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Spin injection into a ballistic semiconductor microstructure
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A theory of spin injection across a ballistic semiconductor embedded between two ferromagnetic leads is
developed for the Boltzmann regime. Spin injection coefficientg is suppressed by the Sharvin resistance of the
semiconductorr N* 5(h/e2)(p2/SN), whereSN is the Fermi-surface cross section. It competes with the diffu-
sion resistances of the ferromagnetsr F , and g is small, g;r F /r N* !1, in the absence of contact barriers.
Efficient spin injection can be ensured by contact barriers. Explicit formulas for the junction resistance and the
spin-valve effect are presented.
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Efficient spin injection from ferromagnetic metals in
semiconductors is one of the prerequisites for develop
spintronics of the hybrid metal-semiconductor devices.1 As
distinct from the spin injection into paramagnetic metal2

the first attempts in achieving spin injection into semico
ductors failed. In the framework of the diffusion theory, th
failure was explained by Schmidtet al. in terms of the ‘‘con-
ductivity mismatch,’’3 the spin injection coefficientg being
of the order of magnitudeg;r F /r N wherer F andr N are the
diffusive resistances of a ferromagnet and of a normal c
ductor ~semiconductor microstructure!, respectively. Resis
tive spin-selective contacts had been proposed to remed
problem,4 and an impressive progress in the experimen
work was achieved during the last year.5 The later theoretica
work performed in the framework of the diffusion approx
mation also substantiated this approach.6–8

The spin transistor by Datta and Das9 and similar
devices10 rely on a ballistic rather than diffusive transpo
across the semiconductor. Therefore, a lot of theoretical w
was performed on a coherent ballistic transport through c
tacts and a microstructure confined between them. The
of the barriers at the interfaces, the Fresnel-type relati
between propagating and reflected waves originating du
the parameter mismatch, and the interference pattern in
bulk caused by the spin-orbit interaction were considere11

The critical role of a barrier at the interface wa
emphasized12 and the scattering in the bulk was discussed13

Spin filtering through perfectly matched interfaces w
investigated.14

In the theory of spin injection into semiconductors, the
exists a gap between the pictures of a diffusive transport
of a coherent transport across the interface. To close this
we consider an intermediate regime when~i! the phase co-
herence at the interfaces is broken and~ii ! electrons can be
described by the Boltzmann equation inside the microstr
ture. Solving this equation in a nearly ballistic regime p
mitted us to find explicit expressions for the basic parame
of the ferromagnet-semiconductor-ferromagnet system.
importance of the problem is emphasized by recent exp
mental findings of Ramsteineret al. who investigated spin
injection through a high quality MnAs/GaAs interface.15

They looked for the effect of the symmetry matching of t
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wave functions of MnAs and GaAs and found no correlati
between the spin injection and the azimuthal orientation
the surface layers. Apparently, this result reflects the lim
tions of the current technologies.

We show that the spin injection into a ballistic semico
ductor through a diffusive interface is controlled by theShar-
vin resistance16 of the semiconductor rN* that solely depends
on the electron concentration and the resistance quan
h/e2. In the absence of the contact resistance, the spin in
tion coefficientg;r F /r N* !1. Therefore,contact resistances
are indispensable for supporting spin injectionfrom a metal
into a semiconductor, similar to the diffusion regime but w
a different criterion and because of somewhat different ar
ments.

Model.We consider a normal (N, nonferromagnetic! con-
ductor residing in a region2d/2,x,d/2 and separated by
barriers from two semi-infinite ferromagnetic~F! leads,uxu
.d/2. Spin-orbit interaction is neglected, all conductors a
assumed degenerate, and the contacts are both spin sele
and spin conserving, i.e., their resistances depend on
electron spin polarization and spin relaxation in the conta
can be disregarded. The scattering at the contacts is diffu
in concord with the assumption of the phase breaking ba
ers establishing a Boltzmann regime. The specular com
nent of the contact scattering can have no essential effec
the final results because the scattering in ferromagnetic le
is always diffusive. The Boltzmann equation is solved se
rately in theN andF regions with a proper account of non
equilibrium spins and the boundary conditions at the c
tacts. We also assume that both contacts and ferromag
are identical, but the polarization of the ferromagnets may
either parallel~P! or antiparallel~AP!, the P and AP geom-
etries in what follows.

N region, uxu,d/2. In the linear approximation in the
electrical fieldE(x)52]xw(x), electrons in theN region
can be described by the distribution functionsf a(x,vx)
5 f 0(e)1(d f0 /de)ca(x,vx) where f 0(e) is the Fermi dis-
tribution, e is the energy,a is the spin index, andca(x,vx)
satisfies the Boltzmann equation

vx]xca~x,vx!2eE~x!vx1@ca~x,vx!2c̄a~x!#/tN50.
©2003 The American Physical Society10-1
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Here tN is the momentum relaxation time,c̄a(x) are the
average values ofca(x,vx) over the Fermi sphere,c̄a(x)
5^ca(x,vx)&/ra ,ra5rN/2 are the densities of states ofa
electrons, andrN is the total density of states. Concentratio
of nonequilibrium spins are equal tona(x)52rNc̄a(x)/2.
Spin relaxation is disregarded.

It is convenient to eliminate the electrical potentialw(x)
by introducing new functionseza(x,vx)52@ca(x,vx)
1ew(x)# and their symmetric partseza(x)52@c̄a(x)
1ew(x)#. They obey the equation

za8 ~x,vx!1@za~x,vx!2za~x!#/tNvx50. ~1!

When the functionza(x) changes smoothly, it has a meanin
of the electrochemical potential of the electrons with the s
a. As in similar problems with several groups of carriers17

one should first considerza(x) as known functions, find
za(x,vx), and then impose the self-consistency condit
za(x)5^za(x,vx)&/ra .

Equation ~1! should be solved forvx.0 and vx,0
separately.18,19 Because of the symmetry of th
problem, the solutions obey the relationsza(x,vx)
52zā(2x,2vx),za(x)52zā(2x), whereā5a in the P
geometry, andā52a in the AP geometry. Hence, it i
enough to solve Eq.~1! for vx,0. For the diffusive contac
scattering, the angular distribution of out going electrons
isotropic, za(d/2,vx,0)5za

,(N). The constantsza
,(N)

scale the antisymmetric invx parts ofza(x,vx), and Eq.~1!
allows to relateza(x,vx) to za(x).

For the P geometry, the self-consistency condition
za(x,vx) results in an integral equation forza(x):

za~x!5 1
2 za

,~N!$E2@~d/22x!/ l N#2E2@~d/21x!/ l N#%

1
1

2l N
E

2d/2

d/2

du za~u!E1S ux2uu
l N

D , ~2!

where functionsEn(j)5*1
`dte2tj/tn,18 l N5tNvN is the

mean free path, andvN is the Fermi velocity. FunctionE1(j)
is related to the integral exponent function,E1(j)
52Ei(2j),j.0. Equation~2! can be solved in the ballistic
regime, d! l N , in powers of a small parameterl
5(d/ l N)ln(lN /d)!1. Under these conditions, the integr
term is small and can be disregarded. The functionE2(j)
5exp(2j)1jEi(2j), and the expansion Ei(2j)' ln j
1C, where C'0.577 is the Euler constant, can b
employed.20 Finally, za(N)[za(x5d/2) equals za(N)
5za

,(N)(d/2l N)@12C1 ln(lN /d)#. Therefore, the antisym
metric parts of the distribution functions,za

,(N), are large
compared to their symmetric parts,za(N), which are related
to the electron concentrationsna(x).

In a similar way, equations for spin-polarized currentsj a
can be derived. In the leading order inl, we find j a

5e2rNvNza
,(N)/4. Expressing the currentsj a(N) through

the total currentJ and the spin injection coefficientgN
5@ j ↑(N)2 j ↓(N)#/J results in the final equation

z↑
,~N!2z↓

,~N!52r N* gNJ, r N* 52/e2rNvN . ~3!
12131
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Therefore, in the ballistic region the currentsj a and the spin
injection coefficientgN are completely determined by th
‘‘large’’ ~antisymmetric! parts of the distribution functions
The potential drop inside this region is related to the ‘‘sma
~symmetric! parts of za(x,vx), hence, it is small ind/ l N
!1 and can be disregarded.21

We show below thatr N* plays a role of the effective resis
tance of each end of theN region~per unit area!. It depends
neither ond nor on l N but solely on the electron concentra
tion in theN region

r N* 5~h/e2!~p2/SN!5~h/e2!~1/2N!, ~4!

whereh/e2 is the resistance quantum. HereSN5pkN
2 is the

Fermi-surface cross section, andN5kN
2 /2p is the number of

channels per unit cross-section area, including the spin
generacy factor. The resistance of a narrow diffusive reg
of the same widthd equalsd/sN , sN being the conductivity
of the N region. It matchesr N* smoothly atd; l N . Because
r N* depends on the carrier concentration only, develops du
the electron exchange with the diffusive regions, and has
appropriate analytical form, we identify it as the Sharv
resistance of the normal conductor.16 The relevance of Shar
vin resistance to the perpendicular transport in layered m
netic structures was recognized by Bauer.22

Right F region, x.d/2. The problem of the spin injection
into a semi-infinite ferromagnet can be solved when the e
tron mean free pathsl a for both spins are small compared
the spin-diffusion lengthLF ,l a!LF . Then in a narrow layer
near the contact,w5x2d/2!LF , spin relaxation can be ne
glected, and the self-consistency condition results in
equation for the electrochemical potentialsza(w) similar to
Eq. ~2!,

za~w!2 1
2 za

.~F !E2~w/ l a!

5
1

2l a
E

0

`

du za~u! E1~ uu2wu/ l a!. ~5!

Here za
.(F) are integration constants similar toza

,(N) but
for the right-moving electrons. Eliminating the second te
in the left-hand side of Eq.~5! by the shift za(x)5ha(x)
1za

.(F) results in a Milne equation18

ha~w!5
1

2l a
E

0

`

duE1~ uw2uu/ l a!ha~u!. ~6!

For w@ l a , diffusion equations can be used instead of t
Milne equations, and the spin relaxation can be easily ta
into account. In the regionl a!w!LF , both Eqs.~6! and the
diffusion equations hold. Therefore, they should ma
smoothly. Forw@ l a , the asymptotic form of the solution o
Eq. ~6! is

za~x!'A3ha~0!~w/ l a1q`!1za
.~F !, q`'0.71. ~7!

The solutions of the standard diffusion equations are8

z↑~w!5~s↓ /sF!zFexp~2w/LF!1Jw/sF1zR ,
0-2
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z↓~w!52~s↑ /sF!zFexp~2w/LF!1Jw/sF1zR , ~8!

wherezF andzR are integration constants,sa5e2varal a/3
are the conductivities for both spins,va and ra are their
Fermi velocities and densities of states, andsF5s↑1s↓ .
Matching the small-w expansions of Eqs.~8!, w!LF , with
Eq. ~7! results in

zF5A3q`@h↑~0!2h↓~0!#1@z↑
.~F !2z↓

.~F !#, ~9!

where A3h↑(0)/l ↑5J/sF2(s↓ /sF)(zF /LF) and
A3h↓(0)/l ↓5J/sF1(s↑ /sF)(zF /LF). Therefore, ha(0)
;( l a /LF)zF!zF and Eq. ~9! reduces to zF5z↑

.(F)
2z↓

.(F). It relates the antisymmetric parts of the distrib
tion functions at the exact boundary of theF region tozF
5z↑(0)2z↓(0), i.e., to the difference of the electrochemic
potentials of the up- and down-spin electrons near the bou
ary of the diffusion region.

Spin-polarized currentsj a(F) at the boundary of theF
region can be found either asj a(F)5e2varaha(0)/A3 or as
j a(F)5sa]wza(w→0). Through them the spin injectio
coefficientgF at the left boundary of the ferromagnet can
found. In the lower order inl a /LF!1, the final result is

gF5Ds/sF2@z↑
.~F !2z↓

.~F !#/2r FJ, ~10!

whereDs5s↑2s↓ , and r F5sFLF/4s↑s↓ is the effective
diffusive resistance of theF region.

Right contact, x5d/2. A tunnel or Schottky barrier sepa
rating theN andF regions can be described by the transp
ency coefficients,ta

NF andta
FN , for the electrons reaching th

contact from itsN andF sides, respectively. They are relate
by the detailed balance condition12 ta

NFvNrN5ta
FNvara .

Spin-polarized currents flowing through a spin-conserv
barrier are

j a52e2@ ta
NF^za~N,vx!vx&11ta

FN^za~F,vx!vx&2#,
~11!

where the symbolŝ•••&6 indicate that the averaging shou
be performed only over the right or the left hemisphere, a
za(N,vx) and za(F,vx) are the functionsza(x,vx) for the
incoming electrons at the left and the right side of the c
tact, respectively. The average values appearing in Eq.~11!
can be found from the equations for the currents on b
sides of the junction,

j a~N!52e2@^za~N,vx!vx&11za
,~N!^vx&2#,

j a~F !52e2@^za~F,vx!vx&21za
.~F !^vx&1#. ~12!

Because of the spin conservation,j a(N)5 j a(F)5 j a , and
Eq. ~11! can be transformed into the form

j a5@za
.~F !2za

,~N!#/r a , ~13!

where the effective contact resistancesr a are

r a54r N* ~12ta
NF2ta

FN!/ta
NF , ~14!

and r N* is defined by Eq.~4!.
12131
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If the contact behaves like ‘‘a two-side black body,’’ i.e
if it absorbs all incoming electrons and ensures an equi
rium emission of them in all directions, thenta

FN1ta
NF51.

This fact follows from arguments similar to those invoked
proving the Kirchhoff theorem in the theory of radiatio
Reflection from the barrier and nonequilibrium inside it r
sult in ta

FN1ta
NF,1. Hence,r a are positive and can be con

sidered as contact resistances.
Equation forg following from Eq. ~13! is

gc5Dr c /r c1$@z↑
.~F !2z↓

.~F !#2@z↑
,~N!2z↓

,~N!#%/2r cJ,
~15!

wherer c5(r ↑1r ↓)/4,Dr c5(r ↓2r ↑)/4. The denominators 4
ensure direct connection to the diffusive theory.

Spin injection coefficientg. Above, transport equation
were solved for three different regions of aF-N-F junction:
a ballistic N region, diffusiveF regions, and resistive con
tacts. Equations~3!, ~10!, and ~15! relate the antisymmetric
parts of the distribution functions near the boundaries,za

.

and za
, , to the spin injection coefficients across them. R

markably, the final results include exactly the same com
nations of the distribution functions despite the drastic d
ference in the transport mechanisms in the three regio
Therefore, one can eliminate them from Eqs.~3!, ~10!, and
~15! and using the spin-current continuity equations,gN
5gF5gc[g, to derive an equation forg.23 Its solution is

g5@Dr c1r F~Ds/sF!#/r FN* , ~16!

where r FN* 5r F1r c1r N* . It resembles the result of the dif
fusive theory for aF-N-F junction: the resistancer FN* in the
denominator and spin selectivities of the bulk and the con
in the numerator; cf. Eqs.~36! and ~37! of Ref. 8. For a
narrow junction,d→0, r N* is standing ford/2sN . As the
total resistance of the junction includes 2r F and 2r c , the
resistancer N* acquires a meaning of the Sharvin resistance
each end of the ballistic region, the left and the right.
equalsp\/e2 per spin channel.24

For the spin injection from a ferromagnetic metal such
Co into a ballistic semiconductor microstructure,r N*
*103r F and withr c'Dr c'0 spin injection is strongly sup
pressed,g;r F /r N* !1. In the diffusive regime, a similar ef
fect is attributed to the conductivity mismatch3 because of
the large diffusive resistance of a semiconductor,r N
5LN /sN , LN being the spin-diffusion length in theN con-
ductor. Equation~4! for r N* does not includesN andLN , and
the large value ofr N* comes solely from thelow electron
concentration, nN

(0)}kN
3 . However, because the resistanc

r a are scaled byr N* and enhanced by smallta
NF , Eq.~14!, the

spin injection coefficientg'Dr c /r c may be large enough
and is controlled by the contact rather than by the bulk.25 We
conclude thatg is suppressed even in the ballistic regim
and contact resistances are needed to enhance it.

A similar technique can be applied to a contact embed
between semi-infiniteF and N regions or to any kind of a
ballistic spin filter.26 It allows one to calculateg and to relate
the contact conductivitiesSa of the diffusive theory4,8 to the
contact resistancesr a of Eq. ~14!. A straightforward calcula-
0-3
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tion results inSa51/r a . This equation establishes a conne
tion between the parameters of the kinetic and diffus
theories.27

F-N-F-junction resistance.With the electrochemical po
tentialsza(w) found above, one can calculate the integrat
constantzR of Eq. ~8!. The two-contact resistance of th
junction,R52zR /J, equals

R522g2r FN* 12~r c1r N* !12r F~Ds/sF!2. ~17!

Equation~17! differs from thed→0 limit of the diffusive
theory8 by the substitutionr c→r c1r N* .

Similar to the diffusive regime,R can be split into the
equilibrium and nonequilibrium parts,4,8 R5Req1Rneq, the
latter part turns into zero whenr F→0 and comes from the
nonequilibrium spins in theF regions:

Rneq52r F@Dr c2~r c1r N* !Ds/sF#2/r FN* ~r c1r N* !,

Req52~r N* 1r ↑/2!~r N* 1r ↓/2!/~r c1r N* !. ~18!

*Email address: erashba@mailaps.org
1S.A. Wolf et al., Science294, 1488~2001!; S. Das Sarmaet al.,

Solid State Commun.119, 207 ~2001!.
2M. Johnson and R.H. Silsbee, Phys. Rev. Lett.55, 1790~1985!.
3G. Schmidtet al., Phys. Rev. B62, R4790~2000!.
4E.I. Rashba, Phys. Rev. B62, R16 267~2000!.
5H.J. Zhuet al., Phys. Rev. Lett.87, 016601~2001!; A.T. Hanbicki

et al., Appl. Phys. Lett.80, 1240~2002!; S. Kreuzeret al., ibid.
80, 4582 ~2002!; V.F. Motsnyi et al., ibid. 81, 265 ~2002!; T.
Manago and H. Akinaga,ibid. 81, 694~2002!; P.R. Hammar and
M. Johnson, Phys. Rev. Lett.88, 066806 ~2002!; C.-M. Hu
et al., J. Appl. Phys.91, 7251~2002!; K.H. Ploog,ibid. 91, 7256
~2002!; V. Dediu et al., Solid State Commun.122, 181 ~2002!;
A. Hirohataet al., Phys. Rev. B66, 035330~2002!; S.H. Chun
et al., ibid. 66, 100408 ~2002!; P. Van Dorpe et al.,
cond-mat/0208325~unpublished!.

6D.L. Smith and R.N. Silver, Phys. Rev. B64, 045323~2001!.
7A. Fert and H. Jaffre`s, Phys. Rev. B64, 184420~2001!.
8E.I. Rashba, Eur. Phys. J. B29, 513 ~2002!.
9S. Datta and B. Das, Appl. Phys. Lett.56, 665 ~1990!.

10M. Governaleet al., Phys. Rev. B65, 140403~2002!; R. Ioni-
cioiu and I. D’Amico, Phys. Rev. B67, 041307~2003!.

11H.X. Tanget al., Phys. Rev. B61, 4437~2000!; L.W. Molenkamp
et al., ibid. 64, 121202~R! ~2001!; T.P. Pareek and P. Bruno
ibid. 65, 241305~2002!; T. Matsuyamaet al., ibid. 65, 155322
~2002!; M.H. Larsenet al., ibid. 66, 033304~2002!; X.F. Wang
et al., Appl. Phys. Lett.80, 1400 ~2002!; S.-L. Zhu et al., J.
Appl. Phys.91, 6545~2002!; F. Mireles and G. Kirczenow, Eu
rophys. Lett.59, 107 ~2002!.

12D. Grundler, Phys. Rev. B63, 161307~R! ~2001!; C.-M. Hu and
T. Matsuyama, Phys. Rev. Lett.87, 066803~2001!; H.B. Heer-
sche et al., Phys. Rev. B64, 161307~R! ~2002!; T. Schäpers
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