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Self-interaction-corrected pseudopotential scheme for magnetic and strongly-correlated systems
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Local-spin-density-functional~LSDA! calculations may be affected by severe errors when applied to the
study of magnetic and strongly correlated materials. Some of these faults can be traced back to the presence of
the spurious self-interaction in the density functional. Since the application of a fully self-consistent self-
interaction correction is highly demanding even for moderately large systems, we pursue a strategy of approxi-
mating the self-interaction-corrected potential with a nonlocal, pseudopotentiallike projector, first generated
within the isolated atom and then updated during the self-consistent cycle in the crystal. This scheme, whose
implementation is totally uncomplicated and particularly suited for the pseudopotental formalism, dramatically
improves the LSDA results for a variety of compounds with a minimal increase of computing cost.
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I. INTRODUCTION

Among the innumerable successes of the local-den
~LDA ! and local-spin-density~LSDA! approximations to
density-functional theory~DFT!, there are also well-known
systematic failures1,2 that compromise the accuracy of pr
dictions for a range of properties, especially in magnetic a
strongly correlated3 compounds.

Typical examples of LSDA failures are the series
transition-metal monoxides,4 improperly described in LSDA
as either small-gap Mott-Hubbard antiferromagne
insulators5,6 ~MnO, NiO! or even ferromagnetic and nonma
netic metals~FeO, CoO, CuO!,5,7 whereas according to ex
periments these materials are charge-transfer antiferrom
netic wide-gap insulators. A similar situation occurs for t
high-Tc compounds La2CuO4 and YBa2Cu3O6 which are de-
scribed in LSDA as nonmagnetic metals instead of as a
ferromagnetic insulators,8 and for the perovskite manganite
~e.g., LaxCa12xMnO3),9,10 for which the LSDA fails to pre-
dict the correct magnetic and orbital orderings. In gene
LSDA favors metallic and ferromagnetic ground states o
the observed antiferromagnetic insulating ground states.
is particularly harmful in the case of hexagonal YMnO3,
which is antiferromagnetic and ferroelectric, but is describ
as a metal within LSDA,11 thus preventing the possibility o
calculating any ferroelectric properties at all.

These failures can be, at least in part, attributed to
presence of the self-interaction~SI! in the LSDA energy
functional, i.e., the interaction of an electron charge with
Coulomb and exchange-correlation potential generated
the same electron. The SI vanishes in the thermodyna
limit for delocalized states, but is present in systems cha
terized by spatially localized electron charges such asp,
3d, and 4f electrons. As a consequence of the SI, the bi
ing energies, the on-site Coulomb energies~i.e., the Hubbard
U parameter!, and the exchange splitting of thed andf states
are underestimated, whereas the hybridizations of catiod
and anionp states and the corresponding band widths
overemphasized.

Since, for materials with partially filled d states, the o
site Coulomb energy should be much larger than the cha
transfer energy betweenp andd electrons, it is clear that the
0163-1829/2003/67~12!/125109~15!/$20.00 67 1251
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suppression ofU and the overestimation of thep-d hybrid-
ization may change dramatically the character of the b
structure, with a tendency to favor metallic and ferroma
netic ground states over insulating antiferromagnetic sta
Furthermore, within the LSDA Kohn-Sham~KS! description
based on a local, orbital-independent potential, orbital a
charge orderings cannot be properly accounted for.

The presence of SI and the possible strategies for el
nating the SI in density-functional theories are long-stand
issues which go back to the Thomas-Fermi and the Sl
(Xa) approaches.12 A large amount of literature has bee
produced13–17 within the context of the LSDA. Particularly
fundamental are the works by Perdew and Zunger15,17 which
proposed a form of self-interaction correction~SIC! within
LSDA ~SIC-LSDA!, and successfully applied it to the calcu
lation of atomic properties.

More recently, Svane and co-workers presented a l
series of works18–28 which attempted the highly challengin
application of the fully self-consistent SIC-LSDA to ex
tended systems with encouraging results. However, the
SIC-LSDA requires a large computing effort when applied
extended systems even for materials with small unit ce
and becomes prohibitive for larger systems.

A useful alternative to this approach has been sugge
by Vogel and co-workers.29–31They approximated the SI par
of the KS potential with a nonlocal, atomiclike contributio
included within the pseudopotential construction. Th
scheme, applied to nonmagnetic II-VI semiconductors a
III-V nitrides, is capable of remarkable improvements up
the LSDA results while keeping the computational cost co
parable to that of an ordinary pseudopotential calculation

Inspired by these results, in this paper we develop
approach that is in the same spirit as that of Ref. 29, but
be applied to more general cases, and in particular, to m
netic and highly correlated systems where there is a coe
ence of strongly localized and hybridized electron charg
The main innovation of our formalism is the introduction
orbital occupation numbers in the electron KS Hamiltonia
The pseudopotentiallike SIC~pseudo-SIC! is rescaled by the
occupation numbers calculated self-consistently within
crystal environment, so that the SI coming from localize
hybridized, or completely itinerant states may be discrim
©2003 The American Physical Society09-1



im
t

tio
e

ou

s
n

e
IC
te

im

-
c
ic

s

ur
re

in
an
on

hi

ve

w
nd
te
p

n

t
rte
ot
D
al

-
n
b
a

d
o-
re
b
ch
s
h

the
his

er-

in
IC
e
-

we
ch,

-

a-
ot

d at
nd.
ith

f the
elf-

s-
gh

ipli-
be

I
her-
en-
the
,
cy.
sed
on

si-

t
ar-
is
o-

ee-
ner-

as
u-
the
t,

nt
t a
or-
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nated accordingly. Also, these occupation numbers discr
nate between valence and conduction bands so that only
former are corrected, in accord with the idea that conduc
states are itinerant, thus SI free. Furthermore, our schem
generally applicable to insulators as well as metals, with
the necessity of knowing the character of the materiala pri-
ori. This is essential for compounds which are erroneou
described as metals within LSDA, such as the hexago
YMnO3, treated in Sec. IV E.

A second major difference between our approach and R
29 lies in the way, in which relaxation corrections to the S
potential are accounted for. In Ref. 29 they are incorpora
as an additional, orbital-dependent number which is
ported from atomic energy difference calculations~i.e., the
so-calledDSCF method!. In contrast, in our case the relax
ation contribution is included directly as an analytical corre
tion in the SIC potential projector, and no further atom
calculations are needed.

In this paper we test the pseudo-SIC on three classe
materials, including the wide-band gap insulators~e.g., ZnO
and GaN!, the transition-metal oxides~MnO and NiO!, and
the manganese oxides (YMnO3). Our main focus is on the
electronic properties~i.e., the band energy structure! of these
materials, since we want to verify the capability of o
single-electron Hamiltonian to reproduce the main featu
of photoemission spectra. For some of these compounds
also calculated the theoretical structure by total-energy m
mization. In general, we obtain very encouraging results
clear systematic improvements over the LSDA descripti
without considerable increase of computing effort.

Note that we have implemented the pseudo-SIC wit
the ultrasoft pseudopotential method32 ~USPP!. This is in-
strumental in keeping a moderate computational cost e
for large unit cells containing atoms with 2p and 3d elec-
trons.

As is customary when a new scheme is introduced,
compare our results with those of other common beyo
LDA approaches. According to the set of results presen
here, the pseudo-SIC ranks among the most accurate. In
ticular, it seems to perform equally well~or even better! than
the very popular LDA1U.33 Although a detailed compariso
between pseudo-SIC and LDA1U is not the aim of this
paper, we can point out some potential advantages for
pseudo-SIC. First, it does not require parameters impo
from an external theory. Second, it can be applied to b
magnetic and nonmagnetic compounds, whereas the L
1U is constructed to correct spin-polarized and/or orbit
ordered band structures.

Finally, within LDA1U or even within the exact SIC
LSDA a choice of which orbitals are localized in space a
thus, which orbitals are to be corrected, has to be made
fore the calculation, and the final result depends on this
sumption. Instead, in pseudo-SIC the correction is applie
all the orbitals indiscriminately, and no choice of orbital l
calization is required. This is an advantage in case whe
discrimination of the electron charge localization cannot
establisheda priori. This happens in nonbulk systems su
as surfaces and interfaces, when localized surface state
resonance states are present, or even in bulk materials w
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ever the charge localization is not, or not only, due to
chemical nature of the involved electrons. Examples of t
kind are the superconductor cuprates, in which thed orbital
charges have different localizations corresponding to diff
ent physical solutions.

The remainder of this paper is organized as follows:
Sec. II we review the main features of earlier work on S
implementations in LSDA. In Sec. III we describe th
pseudo-SIC formulation applied in combination with norm
conserving pseudopotentials~NCPP!. The extension of the
pseudo-SIC to USPP is given in the Appendix. In Sec. IV
report our results obtained within the pseudo-SIC approa
and finally in Sec. V we present the conclusions.

II. OVERVIEW OF PREVIOUS WORK

The SI effects inatomic calculations are extensively ex
plained in the seminal paper by Perdew and Zunger.17 In the
following we briefly summarize the most fundamental fe
tures. Due to the SI, the tail of the KS potential does n
recover its physical long-range limit,21/r . Thus negative
ions which are stable experimentally cannot be describe
all in LSDA, since the outermost eigenstates are unbou
The atomic total energies are severely overestimated w
respect to the experimental values, as a consequence o
reduction in binding energy caused by the spurious s
screening in the KS potential.

Consistently, the LSDA KS eigenvalues strongly overe
timate the experimental electron removal energies. Althou
the KS eigenvalues represent, in general, Lagrange mult
ers and the comparison with the removal energies may
questioned, calculations17 clearly show that in atoms the S
represents, by far, the largest source of mismatch. Furt
more, it can be proved that the highest occupied KS eig
value of the exact density-functional theory equals
atomic ionization potential.34 Thus, at least for this quantity
the discrepancy must be attributed to the LSDA inaccura

The SIC-LSDA proposed by Perdew and Zunger is ba
on the straightforward subtraction of the SI contributi
from the LSDA KS potential:

VHXC
s @n,m#→VHXC

s @n,m#2VHXC
s @ni

s#, ~1!

wheren andm are the total charge and magnetization den
ties, andni

s is the spin-charge density of thei th orbital. It is
understood that inVHXC

s @ni
s# the magnetization density is se

equal to 1, i.e., the single-electron charge is fully spin pol
ized. Despite its conceptual simplicity, this modification
able to systematically improve total energies, ionization p
tentials, and electron affinities, giving a much better agr
ment between KS eigenvalues and removal or addition e
gies.

Notwithstanding this initial success, the SIC-LSDA h
not enjoyed a large popularity in the first-principles comm
nity, mainly because the correction severely compromises
feasibility of the LSDA, introducing an orbital-dependen
spatially localized~i.e., nonperiodic! contribution in the KS
potential. Thus different wave functions experience differe
Hamiltonians, and are no longer orthogonal. This is no
serious drawback in atomic calculations, since the non
9-2
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SELF-INTERACTION CORRECTED PSEUDOPOTENTIAL . . . PHYSICAL REVIEW B 67, 125109 ~2003!
thogonality is a small effect and the atomic orbitals can
easily forced to be orthogonal during the self-consist
cycle.17

In contrast, the direct application of Eq.~1! to extended
systems~where the solutions of the KS equations are Blo
states! is very challenging. First of all the SI of a Bloch sta
is an ill-defined quantity that depends on the normalizat
of the wave function, and vanishes asV21/3 in the thermo-
dynamic limit, whereV is the system volume. Thus, if w
assume that the electron charges are properly describe
Bloch states, the SIC becomes immaterial and discardab

Clearly this is not necessarily true in general. In cases
simple metals or semiconductors with mostly covalent int
actions~e.g., bulk Si!, we can safely assume that the SI
discardable. However, in many systems the electron cha
retain atomiclike features such as small band dispersion,
a spatial distribution strongly localized around their i
cores. A clear example of the variable influence of the S
given by the energy gap of semiconductors: for bulk Si
discrepancy between the theoretical and experimental en
gaps~0.7 eV and 1.17 eV, respectively! must be attributed to
nonlocality and many-body effects. Instead, in LiF the S
accounts for almost 95% of the LDA gap error.35

Thus, in order to have a nontrivial SIC, a description
terms of localized orbitals must be adopted, which cau
violation of the translational invariance and consequently
inapplicability of the Bloch theorem. Furthermore, the SI
LSDA eigenstates are not invariant under unitary rotatio
within the subspace of the occupied orbitals, and the S
LSDA solutions strictly depend on the assumption of cho
ing each orbital as extended~thus self-interaction-free! or
localized ~therefore subject to SIC!. We will show an ex-
ample of this in Sec. IV D.

To our knowledge the implementation of a fully se
consistent SIC-LSDA approach for extended systems
pioneered by Svane and co-workers.18 They carried out a
series of applications to a remarkable range of materials
cluding the family of transition-metal monoxides,18,24 the
high-Tc superconductor parent compounds La2CuO4 ~Refs.
19,20! and YBa2Cu3O6,27 the rare-earth materialsg-Ce and
a-Ce,22,23,25and Yb ~Ref. 26! and Pu~Ref. 28! monopnic-
tides and monochalcogenides, obtaining systematic impro
ments over the LSDA results. Other SIC-LSDA applicatio
to transition-metal oxides,21,36 implemented within different
computational methodologies, are also present in the lit
ture.

The major drawbacks of these SIC-LSDA implemen
tions are the rather complicated formulation with respec
the LSDA and the increase of computing cost that makes
SIC-LSDA almost impractical for large systems. One reas
for this increase is the use of big supercells needed to
scribe the localized orbitals~e.g., ;500 atoms for bulk
MnO19,36!. Indeed, in the works previously cited, the SIC
LSDA is implemented using a basis of linear muffin-tin o
bitals within the atomic sphere approximation, whereas
our knowledge, there are no examples of implementati
using the more expensive plane-wave basis and pseud
tentials.
12510
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An important step towards a practical~albeit approxi-
mate! expression for the SIC-LDA was accomplished by V
gel and co-workers29 by incorporating the atomic SIC within
the nonlocal pseudopotential projectors~SIC-PP! generated
from the free atom. The idea underlying this approach is t
the SI potential of a localized electron in the crystal can
well approximated by the SI which the same electron ex
riences in the free atom. The SIC-PP turned out to be q
efficient for describing the properties of some highly ion
compounds with atomiclike, poorly hybridized bands, su
as II-VI semiconductors,29 III-V nitrides,30 and silver
halides.31 For these materials, the energy-band structures
culated with the SIC-PP show a much better agreement w
photoemission spectroscopy measurements than the
band-structure calculations.

Our pseudo-SIC can be considered a generalization of
SIC-PP approach. It is still based on the idea of replacing
SIC potential with a nonlocal projector, but now the proje
tor depends on the orbital occupation numbers calcula
self-consistently within the crystal. The details are describ
in the following section.

III. FORMULATION OF THE PSEUDO-SIC

A. Kohn-Sham equations within pseudo-SIC

Although the calculations reported in this paper have b
performed within the USPP method,32 here we describe the
pseudo-SIC formalism adapted to NCPP. This allows a s
pler formulation and an easier understanding of the lo
behind this approach.~The generalization to USPP is give
in the Appendix.!

Within pseudo-SIC, the SIC potential is cast in terms o
nonlocal projector, which resembles the nonlocal part of
pseudopotential:

VHXC
s @n,m#→VHXC

s @n,m#2(
i

uYi&VHXC
s @ni

s#^Yi u. ~2!

Here n and m are the periodic charge and magnetizati
densities of the crystal and the SI is written in terms
atomic quantities only:i 5@( l i ,mi),Ri # is a cumulative index
for angular momentum quantum numbers and atomic co
dinates,Yi are projector functions~e.g. spherical harmonics!,
andni

s are the charge densities of the~pseudo! atomic orbit-
als f i ,

ni
s~r !5pi

suf i~r !u2, ~3!

wherepi
s are orbital occupation numbers. Through Eq.~2!,

the Bloch wave functions are projected onto the basis of
atomic orbital chargesni

s . For each projection, the Bloch
state is corrected by an amount corresponding to the ato
SIC potentialVHXC

s @ni
s#. Thus the SIC is applied withou

really introducing a dependence of the KS Hamiltonian
the individual Bloch wave functions, and the difficulties
the SIC-LSDA approach are overcome.

The presence ofpi
s in Eq. ~3! is a major difference of our

approach. In Ref. 29 the occupation numbers are implic
set to 1, i.e., the SIC potentials are generated from fu
9-3
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ALESSIO FILIPPETTI AND NICOLA A. SPALDIN PHYSICAL REVIEW B67, 125109 ~2003!
occupied atomic states. Clearly, this cannot be a cor
choice, in general, since the occupation numbers may
come fractions whenever hybridization, degeneracy, or s
polarization effects arise. Furthermore, moving from the f
atom to the crystal, thepi

s can change a great deal. F
instance atomic orbitals which are fully occupied in t
atomic ground state may become conduction states in
crystal ~e.g., Zn 4s in ZnO!.

Thus thepi
s must be allowed to be fractional and must

recalculated self-consistently within the crystal. Within
plane-wave basis set it is straightforward to calculatepi

s as
atomic orbital projections onto the manifold of the occupi
Bloch states,

pi
s5(

nk
f nk

s ^cnk
s uf i&^f i ucnk

s &. ~4!

These quantities are analogous to the local orbital oc
pations calculated within the FLAPW implementation of t
LDA1U.37,38 In the limit of an isolated atom thepi

s recover
the atomic values, whereas in the case of hybridized bo
they rescale the atomic SIC by the amount of charge
actually occupies the atomic orbital. This fact has a fun
mental consequence: since in most cases empty bands
dominant characters from orbitals whose occupation nu
bers are close to zero, the SIC potential will not affect th
bands. This is consistent with the general assumption
conduction states are itinerant, thus SI-free.~In fact, even if
the conduction states are not itinerant, it is theoretically j
tified to apply the SIC only to the occupied states, since th
are the states which actually see their own charge.39! Notice
that partially occupied bands can be treated on the same
ing as filled bands, thus the scheme can be applied to
insulators and metals.

Following the suggestion of Ref. 29, for the purpose
numerical efficiency we recast the pseudo-SIC as a f
nonlocal, Kleinman-Bylander projector:

V̂SIC
s 5(

i

ug i
s&^g i

su

Ci
s

, ~5!

where

g i
s~r !5VHXC

s @ni
s~r !#f i~r ! ~6!

and

Ci
s5^f i uVHXC

s @ni
s#uf i&. ~7!

The pseudo-SIC KS equations are

@2¹21V̂PP1V̂HXC
s 2V̂SIC

s #ucnk
s &5enk

s ucnk
s &, ~8!

whereV̂PP is the pseudopotential projector, andenk
s are the

KS eigenvalues.
The recalculation ofVHXC

s @ni
s# at each iteration of the

self-consistency for each atom and angular component w
result in a major increase of computing cost. A large sav
of time can be achieved by assuming a linear dependenc
the SI potential on the occupation numbers,
12510
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VHXC
s @ni

s#5pi
sVHXC

s @ni
s ;pi

s51#, ~9!

so thatVHXC
s @ni

s ;1# ~i.e., the SI potential for the fully occu
pied orbital! is set in the initialization, and only thepi

s needs
to be updated during the self-consistency. Equation~9! is
exact for the Hartree term, which is the dominant contrib
tion for large occupation numbers, whereas it introduce
nonlinearity error ofO(pi

1/32pi) in the exchange-correlation
part.17

The time saving provided by the linear scaling argum
is instrumental for calculating structural relaxations and el
tronic properties of large-sized systems. Furthermore, the
sumption of linear scaling allows us to introduce relaxati
effects in a very simple way into the pseudo-SIC schem
Indeed if an electron state is localized its energy will chan
with the orbital occupation. Thus, in order to compare t
calculated eigenvalue with the photoemission spectrosc
data ~i.e., with the electron removal energy!, the effects of
the electron relaxation must be subtracted out of the o
electron potential. In DFT the energy required to remove
fraction p of an electron from a one-electron localized sta
is40–42

DE~p!5E~p!2E~0!5E
t50

t5p

dte~ t !, ~10!

where e is the corresponding KS eigenvalue. The leadi
dependence of the LSDA KS potential~and eigenvalues! on
the orbital occupations is indeed contained in its SI pa
Thus, if de is the SI part of the LDA eigenvalue, within
linear scaling we haveDE(p)51/2 p2 de(1). It follows that
the SIC relaxation energy, 1/2p2 de(1), can besubtracted
out by rescaling the SIC potential as follows:

VHXC
s @ni

s#→ 1

2
VHXC

s @ni
s#. ~11!

Through Eq.~11! we directly incorporate in the pseudo
SIC KS equations the electron removal energy due to the
contribution. We point out that the eigenvalue relaxation
very important in order to match the photoemission spectr
copy results. Discarding this contribution, the SIC eigenv
ues would strongly overestimate the electron removal en
gies.

Notice that, if the KS eigenvalues did not depend on
occupation numbers, according to Eq.~10! they would be
equal to the electron removal energies. This is in fact
case in the Hartree-Fock calculations and in any other the
which obeys Koopman’s theorem. This property does
hold in LDA or any LDA-related scheme~such as GGA,
SIC, etc.! where the potential explicitly depends on the o
bital occupation numbers.

As is customary in atomic calculations, we assume
radial approximation for the atomic orbital charges, so t
the SIC projectors can be written as

g l ,ml ,n
s ~r !5

1

2
pl ,ml ,n

s VHXC
s @nl ,n

s ~r !;1#f l ,ml ,n
s ~r !, ~12!
9-4
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SELF-INTERACTION CORRECTED PSEUDOPOTENTIAL . . . PHYSICAL REVIEW B 67, 125109 ~2003!
where n labels the atom type, andnl ,n
s (r ) is the radial

pseudo-charge density of orbital (l , ml) ~in radial approxi-
mation this does not depend on ml). Finally, the normaliza-
tion coefficients are

Cl ,ml ,n5
1

2
pl ,ml ,n

s E drVHXC
s @nl ,n

s ~r !;1#@f l ,ml ,n
s ~r !#2.

~13!

In summary, except for the electron occupation numb
all the other atomiclike ingredients can be imported from
code used for the pseudopotential generation, and
Kleinman-Bylander projectors for the SIC are set during
initialization process. Since the calculation of thepl ,ml ,n

s

through Eq.~4! is not very demanding, the global comput
tional cost of the pseudo-SIC for each self-consistent ite
tion is roughly equal to that of the basic LSDA. Howeve
within pseudo-SIC the number of self-consistent iteratio
required to reach the self-consistency can be larger tha
LSDA due to oscillations in the values of the occupati
numbers.

B. Total Energy within pseudo-SIC

In the preceding section we estabilished the form of
pseudo-SIC KS equations. Here we formulate a suitable
pression for the total-energy functional. We point out th
within our scheme, a physically meaningful energy fun
tional which is also related to Eq.~8! by a variational prin-
ciple is not available.~It is, by construction, within LSDA
and SIC-LSDA.!

In SIC-LSDA the energy functional is17

ESIC@n,m#5E@n,m#2(
i ,s

EHXC@ni
s#, ~14!

whereE@n,m# is the LSDA energy functional andEHXC@ni
s#

the Hartree exchange-correlation energy of thei th fully spin-
polarized electron charge

EHXC@ni
s#5E drni~r !S 1

2
VH@ni

s~r !#1EXC@ni
s~r !# D ,

~15!

where VH is the Hartree potential andEXC is the local
exchange-correlation energy density. For the pseudo-SIC
tal energy we adopt the same expression as Eqs.~14! and
~15!, with the orbital chargesni

s given by Eqs.~3! and ~4!.
Notice that

dEHXC@ni
s#

dpi
s

5Ci
s . ~16!

Equation~16! represents the Janak thoerem40,42applied to
the SIC contribution sinceCi

s @see Eq.~7!# is the SI part of
the atomic eigenvalue. In terms of the pseudo-SIC eigen
ues@Eq. ~8!# the total energy can be rewritten as
12510
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ESIC@n,m#5(
i ,s

f nk
s enk

s 2(
s

E drns~r !VHXC
s @n~r !,m~r !#

1EHXC@n,m#1Eion

1
1

2 (
nk,s

f nk
s ^cnk

s uV̂SIC
s ucnk

s &2(
i ,s

EHXC@ni
s#,

~17!

whereEion is the usual Ewald term.( i ,sEHXC@ni
s# produces

a gentle modification to the LSDA energy functional where
the fifth term in Eq.~17! is a strongly varying contribution
which compensates the same contribution present in
pseudo-SIC eigenvalues. Without this compensation,
~17! would give very inaccurate total energies which wou
be unphysically far from the LSDA values. A numerical e
ample of this behavior will be shown in Sec. IV C.

IV. RESULTS

A. Technical details

In this work we compare results from our plane-wa
USPP ~Ref. 32! pseudo-SIC implementation with resul
from conventional LSDA USPP method. The loc
exchange-correlation energy functional is modeled using
the Perdew-Zunger interpolation formula.17 The use32 of
USPP allows us to obtain well-converged results with mo
erate cut-off energies~35 Ry for MnO and YMnO3, 40 Ry
for ZnO and 45 Ry for GaN!. In order to have highly trans
ferable USPP, two projectors per angular channel are
cluded for all the atoms. The 3d10 ~Ref. 10! electrons in ZnO
and GaN are treated as valence states, while the semico
s and p electrons are placed in the valence for the LSD
calculations and in the core for the pseudo-SIC calculati
~the reason will be explained in the following section!. For
total-energy calculations we use up to 83838 grids of spe-
cial k points.43

B. Atomic ingredients for the pseudo-SIC

The atomic quantities necessary to build the pseudo-
Hamiltonian are the pseudo atomic orbitalsf l ,ml ,n , required
in the Kleinman-Bylander projector and for the calculati
of pi

s , and the SIC potentialsVHXC
s @nl ,n

s (r );1# for the re-
spective pseudo-orbital charges calculated at full electron
cupation~we use pseudopotential and not all-electron atom
functions for obvious reasons of smoothness.!

To illustrate the impact of the atomic SIC, in Fig. 1 w
compare the Zns, p, and d ~unpolarized! pseudopotentials
(Vl) to the same quantities minus the corresponding cor
tions DVl

SIC5VHXC@nl ,n ;1#. As expected, the SIC make
the electron potentials more attractive and recovers
physical long-range limit22/r ~in Ry!.

Note that, before transferingVHXC@nl ,n ;1# to the crystal,
the long-range tails must be cut off, since the SIC should
as a local correction: each SIC potential must be direc
applied only to the electron states localized on the sa
atom, otherwise the overlapping Coulomb tails would gi
rise to an unphysical SIC overestimation. In Fig. 2 we rep
9-5
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ALESSIO FILIPPETTI AND NICOLA A. SPALDIN PHYSICAL REVIEW B67, 125109 ~2003!
VHXC@nl ,n ;1# ~times r ) for both pseudo- and all-electro
orbital charges~the latter show the cusps corresponding
the wave-function nodes!, and the pseudo-orbital chargesr l .
Since only the productsVHXC@nl ,n#r l contribute in the
Kleinmann-Bylander construction, the SIC potentials can
cut off as soon as the orbital charges vanish, without los
accuracy.

It is important to notice thatVHXC
s @nl ,n

s ;1# is not very
sensitive to the atomic valence configuration from which i
actually generated. For example, the integrated value
VHXC

s @n3d ;1#f3d
2 ~i.e., the atomic SI! changes by only;1%

if calculated in the 3d104s2, the 3d104s1, or the 3d104s0

configuration. In other words, despite being valence dep
dent,VHXC

s @nl ,n ;1# is fairly transferable.
Notice also that the pseudo-SIC does not interfere w

the pseudopotential construction, and the same pseudop
tials used for the LSDA calculations can be used for
pseudo-SIC as well, due to the presence of the occupa

FIG. 1. Zn pseudopotentials (Vl) and the corresponding atomi
SIC (DVl

SIC) calculated at full orbital occupation. The correctio
lowers the one-electron potential and recovers the physical lo
range limit22/r which is missing in LDA.

FIG. 2. Zn atomic SIC for pseudo~solid line! and all-electron
~dashed line! orbital charges. The pseudo-orbital charges~dotted
lines! are plotted on the positivey axis.The pseudo-SIC are cutoff a
a diagnostic radius where the orbital charges vanish.
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numbers. Indeed, in the limitpi50 the SIC vanishes, and th
Hamiltonian must continuously recover its LSDA value.

However, for pseudo-SIC calculations we prefer to bu
pseudopotentials which take into account the SIC for
core states. Although this correction does not significan
modify the valence properties,44 there are reasons related
pseudopotential transferability which suggest that the S
should be included in the core states. First, the SIC co
push strongly localized valence states~e.g., the semicore
states! down in energy, and unphysically close to the co
states if the latter are not shifted down consistently. Seco
the application of SIC to the semicore states may better
tify their inclusion in the core even if in LSDA they need t
be treated as valence states. This is the case for the Y 4s and
4p electrons, and the Ga 3d electrons.

A third reason is even more fundamental: increasing
binding energy and the space localization of the core st
makes them less sensitive to charge relaxation or chem
activity. This reinforces the hypothesis that core states
insensitive to the chemical environment, which is at the ba
of the pseudopotential approximation.

The transferability of the atomic SIC to the extended s
tem can be tested with the same procedure used for
pseudopotentials: the atomic pseudo-SIC Hamiltonian sho
recover the all-electron, fully self-consistent SIC-LSDA e
genvalues. We generally find that pseudo-SIC and S
LSDA atomic eigenvalues agree within;1%.

Finally we stress a fundamental point: our procedure
not in any way restricted to the use of pseudopotentials
any other particular choice of basis functions. For exampl
can be equally well implemented within the context of a
electron methods. The advantage of using the pseudopo
tial approach relies on the fact that the SIC projectors can
easily assembed from quantities~such as the projections o
Bloch states onto atomic orbitals! which are usually calcu-
lated in any pseudopotential-based computing code.

C. Wide-gap semiconductors

We begin our series of pseudo-SIC applications with t
of the most prototypical wide-gap semiconductors, wurtz
ZnO and GaN. These materials are ideally suited as
cases, since the LDA predictions for the band energies s
some easily recognizable discrepancies with the abunda
available photoemission spectroscopy data. Furtherm
these compounds are of technological interest due to t
applications in optoelectronic and piezoelectric devic
Nowadays the electric polarization and related properties
be efficiently calculated by first-principles techniques.45 Thus
a theory able to repair the LDA description of the electron
structure will also be important for the accurate evaluation
dielectric and piezoelectric response.

Since ZnO and GaN show similar structural and ele
tronic behavior, we describe them together. In Table I
report our calculations within LDA and pseudo-SIC for th
equilibrium structural parameters. These parameters h
been evaluated by energy minimization within the full spa
of parametersa, c, andu (u is the anion-cation distance i
units of c). In general, the SIC volume is larger than th

g-
9-6
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SELF-INTERACTION CORRECTED PSEUDOPOTENTIAL . . . PHYSICAL REVIEW B 67, 125109 ~2003!
LDA volume, since the stronger electron localization due
the SIC enhances the electron screening and reduces
electron-ion interaction and the charge hybridization. This
generally a favorable correction, since it is well known th
within LDA ~or LSDA! the lattice parameters are underes
mated compared with the experimental values.

In the case of ZnO and GaN, however, our LDA valu
are already in excellent agreement~within less than;1%)
with the experiments and no correction would be requir
Happily, the pseudo-SIC calculations do not overcorrect
LDA values.~the reason will be explained later on the ba
of the band structure results!. This is an important aspec
since typical beyond-LDA methodologies, also not deriv
by variational principles, often improve the LDA descriptio
of the electron excitation spectra but are less accurate
LDA in the determination of the equilibrium structure.

In Fig. 3 our calculated LDA energy band structure
wurtzite ZnO is shown. For such strongly ionic compoun
each group of bands can be clearly labeled according
single, dominant orbital character as indicated in the figu

TABLE I. Equilibrium lattice parameters (a,c,u), band gap
(Eg), and averaged-band energy (Ed) for ZnO and GaN. All the
distances are in Bohr except the anion-cation distance,u, which is
in units of c. All the energies are in eV. For ZnO the experimen
values are from Ref. 46.

LDA Pseudo-SIC Expt.

ZnO
a 6.12 6.17 6.16
c 9.88 9.79 9.84
u 0.378 0.384 0.382
Eg 0.94 3.70 3.4
Ed 25.3 27.5 27.8
GaN
a 6.03 6.045 6.03~Ref. 47!
c 9.80 9.81 9.80~Ref. 47!
u 0.377 0.378 0.375~Ref. 47!
Eg 2.16 4.26 3.5~Ref. 46!
Ed 213.8 218.1 217.1 ~Ref. 48!

FIG. 3. LDA band structure for wurtzite ZnO. The orbital cha
acter for each group of bands is indicated.
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With respect to the photoemission spectroscopy results,
3d bands calculated within LDA are too high in energy a
overlap with thesp3 valence-band manifold. This produces
spuriousp-d hybridization which shrinks the energy range
the sp3 bands. Furthermore, there is the notorious probl
of the fundamental energy gap which is underestimated
;40% ~see Table I!.

All these undesirable features are largely overcome in
calculated pseudo-SIC band structure~Fig. 4!. The largest
SIC effect is a downshift of thed-band energies, which ar
now placed;3 eV below the center of thesp3-band mani-
fold, in excellent agreement with the experiments. Acco
ingly, thesp3-band manifold is;1 eV broader than in LDA.

Furthermore, the bands with O p orbital character, which
are the main contributors to the valence-band top~VBT!, are
also corrected for an amount of SI corresponding to th
average electron occupation (;0.8 for the Op orbitals!. In
contrast, the conduction-band bottom~CBB!, which is
mainly Zn s in character, is almost unchanged, since the Zs
orbital occupation is;0.1. As a consequence the pseud
SIC energy gap opens up to a value fairly close to the
perimental band gap.

Our results show a substantive agreement with the ca
lated SIC ZnO band structure of Ref. 29~they obtainEg
53.5 eV). However, the two methods act in quite differe
ways: in the approach of Ref. 29 all the bands~occupied and
unoccupied! are corrected by the atomic SIC potential of t
corresponding fully occupied orbital charges. Thus in Ref.
the increase of the energy gap with respect to the LDA
be roughly quantified as the difference between the SIC
the fully occupied Zn 4s and O 2p atomic eigenvalues. In-
stead, in our scheme only the occupied bands are corre
We belive that this is a more conceptually sound appro
for the reasons explained in Sec. III A.

In Fig. 5 we show the LDA band structure of wurtzit
GaN. As is usual in LDA calculations, the Gad band ener-
gies fall within the same energy range as the Ns bands, in
disagreement with the experiments which place thed bands
;3 eV below the Ns bands.48 This gives rise to a spuriou
s-d hybridization which causes an increase of lattice cons
due to the closed-shell repulsion enhanced by the resona
between states on neighboring sites49–51~i.e., Ns and Gad).
In our calculation this effect compensates the LDA tenden

l

FIG. 4. Pseudo-SIC band structure for wurtzite ZnO.
9-7
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ALESSIO FILIPPETTI AND NICOLA A. SPALDIN PHYSICAL REVIEW B67, 125109 ~2003!
of underestimating the lattice parameters, and cause
better-than-usual agreement with the experimental d
~Table I!. However, the description of the band structure a
pears grossly inappropriate when compared to the x-ray p
toelectron spectra.48 The s-d hybridization splits the Ns
bands into two sections, one placed above and the othe
low thed bands. Thes-d manifold is positioned only;6 eV
below the bottom of the valencesp3 manifold, and the en-
ergy gap is 40% smaller than the experimental value.

The pseudo-SIC corrects in large part the LDA descr
tion. In Fig. 6 we show the GaN band structure calcula
within pseudo-SIC. Here the Gad bands (Ed;218 eV) are
correctly located at;3 eV below the center of the N 2s
bands, thus the spuriouss-d hybridization is avoided and th
closed-shell repulsion reduced. This explains why the eq
librium lattice parameters calculated within pseudo-SIC
close to the LDA values although the pseudo-SIC is gen
ally expected to enhance the electron-ion screening.

Also, the binding energies of Gad and N s states are
increased by;4 eV and 2 eV, respectively, thus correctin
in large part the faults of the LDA description. Howeve
within pseudo-SIC the energy gap is somewhat overc
rected~it is ;0.9 eV larger than the experimental value!.

To conclude this section, in Fig. 7 we analyze the beh
ior of the pseudo-SIC total energy@Eq. ~17!# for zincblende
GaN as a function of the lattice constant in the region aro

FIG. 5. Band structure of wurtzite GaN calculated in LDA.

FIG. 6. Band structure of wurtzite GaN calculated in pseu
SIC.
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its experimental valuea058.505 Bohr.E1 is the functional
given by the first four terms of Eq.~17!. Clearly, its mini-
mum value is far out of the physically meaningful region.E2
is obtained by adding toE1 the fifth term of Eq.~17!, thusE2
equals the LSDA energy functional~except for the difference
in the wave functions!. This functional has a minimum valu
in excellent agreement with the experiments. Finally,ESIC is
E21( i ,s EHXC@ni

s#. This last term is almost independent
the lattice parameter, since it only changes through thepi

s ,
which are rather local quantities. As a consequence,ESIC and
E2 have similar behavior.

D. Transition-metal oxides.

The LSDA misrepresentations of the electronic propert
of the transition-metal oxides originate mainly from the d
scription of thed electron states. At variance with the no
magnetic semiconductors considered in the preceding
tion, in the transition-metal oxides thed states lie higher in
energy and closer to the fundamental gap, often overlapp
with the oxygenp states. Since in LSDA thed electron bind-
ing energies are severely underestimated, thed character is
generally dominant at the VBT, so these compounds are
scribed as the Mott-Hubbard insulators. This is in striki
contrast with the photoemission spectroscopy data that
scribe these materials as charge-transfer insulators~or even-
tually in the intermediate charge-transfer Mott-Hubbard
gime! with a majority or even dominant Op character at the
VBT.7

Furthermore the LSDA energy gaps for these mater
are even more severely underestimated than those of
III-V or II-VI semiconductors and in some cases the gap c
be vanishing. This is because the major driving force lead
to the formation of a gap separating bands of equal orb
character should be the on-site Coulomb energy U, bu

-

FIG. 7. Total-energy values for zincblende GaN as a function
the lattice constanta0. The meaning of the curves is explained
the text.
9-8
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SELF-INTERACTION CORRECTED PSEUDOPOTENTIAL . . . PHYSICAL REVIEW B 67, 125109 ~2003!
LSDA the energy gap can only open due to Hund’s rule a
the crystal field splitting. These are both of order 1 eV, i.
almost one order of magnitude smaller than U, and there
can be easily overcome by the band dispersion.

Finally, since the LSDA tends to broaden the space dis
bution of the electron charge and emphasize the interato
charge hybridizations, the local magnetic moments are g
erally underestimated with respect to the experimental
ues.

As applications of the pseudo-SIC to magnetic co
pounds we choose two of the most widely studied transiti
metal monoxides, MnO and NiO. For these materials we
compare our results with both experimental data and the
put of some common methodologies used for repairing
faults of the LSDA description.5,7 These schemes include th
SIC-LSDA,18,24,36 the LDA1U,33,24,52,37,38and the model
GW.53–56

The ground state of MnO and NiO is characterized
A-type antiferromagnetic ordering, which consists of~111!
ferromagnetic layers of Mn~or Ni! with alternating spin di-
rections, while the oxygens are nonmagnetic. The symm
is rhombohedral, with 4 atoms per primitive unit cell. In o
calculations we fix the lattice constant to its experimen
value (a058.37 Bohr and 7.93 Bohr for MnO and NiO, re
spectively!.

FIG. 8. LSDA band structure of MnO. The orbital character
indicated for each band. The orbitals are expressed in hexag
coordinates, i.e.,z is parallel to the@111# direction.
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In Fig. 8 the LSDA band structure for MnO is show
Notice that the orbital characters are referred not to the
bic, but to the hexagonal coordinates, i.e.,x andy lie on the
hexagonal~111! plane, andz is parallel to the@111# axis.
Also, within the hexagonal~or rhombohedral! crystal field,
the 3d orbitals are split into two doublets (dxy , dx22y2) and
(dxz , dyz), and one singlet (dz2).

The nominal ionic configuration Mn21O22 suggests a
Hund’s rule-induced splitting between filled spin-up a
empty spin-down 3d bands, resulting in an energy gap. Fro
the analysis of the band character we see that the VBT
composed of 60% (dxy

↑ , dx22y2
↑ ) and (dxz

↑ , dyz
↑ ) orbitals,

with the remaining 40% coming evenly from the (px , py)
doublets of the two equivalent oxygens. In contrast, the C
consists of;80% dz2

↓ centered on the same Mn, which
equivalent to thedz2

↑ orbital localized on the other Mn. Thus
from the LSDA calculation, a picture of the MnO as a sma
gap Mott-Hubbard insulator emerges, which is not wh
should be expected according to the experiments.

Furthermore, while the value of the Mn magnetic m
ments is satisfactory, the size of the LSDA energy gap
verely underestimates the measured value~see Table II!.
Also, notice that the occupied 3d bands are rather flat an
well separated by a;1 eV gap from the underlying O
2p-band manifold which is;6 eV wide.

In Fig. 9 we see how the application of the pseudo-S
modifies the results. First of all, there is no longer a g
between 3d and 2p bands. The SIC causes a downward sh
of the Mn 3d bands with respect to the more dispersed Op
bands, thus the 3d character is now spread across the wh
~8 eV wide! valence-band manifold, and is heavily mixe
with the O 2p character.

This shift significantly increases the energy gap which
now well within the experimental uncertainty~see Table II!.
It also changes the VBT character, which is now compo
of 40% 3d doublets and 60% 2p orbitals. 85% of the CBB
still comes from thedz2

↓ orbital.
Thus the agreement with experiments, which locate

MnO in the intermediate charge-transfer Mott-Hubbard
gime, is restored. Furthermore, the enhanced on-site loca

nal
DA
TABLE II. Magnetic momentsM and energy band gapsEg of MnO and NiO. The upper part shows our results calculated within LS
and pseudo-SIC, in comparison with the experimental values. The lower part shows results of other beyond-LSDA calculations~results in
parentheses are explained in the text!.

MnO NiO
Eg(eV) M (mB) Eg(eV) M (mB)

LSDA 0.92 4.42 0.4 1.11
Pseudo-SIC 3.98 4,71 3.89 1.77
Expt. 3.8-4.2~Ref. 59! 4.79, ~Ref. 57! 4.58 ~Ref. 58! 4.0, ~Ref. 60! 4.3 ~Ref. 61! 1.77 ~Ref. 57! 1.90 ~Ref. 58!
SIC-LSDA ~Ref. 18,21! 3.98 4.49 2.54 1.53
SIC-LSDA ~Ref. 36! 6.5~3.4! 4.7~4.7! 5.6~2.8! 1.7~1.5!
LDA1U ~Ref. 33! 3.5 4.61 3.1 1.59
LDA1U ~Ref. 38! 4.1~2.8! 1.83~1.73!
LDA1U ~Ref. 37! 3.38 1.69
GW ~Ref. 54! 4.2 4.52 3.7 1.56
9-9
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ALESSIO FILIPPETTI AND NICOLA A. SPALDIN PHYSICAL REVIEW B67, 125109 ~2003!
tion of the 3d orbitals due to the SIC increases the magne
moment which is now in excellent agreement with the e
perimental value.

The LSDA description of NiO is even worse than that
MnO. Indeed, the Ni21 ion has nominally eight electrons i
the occupied bands, thus the energy gap within thed-band
manifold can only be opened by the weak crystal field sp
ting.

In Fig. 10 we show the band structure of NiO obtain
within LSDA. The fundamental gap occurs between ban
derived from the singletdz2

↑ and the doublet (dxz
↓ , dyz

↓ ). In
particular, the VBT is almost purely~90%! dz2

↑ in character,
and no hybridization with oxygens is present. The gap va
~see Table II! is only 0.4 eV, and in fact some LSDA calcu
lations even describe NiO as a metal.36 The majorityd bands
are rather flat and, as in MnO, separated by a;1 eV wide
gap from thep bands. Finally, the magnetic moments a
underestimated by;40%. Thus, according to the LSDA ca
culations, NiO is a small-gap Mott-Hubbard insulato
whereas the experiments describe NiO as a wide-gap cha
transfer insulator.

The inclusion of SIC~Fig. 11! greatly improves the NiO
description. As in MnO, the eight occupiedd bands are
shifted down in energy and strongly hybridized with the Op
bands. The VBT becomes a mixture ofd and p character,
with a predominance of the latter. For example, atG the VBT
singlet is almost purelypz , whereas at K the twofold degen

FIG. 9. Pseudo-SIC band structure of MnO. The orbital char
ter is indicated for each band.

FIG. 10. LSDA band structure of NiO. The orbital character
indicated for each band.
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erate VBT comes from the hybridization between (px , py),
which contribute 80%, and (dxz

↑ , dyz
↑ ), which contribute

20%. Thus, it is apdp-hybridized band. The samepdp
hybridization characterizes the CBB doublet, but the perce
ages of the composition are reversed: 90% of the cha
comes from (dxz

↓ , dyz
↓ ), and only 10% from (px , py). Thus,

according to the pseudo-SIC, NiO is a charge-transfer in
lator. Furthermore, the calculated energy gap and magn
moments are in good agreement with experiments~see Table
II !. As is evident from the band structure, the Ni magne
moment,M51.77mB , comes from the spin polarization o
the degenerate orbitalsdxz and dyz , each of them carrying
M /2 magnetization. Finally, the bands at the bottom of
occupied p-d manifold are 90% from the doublet (dxy

↑ ,
dx22y2

↑ ). These orbitals lie on the hexagonal plane and
entirely localized, since they do not point towards the ox
gens. As a result their corresponding bands experience
largest SIC.

A number of beyond-LSDA approaches have been
tempted in the past and tried on the series of transition-m
oxides. In Table II we listed the results of some of the
calculations.

Within full SIC-LSDA, the results for the transition-meta
oxides are critically sensitive to the choice of orbitals tak
as localized. In Ref. 36~a LMTO-ASA calculation! the SIC-
LSDA band structures are calculated in two ways: The fi
calculation assumes that 3d and the 2p orbitals are both
localized and therefore affected by the SI, and the secon
performed with only the 3d orbitals taken as localized.~In
the table we report the results of both the calculations;
d-only SIC-LSDA results are in parentheses!. It is shown that
the first option gives a band structure in better agreem
with photoemission spectroscopy, with the exception of
band gap which is strongly overestimated. Instead,
choice of correcting only thed orbitals gives a better energ
gap but also leads to a too large downshift of thed bands
with respect to the p bands~e.g., for MnO and NiO thed
bands lie;5 –6 eV below the center of thep bands36!. As a
consequence, the calculation exaggerates the charge-tra
character of the band gap.

The strategy of correcting bothd andp orbitals represents
our preferred point of view,62 and is consistent with the

-

FIG. 11. Pseudo-SIC band structure of NiO. The orbital char
ter is indicated for each band.
9-10
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SELF-INTERACTION CORRECTED PSEUDOPOTENTIAL . . . PHYSICAL REVIEW B 67, 125109 ~2003!
pseudo-SIC which assumes that all the electron states sh
be corrected, without anya priori discrimination. Indeed, the
pseudo-SIC band structures are similar to those obtaine
Ref. 36 with the first choice of orbitals, with the importa
exception that in our pseudo-SIC the energy gap is in m
better agreement with experiments. We speculate that
reason for this difference is the absence in SIC-LSDA of
relaxation energy contribution, which shifts the occupiedd
andp bands up in energy.

The LDA1U corrects only thed states, and it shows
similarities with the d-only SIC-LSDA in describing the
properties of the transition-metal oxides.33,24,52,38Indeed in
both these approaches, the transition-metal oxides are al
scribed as charge-transfer insulators. However, in LDA1U
the amplitude of thed-band shift is critically controlled by
the parameter U. For example, in Ref. 38@a projector
augmented-wave~PAW! calculation#, it is shown that for
NiO the widely used valueU58 eV gives a good energ
gap but a poor description of the occupied band manif
due to the exaggerated downward shift of thed bands. In
contrast, the valueU55 eV gives a smaller energy gap, b
optical properties and magnetic moments in better agreem
with experiments.~Results forU55 eV are reported in pa
rentheses in Table II.!

Finally, we report the results of the model GW,53 an ap-
proach radically different from both the SIC or the LD
1U schemes, based on a model self-energy correction to
LSDA KS equations. The model GW is capable of giving
accurate description of both transition-metal oxides54,55 and
other nonmagnetic semiconductors,53,54,56 thus it should
probably be considered as the most reliable reference.
fact that the pseudo-SIC values for the energy gaps are c
to the results obtained within GW is an indication that,
least for this family of compounds, the SI, and not man
body effects, really represents the main source of the LS
error.

E. Hexagonal manganites

As a final application of the pseudo-SIC, we consider h
agonal YMnO3, which has recently attracted the attention
both the experimental63–66 and the theoretical67,11 communi-
ties since it shows the uncommon characteristic of be
both magnetically and ferroelectrically ordered within t
same bulk phase. The study of YMnO3 is motivated by the
possible applications of ferroelectromagnetic materials
building blocks for spintronic devices68 and, from a more
fundamental standpoint, by the necessity to understand
interaction between magnetic and ferroelectric polarizat
and the conditions that favor this coexistence.69,11

YMnO3 can be grown in both orthorhombic70 and
hexagonal71–73 structures, although the latter is the mo
stable. The orthorhombic phase, typical of manganese
ovskites~e.g., LaMnO3), is antiferromagnetic but not ferro
electric. The hexagonal phase shows a spontaneous f
electric polarizationP;5.5mC/cm2 parallel to the c axis74,72

below a critical temperatureTc5900 K, and is A-type
antiferromagnetic75,76 at temperatures belowTN580 K. In
this section we will consider only hexagonal YMnO3.
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The structure of the paraelectric YMnO3 (P63 /mmc sym-
metry!, is shown in Fig. 12. The Mn ions, sited on clos
packed hexagonal positions, are surrounded by cor
sharing bipyramidal cages of oxygens. The unit cell is ma
of eight 131 hexagonal planes enclosing a total of 10 atom
In the ferroelectric phase (P63 cm symmetry! the MnO5 bi-
pyramids are tilted around the axis passing through the
and parallel to one of the triangular base sides, thus the h
agonal planes areA33A3 and the unit cell has 30 atoms
However, for the purposes of illustrating the effects of t
pseudo-SIC, the small oxygen rotations of the ferroelec
structure are not significant, thus in the following we on
consider the paraelectric phase.

The technical features of our calculations are the sam
those used in Ref. 11, where a detailed study of density
states, band structure, and orbital charges within LSDA
be found. Here we focus on the remarkable changes in
band structure of this material produced by the pseudo-S

An obvious requirement for a ferroelectric material is th
it must be insulating, but the LSDA calculations describ
YMnO3 as a metal, as can be seen in Fig. 13.~The hexagonal
crystal field splitting and the Cartesian coordinates are
same as those described previously for MnO and NiO.! In
hexagonal symmetry the fourd electrons of the Mn31 ion
entirely occupy the two orbital doublets (dxy

↑ , dx22y2
↑ ) and

(dxz
↑ , dyz

↑ ), leaving thedz2
↑ orbital, which is the highest in

energy, empty. This ordering causes a magnetic momen
Mn equal to 3.8mB , slightly lower than its nominal value
4mB because of Mnd-O p hybridization.

However, the LSDA crystal field splitting is too small t
open a gap, and one band crossesEF in the directionG-Q-P
which is parallel to thekz50 plane. This band comes from

FIG. 12. Structure of YMnO3 in the paraelectric P63 /mmc
phase. The arrows are placed on the Mn and indicate the s
polarization direction~thus the ordering isA-type antiferromag-
netic!. Each Mn is surrounded by a bipyramidal cage of five corn
sharing oxygens. Atoms not connected by bonds areY.
9-11
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mix of Mn dxy
↑ , dx22y2

↑ orbitals andpx
↑ , py

↑ orbitals from the
oxygens lying in-plane with the Mn~i.e., it is apds hybrid-
ization!. In contrast, the band energies are flat along@0001#,
as is typical for strongly layered compounds.~Notice that
according to our LSDA calculations the system is meta
even within the ferroelectric phase.!

The metallicity is a fatal shortcoming, since it preclud
the possibility of accessing any ferroelectric properties, s
as spontaneous polarization, Born effective charges, and
ezoelectric tensors~according to our calculations the syste
is still metallic within the ferroelectric structure!

The pseudo-SIC~Fig. 14! repairs the fault: a gap,Eg
51.40 eV, opens~in excellent agreement with the exper
mental valueEg51.47 eV) between the emptydz2

↑ band and
the fully occupiedpds band. Thus the pseudo-SIC calcul
tions describe the paraelectric YMnO3 as an intermediate
Mott-Hubbard charge-transfer insulator, in agreement w
photoemission experiments73 and previous LDA1U
calculations.67 Also, the two filled doublets (dxy

↑ , dx22y2
↑ )

and (dxz
↑ , dyz

↑ ) are shifted down by;3 –4 eV with respect to
the LSDA values, and are located below the Op manifold.

On the basis of the pseudo-SIC calculation which c
rectly describe the YMnO3 as an insulator, we are now ab

FIG. 13. LSDA band structure for theA-type AFM paraelectric
YMnO3. The orbital character is given in terms of the hexago
Cartesian coordinates. According to this calculation the system
metal.

FIG. 14. Pseudo-SIC band structure for A-type AFM, parael
tric YMnO3. The pseudo-SIC opens a gap between emptyd bands
and filledpd s-hybridized bands.
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to study the ferroelectric structural displacements and o
properties related to the electric polarization. This will be t
subject of future work.

V. DISCUSSION AND SUMMARY

In this paper we have proposed and implemented an
novative first-principles approach that is able to improve
LDA and LSDA description of the electronic properties for
vast range of compounds, including strongly correlated a
magnetic systems, and requires only a minor increase
computing cost. Our strategy, based on the approximatio
the true SIC potential with a pseudopotentiallike project
was built primarily on the work of Ref. 29, where it wa
shown that the inclusion of the atomic SIC within th
pseudopotential construction can consistently improve
agreement of band structures with photoemission spectra
a range of strongly ionic II-VI and III-V insulators. Working
on this original idea, we defined a pseudo-SIC functio
explicitly dependent on the orbital occupation numbe
which are self-consistently calculated from the Bloch wa
functions and represent the natural extension to periodic
tems of the atomic occupation numbers. They can be fr
tional due to charge hybridization, eigenvalue degeneracy
a Fermi-Dirac distribution.

We tested the pseudo-SIC on three different classes
compounds: nonmagnetic semiconductors, magnetic ins
tors, and ferroelectrics, and found a generally good~some-
times very good! agreement with experimental data. In pa
ticular, the size and the orbital characterization of t
fundamental energy gap and the local magnetic moments
much better described than in LSDA.

We expect the same kind of improvement in any syst
where the electron localization plays a major role. Examp
of systems which could benefit from the pseudo-SIC ap
cation are innumerable, including bulk systems withd and/or
f electrons, Jahn-Teller and orbitally ordered systems,
nonbulk systems such as defects and impurities, surface
interface states, bulk resonances, and core states. The
may affect a vast range of phenomena, encompassing, am
others, surface reconstructions, adsorbtion and diffusion
atoms and molecules on surfaces, doping in semiconduc
alloys, and homojunctions and heterojunctions.

Of course, the discrepancies between theoretical and
perimental results which are not attributable to the SI sho
not be expected to disappear within pseudo-SIC. A typi
example is the fundamental energy gap of bulk Si, who
LDA value is;0.5 eV lower than the experimental gap, d
to genuine self-energy effects which are outside the realm
the DFT itself. As a consistency test, we calculated the b
structure of bulk Si within pseudo-SIC. Happily, it comes o
to be very similar to the LDA band structure. This is a co
sequence of the fact that each band~either occupied or
empty! shares the same orbital character (sp3 hybridization!,
thus the pseudo-SIC mostly produces a trivial shift of t
whole band manifold.

Comparing it to other corrective methodologies availa
in the literature, the pseudo-SIC is closest to the spirit of
LDA1U: in both cases the LSDA energy functional is au

l
a

-
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mented by a term depending on the orbital occupation n
bers. In the pseudo-SIC the modification is milder, and c
sists of subtracting out a contribution~i.e., the SI! which is
already present in the LSDA energy functional. The LD
1U is a more radical departure from the LSDA, since
rewrites the whole Coulomb electron-electron interaction
terms of local orbitals according to the multiband Hubba
expression~which is, in itself, self-interaction free!. Based
on the undeniably limited set of results presented in t
paper, the pseudo-SIC seems to be at least as accurate
LDA1U, but a fair comparison will need a much larg
body of work.

Finally, we point out that our method suffers a drawba
that is the nonvariationality of the energy functional. This
especially annoying when force or stress calculation is
quired, since the familiar Hellman-Feynman formulatio
cannot be applied and additional contributions arise due
the first-order change of the wave functions. We will addr
these problems and the studies of forces and stresses i
ture publications.
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APPENDIX

1. Review of the USPP formulation

In the USPP approach32 the constraint of norm-
conservation on the pseudo-wave functions is relieved
that the pseudo-wave functions and the associated pseud
tentials can be extremely smooth~i.e., ‘‘ultrasoft’’!. In order
to restore the correctly normalized electron charge,
charge density is written as

ns~r !5 (
nk,s

f nk
s F ucnk

s ~r !u2

1(
aa8

^cnk
s uba&Qaa8~r !^ba8ucnk

s &G . ~A1!

Herea5@n,l ,m,R# anda85@n8,l 8,m8,R# are sets of or-
bital quantum numbers and atomic positions R, andba(r )
are the USPP projector functions.32 The first term within the
square brackets is the ultrasoft charge, and the second
the ‘‘augmented’’ charge, that is the portion of the valen
charge which is localized within the atomic core radii a
restores the normalization of the total charge. The ato
chargesQaa8 are, by construction,
12510
-
-

t
n

s
the

,

-

to
s
fu-

l

-

-
.

n

o
po-

e

rm
e

ic

Qaa8~r !5fa
AE~r !fa8

AE
~r !2fa

PS~r !fa8
PS

~r !, ~A2!

wherefa
AE andfb

PS are atomic all-electron and pseudo-wa
functions, respectively. The release of norm conserva
leads to the generalized Kohn-Sham equations

F2¹21VLOC(r )1(
aa8

uba&Daa8
s ^ba8u1VH~r !

1VXC
s (r )Gcnk

s (r )5enk
s Ŝcnk

s (r ), ~A3!

whereVLOC(r ) is the local part of the pseudopotential,Daa8
s

is the nonlocal part, andŜ is the overlap matrix which gen
eralizes the orthonormality condition

Ŝ51̂1(
aa8

uba&qaa8^ba8u. ~A4!

Here qaa8 are the integrals of the augmented charg
Qaa8(r ), and^cnkuŜucn8k8&5dn,n8dk,k8 .

Finally, the nonlocal pseudopotential projector is made
of two contributions:

Daa8
s

5D̃aa81E dr @VLOC~r !1VHXC
s ~r !#Qaa8~r !.

~A5!

The first term on the right side of Eq.~A5! is the usual
Kleinman-Bylander projector, and contributes to the ‘‘bar
pseudopotential~i.e., it is calculated within the atomic refer
ence configuration!. The second term is specific to the USP
formalism, and represents the action which the local a
screening potentials exert on the augmented charges. S
this term depends onVHXC

s , it has to be updated during th
self-consistency cycle.

In order to ensure better transferability, two atomic ref
ence states, corresponding to different energy values,
usually included in the projector for each angular quant
number. As a consequence, the USPP projector contains
diagonal terms (a, a8) where a5(n l ,l ,m), and a8
5(n l8 ,l ,m), and n l , n l851,2. The atomic reference eigen
states do not need to correspond to bound, normalized s
tions of the free atom, but may be unphysical eigenstate
the Schro¨dinger equation, useful to extend the pseudopot
tial transferability into a larger energy range. Thus the atom
pseudo-wave functions may diverge at larger , but the pro-
jector functionsba(r ) and the matrixD̃aa8 are always short
ranged and well defined by construction.

2. Pseudo-SIC within USPP

The USPP implementation of the pseudo-SIC requi
some generalization of the formalism described in Secs. I
and III B. The charge densitiesni

s of the ~pseudo! atomic
orbitalsf i are
9-13
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ni
s~r !5pi

sF uf i~r !u21(
aa8

^f i uba&Qaa8~r !^ba8uf i&G
~A6!

and the occupation numberspi
s become

pi
s5(

nk
f nk

s ^cnk
s uf i&^f i ucnk

s &

3F11(
aa8

^f i uba&qaa8^ba8uf i&G . ~A7!

Furthermore, at variance with the norm-conserving ca
the nonlocal part of the USPP depends self-consistently
the screening potential itself@see Eq.~A5!#. As a result it
also must be self-interaction corrected. The SI part of
nonlocal USPP is given by
os
pa
-s

ys

,

12510
e,
n

e

V̂US
s 5(

i
(
aa8

uba&S 1

2
pi

sE drVHXC
s @ni

s~r !;1#Qaa8~r ! D
3^ba8u. ~A8!

Thus, the pseudo-SIC KS equations finally are

F2¹21V̂LOC1V̂HXC
s 1(

aa8
uba&Daa8

s ^ba8u

2(V̂SIC
s 1V̂US

s )G ucnk
s &5enk

s Ŝucnk
s &, ~A9!

whereV̂SIC
s is given by Eqs.~5!, ~12!, and~13!.

The total energy is the same as that given in Eq.~17!,
except for the fifth term which now is

(
nk,s

f nk
s ^cnk

s u~V̂SIC
s 1V̂US

s !ucnk
s &. ~A10!
g,

and

ys.
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