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Spin injection into a ballistic semiconductor microstructure
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A theory of spin injection across a ballistic semiconductor embedded between two ferromagnetic leads is
developed for the Boltzmann regime. Spin injection coefficigrg suppressed by the Sharvin resistance of the
semiconductor § = (h/e?)(w%/Sy), whereSy is the Fermi-surface cross section. It competes with the diffu-
sion resistances of the ferromagnets, and y is small, y~rg/rj<1, in the absence of contact barriers.
Efficient spin injection can be ensured by contact barriers. Explicit formulas for the junction resistance and the
spin-valve effect are presented.
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Efficient spin injection from ferromagnetic metals into wave functions of MnAs and GaAs and found no correlation
semiconductors is one of the prerequisites for developindpetween the spin injection and the azimuthal orientation of
spintronics of the hybrid metal-semiconductor devités  the surface layers. Apparently, this result reflects the limita-
distinct from the spin injection into paramagnetic mefals, tions of the current technologies.
the first attempts in achieving spin injection into semicon- We show that the spin injection into a ballistic semicon-
ductors failed. In the framework of the diffusion theory, this ductor through a diffusive interface is controlled by tiear-
failure was explained by Schmiet al. in terms of the “con-  Vin resistancé of the semiconductory that solely depends
ductivity mismatch,® the spin injection coefficieny being  on the electron concentration and the resistance quantum
of the order of magnitudg~r/ry wherer g andr are the h/e?. In the absence of the contact resistance, the spin injec-
diffusive resistances of a ferromagnet and of a normal contion coefficienty~rg/ry<1. Thereforecontact resistances
ductor (semiconductor microstructurerespectively. Resis- are indispensable for supporting spin injectimlom a metal
tive spin-selective contacts had been proposed to remedy thieto a semiconductor, similar to the diffusion regime but with
problem? and an impressive progress in the experimentah different criterion and because of somewhat different argu-
work was achieved during the last yéarhe later theoretical ments.
work performed in the framework of the diffusion approxi-  Model.We consider a normalN, nonferromagnetjccon-
mation also substantiated this approfch. ductor residing in a region-d/2<<x<<d/2 and separated by

The spin transistor by Datta and Basnd similar barriers from two semi-infinite ferromagneti€) leads, |x|
devices® rely on a ballistic rather than diffusive transport >d/2. Spin-orbit interaction is neglected, all conductors are
across the semiconductor. Therefore, a lot of theoretical worlkssumed degenerate, and the contacts are both spin selective
was performed on a coherent ballistic transport through conand spin conserving, i.e., their resistances depend on the
tacts and a microstructure confined between them. The rolelectron spin polarization and spin relaxation in the contacts
of the barriers at the interfaces, the Fresnel-type relationsan be disregarded. The scattering at the contacts is diffusive
between propagating and reflected waves originating due tim concord with the assumption of the phase breaking barri-
the parameter mismatch, and the interference pattern in thers establishing a Boltzmann regime. The specular compo-
bulk caused by the spin-orbit interaction were considéted. nent of the contact scattering can have no essential effect on
The critical role of a barrier at the interface was the final results because the scattering in ferromagnetic leads
emphasizetf and the scattering in the bulk was discus§ed. is always diffusive. The Boltzmann equation is solved sepa-
Spin filtering through perfectly matched interfaces wasrately in theN andF regions with a proper account of non-
investigated:?* equilibrium spins and the boundary conditions at the con-

In the theory of spin injection into semiconductors, theretacts. We also assume that both contacts and ferromagnets
exists a gap between the pictures of a diffusive transport andre identical, but the polarization of the ferromagnets may be
of a coherent transport across the interface. To close this gapither parallel(P) or antiparallel(AP), the P and AP geom-
we consider an intermediate regime wh@nthe phase co- etries in what follows.
herence at the interfaces is broken digl electrons can be N region |x|<d/2. In the linear approximation in the
described by the Boltzmann equation inside the microstrucelectrical field E(x)=—d,¢(X), electrons in theN region
ture. Solving this equation in a nearly ballistic regime per-can be described by the distribution functiofg(x,v,)
mitted us to find explicit expressions for the basic parameters-f(e) + (df,/de) ¢, (x,v,) Wherefy(e) is the Fermi dis-
of the ferromagnet-semiconductor-ferromagnet system. Thgibution, € is the energyg is the spin index, andr,(X,vy)
importance of the problem is emphasized by recent experisatisfies the Boltzmann equation
mental findings of Ramsteinezt al. who investigated spin
injection through a high quality MnAs/GaAs interfate. o
They looked for the effect of the symmetry matching of the v,y (X,vy) —€E(X)vy+[ (X, vy) — P (X) ]/ 7y=0.
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Here 7y is the momentum relaxation tim@a(x) are the Therefore, in the ballistic region the currerjtsand the spin

average values ofr,(x,v,) over the Fermi sphere? (%) injection coefficientyy are completely determined by the
= (U0 P sp ":pN/E are the densities of states of |arge” (antisymmetrig parts of the distribution functions.
o 1Y X ar'lra

electrons, ang is the total density of states. Concentrations | '€ Potential drop inside this region is related to the *small

— i f h it i Il ind/I
of nonequilibrium spins are equal ,(x)=— pn¥,(X)/2. :imamngtzgnpggzi(s)re%galéﬁ), ence, it is small ind/ly
Spin relaxation is disregarded. '

It is convenient to eliminate the electrical potentigix) We show below thafy, plays a role of the effective resis-

by introducing new functionsez. (x,u,) = _p[ (X.0,) tance of each end of thd region (per unit area It depends

y 9 . ) £alX,0) = ~[#ha(X 0y neither ond nor only but solely on the electron concentra-
tee(x)] and their symmetric part{,(X)=—[#4(X)  tion in theN region
+ep(x)]. They obey the equation
, r* =(h/e?)(w?/Sy) = (h/e?)(1/2\), (4)
Lo(%0,) [ £a(X,0) = L0 mvx=0. (D) N " )

2 . . _ .

When the functior? ,(x) changes smoothly, it has a meaning wheren/e” is the resistance quantum. He3g=mkj is the

of the electrochemical potential of the electrons with the Sp"ferml-surface cross section, aM# kN/27.T IS thg number 9f
«. As in similar problems with several groups of carridts, channels per unit cross-section area, including the spin de-

one should first considet,(x) as known functions, find generacy factqr. The resistance of a narrow diffusive. r_egion
Z.(xv,), and then impose the self-consistency condition® the same widttd equalsd/:rN, oy being the conductivity
L) ={ L% 0)) P of the N region. It matchesy smoothly atd~1y. Because

‘ Equatign ('l)x should be solved for.>0 and v.<0 'n depends on the carrier concentration only, develops due to
separately®® Because of the s;mmetry Oxf the the electron exchange with the diffusive regions, and has the
problem, the solutions obey the relations,(x,v,)  @PPropriate analytical form, we identify it as the Sharvin
= (X0, Lu()= — £(—X), wherea=a in the P resistance of the normal conductbiThe relevance of Shar-

- a ' x/1Sa - a ’ -

] . vin resistance to the perpendicular transport in layered mag-
geometry, anda=—a in the AP geometry. Hence, it iS petic structures was recognized by Baffer.

enough to solve Eq1) for v,<0. For the diffusive contact Right F region x>d/2. The problem of the spin injection
scattering, the angular distribution of out going electrons igntg g semi-infinite ferromagnet can be solved when the elec-
isotropic, {,(d/2v,<0)=¢;(N). The constants{;(N)  tron mean free pathis, for both spins are small compared to
scale the antisymmetric iy parts of,(X,v), and Eq.(1)  the spin-diffusion lengtii.¢ 1 ,<Lg . Then in a narrow layer

allows to relatef,(X,vy) t0 £4(X). _ N near the contacty=x—d/2<Lg, spin relaxation can be ne-
For the P geometry, the self-consistency condition forglected, and the self-consistency condition results in the
{o(X,v,) results in an integral equation fdg,(x): equation for the electrochemical potentiglgw) similar to
Eq. (2),
£a()= 325 (N{Eo[ (d/2—x)/1\]— Eo[ (d/2+x)/1]}
1 [(dr2 |X_U| ga(w)_% ;(F)EZ(W“&)
+—f du {(WE | —/, 2
2lnJ —ar In

1 ©
~ o [ Cau cuw Edu-win,. ®
where functionsE, (&)= f7dte t¥/t"*® | =rwy is the at0
mean free path, anel is the Fermi velocity. FUnctio(¢)  ere ;> (F) are integration constants similar g (N) but
is related to the integral exponent functiorgi(€)  tor the right-moving electrons. Eliminating the second term
=—Ei(—¢),£>0. Equation2) can be solved in the ballistic in the left-hand side of Eq(S) by the shift£,(x) = 7.(X)

regime, d<ly, in powers of a small parametei + 7 (F) results in a Milne equatid
=(d/ly)In(Ily/d)<1. Under these conditions, the integral £a(F) a

term is small and can be disregarded. The functoié) 1 (=

=exp(—&+EEi(—¢), and the expansion Ei{¢&)=~Iné na(w)sz’ duEy(|lw—ul/l,) 7,(u). (6)

+C, where C~0.577 is the Euler constant, can be a’0

employed® Finally, ¢,(N)=¢,(x=d/2) equals £,(N) o , _

= = (N)(d/21)[ 1~ C+In(ly/d)]. Therefore, the antisym- M.IForW>';e' d'ﬁus'gr‘tﬁq“aF'onslCa”t.be “Sedb'“Steaﬁ' Otf Te
metric parts of the distribution functiong,, (N), are large ine equations, and e spin refaxation can be easily taken

. . . into account. In the regioh,<w<Lg, both Eqs(6) and the
compared to their symmetric part,(N), which are related diffusion equations r?ok?y TherefFore the;/q ih)ould match
to the electron concentratioms,(x). ' '

C . . . . smoothly. Fow>1|,, the asymptotic form of the solution of
In a similar way, equations for spin-polarized currepis

can be derived. In the leading order i, we find j, Eq.(6) is
=eszvN§§(N)/4. Expressing the currents,(N) through

~ lo+0e)+ o (F), Q.~0.71. (7

the total current] and the spin injection coefficienyy L) =B OWI+ 02+ LL(F), 4.~0 0

=[J1(N)—j(N)]/J results in the final equation The solutions of the standard diffusion equation$ are
TN =ET(IN)=2r{yd,  rh=2/pyon. () L (W)= (0 log) {rexp —W/Lg) + IW o+ Zg,
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{ (W)=~ (o lop){pexp( —W/Lg) +IWop+ 25, (8) If the contact behaves like “a two-side black body,” i.e.,
_ ) ) if it absorbs all incoming electrons and ensures an equilib-
where{r andzg are integration constants,, =€ v.palo/3  rium emission of them in all directions, thefN+tNF=1.
are the conductivities for both spins, and p, are their  Tpjs fact follows from arguments similar to those invoked in

Fermi velocities and densities of states, ang=o;+0,.  proving the Kirchhoff theorem in the theory of radiation.
Matching the smaliv expansions of Eq¥8), w<Lg, with  Reflection from the barrier and nonequilibrium inside it re-
Eq. (7) results in sult intPN+tNF<1. Hencer , are positive and can be con-
. - sidered as contact resistances.
{F= \/§q°°[77T(0)_ 7 (O)]+ &7 (F) =L ()], (9 Equation fory following from Eq. (13) is
where \/§7]T(0)/|T:J/UF_(Ul/UF)(gplLF) and _ >y > <N #<
V37,(0)/1,=3loe+ (0o, /0e)({e/Lg). Therefore, 7,(0) Ye=Arc/r e+ (F)= ¢ (F)]-[{7(N)=¢) (N)]}/2r(clJé)

~(l,/Lg)¢{e<¢e and Eq. (9) reduces to fg={7(F) _

— ] (F). It relates the antisymmetric parts of the distribu- Wherer¢=(r,+r,)/4,Ar.=(r,—r,)/4. The denominators 4
tion functions at the exact boundary of tReregion to¢z ~ €nsure direct connection to the diffusive theory. _
—£,(0)—¢,(0), i.e., to the difference of the electrochemical ~ SPin injection coefficienty. Above, transport equations

potentials of the up- and down-spin electrons near the boundvere solved for three different regions ofaN-F junction:
ary of the diffusion region. a ballistic N region, diffusiveF regions, and resistive con-

Spin-polarized current§,(F) at the boundary of thé  tacts. Equations3), (10), and(15) relate the antisymmetric
region can be found either §s(F) =e%v p,7,(0)/\3 oras  Pars of the distribution functions near the boundarigs,
io(F)=0,d4,(W—0). Through them the spin injection and {5, to the spin injection coefficients across them. Re-
coefficientyg at the left boundary of the ferromagnet can bemarkably, the final results include exactly the same combi-

found. In the lower order ith,/Lg<1, the final result is nations of the distribution functions despite the drastic dif-
ference in the transport mechanisms in the three regions.
VFZAUIUF_[§T>(F)_gf(F)]lsz‘]v (10 Therefore, one can eliminate them from E®), (10), and
(15 and using the spin-current continuity equationg,
whereAo=o0—o, andre=o¢Lg/4o;o is the effective =, _=, =y, to derive an equation foy.2 Its solution is
diffusive resistance of the region.
Right contactx=d/2. A tunnel or Schottky barrier sepa- y=[Arc+tre(Aolop)]lrEy, (16)

rating theN andF regions can be described by the transpar- . . )
ency coefficientst\F andt"", for the electrons reaching the Whererey=re+rc+ry. It resembles the result of the dif-
contact from itsN andF sides, respectively. They are related fusive theory for & -N-F junction: the resistancefy in the

by the detailed balance conditiohtNFvypn=t"Nv,p,. denominator and spin selectivities of the bulk and the contact
Spin-polarized currents flowing through a spin-conserving? the numerator; cf. Eqs(36) and (37) of Ref. 8. For a
barrier are narrow junction,d—O0, ry is standing ford/2cy. As the
total resistance of the junction includes2and %, the

o= — €Lt (Lu(N,v v+ + N W(F Lo )u,) -1, resistance}, acquires a meaning of the Sharvin resistance of

(11 each end of the ballistic region, the left and the right. It

. . equalsmi/e? per spin channet!
where the symbolg- - ). indicate that the averaging should ", e spin injection from a ferromagnetic metal such as

be performed only over the right or the left hemisphere, an(to into a ballistic semiconductor microstructure

{,(N,v,) and ¢,(F,v,) are the functiong ,(x,v,) for the : _ _ oL i
incoming electrons at the left and the right side of the con— 10°r¢ and withr~Ar~0 spin injection is strongly sup

tact, respectively. The average values appearing in(EL. pres.sedyer/r’,\‘,<1. In the difqu_ive regime, a similar ef-
can,be found from the equations for the currents on botlect is attributed to the conductivity mismafchecause of
sides of the junction the large diffusive resistance of a semiconductoy

=Ly/oy, Ly being the spin-diffusion length in thid con-
Jo(N)=—€2[(£o(N, v )V )+ + Lo (N (v, T, ductor. Equatior{4) for ry, does not includery andLy, and
the large value ofy comes solely from théow electron
J(F)=—€({(Fwov)_ +(F)u),]. (12  concentration n{’=ky. However, because the resistances
r, are scaled by}, and enhanced by smalf", Eq.(14), the
Because of the spin conservatign(N)=j.(F)=]., and  gspin injection coefficienty~Ar./r. may be large enough

Eqg. (11) can be transformed into the form and is controlled by the contact rather than by the Builkie
, - - conclude thaty is suppressed even in the ballistic regime
Jo=lla(F)= ¢ (N) /Ty, (13 and contact resistances are needed to enhance it.

A similar technique can be applied to a contact embedded

where the effective contact resistancgsare L X )
between semi-infinitd= and N regions or to any kind of a

= Ark(1— tNF (TN NF (14  ballistic spin filter?® It allows one to calculate and to relate
the contact conductivitiel , of the diffusive theor{® to the
andry, is defined by Eq(4). contact resistances, of Eq. (14). A straightforward calcula-
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In the limit ry,=0 one recovers the diffusive resistances of

tion between the parameters of the kinetic and diffusiveRef. 8 found ford— 0, cf. Eq.(45) and Appendix.

theories>’
F-N-F-junction resistanceWith the electrochemical po-

From Eqgs.(16) and (18), a prescription followsparam-
eters of the ballistic theory can be found from the @ limit

tentials{,,(w) found above, one can calculate the integrationof the diffusive theory by plugging+ (r.+ry).

constantzg of Eq. (8). The two-contact resistance of the
junction, R=2zg/J, equals
R=

=2y ENF2(ret i) +2re(Aalop)? (17

Equation(17) differs from thed—0 limit of the diffusive
theory by the substitutionr,—r +r¥.

Similar to the diffusive regimeR can be split into the
equilibrium and nonequilibrium parfé R= Regt Rneg: the
latter part turns into zero when-—0 and comes from the
nonequilibrium spins in th& regions:

Rneq:2rF[ArC_(rc+rKl)AU'/O'F]Z/r;N(rc"'rKI)y

Req=2(rN+r/2)(r{+r1 12)/(re+ry). (19

AP geometry and the spin-valve effelet this geometry
vap=0 because of the symmetry arguments. Calculating the
resistance shows th&, p differs fromR of Eq. (17) only by
the absence of the first term. Therefore, the spin-valve effect
equalsAR=2v?r%,, wherey is determined by Eq(16).

In conclusion, it is the Sharvin resistance of the ballistic
semiconductor microstructure that controls spin injection
across a@-N-F junction in the Boltzmann regime. Sharvin
resistance is larger than the effective resistances of ferromag-
netic leads, and resistive spin-selective contacts are needed
to ensure efficient spin injectign.
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