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Electron energy loss and induced photon emission in photonic crystals
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The interaction of a fast electron with a photonic crystal is investigated by solving the Maxwell equations
exactly for the external field provided by the electron in the presence of the crystal. The energy loss is obtained
from the retarding force exerted on the electron by the induced electric field, and the photon emission prob-
ability is calculated from the far-field Poynting vector. The features of the energy-loss spectra are shown to be
related to the photonic band structure of the crystal. Two different regimes are discussed: for small lattice
constants relative to the wavelength of the associated electron excitalipas effective medium theory can
be used to describe the material; however, dor\ the photonic band structure plays an important role.
Special attention is paid to the frequency gap regions in the latter case.
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[. INTRODUCTION calculated the energy-loss probability for electrons moving
near crystals made of either metallic spheres or metallic cyl-
Near-field spectroscopy can be performed using spatialljnders in thea<<\ limit using the transfer-matrix approach
resolved electron energy-loss spectroscopy in scanning tran& Solve Maxwell’'s equations. Their results exhibit a compli-
mission electron microscopes, where the electron beam pr(5;_ated energy-loss structure even for relatively dilute crystals,

vides an external evanescent field to probe the sample withiffch hasd no;t btee?trr]eproduced in thef presenttr\]/\/(()jrk. Trr:ere-
a spatial range on the nanometer scale. In particular, the rel Qre, in order to test the convergence ot our method, we have

tively intense, low-energy pa<50 eV) of the loss spec- c(_';llculated the energy loss near the surface of a crystal of
trum can be Lijsed with minimum sample damage to provid dilute spheres and have found very good agreement between

L . oA She results derived from the theory described in this work
some insight on plasmons and other collective excitattofs. and those obtained from the analytical expression for iso-
For the electron velocities typically employed in micro-

: lated sphere%1°
scopes(above half the speed of lighand for samples that | aqdition to producing energy loss, the interaction be-

are _homogeneous across distances of a few nanometefgeen the electron and the crystal gives rise to the emission
frequency-dependent dielectric functions are sufficient to depf the so-called Smith-Purcell radiatiéh.This effect has
scribe the materials that are involved and the loss spectraiready been discussed for one-dimensithaind three-
reflect the geometry of the sample interfate¥. dimension&??® crystals. Radiation emission is one of the

The geometry becomes particularly important in photoniccontributions to the total energy loss, and in frequency re-
crystals, where the periodic spatial modulation of the dielecgions where the crystal is transparent the probability of these
tric function affects the propagation of radiation to the pointtwo must coincide. Examples of this are offered below.
of forbidding it within band-gap energy regions. As a conse- Here, the energy-loss and photon emission probability are
guence, photonic crystals are known to inhibit the spontanesalculated from the induced electric field, which is derived
ous emission of light within the band g&p*2They can also  using the reflection coefficients of the crystdas explained
be used to make omnidirectional dielectric mirrors that redn Sec. Il. Results for the case of small lattice constaats (
flect light from all directions without absorptibhand wave =~ <A\) are given in Sec. lll and for larger ones+ \) in Secs.
guides able to deflect light around sharp corners on the scal¢/ and V. The main conclusions are summarized in Sec. VI.
of the wavelength* These are applications of photonic crys- Gaussian atomic unitga.u., that isz=m=e=1) will be
tals that involve free external radiation, but equally remark-US€d from now on, unless otherwise specified.
able effects are expected to accompany evanescent fields like

Il. THEORY

those of external electrons.

In this work, we examine the energy-loss spectra of elec- A. The reflection coefficients of the crystal

trons moving hear or inside photonjc crystals over a wide We shall consider crystals that are composed of a number
range of lattice parametees Whena is much smaller than ¢ javers perpendicular to thedirection and extending from
the Wayelgngth of the radiation associated to a given energy_ o' yowardsz<0. The host region outside the crystal will
loss, \, it is shown that the crystal can be described to Someye assumed to be described by a frequency-dependent dielec-
extend by an effective dielectric functidf-*®For larger lat-  tric function e,(w) and a magnetic permeability:, ().
tice constants, the photonic band structure becomes mogeach crystal layer consists of the repetition of a given object
complicated and this is reflected in the loss spectra. The reyith certain two-dimensiona(2D) translational symmetry
lation between the band structure, the reflectance of photonigat is shared by all layers. The crystal will be characterized
crystal slabs, and the electron energy-loss spectra is distere by its reflection coefficients, that is, the amplitudes of
cussed in detail in what follows. the reflected plane-wave components for a given incident
In a previous development, Pendry and Matorend®  wave.
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In general, an external plane wave of frequensyhat  tested in all calculated results shown below. Stefagioal >

propagates near the crystal can be represented as developed this method for spheres and we have extended it
. . to be able to deal with nonspherical objects and arbitrary
EqexpiKg-r), values ofl ... Further details of the method will be given
6
whereQ=(Q,.Q,). elsewheré
Kg=(Q,=ilg), B. The field of the electron
2 o 12 We shall consider an electron moving with constant ve-
rg=0°—k . .
Q ' locity v along a trajectory parallel to the crystal surface and

andk;,= (w/c) (e,un)Y?is the momentum of the plane wave. described by=(vt,yo,2o), with 2,>0, so that the electron
The real part off' is chosen to be positive, and the(—) ~ Moves in the host medium described gyand ., . Neglect-
sign in these expressions stands for a wave moving toward89 the crystal for the moment, the electron electric field can
z>0 (z<0).% be expressed in frequency spaoen terms of vector and
The momentun® parallel to the surface has been singledscalar potentials as
out to make explicit use of crystal symmetry: invoking mo- .
mentum conservation, a wave incident from #0 region EozlﬁAo—Vd’o-
with momentumK 4 will only produce a discrete set of re- c
flected waves of momentuiy, g, WhereG runs over re- | the Lorentz gauge, Maxwell's equations can be recast as
ciprocal surface lattice vectors.
The transversal character of these walies, the fact that ) o Aqgr
Kg-Eg=0) can be exploited to express the electric field in (VE+Ki) o= — o P
terms ofs andp components according to

P . and
Eq=EqsfostEqpfap: .
where the vectors (V24 kD) Ag= — —Hh |
h)Ao C N
ar :i(_Q Q,.,0) where p(r,w) is the electron charge density, anf,w)
ST Q y o ex _ i
=(vp,0,0) is its charge current.
and Using the relation
&~ (£ToQyx, =ToQy,iQ?) (V2+k2)f dp e 47 8(r)
=, A\l= 1 — H Y A 5 = a
R Q T e Ty ") 22 p2-k2-i0*

satisfy the idfntitieéé,s'éé,s:éé,p'éé,p:1 and& 58, and noticing thatp(r,t)=— 8(r— (vt,ye,2o)), the electric

=855 K5=8,-Kg=0. Also, & is perpendicular to the field is found to be
plane defined by and the surface normal.

The amplitudes of the reflected waves depend linearly on V  iovu, dp ~ @lPIr=(vt.yo.29)]
the amplitudes o andp components of the incident wave, Eo(r,w)=|———1 X f—zf dte'“"ﬁ,
and the coefficients of the linear relation between them are €h ¢ 2m p*—ky—i0
the reflection coefficientR%g , implicitly defined by where the time integral represents the inverse Fourier trans-

form that permits obtaining(r,w) in terms ofp(r,t). The
[E(S-%—G ]rzz g‘{;/[Ef 1L (1) above integral can be reduced to
O Q o'd
whereo andg’ run over polarization directionsandp, and Eo(r,w)zf dee‘KS'[r—(O'Vo’Zo)] Eé , 2)
the superindices andi stand for reflected and incident com-
ponents, respectively. whereQ=(w/v,Qy) and

We have used the layer Korringa-Kohn-Rostok€KR)
method to calculate the reflection coefficieﬁag‘g both for Ex o i [Kg o,
a<X\ and fora~\. In the layer KKR method, the transmis- Q_E ven o2

sion and reflection coefficients are calculated exactly for

each single layer using multiple scattering in a basis set oThe + (—) sign must be used in these expressions when
multipoles centered around each object of the layer. Scatter>z, (z<z,), so that the integrand of E@2) represents a
ing among layers is then expressed in terms of those coeffplane wave that propagates towards positivegative z's.
cients. The maximum multipole ordgf,, and the number of When the electron is moving in vacuuilig is real and the
reflected and transmitted bearti®., the number o vec-  waves in the integrand of EqR) are evanesceif.However,
tors) are the only convergence parameters, which have beamhenk,, is real and larger tham/v, some of those waves
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describe Cherenkov radiation that propagates without attencorresponds to the contribution & in the absence of the
ation; this is the case of electrons that travel faster than lightrystal. Here,q. is a momentum cutoff related to energy

in the medium. conservation. This contribution vanishes in vacuum. How-
ever, it gives rise to Cherenkov losses whgnand up, are
C. The field induced by interaction of the electron real, in which cas€® Po=| up|[ 1/c?— 1/(v€enmn) ], Subject
and the crystal to the Cherenkov condition?e,u,>c2.

The remaining contributiorP, is due to the retarding
force exerted by the reflected fiellg} . Inserting Eq.(4) into
Eq. (5), the timet and the lateral impact parametgy appear
only through the factor eXf{ Gwt+Gyyo)}, so that time

The decomposition of these plane waves istand p
components is readily found to be

[E S]i:'Qyﬂe—iKé-(O’yo,zw integration eliminates all vector& with G,#0 from the
’ Ql“Qc2 sum in Eq.(4). Furthermore, averaging ovgg leaves only
and the G,=0 term and one obtains
1 [ dQ Qu\?
. S _ pp y ss
[Edp]lzinfhe o o, Pr(w)— 7TUZJ' Q2 Im{ RQO+€th(FQC RQO
Each of the incident plane wavése., each value 0@, in iQpknv ) o [T ?'e%
Eqg. (2)] gives rise to a set of reflected waves whose ampli- * olg (Rgo~Rqo €n : ©®

tudes are obtained from E¢l). Therefore, the electric field o . _
in the region near the ion can be constructed as the sug of The last term inside the square bracket of this expression

and the reflected field, gives no contribution when the electron trajectory is con-
tained in a plane of specular symmetry of the crystal surface.
E(r,w)=Ey(r,w)+E(r,m), 3 As a test one can apply E¢) to an electron moving in
h vacuum €,=up=1) at a distance, from the surface of a
where nonmagnetic medium described ley in which caseRg%
. / _ =Rfp=0. Then, using the fact the®,=0 in vacuum, so
E(r,w)= > fdee'Kme'f g‘(’;[Eéqa,]'é&G,”, thatP=P,, Eq.(6) leads to
G,o0'
; ; ; Plo)=—— | —Ze oto|m{ ——=
and the integral ove@, has been copied directly from Eq. m2lo Q2 e mtT"
(2) in virtue of the linearity of Maxwell's equations. QToe
v\To—T¢
D. Electron energy loss in front of the crystal +(%) Q—?] )
Q FQ+FQ

The electron energy loss can be calculated from the re-

tarded force exerted by the induced part of the electric fieldvhere F(’g: V%= ew?lc?, o= JQ?—w?/c?, and the re-

E" acting back on the electron. Integrating this force alongflection coefficients of Eq.(6) have been taken from

the trajectory and dividing by the total path lendthone  Fresnel's equation’. In the nonrelativistic limit,I'o=T,

finds =Q, so that the contribution of the reflection sfwaves
AE vanishes and the loss probability becomes proportional to
—=3J thiX“d(rt,t)=J wdwP(o), Im{—1/(e+1)}-
AX L 0

where Ill. ENERGY LOSS FOR SMALL LATTICE CONSTANTS

When the crystal lattice constant is much smaller than the
wavelength corresponding to a given frequency component
w, the details of the crystal lattice cannot be resolved by the
. . . electron, so that the medium behaves like a uniform material,
is the loss probability per unit of path length. characterized by an effective dielectric constant and mag-

For an electron moving parallel to a crystal surface, Ednetic permeability. For instance, a dilute system of spheres
(3) permits separating the loss probability as can be regarded as a set of interacting dipoles, which leads to

_ the well-known Maxwell-Garnett formuf®. For more com-
P=Po+Pr, pact systems the details of the microscopic structure be-
wheré comes relevant via important multipolar interactions.
These are the cases considered in Fig. 1 for a crystal
02 1 2_ |2 composed of small aluminum spheres that are disposed in a
G )

P(w)= ﬁf dtRe{e 'EM(r,,w)} 5)

e~ % simple cubic lattice of constar@=5 nm. The solid curves

U (w/v)?~k; of Fig. 1(a) show the loss probability for an electron moving

1
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0.08 - — - - comes very important at=30%. In the latter case, the
v ’,’ ‘.‘ (@) sphere surfaces are closer to each other and their mutual
DOOOOOC v . electromagnetic coupling becomes relevant. The noninteract-
006 DOOO0O0C | ¢ /% 1 ing case shows a peak at around=8.7 eV that corre-
%8@@@%@ g AF Pecsc-gude sponds to the dipole Mie resonance in the small-sphere limit,
QOQpé ‘," V1 Rest:v=04 ¢ given by the expressioa(w,)=—2 (i.e., w1=wp/\/§). The
0.04 q f main effect of the sphere-sphere interactieolid curve for

f=30%) consists in splitting this peak, in a similar way as
splitting of degenerate levelshe Mie resonances herec-
curs in atomic bonding.

This is actually observed in the projected photonic band
structure of this crystal, represented in Fig. 2 fer 30%.
The structure is dominated by nearly flat bands correspond-
ing to localized excitations near the Mie resonances of the
small isolated sphereg) = w,I/(21+1), which lie in the
8.7-10.6 eV rangésee the labels on the right-hand side of

o
o
o

Loss probability (% eV~! nm™)

0.00

— 1 ; . .

= > the figure for the dipole and quadrupole Mie modekhe

o® interaction between spheres gives rise to a complex structure
* that encompasses regions of relative transparency outside
= 10 that energy range. The evanescent plane-wave components
T of the external electron field are subject to the condition

‘E” =Q-v, which defines the solid straight lines shown in the
— 05

figure. The loss spectrum can then be understood as originat-
ing from both absorption and direct coupling to propagating
modes of the crystal. This last effect is clearly seen as a
bump in the loss probability near 6.7 eV, connected to the
crossing of the noted straight lines with a low-energy region
Energy loss (eV) of allowed propagating modes.

. The dashed curves of Fig(d (uncoupled spherg¢have

FIG. 1. (color online only (8) Energy-loss spectra for an elec- been obtained in two diﬁere?n ways. ThE—) first F(;ne consists in

tron moving parallel to th¢100] direction of the(100) surface of a calculating the reflection coefficients that appear in 6.
simple cubic crystal made up of six layers of aluminum spheres in

vacuum with lattice constant 5 nm and two different filling fractions using the layer KK.R .methOd but neglecting the mteracuqn
(see labels The electron is moving at a distance of 1 nm from the among s'pheres within each layer and also the. lntgractlon
sphere surfaces with a velocity=0.4c (solid and dashed curves among different layers. A second procedure consists in mak-
and v=0.0& (dotted curvi The dashed curves are obtained by INd use of the analytical expression for the energy-loss prob-
neglecting the interaction among spheres, whereas the solid curv@pility of an electron near an isolated sphésee Refs. 6, 9,
and the dotted curve correspond to the full solution of Maxwell’s@nd 10 for non relativistic and fully relativistic formulas,
equations.(b) Surface loss function for the same crystal agan ~ respectively and summing over all impact parameters of the
using the effective dielectric function obtained from the Maxwell- €lectron trajectory with respect to the spheres of the crystal.
Garnett expressiofbroken curvesand from the multiple-scattering The results coming out of these two very different proce-
method explained in the texsolid curves. dures cannot be distinguished on the scale of the figure, and
this is a strong indication of the degree of convergence of our
with velocity v =0.4c parallel to the surface of a slab made numerical calculations with respect to the number of plane
up of six (100) layers of such crystal. The lost probability waves used in the layer KKR method.
has been calculated by means of E) for two different These results do not support, however, previous calcula-
filling fractions f of the aluminum (6.5% and 30%, respec- tions by Pendry and MaritMorend® for this exact system,
tively). The dielectric function of aluminum has been ap-where the number of features and their energy position for
proximated by a Drude expressioe(w)zl—wﬁ/w(w the filling fractions under consideration differ from ours. A
+in) with w,=15eV and »=1 eV. The wavelengths possible lack of convergence of the transfer-matrix method
considered in the figure lie in the range=2wnc/w used by the authors for this three-dimensional system of me-
=88.6—310 nm, so that we are in the>a limit. The maxi-  tallic scatterers might be the reason of this discrepancy. In
mum orbital quantum number used to achieve convergencgearticular, some of their low-energy features around 6.5 eV
on the figure id ,,,=6. could originate in the modes of the wedge associated to their
Crystalline effects come from the interaction amongspace discretization procedufeesonances near that energy
spheres, and a method to determine their relative role corhave also been found for the 90° aluminum webige
sists in comparing these results with a calculation in which The example offered in Fig. 1 illustrates what happens in
that interaction is suppressed. This is what the dashed curvéise a<<\ limit, where it is reasonable to define an effective
stand for in Fig. 1. It is very clear that the interaction amongdielectric functione for the infinite crystal and to compare
spheres is almost negligible fdr=6.5%, whereas it be- the results of the detailed, exact calculation with those ob-

0.0
4 14
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FIG. 2. (color online only Photonic band structure of one of the crystals considered in Fig. 1, consisting of a simple cubic lattice of
aluminum spheres in vacuum with a lattice constant of 5 nm and a filling fraction of 30%. The figure shows the band structure projected on
the (100 surface. The horizontal axis represents the excursion along the points indicated in the inset within the parallel momentum plane.
The expressiorar(w)=1—w§/w(w+in) has been used for the aluminum dielectric constant wiik 15 eV. When the damping is taken
in the 7»— 07 limit, one obtains regions of allowed electromagnetic propagation, that is, combinations of the energy and the parallel
momentum components for which some eigenstates have a real perpendicular momentum. They define the shaddd)rétpoveiver, for
a realistic value of the damping parameter=1 eV), all perpendicular momentum components are complex and they represent evanescent
waves within the crystal. The contour plot(in) represents the lowest value of the imaginary part of the perpendicular momentum multiplied
by the lattice constarit.e., the minimum of Infk,a}) for all eigenstates with a given parallel momentum. The boundaries of the shaded areas
of (a) are shown in(b) as continuous curves. Straight lines have been added to(Bp#nd (b) to represent thespeed cones=Q-v,
corresponding to the external field associated with the electron moving at apeé€d4c (thick solid lines andv=0.06c (dotted lines.

tained for an electron moving parallel to a homogeneougompared with Maxwell-Garnett's theorproken curves
surface of a material described by such a dielectric functionFor f=6.5% these two models are nearly identical, as
Several recipes for defining. for granular materials have Maxwell-Garnett formula gives the dipole of the small iso-
been given in the literature, ranging from simple effective-lated sphere correctly. However, fée=30% the deviation
medium theories like Maxwell-Garnettsto more elaborate between both models is significant, since higher momenta
ones that take into account the actual shape of the constitare involved in the interaction between neighboring spheres.
ents, both for disordered composi®¥ !’ and for crys- The magnitude actually represented in the figure is the sur-
tals?931734 Among the latter, one finds extensions of theface loss function, I 1/(1+ eqq)}, which is directly com-
Maxwell-Garnett theory that go beyond dipolar interac-parable to the loss probability of Fig(dl. The agreement in
tions?!’ spectral representatiofs or direct derivation of  the position of the peaks between the detailed energy-loss
the light dispersion relatioff. Here, we have used a different calculation and our effective-medium theory is reasonably
method that consists in finding the effective dielectric func-good, indicating that an effective homogeneous medium de-
tion e Of the equivalent homogeneous medium that has thecribes the solid appropriately within this energy range at
same reflectance as the crystal surfddérst, the reflectance =0.4c; however, the relative weight of the features for
coefficients fors- and p-polarized light,rs andr,, respec- =30% changes completely at lower velocitie®tted curve,
tively, are calculated for the actual crystal as a function of the) =0.06c=8.2 a.u.).

angle of incidence); then, e is derived from Fresnel equa- Another example of a crystal that can be represented by
tions, which are conveniently recast far light as e,  an effective dielectric constant is given in Fig. 3, consisting
=sirff+cogo[(1-rd/(1+rd° and forp light as a similar  of a simple cubic lattice with the same parameters as in Fig.
but more involved expression; a value f averaged over 1, except that finite cylinders have been used instead of
different polarizations and incidence directions is obtainedspheres. As a result, the medium is strongly anisotropic and
exhibiting a standard deviation below 1% in the presentharacterized by different bulk plasmon modes when the
case; as a cross check, the reflectance calculated for the aslectric field is directed parallel or perpendicular to the cyl-
tual crystal has been shown to be well reproduced by Fresn@hders[see Figs. &,d)]. The loss probabilityFig. 3(a)] is
equations with a single average valuesgf(w) withina2%  shown to share most of the features of the surface loss func-
under the present conditions; this procedure is then repeateithn for anisotropic medi@Fig. 3(b)], except for the 7.8 eV
for each frequencyw under consideration. The results are peak in the loss spectrum with=30%), which might be
represented by the solid curves of Figb)}l where they are connected to the proximity effect when the electron starts
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FIG. 3. (color online only (a) Energy-loss spectra for an electron moving parallel tof it@®)] direction of the(100 surface of a simple
cubic crystal made up of six layers of aluminum cylinders in vacuum with lattice constant 5 nm and two different filling fréstiens
labelg. The height of the cylinders is equal to the diameter in all cases. The electron is moving at a distance of 1 nm from the cylinder
surfaces with a velocity =0.4c. (b) Surface loss function for the same crystal aganusing the effective dielectric function obtained from
the multiple-scattering method explained in the tégtAnisotropic dielectric function for the crystal considereda@hwith a filling fraction
of the aluminum of 6.5%(d) Same agc), for a filling fraction of 30%.

sensing the nonuniform character of the surface via evanes- Using electrons to analyze the crystal permits exploring
cent waves. regions of the band structure that are not accessible to exter-
nal light, but that can be reached via the evanescent waves
contained in the perturbing field of the electrons. This is the
IV. ENERGY LOSS FOR LATTICE CONSTANTS case of Fig. 4 fow/c=0.5[solid curve in Fig. 4c)], well
COMPARABLE TO THE WAVELENGTH below the Cherenkov thresholdc=1/\/3, that permits to

For lattice constants comparable to the wavelength ass@PServe how the peak in the loss spectrum near 2.7 eV re-
ciated to the energy losses under consideration, one can f4!ts from the coupling with propagating modes of the crys-
longer define the effective dielectric constant of an equivala| as a result of the intersection of the external field compo-
lent homogeneous medium. Then, it is useful to relate théents [straight solid lines in Fig. @] and the allowed
loss spectra directly to the photonic band structure. This hakgions of propagatiofshaded areas
been done in Fig. 4 for a crystal of aluminum spheres im- At larger velocities[v/c=0.75, dashed curve in Fig.
mersed in a dielectric withke=3. The features of the loss 4(c)], Cherenkov radiation would be produced in the absence
spectrd Fig. 4(c)] seem to be correlated to some extend withof the crystal, that would result in a loss probability indepen-
the band structur¢Figs. 4a,b]. In particular, the pseudo- dent of w (see little arrow near the horizontal axis of the
gaps near 3.2 eV could be the source of a dip in the losfigure). This is clearly seen in the big overlap of the external
probability. However, this relation is not entirely direct, as field with the regions of propagation within the crystal inside
can be seen from the presence of a peak at around 2.7 etje low-energy region results in an enhanced loss probability,
whose origin could be found in the coupling of the externalas compared to/c=0.5. However, the presence of the crys-
electron trajectory to crystal surface modes. More research ital modulates the loss spectrum.
this direction is still needed. Part of the energy lost by the electron must be converted
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FIG. 4. (a),(b) Photonic band structure projected on ti€0 surface and represented as in Figa,B for an fcc lattice of aluminum
spheres surrounded by a medium of dielectric function equal to 3. The filling fraction of the spheres is 20% and the lattice canstant is
=105.2 nm, comparable to the wavelengtlisee scale on the left-hand side of the figu&traight lines have been added to b&hand
(b) to represent thepeed cones=Q-v, corresponding to the external field associated with the electron moving at spe€dsc (solid
lines) andv =0.7% (thick dashed lines (c) Electron energy-loss spectra for an electron moving with velacify0.5¢ (solid curve and
v=0.75 (broken curvg at a distance of 3.2 nm from the surface of the outermost spheres of a semi-infinite crystal like that considered in
(b). The trajectory is directed along th&00] direction ("X).

into the so-called Smith-Purcell radiatiéh'® In particular, the Poynting vector far from the crystalee Ref. 23 for more
when transparent materials are used to build the crystals, thietailg, and it presents a strong dip nesih ~0.75, where
light-emission probability must coincide with the energy-lossa= 1220 nm is the lattice constant. The region of emission
probability. For a crystal of finite thickness, like the one con-depletion is actually contained within a full band gap of the
sidered in Fig. 5, consisting of @11) layers of an inverted infinite crystal[see Fig. 5a)]; this is also seen in the trans-
Si opal (e=11.9 with a filling fraction of 67%, part of this mission of light incident on the crystal both normal to the
emission occurs towards the side of the crystal opposite teurface[dashed curve in Fig.(b)] or with an angle corre-
the electron trajectorthere, the electron is taken to be mov- sponding to the Cherenkov radiation produced by the elec-
ing parallel to the crystal surfageThe intensity of the emit- tron in the plane defined by the trajectory and the surface
ted light[Fig. 5(c)] has been calculated from the integral of normal (solid curve.

o | fee(111) Kl T ] |
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R e A e A e 100-keV
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alh incidence at the -
05 | Cherenkov angle, 6~ = - - :_:_—:.,. ifl
itted >
8 fee(111) e
p <
a - layers emission 1
03 L 5,.-_—_-_—_':':‘:':' l
'(a) r~ 7 ::::_T_ . L L . |(c..)
T M K I 02 04 06 08 0.00 0.02 0.04 0.06
Transmittance Emission probability (% pum=

FIG. 5. (a) Photonic band structure projected on thié1) surface for an fcc lattice of air spherical voids in(8=11.9. The radius of
the spheres is 0.342 times the lattice constant) Dashed curve: transmittance of light incident normal to eight layers of the crystal
considered in(a). Solid curve: transmittance for an angle of incidence corresponding to the Cherenkovigad@8.1° for a 100-keV
electron moving parallel to the same crystal. The crystal is surrounded by Si on both sudaPesbability of emitting light on the opposite
side of the crystal with respect to the electron trajectory. The distance from the latter to the sphere surfaces is 876 nm and the lattice constant
isa=1220 nm. The probability is given per unit of path length in microns and per unit of emitted-photon wavelength also in microns. The
region of frequency and momentum where the field of the electron inside a homogeneous infinite Si medium takes nonzero values is
represented by thick solid lines {@).
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R, Ry Ry R,
R, R R R,

A=R +RR,R +- B=R,+R,RR,+--- C=RR+RRRR +- D=RR,+RR,RR,+-
=(1-RR,)'R, =(1-R,R,) 'R, =(1-R,R,)'R,R, =(1-RR,)"'RR,

FIG. 6. Schematic representation of the construction of the electric field in the bulk of a photonic crystal in terms of the reflectance of
two semi-infinite crystals and definition of the matricgsB, C, andD used in Eq(7). See Sec. V for more details.

V. ENERGY LOSS IN THE BULK OF A CRYSTAL Using Eq.(5) for the loss probability and a straightfor-
Sof h idered lect ing in front fWard extension of Eq(4) for the reflected electric field in-
0 farwe have considered an electron moving in fron 0cluding all terms of Fig. 6, the loss probability per unit of

the surface of a photonic crystal. When the electron is mov, i jength averaged over all impact parameters parallel to
ing in the bulk of an infinite crystal, the electric field can also 4 crystal surfaces is found to be

be written in terms of reflectance coefficients if the trajectory
is contained in a low-index plane that does not intersect any

of the crystal objects. The reflectance in question is that of 1 dQ,

the lower and upper semi-infinite crystals into which the en- Pllo)=— —Zlmk [A8§+ BEY—CBY— D8

tire crystal is divided by the noted plane. The corresponding ™ Q

reflectance matrices will be denotBd andR,, respectively. 0\ 2

They contain the amplitudes of reflected beams, labeled by +eh,uh<r—y) (At B3+ Caat Dag

vectorsG of the 2D reciprocal lattice of the plane under Q¢

consideration. In particular, for a fixed value @f R{ g, is iQyknv . . . .

given by R3%Ys, c—g,, as defined by Eq(1). Similarly, + ol (A3E—BgE+ Cb—Dgh—AbS

R2GG, connectsKg+G wave components with waves re- ©

flected from the upper surface with momentimg, ¢, - L BPS4 CPS_ Dps)}ﬁ} @
This is represented schematically in Fig. 6, where the re- 007 =00 00M ¢ |

flectance matrices of the lower and upper semi-infinite crys-

tals areR;, andR,, respectively, and upwardslownward$ , , , ,

arrows represent waves of momentify, ¢ (Kg.c). The  where the matricedgg, , Bgg,, Cgg . andDgg, are de-
upper and lower surfaces have been separated in the figufieed in Fig. 6, and only the elemen&=G'=0 enter this

for the sake of clarity, but they will be considered to lie on expression.

the same planéa plane that contains the electron trajecijory = The above formula has been applied to calculate the
in what follows. energy-loss probability for an electron moving in between

0.004 : , : , . , . , :

0.003 _
FIG. 7. Energy-loss probabil-

ity for a 100-keV electron travel-
ing parallel to two photonic crys-
tals with the same parameters as
in Fig. 5(c). The spacing between
the two crystals is 300 nm, which
is filled with Si (this is exagger-
ated in the inset for the sake of
clarity). The electron is traveling
at the same distance from the two
crystals.

@
o
S
o

e
=)
=
=

Loss probability (% nm™' eV~1)

0.000 : : ' ' : ' : '
0.60 0.65 0.70 0.75 0.80 0.85

alh
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two parallel crystal slabs of 32 layers each surrounded by Silium is no longer valid, and one has to rely on the detailed
as shown in Fig. 7. The crystal parameters are the same asliand structure of the crystal to understand the loss spectra
Fig. 5(c), so that an absolute band gap shows up réar [Figs. 4,5, and ¥
=0.75. The electron energfi00 ke is large enough to Finally, the interaction of the electron with the crystal
produce Cherenkov light, which must be confined in betweemproduces Smith-Purcell radiation, which contributes to the
the two crystals for wavelengths lying in the gap region. Thisenergy loss. If the crystal is composed of nonabsorbing ma-
is actually observed as a pronounced dip, connected to therials, the energy-loss probability and the light-emission
fact that no electromagnetic modes can be created that egrobability must coincide, as shown in Fig. 5 for an inver-
cape through the crystals, except for a small transmissioted Si opal, in which case the light emitted after transmis-
due to their finite thickness. However, some radiation carsion through the crystal shows dips that are directly con-
escape through modes that are trapped in the slab formed Ingcted to the presence of photonic band gaps. For electrons
the two crystals, so that the loss probability does not actuallynoving in a region surrounded by photonic crystals a dip is
reach a zero value in the dip. also observed in the loss probability within the gap energies
(Fig. 7).

Our hope is that the present work can provide a stimulus

_ ) _ _to use fast electrons in the analysis of photonic crystals as a
The energy loss of fast electrons interacting with photoniGuay to bring a source of evanescent radiatitime electro-

crystals has been calculated for dielectric, metallic, angnagnetic field of the electron in vaculiimto close contact

metalodielectric systems. with the crystal and also to probe regions of the crystal that

When the wavelength of the radiation associated to thgyould not be easily accessible to other sources of external
energy loss is much larger than the lattice constant, the cryssiectromagnetic radiation.

tal can be regarded as a continuous medium, characterized by
an effective dielectric function, as it has been shown for
crystals of small aluminum spheres in Fig. 1 and small finite
cylinders in Fig. 3. The effective medium is highly aniso-
tropic in the latter case. The effective dielectric function has The authors would like to thank P. M. Echenique for help-
been calculated in both cases from the reflectance coefficiefitl and stimulating discussions. This work has been sup-
of the crystal, and this has been shown to contain most of thported in part by the Basque Departamento de Edupacio
information needed to understand the calculated energy-lodgniversidades e Investigacipthe University of the Basque
spectra. Country UPV/EHU (Contract No. 00206.215-13639/2001

When the lattice constant is comparable to the waveand the Spanish Ministerio de Ciencia y Tecnoto@Ton-
length, the concept of an equivalent effective continuous tneet No. MAT2001-0946

VI. CONCLUDING REMARKS
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