine from the fit. However,
based on our results we can set the paranzterl. We have
found that one can gain 1-3 orders of magnitude improve-
ments in the error of the correlation energy by the extrapo-
lation method and that fixing the parameteto 1 always
provides an upper bound. In order to obtain a more accurate
102 - - - - - - fit one needs more data points. Thus TREshould be ad-

TRE justed in even smaller steps, especially if the calculations are

10 10
carried out only up to a relative accuracy of £0 but we
FIG. 4. Calculations for Chiwith L =13 sites shows the rela- have not done such an analysis yet.

e [[ o CHyT=RTXS
o CH,L=13,GS
— Fitof1X8

Relative error

tionship between relative error and TRE. The straight line is the In the case of solid state physics, chains with various
result of the fit. GS denotes the triplet gound state, and 1XS denotggngths are calculated and the thermodynamic limit is ex-
the first excitedsingled ground state. trapolated by the the so-called finite-size scaling method. Us-

ing our procedure one can improve the energy values ob-
ined for a given length by 2—3 orders of magnitude. Thus

e overall performance of the finite-size scaling procedure
can be improved significantly.

include the change of the slope as well, which in genera]
strongly depends on the static and dynamic correlations 9
the models.

B. Relationship between the relative error and TRE,.y

In order to test that the relative error converges to a given C. Scaling of the number of block states

value of the error margin determined by TREwe have run As we have shown, the number of block states depends on
independent calculations for all the test molecules by adjustthe structure of the reduced density-matrix spectrum. Thus it
ing TRE,ax from 102 up to 10 L. The relative error of the is not possible to determine the scaling behavior of the maxi-
first excited state obtained for the Gkholecule with 6 elec- mum number of block states as a function of the number of
trons and 13 orbitals usinil,;,=32 as a function of the orbitals and the fraction of filled orbitals in a rigorous way.
iteration step and TRE, is shown in Fig. 4. It can be seen On the other hand, in order to present a rough indication of
in Fig. 4(a). that the relative error of the first excited state computational resources used during our calculations we
also converges to the values of the error margin determinebiave we have collected the values of the maximum number
by TRE,. Set up in advance of the calculations. The con-of block states selected dynamically by our the method in
verged value of the relative error as a function of TRHor ~ Table II.
the first excited as well as for the ground state is plotted in
Fig. 4(b). It is clear from the figure that there is a linear
relationship between the converged value of the relative error
and the truncation error, the fitted slope being 0.98. Fitting It is important to note that our scaling results are obtained
our results obtained for the various tests cases also with dilenly for a proper ordering of the orbitals in the initial chain.
ferentM i, values, we have found that the slope was alwaysNe have found that for some cases the accuracy can be im-
between 0.95 and 1.1. Calculations in the= =1 spin sec- proved significantly if the HF levels were ordered with in-
tors provided a faster convergence for the ground state, ageasing energylabeled by Ord in Fig. 5), while for other
expected. The residual splitting of tme,=0,1—1 compo- cases we had to “mirror” the chains and placed orbitals oc-
nents of the triplet level was as low as 16 a.u. cupied in the HF configuration to the center of the chain
Calculations performed on the other test molecules with(labeled by Org). A nonoptimal ordering can in fact lead the
different number of basis states and for various values ofmethod to be trapped by a local minimum. This situation is
M in sShowed that the relative error scales to TRENde-  shown explicitly in Fig. 5 indicated by Ogd Even if M,
pendently of the number of orbitals, fraction of filled orbit- was almost tripled, the relative error converged to the same
als, and the threshold level of the number of block states. Oliocal minimum, which, on the other hand, also supports our
course, the convergence gets slower for longer chain length@evious statements thM ,;,, does not affect the final con-
and we usually needed 6—8 sweeps to gain an absolute agergence significantly. Changing the ordering, we have
curacy of 104 a.u. in the case of the GHnolecule calcu- found for Org that the algorithm has always converged to
lated with 57 orbitals. the value of the error margin determined by TRE Study-
From a technical point of view, one can start a DMRGing the optimal ordering can be a major field of research.
calculation by setting TRE, to 1073 and when the algo- Chan and Head-Gorddtas already suggested a procedure

D. Other factors that affect the accuracy
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TABLE Il. The maximum number of the block states selected dynamically by the DMRG method to reach
a given value of absolute accuracy. The second row contains the number of electrons and orbitals of each test
calculations and below the fraction of filled orbitals is listed.

CH, H,0 F, CH, H,0 F, CH,
L 6,13 10,14 14,14 6,23 8,24 18,18 6,57

Filling 0.230 0.357 0.500 0.130 0.166 0.500 0.052
A Eabs M max M max M max M max M max M max M max
1072 25 40 280 150 130 170 300
1073 40 60 350 280 320 520 480
1074 100 140 800 370 440 1100 620
1075 160 300 1450 580 650 1800

106 230 420 670 820

1077 300 530 720

108 360 650 880

10°° 420 780

to optimize the ordering in a recently published paper. Weresults obtained for the real-space DMRG procedure, we
have not analyzed their solution yet. have shown that it is possible to set up the accuracy of the
Another field of study can be the optimization of the su-method in advance of the calculation by dynamically con-
perblock configuration. In our largest calculations for thetrolling the truncation error and the number of block states.
half-filled case(18 electrons in 18 orbitalsthe number of We have carried out a detailed QC-DMRG Study of the mol-
selected block states increased to 1500—-1800 with sizes @kyles HO, CH,, and K, obtained with various basis sets in
the Hilbert space of the superblock configuration increasingyger to show that the relative error scales with the maxi-
beyond 1000 000. In order to decrease the size of the Hilbeg},,m threshold value of the truncation error that was fixed in
space we have derived an alternate protocol, modifying thgyyance of the calculation. We found that the linear relation-

3upertb)lo;:(l§ conf\i/g\;/ur?tiond aSL'BR.(ijn a ts)limilar way afs Was  ship between the logarithm of the relative error and the loga-
one by Alang. YVe found a considerably WOrse pertormancy, ., of the maximum value of the truncation error is inde-
for these calculations. We believe that in the future it can

; . . éaendent of the number of orbitals and the fraction of filled
worthwhile analyzing the speed of convergence for variou orbitals for the cases considered. Based on these results we
superblock configurations. )

have presented an alternative approach to extrapolate the FCI
V. SUMMARY energy, a method that could also improve the accuracy of the
: finite-size scaling method when theDMRG procedure is

We have applied the momentum-space version of th@pplied in solid state physics. We have addressed new prob-
DMRG procedure in quantum chemistry in order to study thelems related to the inaccuracy of startmg bl_ock state configu-
accuracy of the method. Analyzing the eigenvalue spectrurf@tion and presented solutions for achieving faster conver-

of the reduced density matrix and based on our previougence and better stability of the target state.
The maximum number of block states that the algorithm
CH2,|L=23
| Bt MR

' ' ' ' - selected in the dynamic mode was in the range of 1500—
M_ =164,0rd,, TRE =16~

800

2000, the largest size of the Hilbert space related to the su-
perblock Hamiltonian was 800 000—1 200 000, and the long-
est chains that we have studied contained 57 sites.

Although momentum is not a good quantum number if the
k-DMRG method is applied in quantum chemistry, there are
still a few remarks which might indicate why the QC-DMRG
method can work well in the field:

(1) In most of the cases the calculations carried out in the

Number of Block states
B
o
S

mmmjf:: %ra&-TF‘REE'Wj%: small U limit are known to converge fast.
o o Moe=t64, Ord, TRE =10 | (2) The number of electrons is fixed for a given molecule.
Moo =164, 010, TRE =10 Therefore, doubling the length of the system will not imply,

in general, keeping the fraction of filled orbitals fixed. Thus
calculating a molecule with more basis states would mean
. . . . . R longer chains but with a lower filling value that usually has a
20 40 60 80 100 120 140 160 better convergence.
teration (3) The practical use of the DMRG method in quantum
FIG. 5. Incorrect ordering can drive the DMRG procedure to achemistry can open a route to active spaces well beyond
local minimum. today’s limits, yielding CASSCF solutions with a relative

Relative error
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error of the correlation energy on the order of #6105, program required 200-500 Mbyles of RAM, running about
This can be realized by a few thousand block states, which i80—60 h on an Athlon XP 1800 processor to achieve
also expected to hold for longer chains as well. Thereforel0 *—10"° a.u. absolute accuracy. The scaling of computa-
we believe that 3000—4000 block states will provide satistional time with the number of orbitals still cannot be deter-
factory results for all the chain lengths and fillings that are ofmined because of the development stage of our code, but as
interest in the immediate future. a rough indication it took some 15 h for the eight-electron,

(4) Although the structure of the Hamiltonian is very 24-orbital chain and more than a week for the six-electron,
complicated, it is decomposed into several parts. This mearfs/-orbital case. The present stage of our code limited the
that during the diagonalization step each component of theumber of block states around 2000. However, solving a few
Hamiltonian can be applied on the wave function indepentechnical points we expect that the feasiliecan be in-
dently. Therefore the method is an excellent candidate fogreased significantly in the future.
parallel computers.

Our source code was written in the the framework of the
Matlab programming environment and the+@ code as
well as the stand alone code was produced by the Matlab This research was supported in part by the Fonds der Che-
compiler. Most of our numerical calculations were carriedmischen Industrie, the Hungarian Research FUQ@KA)
out on Athlon XP 1806 processors under Linux and in Grant No. 30173 and 32231 and by the EC Center of Excel-
some cases on a SGI 3000 machine of the local computdéence progran(Grant No. ICA1-CT-2000-700290.L. also
center. For the largest calculations comprisingl acknowledges useful discussions with Jly®m and G.
=1700-2000 block states {[lectrons and 18 orbitglshe  Fah.
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