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Controlling the accuracy of the density-matrix renormalization-group method:
The dynamical block state selection approach

Ö. Legeza,* J. Röder, and B. A. Hess
Chair of Theoretical Chemistry, Friedrich–Alexander University Erlangen–Nuremberg, Egerlandstrasse 3, D-91058 Erlangen, Germa

~Received 29 April 2002; published 19 March 2003!

We have applied the momentum space version of the density-matrix renormalization-group method
(k-DMRG! in quantum chemistry in order to study the accuracy of the algorithm in this new context. We have
shown numerically that it is possible to determine the desired accuracy of the method in advance of the
calculations by dynamically controlling the truncation error and the number of block states using a novel
protocol that we dubbed dynamical block state selection protocol. The relationship between the real error and
truncation error has been studied as a function of the number of orbitals and the fraction of filled orbitals. We
have calculated the ground state of the molecules CH2 , H2O, and F2 as well as the first excited state of CH2.
Our largest calculations were carried out with 57 orbitals, the largest number of block states was 1500–2000,
and the largest dimensions of the Hilbert space of the superblock configuration was 800 000–1 200 000.

DOI: 10.1103/PhysRevB.67.125114 PACS number~s!: 75.10.Jm
tri

o
li

ac
t

s
c

th

lic

ule
tio
s
si

G
ith
ril
m
o

so
i b
ul
-

la
te

p
ca
d
ub

ion,
is

be-
ror,
to

cy
at
p in
ut a

test
nitial
of
he
the
nd
and
of

hed
d of

ally

fly
the
to
the

he
try.
the
our
ithm

e
pli-
in
I. INTRODUCTION

Since its first appearance in 1992, the density-ma
renormalization-group~DMRG! method1,2 has witnessed
great developments and it soon became one of the m
widely applied numerical methods in one-dimensional so
state physics. Within a short period of time, the real sp
renormalization method had been further extended and
momentum space version of the method (k-DMRG! was in-
troduced by Xiang3 in 1996. Unfortunately, test calculation
on the Hubbard model indicated relatively poor performan
compared to the real space version which hindered fur
application of the method for several years.

Quite recently, DMRG was used to study models of cyc
polyenes4 and models of polyacetylene.5 S. R. White and
co-workers have successfully appliedk-DMRG in quantum
chemistry to calculate the ground state energy of molec
represented in the framework of the usual linear combina
of atomic orbitals~LCAO! approximation, using small basi
sets.6,7 His results seemed challenging and attracted con
erable attention, which stimulated various groups8,9 to start
to work on the new field.

Among all the various models studied with the DMR
method during the past decade the accuracy of the algor
has always been a problem that is still not satisfacto
solved. The recent application of DMRG in quantum che
istry gives further grounds for benchmark investigations
this question within the new framework. In all attempts
far, the accuracy of the method was analyzed a posterior
means of comparison with the corresponding f
configuration-interaction~FCI! benchmark results. For in
stance, recently, Chan and Head-Gordon9 reexamined the
scaling behavior of the real error, developing an extrapo
tion approach as a function of the number of block sta
(M ).

In this paper we show that in contrast to previous a
proaches, the desired accuracy of a DMRG calculation
be established in advance if we take into account the
namic change of the reduced density matrix of the s
0163-1829/2003/67~12!/125114~10!/$20.00 67 1251
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system. Within our approach, described in the next sect
we will be able to show that if the number of block states
adjusted dynamically, a linear relationship is obtained
tween the logarithm of the real error and the truncation er
which, in turn, can be used to derive a novel method
extrapolate to the full CI result.

Our main goal in this paper is to determine the accura
of thek-DMRG method in quantum chemistry and show th
the algorithm converges to the error margin that was set u
advance of the calculation. We have therefore carried o
detailed DMRG study of CH2, H2O, and F2 molecules with
various numbers of orbitals, each representing different
cases. We have also addressed problems related to the i
block state configuration that arise within the framework
the k-DMRG method. Since the focus of the paper is on t
dynamic scaling of the density matrix and parameters of
DMRG method, we recall only those main definitions a
formulas in this paper that are relevant to the question
not well known in quantum chemistry. Therefore, details
our numerical procedure and developments will be publis
elsewhere. Although we have analyzed the general tren
the numerical error of thek-DMRG method through
quantum-chemical calculations, our results can be gener
applied to other quantum system as well.

The setup of the paper is as follows. In Sec. II we brie
describe the main steps of the DMRG method and recall
main sources of the numerical error. Section III is devoted
the details of the numerical procedure used to determine
dynamic scaling behavior of the density matrix and to t
problems that appear in the context of quantum chemis
Section IV contains the numerical results and analysis of
observed trends of the numerical error. The summary of
conclusions and a few general comments about the algor
are presented in Sec. V.

II. BACKGROUND OF THE NUMERICAL ERROR

A detailed description of the DMRG algorithm can b
found in the original papers, Refs. 1–3, and 10 and its ap
cation in the context of quantum chemistry is summarized
©2003 The American Physical Society14-1
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two recently published papers Refs. 8 and 9. Therefore,
present only the most important formulas and definitions t
are relevant to the question of accuracy.

The main purpose of the DMRG method is to treat t
electron-electron correlation in a rigorous way that allo
the minimization of the energy and calculation of measura
quantities. Since the DMRG method is a variational pro
dure, it always provides an upper bound for all the calcula
quantities. In the context of quantum chemistry, a o
dimensional chain that is studied by the DMRG procedur
built up from the molecular orbitals that were obtained, e
in a Hartree-Fock calculation. The electron-electron corre
tion is taken into account by an iterative procedure that m
mizes the Rayleigh quotient corresponding to the Ham
tonian describing the electronic structure of the molecu
given by

H5(
i j s

Ti j cis
† cj s1 (

i jkl ss8
Vi jkl cis

† cj s8
† cks8cls , ~1!

and thus determines the full CI wave function. In Eq.~1! Ti j
denotes the matrix elements of the one-particle Hamilton
comprising the kinetic energy and the external electric fi
of the nuclei, andVi jkl stands for the matrix elements of th
electron repulsion operator. In order to show the key c
cepts and parameters of the numerical renormalization
cedure and the drawbacks that hinder the analytical stud
the method, we have included a brief overview of t
renormalization-group methods.

A. Block renormalization-group method

In order to determine the eigenvalue spectrum of
Hamiltonian corresponding to an infinite long quantum ch
~in the context of quantum chemistry, this means infinite
many orbitals! built up from quantum sites represented byq
basis states, blocks were formed from each of two adjac
sites, and the Hamiltonian was determined from the n
configuration as is shown on Fig. 1. First the Hamiltonian
the model is diagonalized for two sites and then theq lowest-
energy states are selected out of theq2 states, whereby the
so-called block site will represent the two-site problem in
subsequent iteration step. Operators defined on the selecq
basis states are obtained from the original site operators
cording to a renormalization procedure given by the equa

Aren5OAO†, ~2!

where operatorO is constructed from the selectedq eigen-
functions of the two-site problem. In order to retain the ori
nal structure of the Hamiltonian operator, on-site~in the fig-
ure labeled byh) and intersite~denoted byl) coupling
constants are renormalized as well, shown ash8 andl8. In
the subsequent step theq2-dimensional Hamiltonian operato
is diagonalized for two adjacent block sites, and againq
states with lowest energy are selected for the block site
will represent four sites in the following iteration step. Sin
the structure of the original Hamiltonian operator is retain
and the number of coupling constants is unchanged, cha
of the coupling constants~flow equations! can be studied
12511
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analytically. When subsequent iteration of the renormali
tion steps leaves the coupling constants unchanged, the a
rithm has reached a fix point that represents the infin
length ~thermodynamic! limit of the model.

B. Wilson’s renormalization-group method

Besides a few analytically solvable models it turned o
that the block renormalization-group~BRG! method can be
used only numerically and its systematically increasing in
curacy hindered the application of the method. In 1975 W
son introduced another procedure for the numerical ren
malization method11,12 in which a quantum chain with finite
lengthL is built up systematically from quantum sites repr
sented byq basis states by keeping the size of the Hilb
space fixed as is shown on Fig. 1.

The main idea of the method was again to solve
Hamiltonian of the model for two sites and to selectq8
lowest-energy states out of theq2 states, whereq8 was in-
creased systematically up to a maximum value during
first few iteration steps based on the energy spectrum
kept constant afterwards. Operators were renormalized
cording to Eq.~2!. The key difference of Wilson’s method
compared to the BRG method is that Wilson did not ret
the original structure of the Hamiltonian operator but an
lyzed the scaling behavior of the energy as a function of
chain length. Systematical application of the renormalizat
procedure introduces new terms and coupling consta
However, many of them become irrelevant for longer chai
and the method also drives the system into the fixed po

FIG. 1. Schematic plot of the spin couplings in the BRG, W
son’s and DMRG renormalization methods.
4-2
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The major drawback of the method is that since the struc
of the Hamiltonian changes with increasing chain lengt
flow equations cannot be defined and the method canno
studied analytically.

C. Density-matrix renormalization-group method

In spite of the powerful properties of Wilson’s procedur
the numerical error of the method grew systematically w
increasing chain length, a drawback that has led to the
that longer chains could not be studied numerically. Besi
the truncation of the Hilbert space through the renormali
tion procedure, the numerical error had another main sou
When an additional unrenormalized site was added to
block site, the coupling was taken into account only betwe
the block site and this new site. In each iteration step
problem was therefore reduced to an isolated two-site p
lem with open boundary conditions. These observations
led White to construct a larger auxiliary system~superblock
configuration! that contains an environment in addition to t
original block site problem to take care of the boundary
fects in a more reliable way, as shown in Fig. 1. According
the figure the structure of the superblock configuration
defined asBL••BR , where BL represents the block site,
represents the new site under consideration, the additi
•BR configuration represents the environment, andML and
MR denote the number of block states, respectively. In or
to minimize the error introduced in the representation of
block state in the truncation process, White has constru
theO matrix using the eigenfunctions of the reduced dens
matrix of the subsystemBL•. It has been recognized in
different context13 that the reduced subsystem density mat
describes the interactions of two subsystems in a particul
efficient way. Using these two key ingredients, the DMR
iteration step first includes the diagonalization of the Ham
tonian constructed on the superblock configuration to ob
the target state. The target state is chosen from the ei
value spectrum of the Hamiltonian that we want to calcula
It can also be a linear combination or even an incoher
superposition of more eigenstates as well. IfuI & and uJ& de-
note basis states forBL• and •BR , respectively, then the
target state is written as

C target5 (
I ,J

MLq,MRq

c I ,JuIJ&, ~3!

where c I ,J is determined by diagonalization of the supe
block Hamiltonian. After the target state is obtained, the
duced density matrix of theBL• subsystem

r I ,I 85(
J

c I ,Jc I 8,J ~4!

is diagonalized and theM eigenstates with largest eigenva
ues (va) are selected to build up theO matrix. The site
operators are renormalized according to Eq.~2!. The error of
the truncation procedure in the DMRG method can be m
sured by means of the deviation of the total weight of
selected states from unity, which is defined as
12511
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TRE512 (
a51

ML

va . ~5!

The initial BL andBR configurations contain one site pe
block each; thus the superblock Hamiltonian is determin
on q4 basis states restricted to the conserved quantum n
bers such as the total spin or the number of electrons. In e
iteration step the size of the chain is increased by two s
until the desired chain length is reached as is shown on
1. This procedure is the so-calledinfinite latticealgorithm. In
order to average out long-wavelength fluctuations, the su
block configuration is asymmetrized by increasing the size
BL and decreasing the size ofBR until the left block contains
L23 sites and the right block one site. The same proced
is then carried out in the reverse way and when the confi
ration is symmetric again, the first sweep of the so-cal
finite latticealgorithm ends. This procedure can be repea
infinitely many times and is usually stopped when the ene
does not change within two subsequent sweeps. Ther
again a major difference between the BRG and DMR
methods that makes the analytical study of the scaling
havior of the latter method very complicated: In the DMR
method the number of selected block states~M! is larger then
q and the original structure of the Hamiltonian is not r
tained, thus flow equations of the coupling constants can
be determined.

According to the two key ingredients of the method, t
numerical error of the DMRG algorithm has basically tw
independent components, which are the truncation error
the environmental error. The first error is generated dur
the renormalization step due to the truncation of Hilb
space, while the environmental error appears because
chain is built up from blocks and the long-range interactio
are cut off. As it was shown in Ref. 14 using thefinite lattice
method, the environmental error can be averaged out,
finally there remains a linear relationship on a log-log sc
between the real error and truncation error.

The truncation error, on the other hand, strongly depe
on the shape of the eigenvalue spectrum of the reduced
system density matrix and on the number of block states k
for the subsequent iteration step. It has also long been kn
that the structure of the density matrix depends on the c
cality of the model. For systems with finite energy gap a
coherence length the density-matrix eigenvalue spectra
cays exponentially, while for critical models with infinite co
herence length it has a power-law tail. Besides these, in
case of analytically solvable models, the structure of the
genvalue spectra of the density matrix determines the en
spectrum of the model as was shown in Ref. 15.

In addition to all the points discussed above, the decay
the eigenvalue spectrum also changes as the target state
closer to the exact solution. It is therefore evident that sele
ing out theM most probable states with highest eigenvalu
will be an insufficient condition to control the accuracy
the DMRG method. Instead, one has to take care of the
namic changes of the spectrum of the density matrix a
keep the truncation error below a given threshold. Since
structure of the density matrix represents the whole sys
4-3
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as well, it naturally arises that the number of block sta
should be selected out in such a way that the truncation e
satisfies an initial condition that was introduced in advan
of the calculation.

D. Quantum-chemical DMRG method

In the context of quantum chemistry~QC!, a one-
dimensional chain containingL molecular orbitals is gener
ated by ordering the orbitals employed to build up the m
tiparticle states with increasing energy or by other rul
analogous tok points in thek-DMRG method.3 These mo-
lecular orbitals are calculated by standard numerical meth
of quantum chemistry.

It worth noting that the optimal ordering of the orbitals
the chain is still an open field of research. Note that
initial chain length of the QC-DMRG method isL from the
very beginning and the block operators for the left and ri
blocks are generated by a ‘‘warm up’’ procedure3 instead of
the infinite lattice algorithm. The effect of the electron
electron correlation is taken into account by the system
sweeps in the framework of thefinite latticealgorithm. Since
the overall performance of the QC-DMRG method diffe
from the real-space version, it is also expected that n
problems arise due to the inaccuracy of the starting w
function. These will be also investigated in detail in the ne
section.

The most straightforward procedure to represent the
renormalized site operators is to define them on spin-orb
basis states, in which caseq is equal to two. The phase op
erator is then taken care of automatically by the stand
definition of fermion creation and annihilation operators. O
the other hand, if orbitals from, e.g., a restricted Hartr
Fock ~RHF! calculation are employed, it is possible to defi
a supersite built up from the ordered tensor product of sp
down and spin-up basis states, in which caseq is 4 and the
phase factor must be explicitly taken care of. This meth
offers considerable efficiency gains because in this way
chain is only half the size compared to an unrestricted
~UHF! type formulation, using spin orbitals for each sit
Thus the number of multiplications using quadratic auxilia
operators during the superblock Hamiltonian diagonalizat
procedure6 is roughly reduced by a factor of 4 compared
the spin-orbital formulation. In our implementation we ha
built up the chain from supersites.

III. CONTROLLING THE ABSOLUTE ERROR
OF THE DMRG METHOD

A. Dynamic adjustment of the number of block states

In order to control the accuracy of the DMRG procedu
the selection of the multiparticle states of the superblo
Hamiltonian that are used for renormalization is obviou
the decisive issue. With all states featuring eigenvalues of
subsystem reduced density matrix kept larger than a fi
parameter that we called DMcut during the renormalization
procedure, the truncation error can be as small as DMcut, but
it can be larger if the integrated contribution of the neglec
states is still significant. To avoid such a problem we prop
12511
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to adjust DMcut dynamically; thus the number of selecte
states is increased as long as the integrated weight of
glected states is larger then a maximum value TREmax,
which can be fixed at the beginning of the calculation. T
enables us to set up the desired accuracy of the DMRG
gorithm at the beginning of the calculation. The number
states will be adjusted by this protocol in a dynamical fa
ion, depending on the structure of the density-matrix sp
trum.

Since the truncation error is not immediately connected
the error in energy, one can control only the relative error
this way. In order to control the absolute error in ener
TREmax should be scaled by the Hartree-Fock energy or
the energy value calculated by the DMRG method, wh
usually has the same order of magnitude as the exact v
even after the first few iterations. We then expect the rela
error of the energy to converge to this scaled thresh
within a few sweeps of the DMRG procedure.

From a technical point of view, dynamic selection
block states has another important advantage. In the stan
DMRG calculation the number of block states is fixed. W
use of our dynamical adjustment, the largest number of bl
states required to guarantee a given truncation error de
ops, however, only close to the symmetric configuration d
ing the sweep. For most of the remaining steps the thresh
TREmax is reached with a considerably smaller number
block states, leading to substantial gains in efficiency in
renormalization step and the construction of the next sup
block Hamiltonian, when dynamic block state selection
used.

Within the framework of our procedure, it is also evide
why previously developed extrapolation methods based
functions of the number of block states failed to estimate
scaling behavior of the error in a rigorous way. The value
M is only one of the factors that determines the largest va
of the truncation error during a full sweep. By using it e
clusively, changes of the density matrix are not taken care
Thus it is almost impossible to derive a reliable formula
estimate the real error as a function of the number of blo
states for the general case.

B. Initial condition for the number of block states

The straightforward application of dynamical control
DMcut during the first few sweeps is complicated by the fa
that there is a major difference between the wave function
a given chain length generated by theinfinite lattice algo-
rithm of the real-space version and that generated by or
ing the orbitals in the case of thek-DMRG procedure. In the
first method, the wave function of the target state is alwa
very close to the wave function that is obtained after seve
sweeps of thefinite latticemethod; however, this is not tru
in general for the momentum space version when the w
function strongly depends on the ordering of the orbitals. F
example, it typically happens that during the first few ste
the density-matrix eigenvalue spectra will have very fe
states with large eigenvalues and many states with alm
zero weight. In this case, the number of selected states
be cut drastically, which will limit seriously the size of th
4-4
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Hilbert space in the subsequent iterations, causing the a
rithm being trapped in a local minimum. This situation ha
pens in other optimization methods as well, and, for
ample, in the case of simulated annealing, the so-ca
adiabatic heating is used to move the algorithm out from
attractor of a local minimum. In the context of the DMR
method the introduction of virtual states is required in t
situation, which means that we also keep those states
had almost zero eigenvalue up to a fixed number that
called Mmin during the first two sweeps. Usually after th
first sweep the decay of the density-matrix spectrum
comes smooth and it changes dynamically as the target
gets closer to the exact one.

C. New criteria for convergence and better stability
for extrapolation of the FCI energy

Up to now the condition for the number of sweeps w
determined in an empirical way, using the condition that
algorithm is stopped when the energy value obtained by
subsequent sweeps no longer changes. Within the framew
of the dynamical block state selection we have a new cr
rion for the convergence. We have found that after conv
gence not only the energy value remains stable, but also
eigenvalue spectrum of the density matrix and thus the bl
states selected out by the algorithm for a givenBL••BR con-
figuration are the same during all subsequent sweeps.
though all subsequent sweeps leave the density matrix
changed, still a fixed point is not obtained since the struct
of the density matrix and thus the truncation error and
relative error after convergence can slightly change~but
within the same order of magnitude!, depending on the initia
condition, for example, on differentMmin . On the other
hand, we can treat the energy values obtained for var
TREmax values as points on a flow equation that converge
the fixed point at the end, which is the FCI energy. Based
previous results1,14,16–18and those presented in the next se
tion, we can extrapolate to the FCI energy using the equa

ln
E2EFCI

EFCI
5a ln~TRE!1b, ~6!

wherea, b, andEFCI are parameters determined from the
of the numerical result. As discussed below, our numer
results show that the value ofa is close to 1.

D. Error of the excited states due to the inaccuracy of starting
block states

Besides the problem of the initial structure of the dens
matrix there is another difficulty that stems from the inacc
racy of the starting block wave functions. In contrast to t
infinite latticemethod, when the target state always rema
in the same spin symmetry or changes sign periodically a
function of the chain length,19 the symmetry of the targe
state depends on the initial ordering in the case of
k-DMRG method. This can lead to a major error, because
DMRG algorithm can lose the target state if its symme
12511
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changes during the first few sweeps. It is possible, for
ample, that with targeting the second level, the coefficie
of the wave function of the ground state and excited sta
may mix and the spin symmetry of the target state w
change randomly. Thus the energetically lowest level will
lost and the third level will become the target state.

E. Introduction of local symmetry operators

In order to avoid the random change of the spin symm
try, we have introduced partial spin adaption, making s
that the permutational symmetry of the spins is odd for ev
S and even for oddS, which implements the spin-reversa
operator that flips the spins along thez directions, as was
shown in Ref.19. In case of thek-DMRG method the starting
block wave function is constructed in such a way that
contains basis states withNup andNdown quantum numbers
thus fixing ms and their symmetric components~i.e., states
with 2ms) as well. During the renormalization procedure
state and its partner belong to same eigenvalue of the de
matrix; thus the dynamic selection rule automatically ensu
that both of them are kept. It worth noting that this is not t
full adaption of S2 symmetry, which would be clearly be
desirable but more complicated to achieve in the framew
of the DMRG method. Thus, components of the singlet a
quintet levels can still mix, but this would not be a proble
since they are usually well separated. Application of the c
responding spin-reversal operator effectively ensures tha
target state will remain in the spin symmetry sector that w
fixed at the beginning of the calculation.

From a technical point of view, this has the addition
advantage that one needs to target only the first level in b
spin symmetry sectors, which always requires less bl
states to achieve a given accuracy. In addition, the numbe
auxiliary operators needed during the diagonalization of
superblock Hamiltonian is decreased by a factor of 2, wh
doubles the speed of the algorithm. For the half-filled ca
the particle-hole symmetry operator can be introduced in
same way. Details of the numerical procedure will be pu
lished elsewhere.

F. Error of the expectation value of one- and two-particle
operators

The expectation value of the one- and two-electron ope
tors can be calculated from the one-particle density ma
according to

^A&5Tr~rA!. ~7!

where A is a L by L matrix of operator for a first-orde
property~e.g., dipole moment! in the same representation a
the originalTi j andVi jkl were. So withA5Ti j Eq. ~7! pro-
vides the kinetic energy of the FCI wave function. Once t
target state is obtained, the one-particle reduced density
trix can be formed for anyBL• configuration as

r i j 5^C targetu(
s

cis
† cj suC target&, ~8!
4-5
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TABLE I. Geometries and benchmark energy values for the calculated molecules. The number of correlated orbitals is
parentheses, unless it agrees with the total number of orbitals.

Basis set Bond distance Bond angle Electrons Orbitals HF energy FCI energ
~a.u.! ~deg! ~a.u.! ~a.u.!

H2O Double-z ~DZ!a 1.843 45 110.565 10 14 276.009 838 276.157 866
H2O DZPb 1.889 73 104.500 8 25~24! 276.040 551 276.25 6634
CH2

1A1 DZc,d 2.022 30 129.4667 6 14~13! 238.909 437 238.932 107
CH2

3B1 6 14 ~13! 238.979 393
CH2

1A1 cc-pVDZe 2.043 240 129.112 075 6 24~23! 238.865 895 239.006 652
CH2

3B1 6 24 ~23! 238.921 824 239.041 774
CH2

1A1 cc-pVTZe 2.022 30 129.4667 6 58~57! 238.932 575 239.087 006
F2 DZc,d 2.643 73 14 20~14! 2198.707 822 2198.915 252
F2 Split valencef 2.687 97 18 18 2198.484 167 2198.761 551

aReference 23.
b
Reference 24. DZP denotes a double-zeta basis set with polarization functions.

c
Reference 25.

d
Reference 26.

e
Reference 27. cc-pVDZ denotes the correlation-consistent polarized valence double-zeta basis set, cc-pVDZ denotes the c
consistent polarized valence triple-zeta basis set.

f
Reference 28.
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wherei and j denote sites in the left block. The one-partic
density matrix for the right block is determined in a simil
way. If i is in the left block andj in the right block, thenr i j
is constructed from the one-particle operators of the t
blocks. The latter case was used to calculate two-point
relation functions in real-space DMRG and showed that
error of the one- and two-point correlation function is larg
by one or two orders of magnitude compared to the erro
the ground state energy. Since the dynamic block state se
tion rule controls the accuracy of the ground state, it a
ensures the same scaling behavior of the correlation fu
tions as well. Besides that, the fluctuation of the error sho
in Ref. 14 because of the fluctuation of the truncation er
within a full sweep caused by to the constant value ofM also
diminishes. The two-particle reduced density matrix can
obtained in a similar way,

G i jkl 5^C targetu(
ss8

cis
† cj s8

† cks8cklsuC target&, ~9!

where the four-operator term is decomposed into four in
pendent terms depending on the distribution of thei , j ,k,l
indices along the chain, making use of the usual partia
contracted operators ofk-DMRG3.

IV. NUMERICAL RESULTS

In order to study the performance of thek-DMRG method
in quantum chemistry, we followed a route similar to the o
we used to study the accuracy of the real-space DM
method.14 We performed calculations on molecules with d
ferent properties for which the DMRG method is expected
possess different scaling behavior. Thus we have carried
a detailed DMRG study of the absolute error of the energy
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a function of the number of orbitals and the fraction of fille
orbitals on molecules CH2, H2O, and F2. The Hartree-Fock
orbitals in a given basis of Gaussian orbitals were calcula
and theTi j andVi jkl matrix elements were transformed to th
Hartree-Fock basis using theMOLPRO program package,20

which was also used for the calculation of the benchm
~FCI! energies.21,22

We used various basis sets and geometries for the m
ecules that we selected for benchmark calculations. The
ometries, references to the basis sets employed, and re
obtained in self-consistent field~SCF! calculations as well as
FCI energies are detailed in Table I. The models emplo
for the water molecule have also been used in the Wh
Martin study.6 We include these cases here in order to ena
a direct comparison with previous work. A more interesti
test case was to study the CH2 molecule, for which we report
energies for the triplet ground state as well as for the fi
excited ~singlet! state. Hartree-Fock orbitals of the close
shell singlet configuration were employed in all calculatio
on CH2. Calculations of the FCI energy of the triplet sta
were carried out in both thems50 andms561 spin sectors.
In order to show that the relative error scales to TREmax
independently of the fraction of filled orbitals we have stu
ied the half-filled chains by calculating the ground state of2
with 14 electrons and 14 orbitals~freezing the fluorine 1s
orbitals and discarding the two highest virtual orbitals! and
with 18 electrons and 18 orbitals. The latter calculation p
vides evidence that QC-DMRG method is capable of prov
ing cutting-edge complete active space SCF~CASSCF! cal-
culations with the potential to push their limits to activ
spaces well beyond a size that is feasible nowadays by s
dard methods.

A. Dynamic selection of Block states

QC-DMRG calculations on the water molecule demo
strate the dynamic selection of block states. In the first t
4-6
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panels of Fig. 2 we have plotted the number of block sta
that were selected in a calculation correlating 10 electron
14 orbitals by means of the QC-DMRG method, starti
with different values ofMmin .

The number of block states for the left and right blocks
denoted byML and MR , respectively. In the third panel o
Fig. 2 we give the relative error@(EDMRG2EFCI)/EFCI# of
the calculation as a function ofMmin and the the iteration
step. The value of TREmax was set to 10210 in advance of the
calculations. It is evident from the figure that the maximu
number of block states does not depend on the prescr
minimum value (Mmin), although it is reached faster fo
largerMmin . In order to show that the converged value of t
accuracy does not depend on the threshold value~once a
large enough value was taken! we have also included th
result obtained withMmin5164. It can be seen in the figur
that the relative error converges to the error margin de
mined by TREmax in all cases, but the speed of convergen
strongly depends onMmin . In order to show that the QC
DMRG algorithm is trapped in a local minimum ifMmin is
chosen too small, we carried out calculations withMmin
54,8 and found indeed the number of block states be
hindered to increase. Similar test calculations on lon
chains indicated that a larger value ofMmin564–100 is
needed. Thus we suggest that in order to to avoid probl
related to local attractors and to obtain a faster performa
a value ofMmin no less than 150–200 should be taken
longer chains.

Investigating the scaling of the relative error shown in t
third panel of Fig. 2, one can find long plateaus where
accuracy of the method is not improved. In the usual DMR
calculations going through such plateaus costs almost
same amount of time as calculating the region where
error drops significantly. By contrast, it can be seen in

FIG. 2. Dynamically selected number of left and right blo
statesBL and BR , respectively, for two values of the minimum
threshold valueMmin516,64 and the relative error as a function
iteration obtained withMmin516,64,164. In all cases the 10 ele
trons of the H2O molecule were correlated in the doublez water
model with 14 orbitals, and TREmax510210 was set in advance o
the calculations.
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figure that the minimum value ofM occurs in the region of
the plateaus, resulting in a very fast transverse of these
gions. In addition, the maximum values ofML andMR occur
at different iteration steps. Thus for a given superblock c
figuration we find that even if one of them is very large, t
other is usually much smaller. These two facts finally op
mize the computational time and memory resources withi
full sweep of the method.

In order to show the dynamic change of the structure
the reduced subsystem density matrix, we have plotted
Fig. 3 the eigenvalues of the reduced subsystem density
trix obtained at the symmetric configuration~left and right
blocks contained 6 orbitals! from a calculation of the F2
molecule represented by 14 electrons and 14 orbitals. Th
are several conclusions that one can draw from the fig
First, the density-matrix spectrum decays very rapidly dur
the first few sweeps (S50 is part of the ‘‘warm up’’ proce-
dure!, which clearly implies the requirement of the introdu
tion of virtual states. On the other hand, as the target s
gets closer to the FCI limit, the fraction of eigenvalues larg
then 10215 increases significantly. It can be seen from t
figure that the decay of the spectrum can be fitted by a lin
line on a semilogarithmic scale for the largest eigenvalu
Thus the density-matrix spectrum decays exponentia
where the slope is related to the finite coherence length of
model. On the other hand, the slope of the line changes
function of sweeps until the algorithm converges. Once
relative error converged to the error margin determined
TREmax ~which means forS.7 in the case at hand! the slope
of the decay remains the same, and this is the reason wh
number of selected block states are the same for the su
quent sweeps. It is worth noting that since the decay of
density matrix can be fitted by a straight line in this mod
the truncation error can be estimated as a function of
block states. However, in order to obtain a rigorous scal
behavior of the error as a function of block states, one ha

FIG. 3. Eigenvalue spectrum of the reduced subsystem den
matrix obtained for the F2 molecule after the end of the sweeps~S!
of thefinite latticemethod. In the legend we have also included t
number of selected block states (ML ,MR) as a function of sweeps
4-7
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include the change of the slope as well, which in gene
strongly depends on the static and dynamic correlation
the models.

B. Relationship between the relative error and TREmax

In order to test that the relative error converges to a gi
value of the error margin determined by TREmax we have run
independent calculations for all the test molecules by adj
ing TREmax from 1023 up to 10211. The relative error of the
first excited state obtained for the CH2 molecule with 6 elec-
trons and 13 orbitals usingMmin532 as a function of the
iteration step and TREmax is shown in Fig. 4. It can be see
in Fig. 4~a!. that the relative error of the first excited sta
also converges to the values of the error margin determ
by TREmax set up in advance of the calculations. The co
verged value of the relative error as a function of TREmax for
the first excited as well as for the ground state is plotted
Fig. 4~b!. It is clear from the figure that there is a line
relationship between the converged value of the relative e
and the truncation error, the fitted slope being 0.98. Fitt
our results obtained for the various tests cases also with
ferentMmin values, we have found that the slope was alwa
between 0.95 and 1.1. Calculations in thems561 spin sec-
tors provided a faster convergence for the ground state
expected. The residual splitting of thems50,1,21 compo-
nents of the triplet level was as low as 10212 a.u.

Calculations performed on the other test molecules w
different number of basis states and for various values
Mmin showed that the relative error scales to TREmax inde-
pendently of the number of orbitals, fraction of filled orb
als, and the threshold level of the number of block states
course, the convergence gets slower for longer chain len
and we usually needed 6–8 sweeps to gain an absolute
curacy of 1024 a.u. in the case of the CH2 molecule calcu-
lated with 57 orbitals.

From a technical point of view, one can start a DMR
calculation by setting TREmax to 1023 and when the algo-

FIG. 4. Calculations for CH2 with L513 sites shows the rela
tionship between relative error and TREmax. The straight line is the
result of the fit. GS denotes the triplet gound state, and 1XS den
the first excited~singlet! ground state.
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rithm has converged~the energy is unchanged, and the nu
ber of block states are unchanged, the slope of the den
matrix remains the same! TREmax can be adjusted by an or
der of magnitude until the desired maximum value of t
accuracy is reached. Using the calculated energy values
the truncation error obtained for various values of TREmax
~which is slightly below TREmax) the FCI energy can be
estimated by Eq.~6!. This equation contains three free p
rameters (EFCI ,a,b) to determine from the fit. However
based on our results we can set the parametera to 1. We have
found that one can gain 1–3 orders of magnitude impro
ments in the error of the correlation energy by the extra
lation method and that fixing the parametera to 1 always
provides an upper bound. In order to obtain a more accu
fit one needs more data points. Thus TREmax should be ad-
justed in even smaller steps, especially if the calculations
carried out only up to a relative accuracy of 1025, but we
have not done such an analysis yet.

In the case of solid state physics, chains with vario
lengths are calculated and the thermodynamic limit is
trapolated by the the so-called finite-size scaling method.
ing our procedure one can improve the energy values
tained for a given lengthL by 2–3 orders of magnitude. Thu
the overall performance of the finite-size scaling proced
can be improved significantly.

C. Scaling of the number of block states

As we have shown, the number of block states depend
the structure of the reduced density-matrix spectrum. Thu
is not possible to determine the scaling behavior of the ma
mum number of block states as a function of the numbe
orbitals and the fraction of filled orbitals in a rigorous wa
On the other hand, in order to present a rough indication
computational resources used during our calculations
have we have collected the values of the maximum num
of block states selected dynamically by our the method
Table II.

D. Other factors that affect the accuracy

It is important to note that our scaling results are obtain
only for a proper ordering of the orbitals in the initial chai
We have found that for some cases the accuracy can be
proved significantly if the HF levels were ordered with i
creasing energy~labeled by Ord2 in Fig. 5!, while for other
cases we had to ‘‘mirror’’ the chains and placed orbitals o
cupied in the HF configuration to the center of the cha
~labeled by Ord1). A nonoptimal ordering can in fact lead th
method to be trapped by a local minimum. This situation
shown explicitly in Fig. 5 indicated by Ord1. Even if Mmin
was almost tripled, the relative error converged to the sa
local minimum, which, on the other hand, also supports
previous statements thatMmin does not affect the final con
vergence significantly. Changing the ordering, we ha
found for Ord2 that the algorithm has always converged
the value of the error margin determined by TREmax. Study-
ing the optimal ordering can be a major field of resear
Chan and Head-Gordon9 has already suggested a procedu

es
4-8
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TABLE II. The maximum number of the block states selected dynamically by the DMRG method to
a given value of absolute accuracy. The second row contains the number of electrons and orbitals of e
calculations and below the fraction of filled orbitals is listed.

CH2 H2O F2 CH2 H2O F2 CH2

L 6,13 10,14 14,14 6,23 8,24 18,18 6,57
Filling 0.230 0.357 0.500 0.130 0.166 0.500 0.052
DEabs Mmax Mmax Mmax Mmax Mmax Mmax Mmax

1022 25 40 280 150 130 170 300
1023 40 60 350 280 320 520 480
1024 100 140 800 370 440 1100 620
1025 160 300 1450 580 650 1800
1026 230 420 670 820
1027 300 530 720
1028 360 650 880
1029 420 780
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to optimize the ordering in a recently published paper.
have not analyzed their solution yet.

Another field of study can be the optimization of the s
perblock configuration. In our largest calculations for t
half-filled case~18 electrons in 18 orbitals!, the number of
selected block states increased to 1500–1800 with size
the Hilbert space of the superblock configuration increas
beyond 1 000 000. In order to decrease the size of the Hil
space we have derived an alternate protocol, modifying
superblock configuration asBL•BR in a similar way as was
done by Xiang. We found a considerably worse performa
for these calculations. We believe that in the future it c
worthwhile analyzing the speed of convergence for vario
superblock configurations.

V. SUMMARY

We have applied the momentum-space version of
DMRG procedure in quantum chemistry in order to study
accuracy of the method. Analyzing the eigenvalue spect
of the reduced density matrix and based on our previ

FIG. 5. Incorrect ordering can drive the DMRG procedure to
local minimum.
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results obtained for the real-space DMRG procedure,
have shown that it is possible to set up the accuracy of
method in advance of the calculation by dynamically co
trolling the truncation error and the number of block stat
We have carried out a detailed QC-DMRG study of the m
ecules H2O, CH2, and F2 obtained with various basis sets
order to show that the relative error scales with the ma
mum threshold value of the truncation error that was fixed
advance of the calculation. We found that the linear relati
ship between the logarithm of the relative error and the lo
rithm of the maximum value of the truncation error is ind
pendent of the number of orbitals and the fraction of fill
orbitals for the cases considered. Based on these result
have presented an alternative approach to extrapolate the
energy, a method that could also improve the accuracy of
finite-size scaling method when thek-DMRG procedure is
applied in solid state physics. We have addressed new p
lems related to the inaccuracy of starting block state confi
ration and presented solutions for achieving faster conv
gence and better stability of the target state.

The maximum number of block states that the algorith
selected in the dynamic mode was in the range of 150
2000, the largest size of the Hilbert space related to the
perblock Hamiltonian was 800 000–1 200 000, and the lo
est chains that we have studied contained 57 sites.

Although momentum is not a good quantum number if t
k-DMRG method is applied in quantum chemistry, there a
still a few remarks which might indicate why the QC-DMR
method can work well in the field:

~1! In most of the cases the calculations carried out in
small U limit are known to converge fast.

~2! The number of electrons is fixed for a given molecu
Therefore, doubling the length of the system will not imp
in general, keeping the fraction of filled orbitals fixed. Th
calculating a molecule with more basis states would m
longer chains but with a lower filling value that usually has
better convergence.

~3! The practical use of the DMRG method in quantu
chemistry can open a route to active spaces well bey
today’s limits, yielding CASSCF solutions with a relativ
4-9
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error of the correlation energy on the order of 1024–1025.
This can be realized by a few thousand block states, whic
also expected to hold for longer chains as well. Therefo
we believe that 3000–4000 block states will provide sa
factory results for all the chain lengths and fillings that are
interest in the immediate future.

~4! Although the structure of the Hamiltonian is ve
complicated, it is decomposed into several parts. This me
that during the diagonalization step each component of
Hamiltonian can be applied on the wave function indep
dently. Therefore the method is an excellent candidate
parallel computers.

Our source code was written in the the framework of
Matlab programming environment and the C11 code as
well as the stand alone code was produced by the Ma
compiler. Most of our numerical calculations were carri
out on Athlon XP 18001 processors under Linux and i
some cases on a SGI 3000 machine of the local comp
center. For the largest calculations comprisingM
51700–2000 block states (F2 electrons and 18 orbitals! the

*Permanent address: Research Institute for Solid State Phy
H-1525 Budapest, P.O. Box 49, Hungary.
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