
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 67, 121101~R! ~2003!
Minimum dipole moment required to bind an electron to a screened dipole field
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The critical dipole moment required to bind an electron is known since Fermi and Teller published its exact
value in a historical contribution@E. Fermi and E. Teller, Phys. Rev.72, 399 ~1947!#. We revisit the problem
and calculate self-consistently the critical dipole moment for a dipole field embedded in a homogeneous
polarizable medium. We show that, although the capability of polar systems to capture electrons in the dipole
field is much reduced by the screening, a screened dipole field is still attractive enough to bind one electron for
a wide range of embedding media.
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The appearance of bound states for an electron in a di
field is a problem of central importance in molecular a
condensed-matter physics. The history of the research on
subject is appealing as well. In 1947, Fermi and Teller w
the first to publish the value of the minimum dipole mome
required to bind an electron~also known in the literature a
the critical dipole moment!, namelyDmin

0 50.639 a.u.1 This
value was given in their paper in passing, without furth
mention of it. The actual method that they used to obtai
still remains unclear, and was the subject of an interes
search by Turner.2 Later works rediscovered the dipole crit
cal value using several methods3–5 in the context of low-
energy electron scattering in polar molecules.

After these pioneering studies, and for more than two
cades, literature on the problem was scarce. In the past
years, however, the concept of the minimum dipole requi
to bind an electron has been recovered and widely use
the study of dipole-bound anions, to which much theoreti
and experimental work has been dedicated.6–9 Dipole-bound
anions are negatively charged molecular compounds
which the binding of the outer electron can be basically
terpreted in terms of the dipole field of the neutral molecu
The concept of the critical dipole moment is used in t
context to predict the existence of such molecular anio
Higher multipole-bound anions have been studied as we10

The problem of the critical dipole also reappeared in a qu
different context recently: Camblonget al. showed that the
binding of an electron to a polar molecule is the realizat
of a quantum anomaly.11

Less attention has been paid, however, to the binding
electrons to dipolar fieldsscreenedby an external electronic
density, which is the relevant situation in condensed ma
Screened dipole fields appear, for example, in me
semiconductor junctions,12 liquid-solid interfaces between
polar solvents and metals,13 and heterogeneous interfaces
which nanoparticles are formed.14 Polar defects stabilized b
electron capture were also proposed as responsible for p
ization fatigue in ferroelectric materials.15 In surface chem-
istry, the screening of polar structures appears in proble
such as the adsorption of small polar molecules on m
surfaces.16 The electronic properties of such systems wo
be very much affected by the binding of electrons in t
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dipole field. Our purpose in this paper is to determine
appropriate conditions under which this binding can ta
place.

The screening effect of an external electronic charge i
a dipole field implies that higher dipole moments are
quired to bind one electron. In this paper, we focus our
tention on such a problem by calculating the critical dipo
moment required to bind one electron when a finite dipole
embedded in a jellium. This model is useful to understa
the complex mechanisms of electron binding by scree
dipole fields and provides an estimate of the actual dip
fields required to bind electrons in real systems.

The binding of electrons by a screened dipole was p
liminarily studied using linear theory of screening~Thomas-
Fermi potentials! and a variational approach for the electro
wave function.17,18 It is well known, however, that linea
theory underestimates the rearrangement of electronic ch
induced by a charged particle in a homogeneous mediu19

Hence, we calculate the embedding of a dipole in a jelliu
using density-functional theory~DFT!. The screening of the
dipole by the external electronic density and the critical
pole moment are thus obtained in a self-consistent way
beyond linear theory. For the sake of comparison, we w
also show the results obtained in linear theory of screen
The inclusion of nonlinearity in the description of the scree
ing has important consequences, with two effects of oppo
sign competing.

The system on which we focus our attention is a fin
dipole defined by two point charges6q separated by a dis
tanced ~atomic units are used throughout!. The dipole is
embedded in a jellium~a constant background of positiv
charge in which the electrons move!, whose mean electronic
density isn0. The electron-density parameterr s is usually
defined by the relation 1/n054pr s

3/3. D is the dipole mo-
mentD5qd.

Our goal is to calculate the critical dipoleDmin , defined as
the minimum dipole moment required to bind an electron,
a function of the external electronic densityn0. We use the
Kohn-Sham~KS! equations to solve the problem:20

H 2
1

2
¹21Veff~r !J c i~r !5e ic i~r !, ~1!
©2003 The American Physical Society01-1
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wherec i(r ) are the one-electron orbitals of a system of no
interacting particles,Veff(r )5Vext(r )1Ves(r )1Vxc(r ) is the
one-electron effective potential, ande i are the eigenenergie
of the KS states. The external potentialVext(r ) is the bare
Coulomb potential of the two charges6q, Ves(r ) is the elec-
trostatic potential of the total electronic density, and t
exchange-correlation potentialVxc(r ) is calculated in the
local-density approximation~LDA !, using Gunnarson and
Lundqvist parametrization.21

Equation ~1! requires to solve self-consistently the K
equations for a nonspherical potential. The numerical pro
dure that we use is the same that was thoroughly explaine
Ref. 22. The axial symmetry of the system allows us to s
plify the calculation by taking the dipole axis~the line that
links the positions of the charges! as theOZ axis. Expanding
the KS orbitals in the spherical-harmonic basis setYl

m(V),
and the effective potentialVeff(r ) and the electronic densit
in terms of Legendre polynomialsPl(cosu), Eq. ~1! is trans-
formed into a system of coupled equations. The axial sy
metry of the problem keepse i andm as good quantum num
bers, but not the angular momentuml. For every fixed value
of e i andm we have

F1

2

]2

]r 22
l ~ l 11!

2r 2 1e i Gul ,e i

m ~r !5(
l 8

l max

Ull 8
m

~r !ul 8,e i

m
~r !, ~2!

whereul ,e i

m (r ) are the radial components of the KS orbita

and the coupling termsUll 8
m (r ) between the differentl-partial

waves are

Ull 8
m

~r ! 5 E dV Veff~r ! Yl 8
m

~V!@Yl
m~V!#* . ~3!

In practice, only a finite number of termsnmax in the
expansion of the external potentialVeff(r ), and a finite num-
ber of termsl max in the expansion of the KS orbitals ar
included. We check the accuracy of the results by assu
the convergence of the studied magnitudes with the num
of components in the expansions. Typical values used in
work arenmax58 andl max510.

The DFT is rigorously founded only for the description
the system ground state. Usual prescription in the KS sch
is that the lower-energy KS states up to the Fermi le
should be filled to properly describe the ground state. Thi
not what we have done in this work. We are interested
dipole binding just one electron. Hence, we populate just
of the two KS orbitals with negativee i ~there is one for each
spin component!. All the continuum KS states, from zer
energy to the Fermi level, are filled as well. Occupancy
the two bound orbitals would bring them to merge into t
continuum for the typical values of the dipole parametersD
andd considered in this work. Furthermore, we consider t
the presence of an electron bound to the dipole is indica
by the existence of a negative KS eigenvalue.

Let us start by showing the rearrangement of electro
charge induced by the dipole in the medium. We plot in F
1 the DFT calculation of the electronic density induced
the dipole in a jelliumnn(r )5n(r )2n0, in units ofn0. The
dipole parameters areq561 andd54 a.u. The electronic-
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density parameter of the unperturbed jellium in which t
dipole is embedded isr s53.0. The upper panel of Fig. 1
shows a contour plot of the total electronic density induc
by the dipole, in a plane defined by the dipole axis and a
direction perpendicular to it. The lower panel of Fig. 1 sho
the induced electronic density along the dipole axis. T
bound and continuum contributions to the total induced el
tronic density are plotted in the lower panel of Fig. 1 as we
The sum of both contributions leads to a piling up of ele
tronic charge~a screening cloud! about the positive chargeq.
Furthermore, electrons are repelled from the neighborh
of the dipole negative charge2q. nn(r ) is negative and
roughly compensates the background electronic densityn0 in
this region. Only the continuum density contributes to t
depletion of charge about2q. The small bump in the den
sity close to2q is unphysical. It is a consequence of th
finite number of density and potential components (nmax
58) used in our calculation.

FIG. 1. DFT calculation of the electronic densitynn(r ) in-
duced by a dipole in a jellium ofr s53.0. The charges of the dipol
areq561 and the distance between them isd54.0 a.u. nn(r ) is
plotted in units of the background densityn0. The upper panel
shows a contour plot ofnn(r ) in a plane in which the dipole axis
is contained. Darker zones correspond to higher values ofnn(r ).
Abscissas represent distances in the direction parallel to the di
axis, and ordinates represent distances in the direction perpen
lar to it. All distances are in atomic units. The lower panel sho
the same calculation making a cut along the dipole axis. The bo
~dash-dotted line! and continuum~dashed line! contributions to the
total induced density~solid line! are shown as well.
1-2
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Any external distribution of charge that is embedded in
polarizable medium is screened so that the total net ch
seen at long distances is zero, i.e., the potential is not C
lombic anymore.23 Let us remark at this point that the dipola
component of the potential is screened at long distance
well. We have numerically checked that the dipole mom
of the induced electronic densitynn(r ) exactly compensate
the external dipole moment embedded in the medium. Th
just a consequence of the perfect screening made by the
dium.

We have checked that the results for the total electro
charge induced by the dipole are qualitatively similar
other values of the dipole parameters and/or the backgro
electronic density. A lower binding energy for the bou
state~a weaker dipole moment! introduces a bound contribu
tion more extended in space. However, the continuum c
tribution adds up to compensate, gathering most of the t
induced density in a relatively small region of space. T
bound contribution will eventually disappear for the dipo
parameters that correspond to those of the critical dipole
ment.

The DFT calculation of the critical dipoleDmin required to
bind an electron is shown in Fig. 2, as a function of t
electronic-density parameterr s . The values ofr s used in
Fig. 2 cover the whole range of metallic densities.23 The
charges of the dipole are fixed toq561 and the distance
between them is varied. In general terms, the values of
critical dipole moment for a screened dipole are much hig
than the nonscreened critical dipoleDmin

0 50.639 calculated
by Fermi and Teller.1 This is true even for values of th
electronic density relatively low, such asr s56. Notice, how-
ever, that our calculation would not provide the exact va
Dmin

0 50.639 in the limit of r s→` due to the well-known
deficiencies of LDA to treat self-interaction terms.24 For high
values of the electronic densities of the mediumr s
,1.85), there is no dipole moment capable of binding
electron.r s'1.85 is the lowest value ofr s for which the

FIG. 2. Critical dipole momentDmin ~in atomic units! to bind an
electron as a function of the external electronic-density parametr s

~in atomic units as well!. The solid line is the DFT calculation. Th
dash-dotted line is the result in linear theory of screening. Cha
of the dipole are fixed toq561.
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bound state of a neutral hydrogen atom (H0) embedded in a
jellium does exist. Hence no dipole withq561 would be
able to support a bound state forr s,1.85, even in the limit
d→`.

The results for the critical dipole moment using line
theory of screening are shown in Fig. 2 as well. In line
theory, the screened dipole potential is represented by
Thomas-Fermi potentials separated by a distanced. The
charges of the dipole areq561. We calculate the bound
state wave function by numerical integration of Schro¨dinger
equation, avoiding any possible inaccuracies that might a
from the choice of a given basis set. In linear theory,
results can be scaled to any other parameters of the syste18

However, this is not true for the DFT calculation: any oth
values of the charges6q would require a separate calcula
tion.

The DFT calculation predicts a higher value ofDmin for
low electronic densities of the jellium and a lower value
Dmin for high electronic densities. To understand this, a
pole with a bound electron could be viewed as a posit
chargeq binding one electron, perturbed by the screen
Coulomb interaction of the negative charge2q. For a neu-
tral hydrogen atom H0 embedded in a jellium, the linea
theory underestimates the strength of the electron bindin25

In other words, the electronic density at the positive-cha
position is smaller in linear theory of screening. For a dipo
however, an additional effect comes into play: the repuls
screened Coulomb interaction between the negative cha
2q of the dipole and the bound electron, which is also u
derestimated in linear theory. Hence, there are two effect
opposite sign that are introduced with nonlinearity. In t
limit of small r s and large distancesd, the two point charges
6q do not see each other, and the situation is closer to
H0 case~linear theory underestimates the electron bindin!.
The opposite is true for smalld and highr s .

In summary, we have performed a nonlinear calculation
the critical dipole moment required to bind an electron to
screened dipole field. We have shown that, although the
pability of polar systems~molecules, clusters, polar defec
in solids! to support bound states is much reduced when
dipole field is embedded in a polarizable medium, a scree
dipole field is still able to bind an electron for a wide ran
of electronic densitiesr s.1.85. The electronic properties o
these polar systems at surfaces or in solids would be v
much affected by the capture of electrons in their dip
field. The results presented in this paper provide the crit
values of the dipole moment for such capture process to
place.
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