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Density functional study of polarons and bipolarons in polar liquids
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The density functional theory of polarons and bipolarons in a polar liquid is presented. Starting from the
grand partition function, we have developed a microscopic model and derived the free-energy functional of the
system in which the electrons are treated within the Kohn-Sham formalism, while the solvent via the integral
equations theory. The case of our approach concerns with the free-energy functional corresponding to the mean
spherical approximation and the extended point dipole model. We have calculated different properties for a
polaron and a singlet bipolaron formation and their variations caused by changes in temperature, density, and
polarity of the solvent. The obtained results are in agreement with available experimental data and simulations.
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I. INTRODUCTION

Excess electrons forming polaron and bipolaron state
polar liquids are an object of intensive theoretical investi
tion and computer simulation1–6!. Numerous experimenta
techniques have been developed and extensive experim
evidence on the behavior of solvated electrons in vari
media has been accumulated.7,8 Excess electrons solvated
polar liquids provide a simple example of mixed quantu
and classical systems, which exhibit a large number of v
ous effects and are can conveniently be studied by quan
statistical methods. Such a mixed quantum-classical sys
is suitable to demonstrate the potential of various simula
methods such as quantum molecular dynamics, the path
tegral method, and a variety of hybrid schemes. At pres
there are a lot of examples of such calculations of exc
electrons in water clusters,9 ammonia,10–12 and ionic
solutions.13–16 These studies have shown that excess e
trons in polar liquids can reveal quite intriguing properti
such as polaron and bipolaron formations, multielect
clustering. Generally these models treat the electrons by
density functional theory~DFT!, whereas the solvent effect
are simulated by molecular dynamics~MD! or Monte Carlo
~MC! tools. However, these hybrid methods, being more
alistic, require simulation of huge numbers of solvent co
figurations and high computational efforts.

In this work we have applied the DFT to investigate e
cess electrons in a polar liquid. Density functional theo
~DFT! was proven to be a powerful tool for studying atom
and molecules by a works on the electronic structure of v
ous molecular complexes.17–19 Recent developments of nu
merical schemes based on the DFT~Refs. 20,21! have dem-
onstrated that the density functional language is able
provide calculations with an accuracy comparable with
ab initio ones. From another hand, the density functio
treatment is widely used to investigate the behavior of c
sical inhomogeneous systems.22–24 The application of DFT
to molecular liquids25–27 indicates that the DFT is very
promising to treat many-body problems correlated to sol
0163-1829/2003/67~12!/125103~11!/$20.00 67 1251
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tion phenomena. Recently the DFT approach has been im
mented to calculate a microscopic structure of solvent28,29

and both the examples have demonstrated the DFT resu
be in a good agreement with molecular simulations, and
the theory reliably accounts for the pair correlation functio
and the free energy of solvation.

We will use a scheme based on self-consistent calc
tions of the Kohn-Sham equations for an electron den
coupled with the integral equations for the solvent. The in
gral equations theory yields a detailed information ab
solute-solvent interactions in terms of correlation functio
but does not require huge computational costs. Using
mean spherical approximation, the extended point dipole
the reference interaction models we will evaluate the che
cal potentials of the solvent and solute and derive the fi
relations for the electron and solvent densities. We cons
the low concentration limit when correlations between el
trons are small. In this case we will calculate the electr
characteristics such as the electron mean radius, electron
ergy, and the chemical potential for a polaron and a sing
bipolaron formation. Variations of these characterist
caused by changes in temperature, density, and polarit
the solvent will also investigated.

II. FORMALISM

A. Density functional treatment of the electronic subsystem

We consider a system consisting ofNe excess electrons
andN classical solvent particles, whose distribution depen
not only on their coordinatesR$N%5$R1 ,R2 , . . . ,RN% but
also on the orientations ~Euler angles! w$N%

5$w1 ,w2 , . . . ,wN% of their dipole momentam. In the sta-
tistical approach the system consisting of interacting cla
cal particles and electrons is described by the grand parti
function J given by

J5^^exp@2b~H2meNe2mN!#&e&S , ~1!
©2003 The American Physical Society03-1
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where the symbolŝ•••&e and ^•••&S denote the average
over electronic and solvent degrees of freedom respectiv
H is the Hamiltonian of the system,me andm are the chemi-
cal potentials of electrons and solvent particles, whileb is
the inverse temperature. We write the Hamiltonian of
system as

H5T1Uee~r1 ,r2 , . . . ,rNe
!1(

im

NeN

uec~ ur i2Rmu,wm!

1
1

2 (
mk

N

ucc~ uRm2Rku,wmwk!. ~2!

The first term in the right side of Eq.~2! is the kinetic energy
of electrons, the second one is the contribution due
electron–electron interactions, while the third and the fou
terms are the electron-solvent and solvent-solvent poten
which we assume that are pairwise.

In principle, the average over electronic degrees of fr
dom requires the knowledge of theNe-electron wave func-
tion C(r1 ,r2 , . . . ,rNe

), however, the DFT approach30 re-
duces the problem to the calculation of the electron dens

ne~r !5E uC~r ,r2 , . . . ,rNe
!u2d•r2 , . . . ,d•rNe

,

Ne5E ne~r !d•r . ~3!

The latter is needed to minimize the energy functional

Fe@ne#5T@ne#1
1

2E E drdr 8
ne~r !ne~r 8!

ur2r 8u
1Exc@ne#

1Vec@ne#5Eee@ne#1Vec@ne#, ~4!

where Vec@ne#5(m*ne(r )uec(ur2Rmu,wm)d•r is the con-
tribution due to solvent particles andExc@ne# is the
exchange-correlation energy. There are several approxim
expressions forExc@ne# including the local one30 which is
given by

Exc5E ne~r !@ex~r !1ec~r !#d•r . ~5!

The explicit expression forex(r ) is usually written asex(r )
5ne(r …

1/3, while accurate approximations forec(r ) are ob-
tained by fitting of quantum MC calculations.31

Representing the electron density by the one-elec
wave functions, i.e.,ne(r )5( if i

2(r ), the minimization of
Eq. ~4! results in the Kohn-Sham equations

F2
1

2
¹21uext1E ne~r 8!d•r 8

ur2r 8u
1uxc~r !2e i Gf i~r !50,

~6!

whereuxc(r )5dExc /dne is the exchange-correlation contr
bution anduext5(muec(ur2Rmu,wm) is the external poten
12510
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tial depending on the equilibrium configuration of solve
particles, which can be found through the evaluation of
grand partition function

57J5K expF2bS 1

2 (
mk

N

ucc1Vec@ne#2mND G L
S

3exp@2b~Eee2meNe!#. ~7!

Thus, the next step of our study requires the estimation of
average over solvent degrees of freedom and the deriva
of the total free-energy functional. We note that the elect
densityne(r ) serves in Eq.~7! as a source inducing the ex
ternal potentialVec in a classical liquid. Therefore, following
Percus’ idea32 we can apply the DFT in the classical doma
and perform the complete evaluation of the grand partit
function.

B. Total free-energy functional

To derive the total free-energy functional we should co
sider the electron-solvent interactions in more details. In
general case, the electron-solvent potential includes lo
range attractive and short-range repulsive parts and can
sumed to be

uec~r ,m!5ues~r !1m•“uq , ~8!

where we denote the Coulomb potential asuq . The short-
range and long-range parts differently affect the solvent. T
first leads to a cavity formation~solvophobic effect!, while
the second one causes a polarization and orientational
rangement of the solvent. These interactions, together w
similar interactions between solvent particles, result in a
distribution of solvated particles.

Dividing the solvent-solvent potentialucc into short-range
(uss) and long-range parts, we can rewrite the solvent fu
tional as

Esolv@nsm#5(
mk

N
ucc

2
1Vec2mN5ns*

~uss1m•T•m!

2
* ns

1ne* ~ues1m•“uq!* ns2m* ns. ~9!

Here,T(r2r 8) is the rank-2 tensor of dipolar interactions

T~r ![
3r•r

r 5
2

I

r 3
, ~10!

and I is the rank-2 unit tensor. In Eq.~9! the asterisk corre-
sponds to the convolution integration

a* b[E a~R1 ,w1!b~R2R1 ,w2w1!d•R1•d•w1 ,

~11!

while ns(R)5( j
Nd(R2Rj ) is the generalized density of so

vent particles.
Our task is to find the functional dependence ofEsolv@ns#

and to calculatenes(R•w)[ns„R,$Vec%… in a solvent sub-
jected to the external fieldVec . To provide it we should
3-2
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average the solvent energyEsolv over solvent degrees of free
dom. Of course, the formal expression~9! does not simplify
the averaging procedure, because of the requirement da
the explicit expression ofns(R) or the introduction of some
approximations for the JacobianJ(nsR… of the transforma-
tion from R-variables tons—variables. Nevertheless, the b
linear relation~9! betweenEsolv andns allows us to perform
these approximations with a physical reasoning.

First, we note that polarization induced by the electrons
the liquid gives a main contribution to solvation energy, s
Eq. ~9!. Therefore, evaluating the polarization effects, we c
estimate the dominant term in~ 9!. For this purpose, we
transform the solvent dependent part of the grand parti
function into the path integral over the field intensityE in-
duced by the charges~see Appendix A!. Then it is possible to
evaluate the path integral by the saddle point method

exp@2bVsolv#5^exp@2bEsolv#&s

}E D@E#exp@2bS~E,m!#

'exp@2bS~Em ,m!#, ~12!

where Em is the mean-field intensity. The saddle poi
method determines the mean-field from the condition

]S~E5Em!

]E
50. ~13!

Performing simple manipulations, we expressEm in terms of
nes and m ~see Appendix A! and derive the relation for the
solvent functionalVsolv@nes,m#:

Vsolv5Sm@Em~nes!,m#52
1

2
P~nes!* T* P~nes!

2b21n0f ~nes!* F11
1

2!
n0hss* f ~nes!G . ~14!

P(nes) is the polarization of the liquid related to the solve
density

P~R!5E m~w!nes~R•w!d•w, ~15!

n0 is the averaged solvent density, andhss(R) is the short-
range total correlation function of the pure solvent

n0
2@11hss~ uR2R8u!#5K ^d~ uR2R1u!d(uR82R2u!

3expF2
b

2 (
mk

N

uss(uRm2Rku)G L
S

,

~16!

f denotes the Mayer function

f ~nes,m!5exp@2b~uec* ne1m•T* P2m!#21. ~17!
12510
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The variation of the solvent functionalVsolv with respect
to the chemical potentialm gives the expression for the so
vent densitynes(R•w):

dVsolv

dm~R•w!
5nes~R•w!5n0@11hes~R•w!#

5n0@11n0f ~nes!* hss#@ f ~nes!11#. ~18!

Thus, combining Eqs.~17! and ~18!, we can expressm via
nes and find the required relation forVsolv@nes#. Unfortu-
nately, expression~18! is nonlinear, and its inversion can b
performed only by additional approximations. For examp
transforming Eq.~18! as

m2b21ln~hes11!] 2uec* ne'm•T* P~nes!1hss* ~nes2n0!

52C2* ~nes2n0!, ~19!

whereC2(R•w) is the function depending only on the pa
rameters of the pure solvent, we immediately obtain

Vsolv@nes#5
1

2
n0hes* C2* n0hes2b21~nes2n0!*1. ~20!

With the use of the conventional relations between the th
modynamic potential and the free energy

F@ne ,nes#2mN5Vsolv1Eee, ~21!

we result in the final formula for the total free-energy fun
tional

F@ne ,nes#5T@ne#1
1

2
ne* uq* ne1Exc@ne#1ne* uec* nes

1b21nes* @ ln~hes11!21#

2
b21

2
n0hes* C2* n0hes. ~22!

In the classical limit this expression reduces to the w
known free-energy functional obtained in the hypernet
chain ~HNC! approach. Therefore, the functionC2(R•w) is
related to the second derivative of the functional with resp
to nes and can be written in terms of the equilibrium dens
susceptibility X(R2R1•w2w1)5^dns(R•w)dns(R1•w1)&
of the pure solvent

C2~R2R1•w2w1!5
2d2bF

dnes~R•w!dnes~R1•w1!
unes→n0

5
d~R2R1!

n0
2X21. ~23!

The minimization of the free-energy functional with respe
to ne leads to the Kohn-Sham equations~6! with the external
potentialuext5uec* nes. The solvent densitynes results from
the extremum of the functional with respect tones and is
given by
3-3
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nes~R•w!5n0@11hes~R•w!#

5n0exp@2b~uec* ne1hes2X21* hes!#. ~24!

Thus, the complete DFT formalism of excess electrons
polar liquids includes the self-consistent calculation of b
nes andne via Eqs.~6! and~24!. The last relation fornes can
be written as an integral equation, so the calculation of
solvent density can be performed in the framework of
integral equations theory.35–38

An alternative treatment can be provided by a variatio
approach. Using a chosen basis set fornes(R)5$g i f si(R)%
andne(R)5$a i f ei(R)%, we can minimize the total free en
ergy functional with respect to the variational parametersg i
anda i , and derive a set of nonlinear algebraic equations
g i and a i . Of course, the accuracy of the method stron
depends on the choice of the basis set, especially fornes.
However, the accurate account of the asymptotic behavio
solvent densitynes at small and large distances yields t
results comparable with direct solutions of the integral eq
tions.

C. Integral equations

Introducing a new functionces(R•w…, which satisfies the
integral equation:

n0hes~R•w!5X* ces

5EE X~R2R1,w2w1!ces~R1 ,w1!d•R1d•w1.

~25!

We rewrite Eq.~24! in the form

hes~R•w!5n0exp@2b~uec* ne1hes2ces!#21. ~26!

The former relation is the molecular Ornstein-Zernike eq
tion, while Eq.~26! is the HNC closure.38 Thus, we note that
formula ~19! corresponds to the HNC treatment. In the ge
eral case Eq.~25! requires six-dimensional integration th
can be hardly carried out, even numerically, without ad
tional simplifications. A simple way for solving Eqs
~25!,~26! is to expandhes, ces, andX in spherical harmonics
and consider only several terms of this expansion. For
stance, linearization with respect to the dipole orientatio
leads to the mean spherical approximation~MSA!.38

An alternative way to avoid the integration over angles
to use the averaged solvent densitynav(R)5^nes(R•w)&w
and the averaged chemical potentialmav(R) f
5^m(R•w)&w . Integrating Eq.~19! over dipole orientations
we find

mav~R!5^m~R•w!&w'b21ln~hav11!] 1ues* nav

1hss* ~nav2n0!, ~27!

and, consequently the averaged solvent density can be fo
explicitly:
12510
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nav~R!5n0@cotanh~bmEm!2~bmEm!21#

3@11n0f es* hss#exp@2bues* ne#, ~28!

where A(R)5bmEm and f es5exp@2bues* ne#21. When the
mean field intensity is estimated asEm(R)
54p*0

Rne(x)x2dx/eR2 and short-range repulsive effects a
ignored, the expression~28! corresponds to the point dipol
treatment.33 A similar model was used in Ref. 34 to evalua
optical spectra of an excess electron in amorphous ice
water.

Our approach can be extended to the case of molec
liquids and a discrete structure of charge distribution of s
vent molecules. For this purpose we introduce a vectorQ
5$q1 ,q2 , . . . ,qj% for the site charges (j is the number of
sites of a solvent molecule! and a vector for the solvent den
sitiesns(R)[$ns1 ,ns2 , . . . ,ns j%, whose components are th
respective electron-site density distributions. Then, repea
our derivation for the vector quantities we obtain the relat
for the free energy~see Appendix B!:

F3DRISM@ne ,nes#5T@ne#1
1

2
ne* uq* ne1Exc@ne#1ne* uec* ns

1b21(
j

ns j* @ ln~hs j11!21#

2
b21

2
n0hs* C2* n0hs , ~29!

where the convolution includes also a summation over all
site components,hsi115nsi /ns0 , ns0 is the averaged den
sity of the respective site component,uec(R)
5$ue1 , . . . ,ue j% is the vector of electron-site interaction
while C2 becomes a matrix, whose elements are equal to

C2i j ~R!5
d i j d~R!

n0
2Xi j

21 . ~30!

In the classical limit, the free-energy functional reduces
that derived by the reference interaction site model39 ex-
tended to the three-dimensional case.40,41 The equilibrium
susceptibilityX(R) also becomes a matrix, whose elemen
are intramolecular (v i j ) and intermolecular (hi j ) molecular
correlation functions of the pure solvent

Xi j ~R!5v i j ~R!1n0hi j ~R!. ~31!

The minimization of the functional yields a set of thre
dimensional integral equations

n0hs~R!5X* cs , ~32!

with the respective HNC closure betweenhs(R) andcs(R).

III. RESULTS

A. Single electron problem

The situation is very simplified when concentration of e
cess electrons is so low that the correlations between e
trons can be ignored. In this case the Kohn-Sham equat
~6! reduce to the Schro¨dinger equation for a single electro
in the self-consistent potentialuext5uec* nes, and the solution
to the problem requires the calculation only of the wa
function for the electron ground state. The electron form
3-4
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spherically symmetrical polaron state and hence the con
eration of excess electrons in polar liquids becomes sim
to that for classical spherical ions. As a result, excess e
trons can be treated on the basis of the ion-dipolar theor42

In this case as for an ion in a dipolar liquid43 the expan-
sion of the electron-solvent correlation function includ
only two terms, i.e.,hes(R•w)5h000(R)1h011(R)u011. The
spherically symmetrical parth000(R) of the electron-dipole
correlation function is found by the solution to the integ
equation

h000~R!5c000~R!14pn0E hss~ uR2r u!c000~r !d•r ,

~33!

with the closure

c000~R.Rc!50, h000~R,Rc!5exp@2bues* ne#21.
~34!

The latter is slightly different from that for classical ion
whereh000(R,Rc)521 and is a consequence of the qua
tum behavior of excess electrons. Apart from it, due to
quantum effects the interaction of the excess electrons
the solvent particles becomes weak and the short-range
h000(R) of the solvent density can be approximated as

h000~R!'@11hss* f es#exp@2bues* ne#21. ~35!

The numerical calculations have indicated44 that the approxi-
mate expression~35! for h000(R) is rather close to that ob
tained by the direct solution to Eq.~33!.

The situation with the angular dependent part of
electron-dipole correlation function is more complicated a
requires the integral equation forh011(R). But the latter can
be rewritten with the use of the Baxter factorization42 as

J011~R!5Qes~R!124jE
0

s

J011~ uR2r u!Qss~r !r 2dr,

~36!

wheres is the hard core diameter of solvent particles. In t
expressionJ01(R) is the function related toh011(R), i.e.
J011(R)52pR*R

`h011(t)dt, j is the parameter found from
Wertheim’s MSA solution,45 while Qes(r ) andQss(r ) are the
respective Baxter functions.46 The closure to this equation i
similar to Eq.~34!:

c011~R.Rc!5bm/R2,

h011~R,Rc!5bme* ~R!/R2exp@2bũes* ne#, ~37!

where e* (R)54p*0
Rne(x)x2dx is the effective charge en

closed of the sphere of radiusR, and ũes is a short range
repulsive potential at small distances.

Concerning with the electron density, we should note t
the accurate treatment requires numerical solution to
Schrödinger equation with the self-consistent potential. A
alternative way is to use a variational approach. In the p
vious papers47 we have numerically solved the Schro¨dinger
equation for an excess electron in electrolytes by theCOLSYS

package.48 Our results have indicated that the difference b
12510
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tween the solutions found by the variational approach a
that found numerically does not exceed several percents
not influences sufficiently the accuracy of calculated elect
characteristics. Therefore, for quantitative treatment of
cess electrons we have used the Gaussian trial function

ne~r !5S 2a2

p D 3/2

exp@22a2r 2#, ~38!

wherea is a single variational parameter characterizing
electron density. Using this approximation we have cal
lated electron characteristics in a polar liquid by the tw
ways.

In the first case we treat the solvent density by the va
tional method and approximate it as

ns~R!5n0FcothanS bgme*

R2 D 2S R2

bmge*
D G

3@11n0f es* hss#exp@2bues* ne#, ~39!

g is a variational parameter. This approximation is an ext
sion of the point dipole treatment~28! and takes into accoun
the long-range behavior of the polarization in a polar liqu
and the short-range effects such as the cavity formation
the saturation of the polarization. Below we refer to it as t
extended point dipole~EPD! model. Then, using approxima
tions ~38!,~39! and varying the free-energy functional~22!
with respect to the variational parameters we obtain non
ear algebraic equations fora andg and easily find the elec
tron characteristicsversusthermodynamic and structural pa
rameters of the solvent.

In the second case we have calculated the solvent and
electron densities within the MSA approach by solution
integral equations~35! and~ 36! in the way similar to that in
Ref. 42. As indicated previously44 the short-range repulsive
pseudopotentialues(r ) can be characterized by a single sc
tering lengthL and approximated as a delta function, b
then the effective short-range potentialues

˜ (r ) differs from
the pure repulsive partues(r ) due to the contribution of at-
tractive forces at small distances. Therefore, we use the
proximation ues

˜ (r )54pL* d(r ), where L* is an effective
scattering length which can be found in a self-consist
manner. If we knowL* and hence the data onh011(R
,Rc), we can calculateJ011(R.Rc) by the trapezoidal rule
and then calculate the correlation functionh011(R.Rc) by
the following relation:

h011~R.Rc!5
dJ011~R!

2pRdR
2

J011~R!

2pR2
. ~40!

Thus, we have two expressions forh011(R,Rc) andh011(R
.Rc), hence the parameterL* can be found by equating
both the expressions atR5Rc . In our calculations~see be-
low! we haveL* '0.5–0.7L that indicates the validity to use
the single scattering length approximation.

We have calculated the polaron characteristics such a
kinetic ~T! and total (Et) energies in the ground state as we
3-5
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TABLE I. Parameters of a polaron and a singlet bipolaron solvated in polar liquid.

model T~eV! Ep~eV! Et~eV! me~eV! r e(Å)
polaron

Simulation ~Ref. 50! 2.2 25.0 22.8 22.2 2.1
~Ref. 42! 1.8 23.6 21.8 2.4

Theory MSA~this work! 1.33 25.57 24.24 21.13 2.5
EPD~this work! 1.58 25.79 24.21 20.91 2.3
MSA ~Ref. 42! 1.8 23.6 21.8 2.2
RISM ~Ref. 49! 1.84 26.08 24.26 20.96 2.9

singlet bipolaron formation
Simulation ~Ref. 9! 4.05 216.4 27.71 21.57 2.6
Theory MSA~this work! 2.34 210.62 29.67 22.27 2.7

EPD~this work! 3.17 211.38 29.88 22.00 2.5
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the
as the potential energyEp of electron-solvent interaction
and the mean polaron radiusr e under the conditions corre
sponding to water at temperature equal to 300 K,m
52.347 D, s53.15 Å, n0s351.05, L55.54 a.u., andRc
50.5s10.81r e . Our results as well as other calculations
integral equations,42,49 and simulations50 are presented in
Table I. All the methods yield similar results, although o
calculations are more close to the RISM-polaron model49 and
predict a more weak localization of the electron than t
obtained by simulations. Note that the absolute values of
polaron energies are very sensitive to the details of the sh
range pseudopotential, and only the data on the chem
potential of the polaron are available from the experime
which indicates thatme'21.6 eV.51 Our estimate of the
chemical potential is also close to that obtained by
RISM-polaron theory49 and comparable with the experime
tal value.

We have also investigated changes in the polaron cha
teristics caused by variations of solvent parameters. Figu
demonstrates the influence of the solvent polarity on
electron energy, radius, and the chemical potential. As i
seen, the total polaron energy and the chemical potential
and become positive as the dipole moment of solvent p
ticles decreases. When this dipole moment is rather smal
electron behavior is completely determined by short-ra
repulsion as was found earlier by the integral equat
theory42 and simulations.52

In contrast to it a decrease in the solvent density lead
an increased mean polaron radius and an increased tota
ergy ~Fig. 2!. Although the chemical potential increases
high densities~Fig. 2! our calculations indicate that it exhib
its a nonmonotonic behavior versus the solvent density. T
is due to the fact that both the repulsive and attractive c
tributions to the chemical potential decrease as the sol
density decreases but at a high solvent density the chang
the repulsive contribution is dominant and, as a result,
chemical potential decreases.

Figure 3 depicts the temperature dependence of
chemical potential and the energies of the polaron. Both
models predict that all the values rise at increased temp
ture. These result contradicts the RISM-polaron the chem
12510
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calculations,49 which indicate a small decrease (;0.1 eV)
in potential and the total energy of the electron and
nonmonotonic behavior for the potential energy. W
think that this discrepancy of our calculations could

FIG. 1. The polaron characteristics versus the solvent pola
~a! the mean radius,~b! chemical potential, and~c! the total polaron
energy. The solid curve corresponds to the EPD model, while
dashed one to the mean spherical approximation.
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eliminated by anaccurate account of temperature-depen
solvent density~for the EPD model! or using as an input a
in Ref. 49.

B. Bipolaron formation

Our theory is able to treat multielectron states. For
stance, we have applied the method to estimate charact
tics of a singlet bipolaron formation, which arises due
coupling of two electrons with opposite spins. In this ca
the electron density is obtained by solving Kohn-Sham eq
tions ~6!. Following Ref. 31, we approximate the local e
change and correlation energies as

ex~r !52
Cp

r s~r !
, ec~r !5

b0

11b1r s~r !1/21b2r s~r !
,

~41!

where r s(r ) is the averaged radius coupled with electr
density, i.e.,r s(r )5@ne(r )/4p#21/3. Since the electron den
sity distribution is spherical for singlet bipolarons, we c
use the simplified variational evaluations forne(r ) with trial
function ~38!, whose variational parameter is found by t
minimization of the total free-energy functional~22!, while

FIG. 2. The polaron characteristics versus the solvent den
Same key as in Fig. 1.
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the solvent density is calculated by the solution of the M
integral equations~33! and ~36!.

Table I lists various bipolaron characteristics obtained
der the conditions identical to that for the polaron and
data on simulations obtained in Ref. 9 by the hyb
DFT/MD method. To verify our results we have evaluat
these characteristics within the extended point dipole mo
~Table I!. We have also calculated the variations of bipolar
characteristics caused by changes in the solvent param
such as the strength of dipole moment of solvent partic
~Fig. 4! and density of solvent~Fig. 5!. All trends revealed
for a single solvated electron remain also for the bipola
formation. The mean bipolaron radius and the total bipola
energy rise at an decreased solvent density and dipole
ment of solvent particles. As for a single solvated electron
the methods yield similar results, although the theory und
estimates the absolute values of the kinetic energy and
chemical potential. The MSA calculations predict more we
localization than that obtained in simulations and within t
EPD model. We think these effects to be a consequenc
the use of the simplified short-range pseudopotential
electron-solvent interactions.

Using the MSA and EPD model we have estimated

ty.
FIG. 3. The polaron characteristics versus temperature of

solvent. Same key as in Fig. 1.
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stability of the singlet bipolaron formation with respect to t
decay into two polarons. The criterion of the stability impli
that the chemical potentialmb of the bipolaron is lower than
that for two polarons, i.e., the bipolaron binding energyDFb
is negative

DFb5mb22me,0. ~42!

Both the models predict the singlet bipolaron formation to
stable, although the MSA calculations yield the extrem
low value forDFb equal to 0.002 eV, the EPD model resu
in DF50.15 eV, while the estimates obtained in simulation9

provide the valueDFb50.6 eV . The MSA calculations in
dicate also that the bipolaron formation is not stable atm
.2.54 D andn0s3,1.02 ~see Figs. 4 and 5!, however, the
EPD model predicts the bipolaron to be stable in the wh
range of the studied solvent parameters. Our verification
the MSA model have demonstrated that the low value ofDF
results from that the obtained data on the chemical poten
are rather sensitive to the using value of the cutoff radiusRc .
The appropriate choice of the cutoff radius can eliminate
discrepancy without sufficient changes in other bipola
characteristics~see Fig. 6!.

FIG. 4. The characteristics of a singlet bipolaron solvated i
polar liquid versus the solvent polarity:~a! the mean radius,~b!
chemical potential, and~c! the total bipolaron energy. The soli
curve corresponds to the EPD model, while the dashed one to M
12510
e
y

e
of

al
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IV. CONCLUDING REMARKS

We have applied the density functional approach to
larons and bipolarons in polar liquids, which treats the el
trons by the Kohn-Sham formalism and the solvent by

a

A.

FIG. 5. The bipolaron characteristics verus the solvent dens
Same key as in Fig. 4.

FIG. 6. Relative changes in the bipolaron characteristics ve
the cutoff radiusdRc : ~a! changes in the mean bipolaron radiu
dr b /r b

0 , ~b! the total bipolaron energydEt /Et
0 , and ~c! in the bi-

polaron binding energydFb /mb
0 . All values are normalized with

respect that atRc50.5s10.81r b .
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integral equations theory. Note that our approach is simila
the quantum NHC method developed for liquid metals a
dense plasma~see, for example, Refs. 53–56!. But in con-
trast to the systems, where the coulomb contribution is do
nant in electron-ion interactions, the short-range repuls
between electron and solvent particles has a significant e
on electron-solvent potential in our case. On the other h
we have considered only the infinitely diluted limit and i
nored electron-electron contributions into the equilibriu
susceptibility of the liquid. At an increased concentration
electrons our method may be improved in a manner sim
to that developed for liquid metals,56 but it requires addi-
tional approximations for the electron-electron direct cor
lation function.

For polar liquids we have derived the free-energy fun
tional of the system and obtained the relations for
electron-solvent correlation function within the framewo
of the mean spherical approximation and the extended p
dipole model. The application of these models indicates
improved closures such as the linearized HNC and the q
dratic NHC ~Ref. 57! are required to calculate more acc
rately structural properties of the solvent. Nevertheless
method can able to predict the main characteristics of
larons and bipolarons, whereas the deficiencies of the mo
are masked due to the diffusive distribution of the elect
charge. We believe that the method can be also applie
calculate solvation not only excess electrons but also
lecular ions for which the electron density is treated by
quantum DFT, while the solvent effects by integral equatio
method. Such investigation will be subject of our forthco
ing papers.
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APPENDIX A: FIELD TRANSFORMATION
OF THE GRAND PARTITION FUNCTION

Making a transformation of the solvent functional into t
path integral over the electric field we should take into
count the degeneration of the dipolar interactions with
spect to orientations. The physical meaning of this effec
that the excess charge can induce not only a longitudinal
also a transverse electric field. Taking into account this f
we transform Eq.~9! into a path integral over the field inten
sity E. For this purpose, we use the identity

expF2
b

2
ns* m•T•m* nsG

5E D@E#expFb2 E*T 21*E2bns* m•EG ,
~A1!

where T21 is the matrix inverse of the matrix of dipola
interactions and using the Hubbard–Stratonov
transform,35,36 we find
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exp@2bVsolv#5E D@E#exp@2bS(E!

5E D@E#expFb2 ~E2ne* ¹uq!*T 21* ~E

2ne* ¹uq!G
3^exp@2bns* ~m•E1ues2m1uss* ns!#&s .

~A2!

As a result, the action of Eq.~A1! can be factorized and
expressed in terms of one- and two-particle irreducible c
relation functions

S~E!52
b

2
~E2ne* ¹uq!*T 21* ~E2ne* ¹uq!]

2b21n0f ~E!* F11
1

2!
n0hss* f ~E!G , ~A3!

where f (E) is the Mayer function

f ~E!5exp@2b~ues* ne1m•E2m!#21. ~A4!

The extremum of the actionSwith respect to the field inten
sity yields the integral relation between the mean-field int
sity and polarization

Em~R!5ne* ¹uq1E T~R82R!P~R!d•R, ~A5!

which can be inverted into the Maxwell equation

¹•Em54pne24p¹•P. ~A6!

Using Eqs.~A4! and ~A5! we result in Eq.~14!.
Ignoring short-range correlations in Eq.~A3! results in the

Debye-Hückel limit. The linearization of the field depen
dence of the polarization, i.e.,P}E, leads to the linearized
Debye-Hückel model. We note also an additional relatio
betweenP andE:

P~R!5
e21

4p
E, ~A7!

which serves as a definition of dielectric constante. Com-
bining this expression with Eq.~A6! in the case when exces
electrons are treated as point charges, we obtain
Clausius-Mossoti formula for the dielectric constant. Th
various approximations can be derived with the use of
~A6!, the choice of the approximations being determined
the accuracy required to treat the solvent microstructure.

APPENDIX B: FREE ENERGY OF EXCESS ELECTRONS
IN A MOLECULAR LIQUID

We consider the generalized solvent densityns(R)
[$ns1 ,ns2 , . . . ,ns j%, whose components are determined
nsi(R)5( j

Nd(R2Rj2 l i), wherel i is the relative position of
i th site with respect to the center of a solvent molecu
Then, replacing in Eq.~9! all the scalar quantities by th
corresponding vectors and write the short-range solve
solvent interactions in the matrix form, we have
3-9
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Esolv@ns#5ns*
~Uss1Q•T•Q!

2
* ns

1ne* ~ues1uqQ!* ns2mW * ns . ~B1!

Using the Hubbard-Stratonovich transform, we rewrite
solvent functional as a path integral over the scalar fieldC
with the actionS(C,ns) equal to

S~C,ns!52
1

8p
@¹~C2ne* uq!#2

1ns* ~QC1ues2mW 1Uss* ns!]. ~B2!

We note that the averaging over solvent degrees of f
dom includes the average over positions as well as the
entations of solvent molecules. The intra-molecular corre
tions caused by bonds between sites complicate the ave
over the orientations and, as a result, the relation for
solvent functional can not be derived analytically. One of
ways to eliminating these difficulties is to use the simp
estimate

^exp@2bEsolv#&w'exp@2b^Esolv#&w], ~B3!

where^•••&w means the average over orientations of solv
molecules. Under this approximation the solvent functio
can be easily factorized and expressed in terms of t
particle intramolecular and intermolecular correlation fun
tions

exp@2bVsolv#5E D@C#expF b

8p
@¹~C2ne* uq!#2

1
n0

2
f~C!* @W1n0Hss#* f~C!G , ~B4!

wheref(C) is the vector, whose components are the Ma
functions, i.e.,
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