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The effect of hydrogenation on five Galk, _, epitaxial layers (0.00048x=<0.019) grown by metal-
organic vapor-phase epitaxy was investigated. Photomodulated refle¢®®cand photoluminescence spec-
troscopy were used to study the electronic band structure, and x-ray diffrdiRi) and Raman spectros-
copy to probe, respectively, the static and dynamic properties of crystal lattice before and after hydrogenation.
Hydrogen almost completely neutralizes the effect of N on the band structure of the GaAs host. The direct band
gapE_ and the spin-orbit split-off band_ + A blueshift toward the corresponding energies in GaAs and the
E. band disappears after hydrogenation. The PR spectra of hydrogenatgdszaNresemble broad GaAs-
like spectra. The XRD traces reveal that hydrogenation removes the tensile strain jAsgaNlayers and
even induces compressive strain. After hydrogenation the GaAs-like features in the Raman spectra persist
whereas the local vibrational mode due to N disappears. Three H-related modes can be distinguished in the
Raman spectra.
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GaNAs, _, belongs to a class of semiconductor alloysN-H; (BC-ABy). It is predicted that this complex leads to
where the conduction band structure is tuned by incorporatan almost full neutralization of the N-induced band structure
ing a few percenk of the N isoelectronic impurity into the changes in G@,As). Here, we present a comprehensive
host crystal? The band structure changes due to N incorpo-study of the electronic and lattice properties of GAB} _,
ration are dramatic. Examples are the strong redshift of thepitaxial layers before and after hydrogenation.
conduction band edge with increasir@r, atx~0.002, the Five GaNAs,_, epitaxial layers with x=0.00043,
evolution of an N-induced band, the so-call&d band, 0.00095, 0.0021, 0.005, and 0.019 and a thickness 0/11@15_
which blueshifts with increasing.>"° It is established by Were grown on(100 GaAs substrates by metal-organic
now that, due to the electronegativity and size mismatch, N@POr-phase epitaxy. TheG san_w;g)les are unintentionally doped
causes a strong local perturbation of the crystal lattice whic P& with about 2¢10°° cm > at 300 K. Pieces of all
in turn modifies the band structure globaly® Recently, samples were hyd_rogenated by ion-beam irradiation frorrl a
some of us reported that the photoluminescence properties ”f”.‘a” source with the sample temperature h_e_Id at 300°C.
GaN,As) and (Ga,In(N,As) heterostructures after hydroge- ow |c;n energies(100 eV) .and current densm@wlo
nation resemble those of the host structures without N, e g’“A/C.m) were usgd. TO .ach|eve full hydrogenation OT the

. o . . ' “Z8pecimens high impinging hydrogen doses of typically
exciton recombination lines in N-related complexes are;yis_ 149 ions/cn? were required. Before and after hydro-
quenched and the band gap shifts toward that of the N-frego a0 the strain state of the samples was determined by
semlconductoi'.l' This ne_utrallzatlon of the effects of N on double-crystal x-ray diffractiofiXRD). Photomodulated re-
the luminescence properties due to the presence of hydrogefjactance (PR and photoluminescencéPL) experiments
in particular for the band-gap-related emission band, wagere performed to study the band and impurity states. Ra-
surprising and triggered a series of intensive theoreticainan experiments were carried out for studying the vibra-
studies*~® The results are as followg1) N-H complexes  tional modes.
are more likely to be formed than the interstitigl-hholecule Figure 1 shows PL spectra of a Gagh$, _, epitaxial layer
complex[which is known to be a stable complex in N-free with x=0.00095 before and after hydrogenation, together
GaAs (Ref. 17]. (2) At low H doses monohydrogen com- with a GaAs reference spectrum. Two major effects occur
plexes N-H are formed ip-type material, predominantly & after hydrogenation(l) the E_ band is strongly blueshifted
complex where the H atom is bonded to N and situated in @nd the PL spectrum looks like that of GaAs with a band-
bond-centered position between Ga and N atoms, the S@mp-related feature at 1.515 eV and a C-acceptor-related
called N-H¢ configuration. This complex is not expected to hand at about 1.493 esimilar results have been obtained
lead to a reversal of the N-induced band structure changegor a sample withx=0.00043). This means that the pertur-
(3) At higher H doses, dihydrogen complexes B-hould  bation of the host states due to the N-incorporation is effec-
be formed. Particularly im-type material, the N-Bl com-  tively removed after hydrogenatioi2) The sharp PL fea-
plex should become dominant. It consists of H in a bondtures due to the N-cluster states disappear indicating that
centered position between Ga and N atoms and a second tHese are modified by the H incorporation, i.e., N-H com-
bonded to that N atom on the antibonding site, so-calleghlexes are formed.
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FIG. 1. Photoluminescence spectra takenTat5 K of a (i) 1025 1075 3075 3125 3875 3925

GaAs reference sample; a Gghg; _, sample withx=0.00095(ii)

; -1
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FIG. 2. Phonon Raman spectra of GahASy 9g1 €XCited with

Further confirmation is given by Raman spectroscopy514 5 nm(2.41 e\) at T=300K (a) in the vicinity of the local
The Ga-N local vibrational modéVM ) at 475 cm* (which  vibrational N mode (LVM) of (i) as grown andii) after hydroge-
is observed for the as grown Gaghs,_, samples withx nation[scattering geometry(y’,y’)-x], (b) of the GaAs-like LO-
=0.005 and 0.01Qdisappears after hydrogenation as shownphonon of the as-grown samp(tull circles) and after hydrogena-
in Fig. 2(a). This is also found by infrared-absorption mea-tion (open circleg the solid lines are Lorentzian fifscattering
surements fop-type hydrogenated Gi,As).?® In the spec- geometryx(y,z)-x], and (c) in the spectral range of H-related
tral range from 1000 to 4000 ch shown in Fig. Zc) we modes of(i) as-grown andii) after hydrogenatiorfunpolarized in
detect three H-related signals at 1041, 3111, and 3917 cm Pack scattering geometry
for hydrogenated Gal\)ASpes1- The modes at 1041 and
3111 cm ! observed in oun-type samples after hydrogena- drogenation process. The PR spectrum of a & , epi-
tion have not been observed simultaneously in any of théaxial layer with x=0.005 after hydrogenation shows, as
previous work to our knowledg€-2! Therefore, we believe already observed in PL, the shift of the band gap toward
that these modes are the N-H bond bending and bond stretcthat of GaAs. The correspondirig_+A, band exhibits a
ing modes, respectively, of a hitherto unknown NH complex.comparable blueshift. In addition, e, feature(which can
Whether this NH complex is only observablenrtype ma- be distinguished in PR spectra of as-grown samplesxfor
terial, and whether it is a monohydrogen NH or dihydrogen>0.002) disappears after hydrogenation. This was also ob-
NH, complex, requires, further detailed studies. However, itserved for the Gahb;dASg 9g1 Sample. TheE_ signal after
confirms the predictiod$™¢ that various different NH- hydrogenation shows a tail-like broadening on the low-
related complexes can be formed in(§gAs) depending on energy side. It is an indication that the sample is not homo-
doping, H doses, etc. The third H-related mode in Fig) 2 geneously hydrogenated. As the band gap of the lower-lying
agrees with that of interstitial 4 molecules in N-free less-hydrogenated layers is smaller than that of the fully hy-
GaAs!’ This H, molecule mode and the disappearance ofdrogenated top layer, the former contribute strongly to the
the Ga-N LVM in the Raman spectra indicate that thelow energy side of the measur&d. signal, in particular, as
samples are fully hydrogenated at least close to the surfaceone of the probe light in this energy range is absorbed by
The GaAs-like modes are only weakly affected by hydrogethe top layer. Such broadening of tke signal also is ob-
nation. It is worth noting, however, that the LO-phonon en-served for the Gapy;ASpes: S@ample. In the case of the
ergy of the Galyy1ASygs; layer [Fig. 2(b)] is shifted by E_+Ag signal, these broadening effects are less pronounced
about 0.8 cm® to higher wave numbers, indicating a signifi- as the probe light mainly probes the top layer due to its
cant reduction of the tensile strain after hydrogenation. strong absorption in this spectral range. Therefore, it is very

Figures 3 and 4 demonstrate that the band structurelear that theE, signal disappears in the spectra of the hy-
changes are not restricted to the bottom of the conductiodrogenated Gaphs, , samples withx=0.005 and 0.019.
band only, but to the conduction band as a whole. Indeed, th€he PR signals of all hydrogenated samples show line widths
spin-orbit split-off transitionE _ + A, and theE . transition = comparable to those of the as grown samples and much
(which both, as thé&_ band, change dramatically by incor- broader than GaAs. The relative strength of Ehe+ A sig-
porating N into GaApare also strongly affected by the hy- nal with respect to th& _ signal after hydrogenation is simi-
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FIG. 5. Pairs of x-ray-diffraction traces of tt&00)-reflection of

. . three GaNAs;_, samples beforétop spectrum of each paiend
lar to that of the as-grown samples, therefore, remains Si%fter hydrogenation(lower spectrum of each pairfor (i) x

nificantly bigger than that in GaAs. The energy positions of _ g o095 ii) x=0.0021, andiii) x=0.019. The dashed line indi-
the three signals before and after hydrogenation are SUMM@aies the position of GaAg00) reflex; the arrows pointing up and
rized in Fig. 4. The solid lines are a fit of the level repulsion gown indicate the positions of th@00) reflexes of the as-grown
model to the expe”mental da’:—tg. The dashed horizontal and hydrogenated GaNsl_x |aye|'sl respective|y‘]’:3oo K. In-
lines indicate the position dE_ andE_+A, in GaAs. set: Plot of the relative change of the lattice constant in the growth
Figure 5 depicts pairs of XRD traces of th@00-  direction after hydrogenationA(d/d)p,q vs that before hydrogena-
reflection of three Gaphs, , samples beforétop trace of  tion (Ad/d),, for the GaNAs, _, layers withx=0.00095.
each pair and after hydrogenatiofiower trace of each pair ) o o .
for x=0.00095, 0.0021, and 0.019. The dashed line indicateBONt. The arrows pointing up and down indicate the posi-

the position of GaA<400) reflex which is used as reference tions of the(400-reflexes of the strained as grown and hy-
drogenated GaM\s,; _, layers, respectively. The pseudomor-

phically grown samples before hydrogenation are under
biaxial tensile strain. Assuming Vegard’'s law the tensile
strain is proportional to the N concentration of the
GaNAs; , layers. Hydrogenation converts the biaxial ten-
sile strain of the layers to a biaxial compressive strain. In the
inset of Fig. 5, the relative change of the lattice constant in
growth direction after hydrogenatiomA(l/d), is plotted
versus that before hydrogenationAd/d),, for the
GaNAs; , layers withx=0.00095. It shows that the com-
pressive strain in the hydrogenated samples increasexwith
This dependence is a further confirmation that N-H com-

Energy [eV]

® asgrown g E_ plexes are formed. The N-H complexes lead to a change of
O hydrogenated , the local strain around the N atoms, i.e., widen the lattice.
0.0 0.5 1.0 15 2.0 This change of the strain states,, explains the frequency

shift of the LO-phonon shown in Fig. (B) for the
GaN, g1 ASy 951 Sample. An estimate using GaAs parameters

. . . — 71 L
FIG. 4. Energy positions vs N concentrationf the direct band ~ 9iven in Ref. 22 yields\ w~2 cm™~ for As,,~1.1%. Tak-
gapE_, the spin-orbit split-off bandE_+A, and the N-induced INg into account the uncertainties of the material parameters,
E. band of the as-grown GaMs,_, samples(full circles). The  this is in reasonable agreement with the observed shift of

- . ] : ~1
solid lines are a fit of the level repulsion model to the experimenta@bout 1 cm ™.
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data. Corresponding data f&_ andE_+ A, of the hydrogenated In summary, hydrogenation leads to an effective removal
samplegiopen squargsthere is noE, signal after hydrogenation. 0f the N-related perturbation due to the formation of a NH-
The dashed horizontal lines indicate the positionEof and E_ complex which seems to be different from those reported for
+Ag in GaAs. T=300 K. p-type material. Hydrogenation literally reverses all the ef-
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fects of N on the band structure of the GaAs host. In addisitivity of the global properties of these alloys on the local
tion, it removes the tensile strain of pseudomorphicallyenvironment of the N site.

grown GaNAs; _, layers and even introduces compressive ) )
strain as reflected by the static and dynamic properties of the We are very grateful for funding by the DFG and by Min-
crystal lattice. Our results are in good agreement with recerigtero dell'Universita’ e della Ricerca Scientifica e Tecno-
theoretical predictions and a further manifestation of the senlogica (MIUR-COFIN 200J.
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