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Electron energy loss and induced photon emission in photonic crystals
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The interaction of a fast electron with a photonic crystal is investigated by solving the Maxwell equations
exactly for the external field provided by the electron in the presence of the crystal. The energy loss is obtained
from the retarding force exerted on the electron by the induced electric field, and the photon emission prob-
ability is calculated from the far-field Poynting vector. The features of the energy-loss spectra are shown to be
related to the photonic band structure of the crystal. Two different regimes are discussed: for small lattice
constantsa relative to the wavelength of the associated electron excitationsl, an effective medium theory can
be used to describe the material; however, fora;l the photonic band structure plays an important role.
Special attention is paid to the frequency gap regions in the latter case.
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I. INTRODUCTION

Near-field spectroscopy can be performed using spati
resolved electron energy-loss spectroscopy in scanning tr
mission electron microscopes, where the electron beam
vides an external evanescent field to probe the sample w
a spatial range on the nanometer scale. In particular, the
tively intense, low-energy part~,50 eV! of the loss spec-
trum can be used with minimum sample damage to prov
some insight on plasmons and other collective excitations1–4

For the electron velocities typically employed in micr
scopes~above half the speed of light! and for samples tha
are homogeneous across distances of a few nanome
frequency-dependent dielectric functions are sufficient to
scribe the materials that are involved and the loss spe
reflect the geometry of the sample interfaces.5–10

The geometry becomes particularly important in photo
crystals, where the periodic spatial modulation of the diel
tric function affects the propagation of radiation to the po
of forbidding it within band-gap energy regions. As a cons
quence, photonic crystals are known to inhibit the sponta
ous emission of light within the band gap.11,12They can also
be used to make omnidirectional dielectric mirrors that
flect light from all directions without absorption13 and wave
guides able to deflect light around sharp corners on the s
of the wavelength.14 These are applications of photonic cry
tals that involve free external radiation, but equally rema
able effects are expected to accompany evanescent fields
those of external electrons.

In this work, we examine the energy-loss spectra of el
trons moving near or inside photonic crystals over a w
range of lattice parametersa. Whena is much smaller than
the wavelength of the radiation associated to a given ene
loss,l, it is shown that the crystal can be described to so
extend by an effective dielectric function.15–18For larger lat-
tice constants, the photonic band structure becomes m
complicated and this is reflected in the loss spectra. The
lation between the band structure, the reflectance of phot
crystal slabs, and the electron energy-loss spectra is
cussed in detail in what follows.

In a previous development, Pendry and Martı´n-Moreno19
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calculated the energy-loss probability for electrons mov
near crystals made of either metallic spheres or metallic
inders in thea!l limit using the transfer-matrix approach20

to solve Maxwell’s equations. Their results exhibit a comp
cated energy-loss structure even for relatively dilute cryst
which has not been reproduced in the present work. Th
fore, in order to test the convergence of our method, we h
calculated the energy loss near the surface of a crysta
dilute spheres and have found very good agreement betw
the results derived from the theory described in this wo
and those obtained from the analytical expression for i
lated spheres.9,10

In addition to producing energy loss, the interaction b
tween the electron and the crystal gives rise to the emis
of the so-called Smith-Purcell radiation.21 This effect has
already been discussed for one-dimensional10 and three-
dimensional22,23 crystals. Radiation emission is one of th
contributions to the total energy loss, and in frequency
gions where the crystal is transparent the probability of th
two must coincide. Examples of this are offered below.

Here, the energy-loss and photon emission probability
calculated from the induced electric field, which is deriv
using the reflection coefficients of the crystal,19 as explained
in Sec. II. Results for the case of small lattice constantsa
!l) are given in Sec. III and for larger ones (a;l) in Secs.
IV and V. The main conclusions are summarized in Sec.
Gaussian atomic units~a.u., that is,\5m5e51) will be
used from now on, unless otherwise specified.

II. THEORY

A. The reflection coefficients of the crystal

We shall consider crystals that are composed of a num
of layers perpendicular to thez direction and extending from
z50 towardsz,0. The host region outside the crystal w
be assumed to be described by a frequency-dependent di
tric function eh(v) and a magnetic permeabilitymh(v).
Each crystal layer consists of the repetition of a given obj
with certain two-dimensional~2D! translational symmetry
that is shared by all layers. The crystal will be characteriz
here by its reflection coefficients, that is, the amplitudes
the reflected plane-wave components for a given incid
wave.
©2003 The American Physical Society08-1
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In general, an external plane wave of frequencyv that
propagates near the crystal can be represented as

EQ
6exp~ iKQ

6
•r !,

whereQ5(Qx ,Qy),

KQ
65~Q,6 iGQ!,

GQ
2 5Q22kh

2 ,

andkh5(v/c)(ehmh)1/2 is the momentum of the plane wav
The real part ofGQ is chosen to be positive, and the1 ~2!
sign in these expressions stands for a wave moving tow
z.0 (z,0).24

The momentumQ parallel to the surface has been singl
out to make explicit use of crystal symmetry: invoking m
mentum conservation, a wave incident from thez.0 region
with momentumKQ

2 will only produce a discrete set of re
flected waves of momentumKQ1G

1 , whereG runs over re-
ciprocal surface lattice vectors.

The transversal character of these waves~i.e., the fact that
KQ

6
•EQ

650) can be exploited to express the electric field
terms ofs andp components according to

EQ
65EQ,s

6 êQ,s
6 1EQ,p

6 êQ,p
6 ,

where the vectors

êQ,s
6 5

1

Q
~2Qy ,Qx,0!

and

êQ,p
6 5

i

khQ
~6GQQx ,6GQQy , iQ2!

satisfy the identitiesêQ,s
6

•êQ,s
6 5êQ,p

6
•êQ,p

6 51 and êQ,s
6

•êQ,p
6

5êQ,s
6

•KQ
65êQ,p

6
•KQ

650. Also, êQ,s
6 is perpendicular to the

plane defined byQ and the surface normal.
The amplitudes of the reflected waves depend linearly

the amplitudes ofs andp components of the incident wave
and the coefficients of the linear relation between them

the reflection coefficientsRQG
ss8 , implicitly defined by

@EQ1G,s
1 # r5(

s8
RQG

ss8@EQ,s8
2

# i , ~1!

wheres ands8 run over polarization directionss andp, and
the superindicesr andi stand for reflected and incident com
ponents, respectively.

We have used the layer Korringa-Kohn-Rostoker~KKR!

method to calculate the reflection coefficientsRQG
ss8 both for

a!l and fora;l. In the layer KKR method, the transmis
sion and reflection coefficients are calculated exactly
each single layer using multiple scattering in a basis se
multipoles centered around each object of the layer. Sca
ing among layers is then expressed in terms of those co
cients. The maximum multipole orderl max and the number of
reflected and transmitted beams~i.e., the number ofG vec-
tors! are the only convergence parameters, which have b
12510
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tested in all calculated results shown below. Stefanouet al.25

developed this method for spheres and we have extend
to be able to deal with nonspherical objects and arbitr
values ofl max. Further details of the method will be give
elsewhere.26

B. The field of the electron

We shall consider an electron moving with constant v
locity v along a trajectory parallel to the crystal surface a
described byr t5(vt,y0 ,z0), with z0.0, so that the electron
moves in the host medium described byeh andmh . Neglect-
ing the crystal for the moment, the electron electric field c
be expressed in frequency spacev in terms of vector and
scalar potentials as

E05
iv

c
A02“f0 .

In the Lorentz gauge, Maxwell’s equations can be recast

~¹21kh
2!f052

4p

eh
r

and

~¹21kh
2!A052

4pmh

c
j ,

where r(r ,v) is the electron charge density, andj (r ,v)
5(vr,0,0) is its charge current.

Using the relation

~¹21kh
2!E dp

2p2

eip•r

p22kh
22 i01

524pd~r !

and noticing thatr(r ,t)52d„r2(vt,y0 ,z0)…, the electric
field is found to be

E0~r ,v!5F ¹

eh
2

ivvmh

c2
x̂G E dp

2p2E dt eivt
eip•[ r2(vt,y0 ,z0)]

p22kh
22 i01

,

where the time integral represents the inverse Fourier tra
form that permits obtainingr~r ,v! in terms ofr(r ,t). The
above integral can be reduced to

E0~r ,v!5E dQye
iKQ

6
•[ r2(0,y0 ,z0)]EQ

6 , ~2!

whereQ5(v/v,Qy) and

EQ
65

i

GQ
S KQ

6

veh
2

vmh

c2
x̂D .

The 1 ~2! sign must be used in these expressions whez
.z0 (z,z0), so that the integrand of Eq.~2! represents a
plane wave that propagates towards positive~negative! z’s.
When the electron is moving in vacuum,GQ is real and the
waves in the integrand of Eq.~2! are evanescent.24 However,
when kh is real and larger thanv/v, some of those waves
8-2
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describe Cherenkov radiation that propagates without atte
ation; this is the case of electrons that travel faster than l
in the medium.

C. The field induced by interaction of the electron
and the crystal

The decomposition of these plane waves intos and p
components is readily found to be

@EQ,s
6 # i5

iQyvmh

QGQc2
e2 iKQ

6
•(0,y0 ,z0)

and

@EQ,p
6 # i56

kh

vQeh
e2 iKQ

6
•(0,y0 ,z0).

Each of the incident plane waves@i.e., each value ofQy in
Eq. ~2!# gives rise to a set of reflected waves whose am
tudes are obtained from Eq.~1!. Therefore, the electric field
in the region near the ion can be constructed as the sum oE0
and the reflected field,

E~r ,v!5E0~r ,v!1Er~r ,v!, ~3!

where

Er~r ,v!5 (
G,ss8

E dQye
iKQ1G

1
•rRQG

ss8@EQ,s8
2

# i êQ1G,s
1 ,

~4!

and the integral overQy has been copied directly from Eq
~2! in virtue of the linearity of Maxwell’s equations.

D. Electron energy loss in front of the crystal

The electron energy loss can be calculated from the
tarded force exerted by the induced part of the electric fi
Eind acting back on the electron. Integrating this force alo
the trajectory and dividing by the total path lengthL, one
finds

DE

Dx
5

v
LE dt Ex

ind~r t ,t !5E
0

`

vdvP~v!,

where

P~v!5
v

pvLE dt Re$e2 ivtEx
ind~r t ,v!% ~5!

is the loss probability per unit of path length.
For an electron moving parallel to a crystal surface, E

~3! permits separating the loss probability as

P5P01Pr ,

where9

P0~v!5
1

pv2
ImH S v2

c2
mh2

1

eh
D lnF qc

22kh
2

~v/v !22kh
2G J
12510
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corresponds to the contribution ofE0 in the absence of the
crystal. Here,qc is a momentum cutoff related to energ
conservation. This contribution vanishes in vacuum. Ho
ever, it gives rise to Cherenkov losses wheneh and mh are
real, in which case27,9 P05umhu@1/c221/(v2ehmh)#, subject
to the Cherenkov conditionv2ehmh.c2.

The remaining contributionPr is due to the retarding
force exerted by the reflected fieldEr . Inserting Eq.~4! into
Eq. ~5!, the timet and the lateral impact parametery0 appear
only through the factor exp$i(Gxvt1Gyy0)%, so that time
integration eliminates all vectorsG with GxÞ0 from the
sum in Eq.~4!. Furthermore, averaging overy0 leaves only
the Gy50 term and one obtains

Pr~v!5
1

pv2E dQy

Q2
ImH FRQ0

pp1ehmhS Qyv
GQcD 2

RQ0
ss

1
iQykhv
vGQ

~RQ0
sp 2RQ0

ps !G GQe22GQz0

eh
J . ~6!

The last term inside the square bracket of this express
gives no contribution when the electron trajectory is co
tained in a plane of specular symmetry of the crystal surfa

As a test one can apply Eq.~6! to an electron moving in
vacuum (eh5mh51) at a distancez0 from the surface of a
nonmagnetic medium described bye, in which caseRQ0

sp

5RQ0
ps 50. Then, using the fact thatP050 in vacuum, so

that P5Pr , Eq. ~6! leads to

P~v!5
2

pv2E0

`GQdQy

Q2
e22GQz0ImH eGQ2GQ8

eGQ1GQ8

1S Qyv
GQcD 2GQ2GQ8

GQ1GQ8
J ,

where GQ8 5AQ22ev2/c2, GQ5AQ22v2/c2, and the re-
flection coefficients of Eq.~6! have been taken from
Fresnel’s equations.27 In the nonrelativistic limit,GQ5GQ8
5Q, so that the contribution of the reflection ofs waves
vanishes and the loss probability becomes proportiona
Im$21/~e11!%.

III. ENERGY LOSS FOR SMALL LATTICE CONSTANTS

When the crystal lattice constant is much smaller than
wavelength corresponding to a given frequency compon
v, the details of the crystal lattice cannot be resolved by
electron, so that the medium behaves like a uniform mate
characterized by an effective dielectric constant and m
netic permeability. For instance, a dilute system of sphe
can be regarded as a set of interacting dipoles, which lead
the well-known Maxwell-Garnett formula.28 For more com-
pact systems the details of the microscopic structure
comes relevant via important multipolar interactions.

These are the cases considered in Fig. 1 for a cry
composed of small aluminum spheres that are disposed
simple cubic lattice of constanta55 nm. The solid curves
of Fig. 1~a! show the loss probability for an electron movin
8-3
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with velocity v50.4c parallel to the surface of a slab mad
up of six (100) layers of such crystal. The lost probabil
has been calculated by means of Eq.~6! for two different
filling fractions f of the aluminum (6.5% and 30%, respe
tively!. The dielectric function of aluminum has been a
proximated by a Drude expressione(v)512vp

2/v(v
1 ih) with vp515 eV and h51 eV. The wavelengths
considered in the figure lie in the rangel52pc/v
588.6–310 nm, so that we are in thel@a limit. The maxi-
mum orbital quantum number used to achieve converge
on the figure isl max56.

Crystalline effects come from the interaction amo
spheres, and a method to determine their relative role c
sists in comparing these results with a calculation in wh
that interaction is suppressed. This is what the dashed cu
stand for in Fig. 1. It is very clear that the interaction amo
spheres is almost negligible forf 56.5%, whereas it be

FIG. 1. ~color online only! ~a! Energy-loss spectra for an elec
tron moving parallel to the@100# direction of the~100! surface of a
simple cubic crystal made up of six layers of aluminum sphere
vacuum with lattice constant 5 nm and two different filling fractio
~see labels!. The electron is moving at a distance of 1 nm from t
sphere surfaces with a velocityv50.4c ~solid and dashed curves!
and v50.06c ~dotted curve!. The dashed curves are obtained
neglecting the interaction among spheres, whereas the solid cu
and the dotted curve correspond to the full solution of Maxwe
equations.~b! Surface loss function for the same crystal as in~a!
using the effective dielectric function obtained from the Maxwe
Garnett expression~broken curves! and from the multiple-scattering
method explained in the text~solid curves!.
12510
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comes very important atf 530%. In the latter case, th
sphere surfaces are closer to each other and their mu
electromagnetic coupling becomes relevant. The noninter
ing case shows a peak at aroundv158.7 eV that corre-
sponds to the dipole Mie resonance in the small-sphere li
given by the expressione(v1)522 ~i.e.,v15vp /A3). The
main effect of the sphere-sphere interaction~solid curve for
f 530%) consists in splitting this peak, in a similar way
splitting of degenerate levels~the Mie resonances here! oc-
curs in atomic bonding.

This is actually observed in the projected photonic ba
structure of this crystal, represented in Fig. 2 forf 530%.
The structure is dominated by nearly flat bands correspo
ing to localized excitations near the Mie resonances of
small isolated spheres,v l5vpAl /(2l 11), which lie in the
8.7–10.6 eV range~see the labels on the right-hand side
the figure for the dipole and quadrupole Mie modes!. The
interaction between spheres gives rise to a complex struc
that encompasses regions of relative transparency ou
that energy range. The evanescent plane-wave compon
of the external electron field are subject to the conditionv
5Q•v, which defines the solid straight lines shown in t
figure. The loss spectrum can then be understood as orig
ing from both absorption and direct coupling to propagat
modes of the crystal. This last effect is clearly seen a
bump in the loss probability near 6.7 eV, connected to
crossing of the noted straight lines with a low-energy reg
of allowed propagating modes.

The dashed curves of Fig. 1~a! ~uncoupled spheres! have
been obtained in two different ways. The first one consists
calculating the reflection coefficients that appear in Eq.~6!
using the layer KKR method but neglecting the interacti
among spheres within each layer and also the interac
among different layers. A second procedure consists in m
ing use of the analytical expression for the energy-loss pr
ability of an electron near an isolated sphere~see Refs. 6, 9,
and 10 for non relativistic and fully relativistic formulas
respectively! and summing over all impact parameters of t
electron trajectory with respect to the spheres of the crys
The results coming out of these two very different proc
dures cannot be distinguished on the scale of the figure,
this is a strong indication of the degree of convergence of
numerical calculations with respect to the number of pla
waves used in the layer KKR method.

These results do not support, however, previous calc
tions by Pendry and Martı´n-Moreno19 for this exact system,
where the number of features and their energy position
the filling fractions under consideration differ from ours.
possible lack of convergence of the transfer-matrix meth
used by the authors for this three-dimensional system of
tallic scatterers might be the reason of this discrepancy
particular, some of their low-energy features around 6.5
could originate in the modes of the wedge associated to t
space discretization procedure~resonances near that energ
have also been found for the 90° aluminum wedge9!.

The example offered in Fig. 1 illustrates what happens
the a!l limit, where it is reasonable to define an effectiv
dielectric functioneeff for the infinite crystal and to compar
the results of the detailed, exact calculation with those

in
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8-4



tice of
ected on
m plane.
n
parallel

escent
iplied
areas

ELECTRON ENERGY LOSS AND INDUCED PHOTON . . . PHYSICAL REVIEW B67, 125108 ~2003!
FIG. 2. ~color online only! Photonic band structure of one of the crystals considered in Fig. 1, consisting of a simple cubic lat
aluminum spheres in vacuum with a lattice constant of 5 nm and a filling fraction of 30%. The figure shows the band structure proj
the ~100! surface. The horizontal axis represents the excursion along the points indicated in the inset within the parallel momentu
The expressione(v)512vp

2/v(v1 ih) has been used for the aluminum dielectric constant withvp515 eV. When the damping is take
in the h→01 limit, one obtains regions of allowed electromagnetic propagation, that is, combinations of the energy and the
momentum components for which some eigenstates have a real perpendicular momentum. They define the shaded region in~a!. However, for
a realistic value of the damping parameter~h51 eV!, all perpendicular momentum components are complex and they represent evan
waves within the crystal. The contour plot in~b! represents the lowest value of the imaginary part of the perpendicular momentum mult
by the lattice constant~i.e., the minimum of Im$kza%) for all eigenstates with a given parallel momentum. The boundaries of the shaded
of ~a! are shown in~b! as continuous curves. Straight lines have been added to both~a! and ~b! to represent thespeed conesv5Q"v,
corresponding to the external field associated with the electron moving at speedsv50.4c ~thick solid lines! andv50.06c ~dotted lines!.
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tained for an electron moving parallel to a homogene
surface of a material described by such a dielectric funct
Several recipes for definingeeff for granular materials have
been given in the literature, ranging from simple effectiv
medium theories like Maxwell-Garnett’s28 to more elaborate
ones that take into account the actual shape of the cons
ents, both for disordered composites29,30,17 and for crys-
tals.29,31–34 Among the latter, one finds extensions of t
Maxwell-Garnett theory that go beyond dipolar intera
tions,29,17 spectral representations,31,33 or direct derivation of
the light dispersion relation.32 Here, we have used a differen
method that consists in finding the effective dielectric fun
tion eeff of the equivalent homogeneous medium that has
same reflectance as the crystal surface:26 first, the reflectance
coefficients fors- and p-polarized light,r s and r p , respec-
tively, are calculated for the actual crystal as a function of
angle of incidenceu; then,eeff is derived from Fresnel equa
tions, which are conveniently recast fors light as eeff
5sin2u1cos2u @(12rs)/(11rs)#

2, and forp light as a similar
but more involved expression; a value ofeeff averaged over
different polarizations and incidence directions is obtain
exhibiting a standard deviation below 1% in the pres
case; as a cross check, the reflectance calculated for th
tual crystal has been shown to be well reproduced by Fre
equations with a single average value ofeeff(v) within a 2%
under the present conditions; this procedure is then repe
for each frequencyv under consideration. The results a
represented by the solid curves of Fig. 1~b!, where they are
12510
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compared with Maxwell-Garnett’s theory~broken curves!.
For f 56.5% these two models are nearly identical,
Maxwell-Garnett formula gives the dipole of the small is
lated sphere correctly. However, forf 530% the deviation
between both models is significant, since higher mome
are involved in the interaction between neighboring sphe
The magnitude actually represented in the figure is the
face loss function, Im$21/(11eeff)%, which is directly com-
parable to the loss probability of Fig. 1~a!. The agreement in
the position of the peaks between the detailed energy-
calculation and our effective-medium theory is reasona
good, indicating that an effective homogeneous medium
scribes the solid appropriately within this energy range av
50.4c; however, the relative weight of the features forf
530% changes completely at lower velocities~dotted curve,
v50.06c58.2 a.u.).

Another example of a crystal that can be represented
an effective dielectric constant is given in Fig. 3, consisti
of a simple cubic lattice with the same parameters as in F
1, except that finite cylinders have been used instead
spheres. As a result, the medium is strongly anisotropic
characterized by different bulk plasmon modes when
electric field is directed parallel or perpendicular to the c
inders @see Figs. 3~c,d!#. The loss probability@Fig. 3~a!# is
shown to share most of the features of the surface loss fu
tion for anisotropic media@Fig. 3~b!#, except for the 7.8 eV
peak in the loss spectrum withf 530%, which might be
connected to the proximity effect when the electron sta
8-5
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FIG. 3. ~color online only! ~a! Energy-loss spectra for an electron moving parallel to the@100# direction of the~100! surface of a simple
cubic crystal made up of six layers of aluminum cylinders in vacuum with lattice constant 5 nm and two different filling fraction~see
labels!. The height of the cylinders is equal to the diameter in all cases. The electron is moving at a distance of 1 nm from the
surfaces with a velocityv50.4c. ~b! Surface loss function for the same crystal as in~a! using the effective dielectric function obtained fro
the multiple-scattering method explained in the text.~c! Anisotropic dielectric function for the crystal considered in~a! with a filling fraction
of the aluminum of 6.5%.~d! Same as~c!, for a filling fraction of 30%.
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sensing the nonuniform character of the surface via eva
cent waves.

IV. ENERGY LOSS FOR LATTICE CONSTANTS
COMPARABLE TO THE WAVELENGTH

For lattice constants comparable to the wavelength a
ciated to the energy losses under consideration, one ca
longer define the effective dielectric constant of an equi
lent homogeneous medium. Then, it is useful to relate
loss spectra directly to the photonic band structure. This
been done in Fig. 4 for a crystal of aluminum spheres
mersed in a dielectric withe53. The features of the los
spectra@Fig. 4~c!# seem to be correlated to some extend w
the band structure@Figs. 4~a,b!#. In particular, the pseudo
gaps near 3.2 eV could be the source of a dip in the l
probability. However, this relation is not entirely direct,
can be seen from the presence of a peak at around 2.7
whose origin could be found in the coupling of the extern
electron trajectory to crystal surface modes. More researc
this direction is still needed.
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Using electrons to analyze the crystal permits explor
regions of the band structure that are not accessible to e
nal light, but that can be reached via the evanescent wa
contained in the perturbing field of the electrons. This is
case of Fig. 4 forv/c50.5 @solid curve in Fig. 4~c!#, well
below the Cherenkov thresholdv/c51/A3, that permits to
observe how the peak in the loss spectrum near 2.7 eV
sults from the coupling with propagating modes of the cr
tal as a result of the intersection of the external field com
nents @straight solid lines in Fig. 4~a!# and the allowed
regions of propagation~shaded areas!.

At larger velocities @v/c50.75, dashed curve in Fig
4~c!#, Cherenkov radiation would be produced in the abse
of the crystal, that would result in a loss probability indepe
dent of v ~see little arrow near the horizontal axis of th
figure!. This is clearly seen in the big overlap of the extern
field with the regions of propagation within the crystal insi
the low-energy region results in an enhanced loss probab
as compared tov/c50.5. However, the presence of the cry
tal modulates the loss spectrum.

Part of the energy lost by the electron must be conver
8-6
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FIG. 4. ~a!,~b! Photonic band structure projected on the~100! surface and represented as in Figs. 2~a,b! for an fcc lattice of aluminum
spheres surrounded by a medium of dielectric function equal to 3. The filling fraction of the spheres is 20% and the lattice consa
5105.2 nm, comparable to the wavelengthl ~see scale on the left-hand side of the figure!. Straight lines have been added to both~a! and
~b! to represent thespeed conesv5Q"v, corresponding to the external field associated with the electron moving at speedsv50.5c ~solid
lines! andv50.75c ~thick dashed lines!. ~c! Electron energy-loss spectra for an electron moving with velocityv50.5c ~solid curve! and
v50.75c ~broken curve! at a distance of 3.2 nm from the surface of the outermost spheres of a semi-infinite crystal like that consid
~b!. The trajectory is directed along the@100# direction (GX).
, t
ss
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e
v-
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ace
into the so-called Smith-Purcell radiation.21,10 In particular,
when transparent materials are used to build the crystals
light-emission probability must coincide with the energy-lo
probability. For a crystal of finite thickness, like the one co
sidered in Fig. 5, consisting of 8~111! layers of an inverted
Si opal ~e511.9! with a filling fraction of 67%, part of this
emission occurs towards the side of the crystal opposit
the electron trajectory~here, the electron is taken to be mo
ing parallel to the crystal surface!. The intensity of the emit-
ted light @Fig. 5~c!# has been calculated from the integral
12510
he

-

to

the Poynting vector far from the crystal~see Ref. 23 for more
details!, and it presents a strong dip neara/l'0.75, where
a51220 nm is the lattice constant. The region of emiss
depletion is actually contained within a full band gap of t
infinite crystal@see Fig. 5~a!#; this is also seen in the trans
mission of light incident on the crystal both normal to th
surface@dashed curve in Fig. 5~b!# or with an angle corre-
sponding to the Cherenkov radiation produced by the e
tron in the plane defined by the trajectory and the surf
normal ~solid curve!.
stal

e constant
ns. The
values is
FIG. 5. ~a! Photonic band structure projected on the~111! surface for an fcc lattice of air spherical voids in Si~e511.9!. The radius of
the spheres is 0.342 times the lattice constanta. ~b! Dashed curve: transmittance of light incident normal to eight layers of the cry
considered in~a!. Solid curve: transmittance for an angle of incidence corresponding to the Cherenkov angleuc568.1° for a 100-keV
electron moving parallel to the same crystal. The crystal is surrounded by Si on both surfaces.~c! Probability of emitting light on the opposite
side of the crystal with respect to the electron trajectory. The distance from the latter to the sphere surfaces is 876 nm and the lattic
is a51220 nm. The probability is given per unit of path length in microns and per unit of emitted-photon wavelength also in micro
region of frequency and momentum where the field of the electron inside a homogeneous infinite Si medium takes nonzero
represented by thick solid lines in~a!.
8-7
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FIG. 6. Schematic representation of the construction of the electric field in the bulk of a photonic crystal in terms of the reflec
two semi-infinite crystals and definition of the matricesA, B, C, andD used in Eq.~7!. See Sec. V for more details.
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V. ENERGY LOSS IN THE BULK OF A CRYSTAL

So far we have considered an electron moving in front
the surface of a photonic crystal. When the electron is m
ing in the bulk of an infinite crystal, the electric field can al
be written in terms of reflectance coefficients if the trajecto
is contained in a low-index plane that does not intersect
of the crystal objects. The reflectance in question is tha
the lower and upper semi-infinite crystals into which the e
tire crystal is divided by the noted plane. The correspond
reflectance matrices will be denotedR1 andR2, respectively.
They contain the amplitudes of reflected beams, labeled
vectorsG of the 2D reciprocal lattice of the plane und
consideration. In particular, for a fixed value ofQ, R1,GG8

ss8 is
given by RQ1G8,G2G8

ss8 , as defined by Eq.~1!. Similarly,
R2,GG8

ss8 connectsKQ1G
1 wave components with waves re

flected from the upper surface with momentumKQ1G8
2 .

This is represented schematically in Fig. 6, where the
flectance matrices of the lower and upper semi-infinite cr
tals areR1 andR2, respectively, and upwards~downwards!
arrows represent waves of momentumKQ1G

1 (KQ1G
2 ). The

upper and lower surfaces have been separated in the fi
for the sake of clarity, but they will be considered to lie o
the same plane~a plane that contains the electron trajecto!
in what follows.
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Using Eq. ~5! for the loss probability and a straightfor
ward extension of Eq.~4! for the reflected electric field in-
cluding all terms of Fig. 6, the loss probability per unit
path length averaged over all impact parameters paralle
the crystal surfaces is found to be

Pr~v!5
1

pv2E dQy

Q2
ImH FA00

pp1B00
pp2C00

pp2D00
pp

1ehmhS Qyv
GQcD 2

~A00
ss1B00

ss1C00
ss1D00

ss!

1
iQykhv
vGQ

~A00
sp2B00

sp1C00
sp2D00

sp2A00
ps

1B00
ps1C00

ps2D00
ps!GGQ

eh
J , ~7!

where the matricesAGG8
ss8 , BGG8

ss8 , CGG8
ss8 , andDGG8

ss8 are de-
fined in Fig. 6, and only the elementsG5G850 enter this
expression.

The above formula has been applied to calculate
energy-loss probability for an electron moving in betwe
s

f

o

FIG. 7. Energy-loss probabil-
ity for a 100-keV electron travel-
ing parallel to two photonic crys-
tals with the same parameters a
in Fig. 5~c!. The spacing between
the two crystals is 300 nm, which
is filled with Si ~this is exagger-
ated in the inset for the sake o
clarity!. The electron is traveling
at the same distance from the tw
crystals.
8-8
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ELECTRON ENERGY LOSS AND INDUCED PHOTON . . . PHYSICAL REVIEW B67, 125108 ~2003!
two parallel crystal slabs of 32 layers each surrounded by
as shown in Fig. 7. The crystal parameters are the same
Fig. 5~c!, so that an absolute band gap shows up neara/l
50.75. The electron energy~100 keV! is large enough to
produce Cherenkov light, which must be confined in betwe
the two crystals for wavelengths lying in the gap region. T
is actually observed as a pronounced dip, connected to
fact that no electromagnetic modes can be created tha
cape through the crystals, except for a small transmiss
due to their finite thickness. However, some radiation c
escape through modes that are trapped in the slab forme
the two crystals, so that the loss probability does not actu
reach a zero value in the dip.

VI. CONCLUDING REMARKS

The energy loss of fast electrons interacting with photo
crystals has been calculated for dielectric, metallic, a
metalodielectric systems.

When the wavelength of the radiation associated to
energy loss is much larger than the lattice constant, the c
tal can be regarded as a continuous medium, characterize
an effective dielectric function, as it has been shown
crystals of small aluminum spheres in Fig. 1 and small fin
cylinders in Fig. 3. The effective medium is highly anis
tropic in the latter case. The effective dielectric function h
been calculated in both cases from the reflectance coeffic
of the crystal, and this has been shown to contain most of
information needed to understand the calculated energy-
spectra.

When the lattice constant is comparable to the wa
length, the concept of an equivalent effective continuou
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dium is no longer valid, and one has to rely on the detai
band structure of the crystal to understand the loss spe
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Finally, the interaction of the electron with the cryst
produces Smith-Purcell radiation, which contributes to
energy loss. If the crystal is composed of nonabsorbing m
terials, the energy-loss probability and the light-emiss
probability must coincide, as shown in Fig. 5 for an inve
ted Si opal, in which case the light emitted after transm
sion through the crystal shows dips that are directly c
nected to the presence of photonic band gaps. For elect
moving in a region surrounded by photonic crystals a dip
also observed in the loss probability within the gap energ
~Fig. 7!.

Our hope is that the present work can provide a stimu
to use fast electrons in the analysis of photonic crystals a
way to bring a source of evanescent radiation~the electro-
magnetic field of the electron in vacuum! into close contact
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would not be easily accessible to other sources of exte
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