PHYSICAL REVIEW B 67, 125103 (2003

Density functional study of polarons and bipolarons in polar liquids
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The density functional theory of polarons and bipolarons in a polar liquid is presented. Starting from the
grand partition function, we have developed a microscopic model and derived the free-energy functional of the
system in which the electrons are treated within the Kohn-Sham formalism, while the solvent via the integral
equations theory. The case of our approach concerns with the free-energy functional corresponding to the mean
spherical approximation and the extended point dipole model. We have calculated different properties for a
polaron and a singlet bipolaron formation and their variations caused by changes in temperature, density, and
polarity of the solvent. The obtained results are in agreement with available experimental data and simulations.
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[. INTRODUCTION tion phenomena. Recently the DFT approach has been imple-
mented to calculate a microscopic structure of soRferit
Excess electrons forming polaron and bipolaron states iand both the examples have demonstrated the DFT results to
polar liquids are an object of intensive theoretical investigabe in a good agreement with molecular simulations, and that
tion and computer simulatidn®. Numerous experimental the theory reliably accounts for the pair correlation functions
techniques have been developed and extensive experimengld the free energy of solvation. _
evidence on the behavior of solvated electrons in various Ve Wwill use a scheme based on self-consistent calcula-
media has been accumulatetExcess electrons solvated in tions of the Kohn-Sham equations for an electron density
polar liquids provide a simple example of mixed quantumcoupled with the integral equations for the solvent. The inte-
and classical systems, which exhibit a large number of varigral equations theory yields a detailed information about
ous effects and are can conveniently be studied by quantu§plute-solvent interactions in terms of' correlation fung:t|ons,
statistical methods. Such a mixed quantum-classical systeRHt does not require huge computational costs. Using the
is suitable to demonstrate the potential of various simulatioi"€an spherical approximation, the extended point dipole and
methods such as quantum molecular dynamics, the path itbe referepce interaction models we will evaluatg the che_m|—
tegral method, and a variety of hybrid schemes. At preserft@l potentials of the solvent and solute and derive the final
there are a lot of examples of such calculations of excestelations for the electron and solvent densities. We consider
electrons in water clustePs,ammonial®?2 and ionic the low concentration limit when correlations between elec-

solutions®18 These studies have shown that excess elecdrons are small. In this case we will calculate the electron

such as polaron and bipolaron formations, multielectrorffdy. and the chemical potential for a polaron and a singlet
clustering. Generally these models treat the electrons by tH@ipolaron formation. Variations of these characteristics
density functional theoryDFT), whereas the solvent effects caused by changes in temperature, density, and polarity of
are simulated by molecular dynamitédD) or Monte Carlo  the solvent will also investigated.
(MC) tools. However, these hybrid methods, being more re-
alistic, require simulation of huge numbers of solvent con-
figurations and high computational efforts. Il. FORMALISM

In this work we have applied the DFT to investigate ex-
cess electrons in a polar liquid. Density functional theory
(DFT) was proven to be a powerful tool for studying atoms We consider a system consisting Nf excess electrons
and molecules by a works on the electronic structure of variandN classical solvent particles, whose distribution depends

A. Density functional treatment of the electronic subsystem

ous molecular complexé-*° Recent developments of nu- not only on their coordinate®™'={Ry,R,, ... Ry} but
merical schemes based on the DfRefs. 20,21 have dem- also on the orientations (Euler angles —wN
onstrated that the density functional language is able te={w;,W,, ... ,wy} of their dipole momentan. In the sta-

provide calculations with an accuracy comparable with thdistical approach the system consisting of interacting classi-
ab initio ones. From another hand, the density functionalcal particles and electrons is described by the grand partition
treatment is widely used to investigate the behavior of clasfunction = given by

sical inhomogeneous systeR?s2* The application of DFT

to molecular liquid®~?’ indicates that the DFT is very

promising to treat many-body problems correlated to solva- E=((exd — B(H—ueNe—uN)])e)s, (1)
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where the symbolg---). and(- - -)g denote the averages tial depending on the equilibrium configuration of solvent
over electronic and solvent degrees of freedom respectivelparticles, which can be found through the evaluation of the
H is the Hamiltonian of the system,, andu are the chemi- grand partition function
cal potentials of electrons and solvent particles, wiglés

> S

N
the inverse temperature. We write the Hamiltonian of the 1
P 57E:<EXF{_ﬁ(§2 ucc+Vec[ne]_luN
mk

system as
NN
X exf — B(Eee— teNe) . (7)
H=T+Ugdr,ry, ...,rNe)+2 Ued|1i— Rl Wim) e e o
im Thus, the next step of our study requires the estimation of the
1N average over solvent degrees of freedom and the derivation
4= E Ueel|Rin— Red s Wiy 2) of thg total free—energy functional. We notg that.the electron
2 Tk densityng(r) serves in Eq(7) as a source inducing the ex-

! _ ) ) . o ternal potentiaV, in a classical liquid. Therefore, following
The first term in the right side of ER) is the kinetic energy  percus’ ide®? we can apply the DFT in the classical domain

of electrons, the second one is the contribution due tQnq perform the complete evaluation of the grand partition
electron—electron interactions, while the third and the fourthy,nction.

terms are the electron-solvent and solvent-solvent potentials
which we assume that are pairwise.

In principle, the average over electronic degrees of free-
dom requires the knowledge of ti.-electron wave func- To derive the total free-energy functional we should con-
tion W(ry,ry, ... ry), however, the DFT approathre-  sider the electron-solvent interactions in more details. In the

duces the problem to the calculation of the electron densitydeneral case, the electron-solvent potential includes long-
range attractive and short-range repulsive parts and can as-

B. Total free-energy functional

sumed to be
ne(r)=f [W(r,ry, ... )2dery, oo dory,
¢ ¢ Uec(T,M)=Uegr)+m-Vug, )
where we denote the Coulomb potentialgs The short-
Ne= f ne(r)d-r. (3 range and long-range parts differently affect the solvent. The
first leads to a cavity formatiofsolvophobic effegt while
The latter is needed to minimize the energy functional the second one causes a polarization and orientational rear-
rangement of the solvent. These interactions, together with
1 Ne(r)Ne(r’) similar interactions between solvent particles, result in a re-
Fe[ne]=T[ne]+ EJ J drdr’ —— +ExdNel distribution of solvated particles.
[r=r’| Dividing the solvent-solvent potential.. into short-range
+Ved Ne] = Eed Ne] + Ved Nel, (4)  (usgd and long-range parts, we can rewrite the solvent func-
tional as
where Ved Ne]== S Ne(NUe|r — Rl ,Wm)d-r is the con- \
tribution due to solvent particles and,n.] is the Uce , (Usstm-T- m)*
exchange-correlation energy. There are several approximateEsol\[nSf“]: %( 7+V90_“N:ns 35 N
expressions foE,Jn.] including the local on& which is
given by +ng (Uest M- VUg)*ng— u*ng 9)
Here, T(r—r’) is the rank-2 tensor of dipolar interactions
EXCZJ Ne(r)[ ex(r) +€c(r)]d-r. 5
3r-r |
The explicit expression foe,(r) is usually written as,(r) Tn= (5 3’ (10
=ng(r)*3, while accurate approximations feg(r) are ob-
tained by fitting of quantum MC calculatioris. andl is the rank-2 unit tensor. In Eq9) the asterisk corre-
Representing the electron density by the one-electrofPonds to the convolution integration
wave functions, i.e.ne(r)=2i¢i2(r), the minimization of
Eqg. (4) results in the Kohn-Sham equations a* bEf a(Ry,W;)b(R—Ry,w—w;)d-R;-d-wy,
) ne(r’)d-r’ (D
5 Vit Uext f T +Ux(r) — € | #i(r) =0, while ng(R) ==N8(R—R)) is the generalized density of sol-

(6) vent particles.
Our task is to find the functional dependence=Qf| ns]
whereu,(r) = SE,./ dn, is the exchange-correlation contri- and to calculateg(R-w)=n4(R,{Vcc}) in a solvent sub-
bution andug,= = mUed(|r —Rml,Wm) is the external poten- jected to the external fiel®&... To provide it we should
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average the solvent enerfy,, over solvent degrees of free-  The variation of the solvent functionél, with respect
dom. Of course, the formal expressit® does not simplify  to the chemical potentigk gives the expression for the sol-
the averaging procedure, because of the requirement data v&nt densityn(R-w):

the explicit expression afiy(R) or the introduction of some

approximations for the Jacobial{nsR) of the transforma- Qo -~

tion from R-variables tons—variables. Nevertheless, the bi- Su(R-w) Ne(R-W)=no[1+heyR-W)]

linear relation(9) betweenkE,,, andng allows us to perform .

these approximations with a physical reasoning. =No[ 1+ Nof(Neg* hsgl[f(Neg) +1]. (18)

First, we note that polarization induced by the electrons i - .
the liquid gives a main contribution to solvation energy, Segl'hus, combining Eqs(17) and(18), we can expresg via

Eq.(9). Therefore, evaluating the polarization effects, we canes and find th_e requ_|red re_Iatlon fdr)s_oh,[_nes]. pnfortu—
estimate the dominant term i 9). For this purpose, we nately, expressiofil8) is nonlinear, and its inversion can be

transform the solvent dependent part of the grand par’[itior‘?erformed only by additional approximations. For example,

function into the path integral over the field intensiyin- transforming Eq(18) as
duced by the chargdsee Appendix A Then it is possible to

_np-1 —_n* ~ LT* * _
evaluate the path integral by the saddle point method 1= B In(Nest 1] —Uede~M- T* P(Neg) +hidNes— No)

=—C3(Ngs—Nyp), 19
exn:_BQsolv]:<exn:_ﬁEsolv]>s 2( es O) (
where C,(R-w) is the function depending only on the pa-
ocf D[E]exd — BS(E,u)] rameters of the pure solvent, we immediately obtain
~exd — BS(Em, )], 12 1 _
1= BS(En p)] 12 Qo Nes] = Enoh;scz Nohes— B 1(nes_ no)*1. (20
where E,, is the mean-field intensity. The saddle point
method determines the mean-field from the condition With the use of the conventional relations between the ther-
modynamic potential and the free energy
IS(E=E) 0 13
JE . F[Ne,Nes] = uN=Q s+ Ege, (21

Performing simple manipulations, we expr&sgin terms of e result in the final formula for the total free-energy func-
nes and u (see Appendix A and derive the relation for the tjgnal

solvent functional g\ Nes, 11
1
1 F[Ne,Nes=T[N]+ zNE Ul Ng+ E [ Ne]+niuin
Qson= Sl En(Nes) 4]= = 5 P(Neg* T* PN e M Z TN et R B Mel e ches
1 +,8_1n’ecs[|n(hes+l)_1]
1+ Enohgsf(nes) . (14) 13*1

- Tnohgscz Nohes. (22

- ﬂilnof(nes)*

P(neg is the polarization of the liquid related to the solvent

density In the classical limit this expression reduces to the well

known free-energy functional obtained in the hypernetted
p(R):f m(W)ned R-w)d-w, (15)  chain(HNC) approach. Therefore, the functi@y(R-w) is
related to the second derivative of the functional with respect

no is the averaged solvent density, ang(R) is the short- to ngs and can be written in terms of the equilibrium density

range total correlation function of the pure solvent susceptibility X(R—R;-w—w;)=(ns(R-w)ns(R;-wy))
of the pure solvent

n3[1+hss(|R—R'|)]=<<5(|R—R1|)5(|R'—Rz|) — 8°BF
CZ(R_Rl'W_Wl): |n —n
SN R-W) Sng(Ry-wy) Mes™ Mo
N
Xexr{—gz U55(|Rm_Rk|)}> ) :M_xfl_ (23)
mk s No

(16) The minimization of the free-energy functional with respect
to n, leads to the Kohn-Sham equatio(@ with the external
f denotes the Mayer function potentialug,=U%Nes. The solvent density, results from

. the extremum of the functional with respect gg and is
f(Nes, ) =exd — BUgdNet m-T*P—u)]-1. (17) given by
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Nef(R-W)=ng[1+hey(R-w)] Nay(R) =no[ cotanti BmEy,) — (BMEy) ~*]

=ngex — B(Ugdethes— X *heg]. (24) X[1+nofghsslexd — Bugdel, (28)
_ — _ * _
Thus, the complete DFT formalism of excess electrons ir}v]:gifA(fITgla ﬂmiri%r?é}?yfes isexqesﬁumeitegd L \;\éhéan(lt?f;e
m

polar liquids includes the self-consistent calculation of bOth:4wf§ne(x)x2dx/eR2 and short-range repulsive effects are

ignored, the expressiof28) corresponds to the point dipole

&reatment? A similar model was used in Ref. 34 to evaluate

solvent density can be |3_e3r8formed in the framework of theyiical spectra of an excess electron in amorphous ice and
integral equations theory: water

An alternative treatment can be provided by a variational ;[)u.r approach can be extended to the case of molecular
approach. Using a chosen basis setfgR) ={7ifs(R)}  liquids and a discrete structure of charge distribution of sol-
andne(R)={e;fe(R)}, we can minimize the total free en- vent molecules. For this purpose we introduce a veQor
ergy functional with respect to the variational parametgrs ={q,,q,, . .. ,qj} for the site chargesj(is the number of
ande;, and derive a set of nonlinear algebraic equations fosites of a solvent molecul@nd a vector for the solvent den-
yi and ;. Of course, the accuracy of the method stronglysitiesng(R)={n¢; ,ns,, . . . ,Ngj}, whose components are the
depends on the choice of the basis set, especialynfgr  respective electron-site density distributions. Then, repeating
However, the accurate account of the asymptotic behavior agdur derivation for the vector quantities we obtain the relation
solvent densityn,s at small and large distances yields the for the free energysee Appendix B
results comparable with direct solutions of the integral equa-

. 1
tions. I:SDRISM[ Ne 1nes] = T[ne] + En; U; Net Exc[ne] + n: u:cns

C. Integral equations

. . o +8712 nflin(hg+1)—1]
Introducing a new functior.(R-w), which satisfies the i
integral equation: gL
- noh? C3 nohg, (29

where the convolution includes also a summation over all the
_ . . site componentshs;+1=ng/ng, Ng is the averaged den-
JJ X(R=Ry,W=W,)Ced Ry, W1)d-Ryd- Wy, sity of the respective site componentu.(R)
(25) ={Ue1, ... ,Ugj} is the vector of electron-site interactions,
while C, becomes a matrix, whose elements are equal to

nOhes(R' W) =X*Ces

We rewrite Eq.(24) in the form 8 8(R)

Coij(R)= ——— =X *. (30)

hed R-W)=ngexd — B(uXn+hes—Ced]—1. (26
e R-W)=NoeXH ~ BlUedet Nes™Ceo)] (26) In the classical limit, the free-energy functional reduces to

The former relation is the molecular Ornstein-Zernike equa—that derived by the reference interaction site mdtiek-

tion, while Eq.(26) is the HNC closuré® Thus, we note that ;insi?ad titk())iliihf( (T:I’;)r e;?g%ggiﬁgzl rf?n%ﬁri-)r( hsvr?c?suemglrémnts
formula (19) corresponds to the HNC treatment. In the gen- P Y '

eral case Eq(25) rgquires six-dimensional integ.ration that_ 2g?r$;?(;?]offﬁlcjtlgncgijc)>f?E(ej ;)nl}reéngg:sgmarmj) molecdar
can be hardly carried out, even numerically, without addi-

tional simplifications. A simple way for solving Egs. Xij(R) = wjj(R)+ ngh;; (R). (31
(25),(26) is to expandies, Ces, andXin spherical harmonics e minimization of the functional yields a set of three-
and consider only several terms of this expansion. For in'dimensional integral equations

stance, linearization with respect to the dipole orientations
leads to the mean spherical approximatiMsA).3® nohs(R)=X*cs, (32

An alternative way to avoid the integration over angles is it the respective HNC closure betwekg(R) andcy(R).
to use the averaged solvent dengity,(R)=(n.{(R-w)),,

and the averaged chemical potentialu,(R)f Ill. RESULTS
= R-w)),, . Integrating Eq(19) over dipole orientations,
WélfLiE'nd D grating Eq(19) P A. Single electron problem
The situation is very simplified when concentration of ex-
R)=(u(R- W)~ 8 n(h.. + 1)] + u* cess electrons is so low that the correlations between elec-
#aw(R)=(R(R-W)w= B In(hay + 1]+ Ueday trons can be ignored. In this case the Kohn-Sham equations
+hidna—No), (270 (6) reduce to the Schdinger equation for a single electron

in the self-consistent potentiak,= UsNes, and the solution
and, consequently the averaged solvent density can be found the problem requires the calculation only of the wave
explicitly: function for the electron ground state. The electron forms a
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spherically symmetrical polaron state and hence the considween the solutions found by the variational approach and
eration of excess electrons in polar liquids becomes similathat found numerically does not exceed several percents and
to that for classical spherical ions. As a result, excess eleaiot influences sufficiently the accuracy of calculated electron
trons can be treated on the basis of the ion-dipolar th®ory. characteristics. Therefore, for quantitative treatment of ex-

In this case as for an ion in a dipolar liglfdthe expan- cess electrons we have used the Gaussian trial function
sion of the electron-solvent correlation function includes

Only two teI’mS, |eheS(R W) = hOO({ R) + h011(R) 0011. The 2\38l2 2.2
spherically symmetrical patigR) of the electron-dipole Ne(r)=|—] exd—2a7T"], (38)
correlation function is found by the solution to the integral
equation wherea is a single variational parameter characterizing the
electron density. Using this approximation we have calcu-
hooo(R)ICooo(R)Jr47Tnof hed [R—|)Coogr)d- T, lated electron characteristics in a polar liquid by the two
ways.
(33 In the first case we treat the solvent density by the varia-
with the closure tional method and approximate it as
Cood R>Re)=0, hood R<Ro) =exi] — Bufnel - 1. Byme* R?
(34) ng(R)=n,| cotha S|~
L . o R Bpmye*
The latter is slightly different from that for classical ions
wherehg, R<R.)=—1 and is a consequence of the quan- X[1+nofghssexd — Bugdel, (39

tum behavior of excess electrons. Apart from it, due to the . o ] S
quantum effects the interaction of the excess electrons witf 1S & variational parameter. This approximation is an exten-
the solvent particles becomes weak and the short-range paton of the point dipole treatme(i28) and takes into account

hoo R) Of the solvent density can be approximated as the long-range behavior of the polarization in a polar liquid
and the short-range effects such as the cavity formation and

hood R)~[1+hfedexd —Buine]—1. (35)  the saturation of the polarization. Below we refer to it as the
extended point dipoléEPD) model. Then, using approxima-

The numerical calculations have indicatéthat the approxi- tions (38),(39) and varying the free-energy functionél?)

mate expressiofi35) for hoofR) is rather close to that ob- \yith respect to the variational parameters we obtain nonlin-

tained by the direct solution to E33). ear algebraic equations far and y and easily find the elec-

The situation with the angular dependent part of theq,n characteristicsersusthermodynamic and structural pa-
electron-dipole correlation function is more complicated and; meters of the solvent.

requires the integral equation fop,4(R). But the latter can

' . . In the second case we have calculated the solvent and the
be rewritten with the use of the Baxter factorizafioas

electron densities within the MSA approach by solution to
- integral equation$35) and( 36) in the way similar to that in
JOll(R):Qes(R)+24§j Jou(IR—1|)Qsdr)rdr, Ref. 42. As indicated previousi{the short-range repulsive
0 pseudopotential.(r) can be characterized by a single scat-
(36) tering lengthL and approximated as a delta function, but
whereo is the hard core diameter of solvent particles. In thisthen the effective short-range potential(r) differs from
expressionJoy(R) is the function related tdg;4(R), i.e.  the pure repulsive part.{r) due to the contribution of at-
Jo1(R)=27R[gho14(t)dt, £ is the parameter found from tractive forces at small distances. Therefore, we use the ap-

Wertheim's MSA solutiorf® while Qe{(r) andQs{(r) are the  proximation Ueq(r)=47L* 5(r), whereL* is an effective
respective Baxter functiorf. The closure to this equation is scattering length which can be found in a self-consistent
similar to Eq.(34): manner. If we knowL* and hence the data ohg;(R
B 5 <R.), we can calculatdy;4(R>R.) by the trapezoidal rule
Co1a(R>Re) = BM/R%, and then calculate the correlation functibg,(R>R;) by

5 ~ the following relation:
ho1i(R<R.) = gme* (R)/Rexd — Bugdel, (37)

where e* (R) =4[ Rn.(x)x?dx is the effective charge en- dJo1(R)  Jou(R)

closed of the sphere of radil® and U, is a short range hou(R=Ro)= 57 R dR 27R2
repulsive potential at small distances.

Concerning with the electron density, we should note thafThus, we have two expressions fog;(R<R.) andhg (R
the accurate treatment requires numerical solution to the-R.), hence the parametér* can be found by equating
Schralinger equation with the self-consistent potential. Anboth the expressions &=R.. In our calculationgsee be-
alternative way is to use a variational approach. In the prelow) we havelL* ~0.5-0.T that indicates the validity to use
vious paper¥ we have numerically solved the Schinger  the single scattering length approximation.
equation for an excess electron in electrolytes bydbesys We have calculated the polaron characteristics such as its
packagée’® Our results have indicated that the difference bekinetic (T) and total €,) energies in the ground state as well

(40)
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TABLE |. Parameters of a polaron and a singlet bipolaron solvated in polar liquid.

model T(eV) Ep(eV) E«(eV) pe(V) re(A)
polaron

Simulation (Ref. 50 2.2 -5.0 —-2.8 —2.2 2.1
(Ref. 42 1.8 -3.6 -1.8 24
Theory MSA(this work) 1.33 —5.57 —4.24 -1.13 2.5
EPD(this work) 1.58 -5.79 —-4.21 -0.91 2.3
MSA (Ref. 42 1.8 —3.6 -1.8 2.2
RISM (Ref. 49 1.84 —6.08 -4.26 —-0.96 2.9

singlet bipolaron formation
Simulation (Ref. 9 4.05 -16.4 -7.71 -1.57 2.6
Theory MSA(this work) 2.34 —10.62 —-9.67 —-2.27 2.7
EPD(this work) 3.17 —11.38 —9.88 —2.00 25

as the potential energf, of electron-solvent interactions calculations'® which indicate a small decrease-0.1 eV)

and the mean polaron radiug under the conditions corre- in potential and the total energy of the electron and a
sponding to water at temperature equal to 300 r§, nonmonotonic behavior for the potential energy. We
=2.347 D, 0=3.15 A, ngo®=1.05, L=5.54 a.u.,, andr,  think that this discrepancy of our calculations could be

=0.50+0.81Ir,. Our results as well as other calculations by
integral equation&>*° and simulation® are presented in
Table I. All the methods yield similar results, although our
calculations are more close to the RISM-polaron mbthid
predict a more weak localization of the electron than that
obtained by simulations. Note that the absolute values of the
polaron energies are very sensitive to the details of the short-
range pseudopotential, and only the data on the chemical
potential of the polaron are available from the experiment,
which indicates thafue~—1.6 eV>! Our estimate of the
chemical potential is also close to that obtained by the
RISM-polaron theor§? and comparable with the experimen-
tal value.

We have also investigated changes in the polaron charac-
teristics caused by variations of solvent parameters. Figure 1
demonstrates the influence of the solvent polarity on the
electron energy, radius, and the chemical potential. As it is
seen, the total polaron energy and the chemical potential rise
and become positive as the dipole moment of solvent par-
ticles decreases. When this dipole moment is rather small the
electron behavior is completely determined by short-range
repulsion as was found earlier by the integral equation
theory*? and simulations?

In contrast to it a decrease in the solvent density leads to
an increased mean polaron radius and an increased total en-
ergy (Fig. 2. Although the chemical potential increases at
high densitiegFig. 2) our calculations indicate that it exhib-
its a nonmonotonic behavior versus the solvent density. This
is due to the fact that both the repulsive and attractive con-
tributions to the chemical potential decrease as the solvent
density decreases but at a high solvent density the changes in
the repulsive contribution is dominant and, as a result, the
chemical potential decreases.

M\ R(A)

Figure 3 depicts the temperature dependence of the FIG. 1. The polaron characteristics versus the solvent polarity:
chemical potential and the energies of the polaron. Both oufa) the mean radiugh) chemical potential, angt) the total polaron
models predict that all the values rise at increased temperanergy. The solid curve corresponds to the EPD model, while the
ture. These result contradicts the RISM-polaron the chemicalashed one to the mean spherical approximation.
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FIG. 2. The polaron characteristics versus the solvent density.

Same key as in Fig. 1. FIG. 3. The polaron characteristics versus temperature of the

solvent. Same key as in Fig. 1.

eliminated by anaccurate account of temperature-dependent o ]
solvent density(for the EPD modslor using as an input as the solvent density is calculated by the solution of the MSA
in Ref. 49. integral equation$33) and(36).

Table | lists various bipolaron characteristics obtained un-
der the conditions identical to that for the polaron and the
data on simulations obtained in Ref. 9 by the hybrid

Our theory is able to treat multielectron states. For in-DFT/MD method. To verify our results we have evaluated
stance, we have applied the method to estimate characterigese characteristics within the extended point dipole model
tics of a singlet bipolaron formation, which arises due to(Table ). We have also calculated the variations of bipolaron
coupling of two electrons with opposite spins. In this casecharacteristics caused by changes in the solvent parameters
the electron density is obtained by solving Kohn-Sham equasuch as the strength of dipole moment of solvent particles
tions (6). Following Ref. 31, we approximate the local ex- (Fig. 4 and density of solventFig. 5). All trends revealed

B. Bipolaron formation

change and correlation energies as for a single solvated electron remain also for the bipolaron
formation. The mean bipolaron radius and the total bipolaron
Cp Bo energy rise at an decreased solvent density and dipole mo-
ex(r)= - ro(r)’ €c(r)= 12 ' ment of solvent particles. As for a single solvated electron alll
S l+:81rs(r) +,82I'S(I’) : .
(41) the methods yield similar results, although the theory under-

estimates the absolute values of the kinetic energy and the
where rg(r) is the averaged radius coupled with electronchemical potential. The MSA calculations predict more weak

density, i.e.rs(r)=[ne(r)/4m] 3. Since the electron den- localization than that obtained in simulations and within the

sity distribution is spherical for singlet bipolarons, we canEPD model. We think these effects to be a consequence of
use the simplified variational evaluations foy(r) with trial ~ the use of the simplified short-range pseudopotential for
function (38), whose variational parameter is found by the electron-solvent interactions.

minimization of the total free-energy function@2), while Using the MSA and EPD model we have estimated the
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FIG. 4. The characteristics of a singlet bipolaron solvated in a
polar liquid versus the solvent polaritya) the mean radius(b)
chemical potential, andc) the total bipolaron energy. The solid
curve corresponds to the EPD model, while the dashed one to MSA.

FIG. 5. The bhipolaron characteristics verus the solvent density.
Same key as in Fig. 4.

IV. CONCLUDING REMARKS

stability of the singlet bipolaron formation with respectto the e have applied the density functional approach to po-
decay into two polarons. The criterion of the stability implies |arons and bipolarons in polar liquids, which treats the elec-

that the chemical potential,, of the bipolaron is lower than  trons by the Kohn-Sham formalism and the solvent by the
that for two polarons, i.e., the bipolaron binding enefdy,

is negative

0.3

AFb:,LLb_ZILLe<O. (42) —c)
0.2 .--.b)

Both the models predict the singlet bipolaron formation to be )
==

stable, although the MSA calculations yield the extremely
low value forAF, equal to 0.002 eV, the EPD model results |*' |
in AF=0.15 eV, while the estimates obtained in simulatons | | ...
provide the valueAF,=0.6 eV . The MSA calculations in- 0 . ‘
dicate also that the bipolaron formation is not stablemat ==
>2.54 D andnyo3<1.02 (see Figs. 4 and)5however, the |44 | S
EPD model predicts the bipolaron to be stable in the whole -
range of the studied solvent parameters. Our verification of
the MSA model have demonstrated that the low valud Bf
results from that the obtained data on the chemical potential F|G. 6. Relative changes in the bipolaron characteristics versus
are rather sensitive to the using value of the cutoff raBius  the cutoff radiuséR.: (a) changes in the mean bipolaron radius
The appropriate choice of the cutoff radius can eliminate thissr, /r?, (b) the total bipolaron energyE,/E?, and(c) in the bi-
discrepancy without sufficient changes in other bipolarorpolaron binding energyF,/u2. All values are normalized with
characteristicgsee Fig. 6. respect that aR,=0.50+0.81r,.

-0.2 4
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integral equations theory. Note that our approach is similar to

the quantum NHC method developed for liquid metals andeXF[—BQsow]:f D[E]exd — BS(E)

dense plasmésee, for example, Refs. 53-)5@ut in con-

trast to the systems, where the coulomb contribution is domi- B . 1
nant in electron-ion interactions, the short-range repulsion _f D[E]eXF{E(E_”eVUq)*T *(E
between electron and solvent particles has a significant effect

on electron-solvent potential in our case. On the other hand —n:Vuy)

we have considered only the infinitely diluted limit and ig- e 4

nored electron-electron contributions into the equilibrium . .
susceptibility of the liquid. At an increased concentration of X (exf — Bng (M- E+Ues— p+Usg) ])s.
electrons our method may be improved in a manner similar (A2)

:%r:g?;de;/:)i?rgzgofnosr :é)(qrutlr?en;?éeclifc,)?lilgc;fg# I(;?r?ac&:dg;rre-As a result, the action of EqAL) can be factorized and
. ppre expressed in terms of one- and two-particle irreducible cor-
lation function. ; .
- . relation functions
For polar liquids we have derived the free-energy func-

tional of the system and obtained the relations for the B

electron-solvent correlation function within the framework S(B)=- §<E—néqu>*T “H(E-ngVug)]

of the mean spherical approximation and the extended point

dipole model. The application of these models indicates that 1 1 .

improved closures such as the linearized HNC and the qua- —B nof(B)*| 1+ Enohssf(E) ' (A3)

dratic NHC (Ref. 57 are required to calculate more accu- heref(E) is the Maver function
rately structural properties of the solvent. Nevertheless ou? (B) Y
method can able to predict the main characteristics of po- f(E)=exg — B(ufNe+m-E—pu)]—1. (A4)

larons and bipolarons, whereas the deficiencies of the mode

are masked due to the diffusive distribution of the electronjﬁhe extremum of the actioB with respect to the field inten-
ity yields the integral relation between the mean-field inten-

charge. We bell_eve that the method can be also applied téty and polarization
calculate solvation not only excess electrons but also mo-

lecular ions for which the electron density is treated by the . ,
quantum DFT, while the solvent effects by integral equations Em(R)=ng Vug+ f T(R"=R)P(R)d-R,  (AS)
method. Such investigation will be subject of our forthcom- . . . .
in which can be inverted into the Maxwell equation
g papers.
V-Epn=4mn.—4=7V-P. (AB)
ACKNOWLEDGMENT Using Eqgs.(A4) and (A5) we result in Eq(14).

Ignoring short-range correlations in E&3) results in the
Debye-Huekel limit. The linearization of the field depen-
dence of the polarization, i.eP=E, leads to the linearized

Debye-Hickel model. We note also an additional relation
APPENDIX A: FIELD TRANSFORMATION betweenP andE:

OF THE GRAND PARTITION FUNCTION

This work was supported by the NATO-CNR grant and
partially by the Russian Foundation of Basic Research.

e—1

Making a transformation of the solvent functional into the P(R)= WE’ (A7)
path integral over the electric field we should take into ac-
count the degeneration of the dipolar interactions with rewhich serves as a definition of dielectric constantCom-
spect to orientations. The physical meaning of this effect iining this expression with EGA6) in the case when excess
that the excess charge can induce not only a longitudinal buglectrons are treated as point charges, we obtain the
also a transverse electric field. Taking into account this factClausius-Mossoti formula for the dielectric constant. Thus,
we transform Eq(9) into a path integral over the field inten- various approximations can be derived with the use of Eq.
sity E. For this purpose, we use the identity (AB6), the choice of the approximations being determined by

the accuracy required to treat the solvent microstructure.

APPENDIX B: FREE ENERGY OF EXCESS ELECTRONS

B
exr{——n;‘m«Tm*nS

2 IN A MOLECULAR LIQUID
:f D[E]exr{gE*T‘l*E — Bn¥m- E}, B We consider the generalized solvent dens'ny(_R)
={ng1.,Ng,, ... Nsj}, Whose components are determined as

(A1) Nsi(R)=Z]'S(R—R;—1;), wherel; is the relative position of
ith site with respect to the center of a solvent molecule.

where T~1 is the matrix inverse of the matrix of dipolar Then, replacing in Eq(9) all the scalar quantities by the
interactions and using the Hubbard-Stratonovichcorresponding vectors and write the short-range solvent-
transform®>* we find solvent interactions in the matrix form, we have
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U.+0O-T- - _ * S T
E Ny =t oss 2 .. (W) =exd ~ BUtne+ Q¥ —w)]-1,  (BY)
while W and Hgg are the matrices, whose components are
+n:(ues+qu)* ns_ﬁ* Ng. (B1) respective intramolecular and intermolecular correlations

functions. The short-range intermolecular correlation func-
Using the Hubbard-Stratonovich transform, we rewrite thetionshij(R) are defined by Eq16), while the intramolecular
solvent functional as a path integral over the scalar fild onesw;; by the relation
with the actionS(V,ng) equal to
w;;(|[R=R'])]

1
S(¥.ng) == 5[ V(¥ —nfug)]? 1
= 5(|R’—R|)+(l—5”)?5(IR’—R|—|”-)-
N5 QY +Ues— p+ Ui (B2) i
(B6)
We note that the averaging over solvent degrees of free-
dom includes the average over positions as well as the ori- The minimization of the functionalB4) with respect to
entations of solvent molecules. The intra-molecular correlathe chemical potentiak yields the relations for solvent den-
tions caused by bonds between sites complicate the averaggies. In the vector form they are written as
over the orientations and, as a result, the relation for the

solvent functional can not be derived analytically. One of the Ns=No[ W+ ngHge]* (f+1). (B7)
ways to eliminating these difficulties is to use the simpleOn the other hand, the extremum of EB4) with respect to
estimate ; /

the field gives

(exd — BEson])w=exf — B(Eson)ul (B3)
where(- - - ),, means the average over orientations of solvent = . i i
molecules. Under this approximation the solvent functionaSimplifying relation(B7) between the chemical potential and

can be easily factorized and expressed in terms of twothe solvent density by the way similar to EQL9) we can
particle intramolecular and intermolecular correlation func-Write

Y n=ngust+Q-ngug. (B8)

tions - . .
#— B 7In(hs+1)] —ugne~ —C3 (Ns—nNo), (B9)
exp[—,BQsoh,]:f D[\If]ex;{Sﬁ[V(‘P—ng uq)]2 where C, is the matrix whose elements are related to the
™ second derivative of the functional with respectrig i.e.,
Caij=— 52,8F/5nsi5nej. Thus, using these relations we can

, (B4)  exclude the field and the chemical potential from Eg4)
and after simple manipulations to obtain the final expression
wheref(WV) is the vector, whose components are the Mayeifor the free-energy29) in terms of electron-site correlation

+ %f(llf)* [W+ngHge* f(W)

functions, i.e., functionsng.
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