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Velocity-force characteristics of an interface driven through a periodic potential
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We study creep dynamics of a two-dimensional interface driven through a periodic potential using dynamic
renormalization-group methods. We find that the nature of weak-drive transport depends qualitatively on
whether the temperatureT is above or below the equilibrium roughening transition temperatureTc . AboveTc ,
the velocity-force characteristics are Ohmic, with linear mobility exhibiting a jump discontinuity across the
transition. ForT<Tc , the transport is highly nonlinear, exhibiting an interesting crossover in temperature and
weak external forceF. For intermediate drive,F.F* , we find nearTc

2 a power-law velocity-force charac-

teristicsv(F);Fs, with s21} t̃ , and well belowTc , v(F);e2(F
*

/F)2 t̃
, with t̃ 5(12T/Tc). In the limit of

vanishing drive (F!F* ), the velocity-force characteristics cross over tov(F);e2(F0 /F), and are controlled
by soliton nucleation.

DOI: 10.1103/PhysRevB.67.115412 PACS number~s!: 05.70.Ln, 64.60.Ht, 64.70.Hz
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I. INTRODUCTION

The problem of elastic media pinned by an external
tential provides a unifying framework for understanding
large number of condensed-matter phenomena, such as
example, surface growth,1,2 nonlinear transport in anisotropi
metals,3 dissipation in superconductors,4–7 Wigner crystals,8

earthquakes,9 and friction.10 Randomly pinned elastic sys
tems are also toy models for considerably more complica
problems of glasses.11 Much of the recent interest in suc
problems has been rekindled by the discovery12 of high-
temperature superconductors~HTSC!, and efforts to under-
stand the nature of theirB-T phase diagram and dissipatio
controlled by statics and dynamics of elastic arrays of vor
lines.13,4–7 A combination of thermal fluctuations, pinning
and external drive leads to a wide range of different a
interesting collective phenomena that are common to m
physical realizations of elastic media.54

There has been considerable progress in understan
the static properties of pinned elastic media.4,14–16Much of
the recent interest has therefore shifted to dynamics, w
current focus on nonequilibrium, driven dynamics of the
rich systems.4–7 Once the elastic medium is driven, howeve
many new questions arise, such as the governing nonequ
rium equation of motion, phase classification and stabil
nature of the corresponding phase transitions, and the re
ing nonequilibrium phase diagram.5–7,17,18 Among these
many challenging questions, the velocity- (v) force~F! char-
acteristics@the IV curve, in the context of superconducto
and charge-density waves~CDW’s!# is the observable that i
most directly accessible experimentally19 and is therefore of
considerable theoretical interest.

Despite considerable richness of many aspects of
driven state,5–7,18–20at large drives the velocity-force cha
acteristics of a uniformly sliding medium approach Ohm
form with deviations dv that can be computed
perturbatively21 in the ratio dv/v. At zero temperature, if
elastic,22 the medium is pinned for drives smaller than
critical T50 valueFc , and undergoes a nonequilibrium d
0163-1829/2003/67~11!/115412~19!/$20.00 67 1154
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pinning transition to a sliding state, withv;uF2Fcub play-
ing the role analogous to an order parameter distinguish
pinned and sliding phases.23 Finite temperature rounds th
depinning transition,24 allowing activated creep motion o
the elastic solid even for drive far belowFc .

Much of the insight about this highly nontrivial creep r
gime that is the focus of our work comes from a scali
theory of depinned droplet nucleation.13,25–28This approach
generically predicts collectively pinned elastic media to e
hibit a highly nonlinearv(F), with a vanishing linear mobil-
ity, corresponding to transport activated over barriers t
diverge with system size and vanishing drive.29 Recently, in
the case of random pinning, these scaling predictions h
been put on firmer ground through a detailed dynamic fu
tional renormalization-group ~DFRG! calculations of

v(F),30,31, which indeed predictv(F);e21/Fm
, with a uni-

versalm exponent. However, in the case of random pinnin
number of technical problems with DFRG remain, preclu
ing a fully controlled analysis.32,33

It turns out, however, that many problems of interest, su
as surface growth,34 two-dimensional~2D! colloidal crystals
in periodic potentials,35–38 and vortices pinned by artificia
dot arrays39 or by intrinsic pinning in, e.g., HTSC, involve
the considerably simpler but still nontrivial problem ofperi-
odic pinning. In addition to addressing numerous interest
physical problems, study of motion in a periodic potent
provides a nice laboratory to explore important calculatio
methods.

A driven sine-Gordon model is the simplest description
such periodic pinning problem, with an important simplif
ing feature of absence of topological defects such as di
cations or phase slips that can be important for understan
the dynamics of vortex arrays and CDW’s.6,40 Directly appli-
cable to crystal-growth phenomena, this model has been
tensively studied in the literature.41–50In equilibrium, among
many other things, it describes the famous crystal surf
roughening transition58 from the low-temperature smoot
phase with bounded surface roughness to the h
temperature rough phase with logarithmic height corre
tions.
©2003 The American Physical Society12-1
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One of the many interesting questions that naturally ar
is: What are the signatures of the roughening transition
the driven transport?More specifically, here we are inte
ested in qualitative differences~if any! in v(F) above and
below Tc . The equilibrium limit of this question was ad
dressed in the classic analysis of the equilibrium dynam
by Chui and Weeks42 and by Nozie`res and Gallet.48 By ex-
tending the standard analysis to equilibriumdynamics, they
found the vanishing of the linear mobility below the roug
ening transition, consistent with the static picture of t
smooth phase where the interface is pinned by the peri
potential.

In the presence of an external drive, the sine-Gord
model was studied sometime ago by Hwa, Kardar, a
Paczuski51 and by Rost and Spohn.49 Although these works
led to considerable progress, computing the renormaliza
group ~RG! flow equations for model parameters at nonze
F, they concentrated mainly on the influence
Kardar-Parisi-Zhang52 ~KPZ! nonlinearities~not considered
in previous studies48! important at strong external drive, bu
said little about the actualv(F) characteristics of the driven
interface in theF→0 creep regime. The driven sine-Gordo
model has also been considered by Blatteret al.4 in a
complementary approach via a high-velocity perturbative
pansion forv(F). Consistent with Refs. 42 and 48, these la
authors found that while the correction (dv/v) remained fi-
nite aboveTc , it diverged belowTc , thereby suggesting
nontrivial transport changes across the roughening transi
but leaving the form ofv(F) in the creep regime an ope
problem. Of course, because at finite temperature the in
face can move for any finite driveF, at sufficiently long
scales the periodic potential is averaged away at both
and high temperatures, thereby leading to the rounding of
roughening transition itself. Nevertheless, we expect that
velocity-force characteristics in thecreep regime are con-
trolled by the equilibrium physics and precise qualitative d
tinction of v(F) in the rough and smooth phases shou
exist.53,55

In this paper, our goal is to understand in detail the phy
cal consequences of the divergences found in the h
velocity perturbative expansion and in particular to comp
the creep velocity-force characteristics in both phases
across the roughening transition, utilizing dynamic RG.6,30–33

Consistent with perturbative analysis, we find that the nat
of transport depends qualitatively on whether the tempe
ture is above or below the equilibrium roughening transit
temperatureTc . AboveTc , the velocity-force characteristic
are Ohmic, with the mobility remaining finite forT→Tc

1 . In
contrast, forT,Tc , we find that the linear mobility vanishe
on long-length scales, and therefore exhibits a nonunive
jump discontinuity across the roughening transition.48,49,4 In
the smooth phase, the transport is a strongly nonlinear fu
tion of applied force, showing a rich universal crossover
temperature and applied force~Fig. 1!. At an intermediate
drive F.F* (g̃,T), larger than the pinning- (g̃) and
temperature-dependent strong-coupling crossover force

F* ~ g̃,T!;H e2b1 /g̃2
, T→Tc

2

g̃1/t̃ , T!Tc

~1.1!
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the velocity-force characteristics strongly depend on
level of proximity toTc , with

v~F !;H F (11b2 t̃ ), T→Tc
2

e2(F
*

/F)2 t̃
, T!Tc ,

~1.2!

where t̃ 5(12T/Tc), andb1 and b2 are nonuniversal con
stants of order unity. For sufficiently low driveF
,F* (g̃,T), the motion is instead always via activated so
ton creep, with the velocity-force characteristics cross
over to

v~F !;e2F0 /F, F,F* , ~1.3!

with F0 another characteristic force that will be defined b
low, Eq. ~5.17!.

This paper is organized as follows. We introduce t
driven sine-Gordon model in Sec. II and analyze it in Sec.
using simple perturbation theory in the pinning potent
strength. While for weak pinning this computation is conv
gent for T.Tc , it fails for arbitrarily weak pinning in the
smooth phase. In Sec. IV we employ dynamic RG techniq
to make sense of these divergences, and in Sec. V, we
these results to computev(F) through the roughening tran
sition. We conclude in Sec. VI with a summary of the resu
and a discussion of open problems and future directions

FIG. 1. Typical velocity-force characteristics of a driven inte
face in a periodic potential. At zero temperature, the interface
mains pinned (v50) until F reaches the critical forceFc5pg. At
finite temperatures, we find that the near-equilibrium response
the interface to a small (F!Fc) driving force depends on whethe
T is above or below the roughening temperatureTc . ForT.Tc , the
velocity-force characteristics are Ohmic@v(F);F# down to F
50, while for T,Tc and forces smaller than a characteristic for
F* , the characteristics are strongly nonlinear,v;exp(2F0 /F),
creep motion via activation over barriers that diverge in a vanish
drive limit.
2-2
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VELOCITY-FORCE CHARACTERISTICS OF AN . . . PHYSICAL REVIEW B67, 115412 ~2003!
II. DRIVEN SINE-GORDON MODEL

In equilibrium, a two-dimensional sine-Gordon model
an elastic interface is described by a Hamiltonian

H5E dr F1

2
K~“h!22g cos@ph~r !#G , ~2.1!

wherer is a two-dimensional vector in the (xy) plane,h(r )
is the height of the interface above the (xy) plane~taken to
be along thez direction in the embedding space! at location
r , K is the interfacial surface tension,g is the pinning
strength, andd52p/p is the period of the potential. In th
context of a crystalline surface, withH characterizing its
equilibrium roughness, the periodic pinning potential sof
encodes lattice periodicity of the bulk crystal, correspond
to the h→h1d a symmetry of the surface energy, withd
being the crystal lattice constant perpendicular to the in
face.

In the absence of any additional conservation laws, lo
scale equilibrium dynamics can be described by a sim
relaxational~modelA) Langevin equation

g ] th52
dH

dh~r ,t !
1z~r ,t !

5K¹2h~r ,t !2pg sin@ph~r ,t !#1z~r ,t !, ~2.2!

whereg is the microscopic friction coefficient, andz(r ,t) a
zero-mean, Gaussian thermal noise describing the interac
of the system with the surrounding heat bath at tempera
T, with

^z~r ,t !z~r 8,t8!&52gTd~r2r 8!d~ t2t8!, ~2.3!

in equilibrium imposed by the fluctuation-dissipation the
rem ~FDT!, forbidding independent renormalization ofT.

The dynamic description of an interface driven by an e
ternal forceF ~in the context of crystal growth proportiona
to the difference between the chemical potentials of the s
and vapor phases! is substantially modified. In addition to
the obvious addition of the driving forceF on the right-hand
side of Eq.~2.2!, nonequilibrium dynamics permits the ap
pearance of nonconservative forces~those not expressible a
derivatives ofH), the most important of which is the famou
KPZ (“h)2 nonlinearity,52 allowed by the explicit breaking
by the drive of thez→2z symmetry. An additional impor-
tant effect of driving appears as the renormalization of ‘‘te
perature’’ T, corresponding to the breakdown of th
fluctuation-dissipation theorem, that is, the renormalizat
of the friction coefficientg is independent of that of the
variance of the noisej. Even if these nonequilibrium effect
are not recognizeda priori, they appear upon coarse grainin
of Eq. ~2.2! as soon as the external driveF is included.63 The
resulting nonequilibrium equation of motion is given by49

g ] th5K¹2h1
l

2
~“h!22pg sin@ph~r ,t !#1F1z~r ,t !.

~2.4!
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Our goal here is to apply the machinery of the dynam
RG to compute the velocity-forcev(F) characteristics for
the above model, focusing on the nontrivial creep regime
the smooth phase, where naive perturbative expansion in
pinning potentialg fails.

III. DYNAMIC PERTURBATION THEORY

It is instructive to first study the velocity-force characte
istics through a simple perturbative expansion in the pinn
potentialg. Starting from Eq.~2.4!, it is convenient to shift
h(r ,t)5v0t1u(r ,t) with v05F/g the unperturbed (g5l
50) expression of the velocity. Averaging Eq.~2.4! over
thermal fluctuations, and ignoring the KPZ term, we find th
the velocityv of the moving interface is given by

v5^] th& ~3.1a!

5
F

g
2

pg

g
^sin@pu~r ,t !1pv0t#&, ~3.1b!

where we used the fact that^z(r ,t)&50. We now let

u~r ,t !5u0~r ,t !1ug~r ,t !, ~3.2!

where

u0~r ,t !5E dr 8dt8R0~r2r 8,t2t8!z~r 8,t8! ~3.3!

is the thermal~noninteracting! part of the interface displace
ment,

ug~r ,t !5pgE dr 8dt8R0~r2r 8,t2t8!

3sinS pFt8

g
1pu0~r 8,t8! D ~3.4!

is the correction tou linear in the pinning potential strengt
g, and R0(r2r 8,t2t8)5d^u0(r ,t)&/dF(r 8,t8) is the re-
sponse function of the free interface.57 Expanding Eq.~3.1b!
in ug , and averaging over the thermal noisez, we find ~see
also Sec. 2 of the Appendix!

v5
F

g
2

p3g2

2g E dr 8dt8e2(1/2)p2C0(r2r8,t2t8)

3sinFpF

g
~ t2t8!GR0~r2r 8,t2t8!, ~3.5!

whereC0(r2r 8,t2t8)5^@u0(r ,t)2u0(r 8,t8)#2& is the con-
nected correlation function of a free interface given by

C0~r ,t !.
T

2pK
lnF11L2S r 21

Kt

g D G . ~3.6!

The above velocity-force characteristics, Eq.~3.5!, is
most easily evaluated at zero temperature whereC0(r ,t)
50. In this limit, using
2-3
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A. M. ETTOUHAMI AND LEO RADZIHOVSKY PHYSICAL REVIEW B 67, 115412 ~2003!
R0~r ,t !5
u~ t !

g E
q

L

e2Kq2t/geiq•r, ~3.7!

@u(t) is Heaviside’s unit step function# in Eq. ~3.5! and in-
tegrating over the time variablet8, we obtain

v5
F

g
2

p3g2

2g E drE
q

L pF

K2q41p2F2
eiq•r. ~3.8!

In the above equations and throughout the rest of this pa
we use a shorthand notation*q for *dq/(2p)2, and the su-
perscript L52p/a is the ultraviolet cutoff set by the in
plane lattice constanta, generically distinct from the period
d52p/p perpendicular to the interface. Performing the
tegration over the space variabler in the last equation, and
using the resulting Diracd function (2p)2d(q) to complete
the q integral, we find aT50, leading order~in pinning g)
expression for thev(F) characteristics4,59,21

v5
F

g F12
1

2 S Fc

F D 2G , F@Fc , ~3.9!

where Fc5pg is the zero-temperature critical force,
agreement with the conditionFc5maxu]V(h)/]hu of disap-
pearance of metastability@V(h)52g cos(ph) is the pinning
potential#. As is clear from this result forv(F), even atT
50, the perturbative corrections are small for sufficien
large applied forceF relative to the pinning forceFc ~equiva-
lently, for sufficiently weak pinningg at fixedF). In this fast
moving regime, the metastability is absent and pinning gi
only a small correction to the motion withv(F) deviating
only weakly from the pinning-free Ohmic responsev0(F)
5F/g. It is reassuring to note that, since atT50, only the
q50 mode contributes to thev(F), Eq.~3.9! agrees with the
high-drive limit of the exact T50 result60,61 for a single
particle driven through a one-dimensional sinusoidal pot
tial

v~F !5
F

g
A12S Fc

F D 2

, F.Fc . ~3.10!

This suggests that thev(F) characteristics of a driven inter
face should also exhibit a square-root cusp with an infin
slope atF5Fc . At T50, the interface is strictly pinned fo
F<Fc .

In contrast, at any finite temperature the interface mo
for arbitrarily weak force and hence there is no sharp dep
ning transition. The perturbative expression forv, Eq. ~3.5!
can be readily evaluated by using the fluctuation-dissipa
relation

u~ t ! ] tC0~r ,t !52TR0~r ,t ! ~3.11!

obeyed by the equilibrium response and correlation fu
tions. Using this relation to eliminateR0(r ,t) from the right-
hand side~rhs! of Eq. ~3.5! and integrating by parts overt8
we find
11541
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v5
F

g F12
p2g2

2gTE drE
0

`

dt cos~pFt/g!e2(1/2)p2C0(r ,t)G .
~3.12!

Inserting into this last equation, the expression of the co
lation functionC0(r ,t) of a harmonic interface given in Eq
~3.6! leads to

v5
F

g S 12
p2g2

2gTE drE
0

`

dt
cos~pFt/g!

@11L2~r 21Kt/g!#hD ,

~3.13!

where we defined

h5
Tp2

4pK
. ~3.14!

Taking the limitF→0 in the above expression, and perform
ing the time integration, we obtain

lim
F→0

~v/F !5
1

g S 12
pp2g2

KTL3E0

` dr

~11L2r 2!(2h23)/2D .

~3.15!

We now observe that the integral on the rhs of Eq.~3.15!
behaves very differently depending on whetherT is smaller
or greater than

Tc05
8pK

p2
. ~3.16!

For T.Tc0, i.e., h.2, the integral in Eq.~3.15! is conver-
gent, and leads to a finite~and for weak pinningg, to an
arbitrarily small! correction to the linear friction coefficien
g(F50)51/lim

F→0
(v/F). In strong contrast, for T

,Tc0 (h,2) above integral diverges signalling the brea
down of the perturbation theory at small values of the ext
nal forceF.

Having established the breakdown of perturbation the
for T,Tc0 in the limit of vanishingly small forces, we now
turn our attention to the full velocity-force characteristics
finite values of the external drive. Starting from Eq.~3.13!,
and performing the integration over space variables, we
tain

v5
F

g S 12
p4g2

8K2L4

h

h21E0

`

dt
cos~2 f t!

~t11!h21D , ~3.17!

where the dimensionless forcef is given by~henceforth, we
shall use bothF and f to designate the driving force on ou
interface!

f 5
pF

2KL2
. ~3.18!

Performing the integral62 on the rhs of Eq.~3.17!, we finally
arrive at the following result for the effective friction coeffi
cient g( f ) of the driven interface~here 1F2 is a generalized
hypergeometric function!:
2-4
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g~ f !5gH 12
p4g2

8K2L4

h

h21 F ~2 f !h22G~22h!

3sinS 2 f 1
p

2
~h21! D

1
1

~h22!1F2S 1;
42h

2
,
32h

2
;2 f 2D G J 21

,

~3.19!

which has the following limiting behavior asf→0,

g~ f→0!5gH 11
p4g2

8K2L4

h

~22h!~h21!

3F12~22h!G~22h!~2 f !h22sinS p

2
~h21! D G J 21

.

~3.20!

As found above, inside the rough phase,T.Tc0 (h.2) and
for sufficiently weak pinning, the perturbation theory r
mains valid at arbitraryf, simply displaying crossover from
freely moving interface with ‘‘bare’’ mobilitym`51/g at
high drives to that withfinitely suppressed low-drive mobil
ity ~as illustrated in Fig. 2!:

g~ f→0!.gS 11
p4g2

8hK2L4D 5gS 11
pp2g2

2TKL4D .

~3.21!

On the other hand, in agreement with Ref. 4, we find tha
the ‘‘smooth,’’ low-temperatureT,Tc (h,2) phase, the be
havior is strikingly different with the correction tov0(F)
5F/g, Eq. ~3.20!, diverging and the perturbative approa
failing as f is reduced below a characteristic force

FIG. 2. Effective friction coefficientg( f ) of the driven interface
for h52.2 and (p4g2/8K2L4)50.02. Asf→0, g( f ) remains finite,
in agreement with Eq.~3.21!.
11541
n

f * ~g,T!'
1

2F p4g2

8K2L4

hG~22h!

~h21!
sinFp2 ~h21!G

11
p4g2

8K2L4

h

~22h!~h21!

G 1/(22h)

.

~3.22!

As T→Tc0
2 (h→22),

f * ~Tc0
2 !.

1

2
expS 2

4K2L4

p4g2 D , ~3.23!

showing that the regime of forces 0, f , f * where perturba-
tion theory fails becomes exponentially small asTc0 is ap-
proached from below. The unbounded growth of the per
bative friction coefficient as the external drivef approaches
f * from above~see Fig. 3! suggests that the interface in th
low-temperature, smooth phase is characterized by a van
ing linear mobility.48,4

Although we will study this in more detail in following
sections, already at this stage we can see a physical inte
tation of this divergence. Perturbation theory in the pinni
potential fails because even for an arbitrarily weak pinningg,
on sufficiently long scales greater thanj ~computed in Sec.
IV !, the periodic potential~for smallh acting like a ‘‘mass,’’
1
2 gp2h2) necessarily dominates over the elastic energy d
sity (K/2)(“h)2. Since@as is quite clear from the equatio
of motion, Eq.~2.4!# the applied forceF dominates the elas
tic force on scales longer than

jF5S 2pK

pF D 1/2

, ~3.24!

a sufficiently weak force,F,F* , probes the interface on
length scales longer thanj and thereby leads to the brea
down of perturbation theory about the harmonic interfa
Hence, although quite instructive, the perturbation the
fails to make predictions forv(F) or any other dynamic
quantity in the smooth phase at sufficiently low driveF
,F* and a nonperturbative approach is necessary.

FIG. 3. Effective frictiong( f ) for h51.8 and (p4g2/8K2L4)
50.1. g( f ) diverges atf * '0.022~dashed line!, indicating the fail-
ure of perturbation theory at small drives 0, f , f * .
2-5
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IV. DYNAMIC RENORMALIZATION GROUP

Armed with the above discussion, we are now w
equipped to use dynamic RG analysis to make physical s
of these perturbative divergences, with the main goal be
the calculation ofv(F) in the smoothT,Tc phase for weak
drive F,F* . It is convenient to perform this analysis in th
frame comoving with the bare velocityv05F/g correspond-
ing to the change of the dynamic fields tou(r ,t)[h(r ,t)
2Ft/g, which obeys

g ] tu5K¹2u1
l

2
~“u!21pg sinS pu1

pF

g
t D1z~r ,t !.

~4.1!

Taking the nonlinear terms in the above equation as a s
perturbation, the equation of motion can be directly e
panded in these nonlinearities64–66 leading to
renormalization-group recursion relations for model para
eters. An equivalent but more convenient formulation is
field-theoretic approach of Martin, Siggia, and Ros67

~MSR!. In this approach, the dynamic correlation and
sponse functions,

C~r ,t !5^u~r ,t !u~0,0!&5E @du#@dũ#u~r ,t !u~0,0!e2S[u,ũ] ,

~4.2a!

R~r ,t !5^ũ~r ,t !u~0,0!&5E @du#@dũ#ũ~r ,t !u~0,0!e2S[u,ũ] ,

~4.2b!

are computed directly by integrating over the phonon a
response fieldsu and ũ, treated as independent stochas
fields with a statistical weighte2S[u,ũ] imposed by the equa
tion of motion, after integrating over the thermal noi
z(r ,t). The resulting effective ‘‘action’’S is given by S
5S01S1, where

S0@u,ũ#5E drdtH 1

2
~2gT!ũ2~r ,t !

1 i ũ~r ,t !@g] tu2K¹2u#J ~4.3!

is the action of a pinning-free~harmonic! interface, and
whereS15Sg1Sl , with

Sg@u,ũ#5pgE drdtiũ~r ,t !sinS pu~r ,t !1
pFt

g D ~4.4!

the contribution of the pinning potential and

Sl@u,ũ#52
l

2E drdtiũ~r ,t !~“u!2 ~4.5!

the contribution of the KPZ term to the nonlinearities inS.
To study the renormalization ofS@u,ũ#, it is sufficient to
work with the dynamic ‘‘partition function’’

Z5E @du#@dũ#e2S[u,ũ] , ~4.6!
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required to remain fixed at unity under an RG coar
graining procedure. The advantage of the MSR formalism
its close resemblance to the equilibrium statistical mech
ics, which makes it a rather straightforward task to apply R
transformations and to derive recursion relations for the v
ous parameters entering the equation of motion~4.1!. Like
the static momentum-shell RG, the dynamic RG proced
consists of three main steps,

~i! Thinning of the degrees of freedom, whereby mod
u(q), with q in an infinitesimal shellL/b,q,L (b5ed,)
are perturbatively~in S1) integrated out.

~ii ! Rescaling of space variables according tor5br 8, so
as to restore~for convenience! the ultraviolet cutoff to its
original valueL, and rescaling time variable according tot
5t8bz.

~iii ! Rescaling of fields, in order~for convenience! to keep
the harmonic part of the action invariant under rescaling
~ii !.

We define ‘‘slow’’ $u,,ũ,% and ‘‘fast’’ fields $u.,ũ.%

u~q,t !5u,~q,t !1u.~q,t !, ~4.7!

u~q,t !5u,~q,t !1u.~q,t !, ~4.8!

with momentum support in Fourier space in the intervals
,q,L/b andL/b,q,L, respectively, and perform a cu
mulant expansion ofZ in terms ofS1@u,ũ#, considered as a
perturbation,

Z5E @du#@dũ#e2S0[u,,ũ,]^e2S1[u,ũ]&0.

.E @du#@dũ#e2S0[u,,ũ,] 2^S1&0.1(1/2)^S1
2&0.

c
, ~4.9!

where^•••&0. denotes an average taken with the statisti
weight S0@u,,ũ,#, and where the superscriptc in ^S1

2&0.
c

denotes a connected average. To first order in the pinn
strengthg, there is only one term in̂Sg&0

. , which renormal-
izes the dynamic actionS, namely,

^Sg&0
.[pgb2Tp2/4pKE drdtiũ,~r ,t !sinS pu,~r ,t !1

pF

g
t D ,

~4.10!

which physically arises from the suppression~from g to
gb2Tp2/4pK) of the effective pinning strength due to shor
scale thermal fluctuations averaging away the periodic po
tial. In the above and throughout, we will use[ to indicate
that only the leading term has been kept. Similarly, to fi
order in the KPZ couplingl, we have the following pertur-
bative correction to the dynamic actionS:

^Sl&0
.[2E drdtiũ,~r ,t !FlTL2

4pK
d,G , ~4.11!

which quite clearly renormalizes the effective external for
Rescaling the space and time variables

r5b r 8, ~4.12a!
2-6
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t5bz t8, ~4.12b!

as well as the conjugate fieldũ(r ,t),

ũ,~r ,t !5bx̂ũ~r 8,t8!, ~4.13!

while for convenience leavingu(r ,t) unchanged in order to
preserve the periodicity (2p/p) of the original problem,68

we obtain the following lowest-order recursion relations:

~gT!~b!5b21z12x̂ ~gT!, ~4.14a!

g~b!5b21x̂ g, ~4.14b!

K~b!5bz1x̂ K, ~4.14c!

g~b!5b21z1x̂2Tp2/4pK g, ~4.14d!

l~b!5bz1x̂l, ~4.14e!

~F/g!~b!5bz~F/g!. ~4.14f!

The dynamic exponentsz and x̂ can be fixed by requiring
thatK andg be unchanged, to linear order ing, under the RG
transformation. This leads to the following values:

z52, x̂522

and to the following recursion relations forg andF,

dg

d,
5S 22

Tp2

4pK Dg, ~4.15a!

dF

d,
52F1

lTL2

4pK
, ~4.15b!

while the remaining quantities,K, g, l, and temperatureT,
remain unchanged and suffer no renormalization to first
der in g andl. Similar considerations, with details given
Sec. 2 of the Appendix, lead to the following recursion re
tions to second order ing andl:

d

d,
~gT!5F Tl2

8pK3
1

Tp6g2

16pK3L4

1

11 f 2G ~gT!, ~4.16a!

dg

d,
5

Tp6g2

16pK3L4

12 f 2

~11 f 2!2
g, ~4.16b!

dg

d,
5S 22

Tp2

4pK D g, ~4.16c!

dK

d,
5

Tp6g2

16pK2L4

223 f 22 f 4

~11 f 2!3
, ~4.16d!

dl

d,
5

Tp7g2

16pK2L4

f ~ f 215!

~11 f 2!3
, ~4.16e!

dF

d,
52F1

lTL2

4pK
2

Tp5g2

8pK2L2

f

11 f 2
, ~4.16f!
11541
r-

-

where f 5(pF/2KL2) is the dimensionless force of Eq
~3.18!. Note that, because of the lack of a FDT for the driv
system, in strong contrast to the equilibrium case (l5F
50), Eqs.~4.16a! and ~4.16b! imply that T(,) flows non-
trivially according to

dT

d,
5F Tl2

8pK3
1

Tp6g2

8pK3L4

f 2

~11 f 2!2GT. ~4.17!

Hence, T(,) is simply a measure of the strength of th
white-noise component of the random force on the driv
interface and is not associated with any equilibrium bath a
well-defined thermodynamic temperature.

The recursion relations~4.16a!–~4.16f! contain most~but
not all, as discussed in Sec. V! of the information we need to
investigate the properties of the system beyond the fai
perturbative expansion of Sec. III. Before turning to their f
analysis and to the study of the velocity-force characterist
it is useful to see how the previously derived static and eq
librium dynamic results48,56,69 are recovered. We do this in
the following sections.

A. Analysis of the static limit

The static model, Eq.~2.1!, is characterized by two pa
rametersK andg with the RG recursion relations reducing
the familiar Kosterlitz-Thouless form~derived by these las
authors in a dual, Coulomb gas form70!

dg

d,
5S 22

Tp2

4pK Dg, ~4.18a!

dK

d,
5

Tp6g2

8pK2L4
. ~4.18b!

At small g, K(,) flows slowly, and the recursion relation fo
g implies the existence of a phase transition~called ‘‘rough-
ening’’ in the context of crystal surface42! at Tc058pK/p2

~in the limit g→0) between two phases distinguished by t
long-scale~,→`! behavior ofg(,). For T.Tc0, thermal
fluctuations are strong enough to effectively average aw
the long-length scale effects of the periodic pinning pote
tial, which is therefore qualitatively unimportant for mo
~but not all! physical properties of this so-called ‘‘rough
phase. At these high temperatures, the surface is logarith
cally rough and the effects of a weak periodic potential c
be taken into account in a controlled perturbative expans
In strong contrast, forT,Tc0, the effective strength of the
periodic potential relative to that of the harmonic elastic e
ergy grows on long-length scales, leading to a breakdown
perturbation theory ing, no matter how weak its bare valu
might be. As a result, at long scales, the interface is pinne
this ‘‘smooth’’ phase, with bounded rms height fluctuation

It is instructive to recall some of the physics which fo
lows from the above recursion relations. It is convenient
first rewrite the flow equations for dimensionless couplingg̃
andh,
2-7
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g̃5
A2p2g

KL2
, ~4.19a!

h5
Tp2

4pK
, ~4.19b!

which satisfy

dg̃

d,
5~22h!g̃, ~4.20!

dh

d,
52

1

4
h2g̃2. ~4.21!

These show that in equilibrium, the quantityh which is
the measure of the ratio of thermal~T! to elastic~K! energy,
always flows to zero at long scales, indicating that the lo
temperature smooth phase is controlled by a strong coup
zero-temperature fixed point. NearTc , it is convenient to use
a reduced temperature measured relative to the~noninteract-
ing! Tc058pK/p2,

t̃[h22 ~4.22a!

52~T/Tc021!, ~4.22b!

with the flow equations simplifying to

dg̃

d,
52 t̃g̃, ~4.23a!

dt̃

d,
52g̃2. ~4.23b!

These can be easily integrated by multiplying Eqs.~4.23a!
and ~4.23b! by g̃ and t̃, respectively, and taking the differ
ence of the two resulting equations. The result is that n
Tc0 the flows are a family of hyperbolas

g̃22 t̃25c, ~4.24!

labeled by a constant of integration

c5S A2p2g

KL2 D 2

2S Tp2

4pK
22D 2

, ~4.25!

determined by the bare value of model parametersg andK.
The resulting flows are illustrated in Fig. 4, showing thr
distinct regions of behavior. In the high-temperature reg
below the thick line (c,0), pinning is irrelevant, and i
therefore describes the rough phase, separated from the
temperature smooth phase~the region above the thick line!
by a critical line separatrixt̃5g̃. The latter therefore define
a true critical temperature given by

Tc5Tc0S 11
p2g

A2KL2D , ~4.26!
11541
-
g

ar
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distinct from itsg→0 limit of Tc058pK/p2. ChangingT
corresponds to the variation of the dimensionless bare
rameters along the dashed horizontal line indicated in Fig

Above Tc , g̃(,) flows to zero and

t̃R[t̃~,→`! ~4.27a!

5Aucu, ~4.27b!

corresponding to the long-scale renormalized elastic cons

KR[K~,→`! ~4.28a!

5K
T

Tc0
~11Aucu/2!21. ~4.28b!

It is comforting to find@using Eq.~4.25!# thatKR reduces to
its bare valueK at high temperatures. Using the fact th
near, but aboveTc ,

c5g̃22~ t̃c1t!2 ~4.29a!

'22t̃ct, ~4.29b!

with the true reduced temperature relative to the true~finite
g) Tc given by

t[S 2Tc

Tc0
D T2Tc

Tc
, ~4.30!

and t̃c5g̃52(Tc /Tc021), we find that in the limit
T→Tc

1

KR~T!5K
Tc

Tc0
~12Ag̃uT/Tc21u1/2!. ~4.31!

This leads atTc to a renormalized value of the elastic co
stantKR(Tc

1) that is enhanced relative to the bare valueK
and with the universal ratio toTc given by ~Fig. 5!

FIG. 4. Renormalization-group flow in the (t̃,g̃) plane. Tem-
perature variation for an actual system occurs along the dashed
On the high-temperature side of the separatrixt̃5g̃ ~indicated as
the thick line!, the periodic pinningg̃ renormalizes to zero and th
interface is rough on long-length scales. BelowTc ~to the left of the
critical separatrix!, the RG flow runs off to strong couplingg̃ de-
scribing an interface that is smooth on long-length scales.
2-8
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KR~Tc
1!

Tc
5

p2

8p
, ~4.32!

consistent with the analogous result first discovered in
context of the XY model,71 related to our problem by
duality.41,72,73

Below Tc , the relative pinning strength runs off to stron
coupling and the interface is smooth on length scales lon
than the correlation length that we calculate below. Beca
the RG flows are qualitatively very different near and aw
from the two separatricesg̃56 t̃, the value of this importan
length scale that enters the velocity-force characteristics
pends crucially on the distance fromTc . In the critical re-
gion, defined by values of the bare parameters such tha
weak-coupling~g! flow is near and roughly along eithe
separatrix,

g̃~, !'6 t̃~, !, ~4.33a!

'
g̃

16g̃,
, ~4.33b!

it is easy to show that the RG ‘‘time’’,* to reach strong
coupling is given by

,* '
2

Ac
~4.34a!

'
2

A2t̃cutu
. ~4.34b!

Consequently, the correlation length in this critical region
of familiar Kosterlitz-Thouless~KT! form70

jc'a e,
* ~4.35a!

'a ea/u12T/Tcu1/2
, ~4.35b!

FIG. 5. Effective interface stiffness as a function ofT/Tc0 for
g̃50.1. In the smooth phase,KR scales with the system size, and
effectively infinite. At T5Tc

1 , KR takes the valueKR(Tc
1)5K(1

1p2g/A2KL2) with a universal ratiop2/8p to the transition tem-
peratureTc . Far aboveTc , KR goes to its bare valueK. The dashed
line indicates the location ofTc , which here is given byTc

51.05Tc0.
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diverging extremely fast asT→Tc
2 , with a5A2/g̃

5(Tc /Tc021)21/2 a nonuniversal constant.
Outside this critical region, defined byt,21, deep in the

smooth phase, the flows are qualitatively different. At we
coupling,gp2!KL2 ~the only regime where the perturbativ
RG analysis is valid! becauset̃(,) grows weakly ~addi-
tively!,

g̃~, !'g̃e(22h),, ~4.36!

grows exponentially fast, reaching strong coupling at
low-T correlation lengthjg'ae,g given by

jg'j0~j0L!h/(22h) ~4.37a!

'L21~Lj0!2/(22h) ~4.37b!

'L21S KL

p2g
D 1/(22h)

. ~4.37c!

On scales longer than the roughness correlation len
the interface is smooth and is characterized by a stron
downward renormalized value of the pinning strengthgR de-
termined by the value ofunrescaledcoupling g„,5 ln(jL)…
at the scale of the correlation length. Near the transition

gR'g~Lj!22!g, T→Tc
2 ~4.38a!

'g e22a/u12T/Tcu1/2
. ~4.38b!

Deep in the smooth phase, for weak pinning, we instead

gR'g~Lj!2h!g, T!Tc ~4.39a!

;g2/(22h), ~4.39b!

which for weakg is also substantially reduced by therm
fluctuations.

For strong pinning, fluctuations are unimportant and
correlation length reduces to the substantially shorter stro
coupling value j05(K/gp2)1/2 determined by the bare
model parameters.

B. Analysis of the equilibrium dynamics

We now turn our attention to the equilibrium (F5l50)
dynamics of the sine-Gordon interface, characterized by
additional model parameter, the friction coefficientg, with
the RG flow given by

dg

d,
5

1

8
g̃2h g. ~4.40!

Combining this with the recursion relation, Eq.~4.18b!, we
find that the renormalized surface stiffnessKR and friction
coefficientgR are related by

gR5g S KR

K D 1/2

. ~4.41!

This together with the results of the preceding section, sh
that the macroscopiclinear mobility gR

21 is finitely renor-
2-9
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malized in the rough phaseT.Tc and displays a square-roo
cusp approach togR

21(Tc
1)5g21(Tc0 /Tc)

1/2 asT→Tc
1 ,

gR
21~T!'gR

21~Tc
1!S 11

1

2
Ag̃uT/Tc21u1/2D , ~4.42!

similar to the results of Petschek and Zippelius74 for the
renormalized diffusion coefficient of theXY model asT
→TKT

2 .
The effective friction coefficientg(,) at scalee, can be

obtained by integrating the flow equation~4.40!,

g~, !5g expF1

8E0

,

d,8g̃2~,8!h~,8!G . ~4.43!

Since belowTc , at weak coupling,g̃2(,)h(,) grows with,,
we find that the effective friction coefficient runs off to in
finity as ,→` suggesting a vanishing of the macroscop
linear mobility in the smooth phase. A more detailed analy
of the equilibrium weak-coupling flow equations for large,
gives

g~, !'g5 expF utu,

4a2G , T→Tc
2

expFhg̃2 e2(22h),

16~22h! G , T!Tc .

~4.44!

Such diverging friction coefficient can be physically inte
preted as activated creep dynamics over a pinning en
barrier that asymptotically grows with length scale, logari
mically for T→Tc

2 and as a power law forT!Tc .
It is important to keep in mind that this growth of th

friction coefficientg(,) found in Eq.~4.44! extends only up
to the strong-coupling length scalej5ae,

* @jc for T
→Tc

2 , Eq. ~4.35b!, andjg for T!Tc , Eq. ~4.37c!#, since it
was derived based on a renormalization-group approach
is perturbative ing̃. In Sec. V, we will look in more detail a
the physics on scales longer thanj, but we can already say a
this point that~as we show in Sec. V! even in this strong-
coupling regime the effective friction coefficient diverge
Consequently, we find that the interface linear~and in fact
any order-n) mobility exhibits a nonuniversal jump discon
tinuity to zero across the roughening transition,48,49 as illus-
trated in Fig. 6.

V. NONEQUILIBRIUM DYNAMICS
AND THE VELOCITY-FORCE CHARACTERISTICS

A. Weak-coupling regime

We now turn to the full nonequilibrium problem, with th
aim of deriving the velocity-force characteristics of an inte
face driven through a weak periodic potential, going beyo
the failing ~for T,Tc) perturbative approach of Sec. III. A
long as the pinning remains weak, the long-scale physic
the driven interface is contained in the renormalization-gro
equations,~4.21!–~4.26!, which when rewritten in terms
of the dimensionless variablesg̃, h, f, and the new KPZ
coupling
11541
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l̃5
l

pK
~5.1!

are given by

dg

d,
5

1

8
hg̃2

12 f 2

~11 f 2!2
g, ~5.2!

dg̃

d,
5~22h!g̃, ~5.3!

dh

d,
5

1

2
h2l̃21

1

8
h2g̃2

2215 f 213 f 4

~11 f 2!3
, ~5.4!

dl̃

d,
5

1

8
hg̃2

f ~ f 215!

~11 f 2!3
, ~5.5!

d f

d,
52 f 1

1

2
h l̃2

1

8
hg̃2

f ~32 f 2!

~11 f 2!3
. ~5.6!

The most striking effect of nonequilibrium dynamics is th
breakdown of the FDT and as a result a nontrivial upwa
renormalization~flow! of the effective ‘‘temperature’’T(,)
driven by the external force and the KPZ nonlinearity, rem
niscent of nonequilibrium ‘‘heating’’ in randomly pinne
systems.75,5–7Consequently, even forT,Tc , for sufficiently
strong drive the parameter 22h(,) determining the long-
scale behavior of the periodic potential is driven negati
leading to the irrelevance of the pinning potential. Hence,
discussed in the Introduction, a finite external drive remo
the qualitative distinction between the rough and smo
phases and therefore rounds the roughen
transition.48,49,51,53

Here, we instead focus on the creep regime, where th
particular nonequilibrium effects are unimportant. In th
weak-driving creep regime, we can ignore the KPZ nonl
earity and the most important role ofF, as can be clearly
seen even at the level of perturbation theory, Eq.~3.5!, and
from the equation of motion, is to introduce a new leng

FIG. 6. Effective linear mobilitygR
21 as a function ofT/Tc0 in

equilibrium (F50) for g̃50.1. Below the roughening temperatu
at Tc , the mobility vanishes and the interface is pinned.gR

21(T)
shows a square-root cusp asT→Tc

1 , and goes to its bare valueg21

for T@Tc . The dashed line indicates the location ofTc , which here
is given byTc51.05Tc0.
2-10
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VELOCITY-FORCE CHARACTERISTICS OF AN . . . PHYSICAL REVIEW B67, 115412 ~2003!
scalejF;1/AF defined in Eq.~3.24!. Beyond this nonequi-
librium length scale, the effects of the pinning potential a
its ability to renormalizeg~,! andK(,) are suppressed, as
is averaged away on scales longer thanjF ~see, for example
the RG flow equations above and analysis below!. Hence, for
weak external driveF, the effective values of friction and
interface stiffness parameters are given byg(,F) andK(,F)
renormalized by Gaussian equilibrium fluctuations up
length scalejF5e,F. This therefore translates the strong,
dependence ofg~,! into strongF dependence of the macro
scopic mobilityg21(F). SubstitutingjF , Eq. ~3.24!, inside
our equilibrium flow, Eqs.~4.44!, and using

v~F !5F/g~,F!, ~5.7!

we immediately obtain the velocity-force characteristics, E
~1.2!, quoted in the Introduction.

This prediction forv(F), Eq. ~1.2!, applies as long as th
relevantF probes length scalesjF on which the equilibrium
weak-couplingflow equations remain valid. As discussed
the preceding section, these flows in fact break down du
strong-coupling effects~with g itself cutting off thermal
Gaussian fluctuations! for length scales greater thanj, Eqs.
~4.35b! and ~4.37c!. Hence, our predictions forv(F), Eq.
~1.2!, remain valid only as long asjF,j ~i.e., it is the ex-
ternal force and not the periodic potential itself that cuts
the Gaussian fluctuations!, which translates into the cond
tion F.F* , with the crossover forceF* given by Eq.~1.1!
and in agreement with perturbation theory.

To see this weak-coupling phenomenology emerge
rectly from our full nonequilibrium flow equations, Eq
~5.2!–~5.6!, we integrate these equations, withl50 and ig-
noring the nonequilibrium flow ofT(,) ~a valid approxima-
tion in theF→0 limit!. We find for the renormalized friction
coefficient the following intermediate result:

gR~ f !5g expF1

8E0

`

d, h~, !g̃2~, !
12 f 2~, !

@11 f 2~, !#2G . ~5.8!

Since at low drive and weak coupling, well belowTc , h(,),
K(,), and T(,) grow slowly and f (,) and g̃(,) grow
strongly according to

g̃~, !5g̃ e(22h),, ~5.9a!

f ~, !' f e2,, ~5.9b!

it is quite clear from Eq.~5.8! that as long as the weak
coupling flows remain valid, in the smooth phase the flo
are automatically cut off whenf (,) gets to be.1 leading to
,F discussed above.

Substituting Eqs.~5.9! into the expression ofgR( f ), Eq.
~5.8!, and integrating the resulting expression, we find

gR~ f !5g expF1

8
hg̃2 AS 2

t̃

2
, f D G , ~5.10!

with 2 t̃/25(22h)/25(12T/Tc0), andA(x, f ) is the func-
tion given by
11541
d
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A~x, f !5
1

2 f 4 F 1

2~22x!2F1~2,22x,32x,2 f 22!

22 f 2~12x!2F1S 2,12x,22x,2
1

f 2D G , ~5.11!

where 2F1 denotes a hypergeometric function.76 When T
,Tc @i.e., (2 t̃).0], taking the limit of the function
A(2 t̃/2,f ) of Eq. ~5.10! when f→0 leads to the following
expression for the long-scale inverse of nonlinear mobi
gR :

gR~ f !5g exp@~F* /F !2(12T/Tc)#, ~5.12!

with

F* ~ g̃,T!.
2KL2

p S hg̃2

16~22h! D
1/2(12T/Tc)

, ~5.13!

in full agreement with earlier more qualitative discussion
the velocity-force characteristics in the intermediate regi
of forces F.F* , and F* consistent with the perturbativ
result ~3.22! for g̃!1 ~Fig. 7!.

As F is lowered belowF* , eventually the saturation o
g~,! breaks down and the flow behavior changes dram
cally as strong-coupling length scales~at which our weak-
coupling RG solution is invalid! are probed. Studying the
point at which this happens as a function of model para
eters, allows us to extract the crossover value ofF* , which
we plot in Fig. 8. We find that there is a qualitative agre
ment between the analytical prediction forf * , Eq. ~3.22!,
and our numerical analysis.

B. Strong-coupling regime

The weak-coupling behavior found in the preceding s
tion only extends up to the scalej, Eqs.~4.35b! and~4.37c!.
Beyond this strong-coupling length, in the equilibriu
model, the growth ofg̃(,) andg(,) is cut off by the pinning
potential, and an approach nonperturbative ing̃, where pin-
ning is treated on equal footing with the elastic energy,
required. In this strong-coupling regime Gaussian interfa
fluctuations, considered so far, are strongly suppressed
the pinning barrier that scales likeL2 relative to the elastic
energy.

Instead, at low temperature the fluctuations are domina
by nontrivial saddle-point solutions~solitons! of H, Eq.~2.1!,
with model parameters,KR , gR , gR renormalized by Gauss
ian fluctuations on weak-coupling scalesL,j. The domi-
nant soliton excitation, illustrated in projection in Fig. 9, co
responds to a circular patch of radiusR.j of a nearly flat
interface moving over to a neighboring minimum of the p
riodic potential, with an energy cost that clearly grows li
early with R,

Esoliton~R!'p gRjR, ~5.14!

wheregR @Eqs. ~4.38! and ~4.39!# and j @Eqs. ~4.35b! and
~4.37c!# strongly depend on the proximity toTc . At zero
drive, the barrier to such solitonic motion simply diverg
2-11
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and linear mobility vanishes identically. A velocity-forc
characteristic in the weak driveF,F* ~i.e., j,jF) regime
can be analyzed via scaling nucleation theory.48 In this creep
regime, the interface is in near metastable equilibrium witF
introducing a contribution

EF~R!'2F pR2d ~5.15!

FIG. 7. Behavior of the pinning strengthg ~top! and of the
friction coefficient g~,! ~bottom! with length scale, for g̃50.1,
T.0.8Tc, and f .1.737431025. Here f * .1.737331025.

FIG. 8. Characteristic forcef * (T) as obtained from the numeri
cal solution of the dynamic RG recursion relations~solid line! and
from the perturbative estimate of Eq.~3.22!, ~dashed line!, for g̃
50.1. The curvef * (T) delimits two very different physical re
gimes. Above this curve, the interface moves with uniform veloc
On the other hand, forf , f * (T), the interface moves through th
nucleation of soliton excitations.
11541
to the effective free energy. BalancingEF(R) against the
soliton energyEsoliton(R), we find that solitons of size large
than a critical radius

Rc'S p gRj

2pd D 1

F
~5.16!

are unstable. In theF→0 limit, thermal activation rate of
solitons of sizeRc;1/F is quite clearly the limiting step for
interface creep motion. We therefore find that the we
coupling velocity-force characteristics, Eq.~1.2!, cross over,
for F,F* , to that given by Eq.~1.3! in the Introduction,
with

F0'
~pgRj!2

4pd
. ~5.17!

For vanishing temperature and strong bare pinning poten
our asymptotic~for F,F* ) result for v(F) reduces to that
found in Refs. 48 and 4. However, at largeT,Tc and weak
bare pinningg, we predict a strong thermal renormalizatio
of the characteristic pinning energy

p2g2a2→p2gR
2j2 ~5.18!

by thermal fluctuations on scales smaller thanj.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have studied the creep dynamics o
two-dimensional interface driven through a periodic pote
tial. Using dynamic renormalization-group methods a
matching to strong coupling, we have calculated t
velocity-force characteristics across the interface roughen
transition. Consistent with previous studies, we find a qu
tative change across the transition in the weak-dr
velocity-force characteristics, with Ohmic transport forT
.Tc and a jump discontinuity in mobility across the trans

.

FIG. 9. Schematic representation of the motion of a driven
terface past the periodic pinning potential.~a! When T.Tc , or T
,Tc and f . f * , the large fluctuations of the interface wash out t
pinning potential on large length scales and the interface mo
with a uniform velocity.~b! On the other hand, forT,Tc and f
, f * , the fluctuations of the interface are small; as a result, mos
the interface is pinned at a given minimum of the pinning potent
and motion from one minimum to the next takes place throu
soliton excitations.
2-12
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tion. For T,Tc , in the asymptotic creep regimeF
!F* (g,T) and for strong bare coupling, where transport
via soliton activation at all scales, we recover previou
found results for the velocity-force characteristicsv(F).
However, for weak bare coupling and strong-thermal fluct
tions, we predict an intermediate driveF.F* (g,T) nonlin-
ear regime with a continuously varying~with T) exponent,
which asymptotically crosses over to the strong-coupling
sult with strongly thermally renormalized characteristic p
ning barrier. Unfortunately, because the characteristic fo
F* (g,T) that delineates between the intermediate drive
gime and the strong-coupling regime coincides with
force marking the breakdown of the perturbative hig
velocity expansion, we expect it to be difficult to observe t
intermediate drive regime.

The physical picture which emerges from the pres
study complements previously made predictions4 which were
based on a more elementary perturbative approach, as w
known results for the mobility48,49 at zero external drive. On
the experimental side, the above picture may shed some
on experiments such as those of Wolfet al.,34 who found that
the growth velocityv of a surface of crystalline helium 4 i
strongly reduced atTc from an Ohmic behaviorv;F for T
.Tc to an extremely slow growth rate forT,Tc , a result
which is usually explained in terms of an onset of cre
motion via solitonlike excitations.48

An interesting and experimentally relevant generalizat
of our results is a study of creep dynamics of a tw
dimensional solid, driven through a one- or two-dimensio
periodic potential, with applications to driven 2D colloid
crystals and vortices in superconducting films. Despite c
siderably different geometry, in equilibrium these syste
display a pinned-to-floating solid transition closely related
the roughening transition of 2D interfaces. However, diff
ent interesting ingredients arise. Some of the most impor
ones are the nonequilibrium convective-like terms,77,17,6vec-
tor phonon displacement and concomitant possible imp
tance of dislocations. Combined with the considerably in
esting behavior of the scalar sine-Gordon model stud
here, we expect these to lead to even richer phenomeno
We expect that studies of these will shed considerable l
on numerous experiments and simulations.78
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APPENDIX: STATIC MOMENTUM-SHELL
RENORMALIZATION GROUP

In this appendix, we present technical details on the d
vation of the renormalization-group recursion relations
the driven sine-Gordon model in 211 dimensions. For com
pleteness, we shall begin in Sec. 2 of this appendix by sh
11541
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ing how the standard momentum shell79 RG with hard
cutoff80,81can be applied to the static version of this proble
before deriving the full dynamic equations at nonzero ext
nal drive in Sec. 2.

1. Static RG

We decompose the fieldh(r ) in the Hamiltonian~2.1! into
high and low wave-vector components

h~r !5h,~r !1h.~r ! ~A1!

such that

h,~r !5E
q

,

h~q!eiq•r, ~A2!

h.~r !5E
q

.

h~q!eiq•r, ~A3!

where *q
,[*0

L/bdq/(2p)2 and *q
.[*L/b

L dq/(2p)2 denote
integration in momentum space over the ranges 0,uqu
,L/b and L/b,uqu,L, respectively. In terms of thes
high- and low-momentum fields, the equilibrium Ham
tonianH0@h#5 1

2 *dr K(¹h)2 can be written as the sum

H0@h#5H0@h,#1H0@h.#.

We now want to integrate over the fast componenth.(r ).
To this end, we rewrite the partition functionZ
5*@dh#exp(2bH) in the form ~hereb51/T is the inverse
temperature!

Z5E @dh,#@dh.#e2bH0[h,] 2bH0[h.] 2bH1[h,1h.]

5E @dh,#e2bH0[h,]E @dh.#e2bH0[h.] 2bH1[h,1h.]

5E @dh,#e2bH0[h,] 1b ln Z0
.

^e2bH1[h,1h.]&0. , ~A4!

where Z0
.5*@dh.# exp(2bH0@h

.#), and where the sub
script ~0.! means that the average with respect toh. is
performed with statistical weight exp(2bH0@h

.#)/Z0
. . The

term between angular brackets in Eq.~A4! is then approxi-
mated by a cumulant expansion

^e2bH1[h,1h.]&0.512
^H1&0.

T
1

1

2T2
^H1

2&0.
c 1•••,

~A5!

where ^H1
2&0.

c denotes the second cumulant̂(H1
2

2^H1&
2)&0. . When reexponentiated, Eq.~A5! leads to the

result

^e2bH1[h,1h.]&0.5e2bHe f f, ~A6!

with the effective Hamiltonian

He f f5^H1&0.2
1

2T
^H1

2&0.
c 1•••. ~A7!
2-13
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The averages in Eq.~A5! can be easily evaluated, with th
results44,48

^H1&0.52ge2(1/2)p2G.(0)E dr cos@ph,~r !#, ~A8!

^H1
2&0.

c 5
1

2
g2e2p2G.(0)E dr dr 8@ep2G.(r2r8)21#

3„cos$p@h,~r !1h,~r 8!#%

1cos$p@h,~r !2h,~r 8!#%…, ~A9!

whereG.(r2r 8)5^h.(r )h.(r 8)&0. is the elastic propaga
tor for fast fields~hereJ0 is the zeroth-order Bessel function!

G.~r2r 8!5TE
q

.eiq•(r2r8)

Kq2
5

T d,

2pK
J0~Lur2r 8u!. ~A10!

Given that G.(0)5Td,/2pK, we see that the first-orde
cumulant~A8!, after the rescalings~A18! and ~A19!, leads
straightforwardly to the recursion relation~4.18a! for the pin-
ning strengthg. On the other hand, since the ‘‘kernel’’

K~r !5@ep2G.(r )21# ~A11!

takes appreciable values only for small values of its ar
ment, we see that the first term inside the integral in Eq.~A9!
will contribute higher harmonic terms„;cos@2ph(r )#… to the
effective Hamiltonian, and hence we shall discard this te
as irrelevant. In the second term, we shall make the appr
mation

cos$p@h,~r !2h,~r 8!#%

.12
1

2
p2@h,~r !2h,~r 8!#2

.12
1

2
p2~r2r 8!a~r2r 8!b]ah,~r !]bh,~r !, ~A12!

where, in going from the first to the second line, we ma
use of the Taylor expansion

h,~r !2h,~r 8!.~r2r 8!a]ah,~r !.

Inserting Eq.~A12! back into Eq.~A9!, we obtain the fol-
lowing approximation to the second cumulant~we here use
the symbol[ to indicate that we retain only the term co
recting the stiffnessK):

^H1
2&0.

c [2
1

8
p2g2e2p2G.(0)E dr @¹h,~r !#2

3E dr 8~r2r 8!2K~r2r 8!. ~A13!

Since G.}d,5 ln b, we can expand the exponential in
Taylor series inG.,

ep2G.(r2r8)21.p2G.~r2r 8!1
1

2!
p4@G~r2r 8!#2.

~A14!
11541
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Now, the renormalization ofK involves the integral

E drr 2K~r !5E drr 2@ep2G.(r )21#. ~A15!

Inserting the expansion~A14! into this last expression, the
first term gives a contribution82

E dr r 2G.~r !52¹q
2G.~q!uq50 ~A16!

which vanishes identically, sinceG.(q) has support only on
the shellL/b,q,L. The second term gives

E drr 2K~r !5
1

4
p4E dr r 2@G.~r !#25

T2p4ln b

pK2L4
.

~A17!

Thus, we obtain for the second cumulant~A13! the following
expression:

2
^H1

2&0.
c

2T
[

Tp6g2d,

8pK2L4E dr
1

2
@¹h,~r !#2.

We now perform the following rescalings:

r5e,r 8, ~A18!

h,~r !5ex,h~r 8!, ~A19!

so as to restore the ultraviolet cutoff back toL. Because the
pinning potential is a periodic function, it is convenient~al-
though not necessary! to set the arbitrary field dimensionx
to zero, thereby preserving the period 2p/p of the original
problem under RG transformations. Under such a trans
mation, the resulting effective Hamiltonian can be cast in
its original form with effective,-dependent parametersK(,)
andg(,) such that

g~, !5ge(22Tp2/4pK),, ~A20a!

K~, !5K1
Tp6g2

8pK2L4
d,, ~A20b!

or, in differential form

dg

d,
5S 22

Tp2

4pK Dg, ~A21a!

dK

d,
5

Tp6g2

8pK2L4
. ~A21b!

2. Dynamic RG

We now turn our attention to the derivation of the d
namic RG flow equations~4.16a!–~4.16f! for the driven sine-
Gordon model. As we did in the static case, we define
following low- and high-momentum componentsh,(r ,t)
andh.(r ,t):
2-14
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u,~r ,t !5E
q,v

,

h~q,v!ei (q•r2vt), ~A22!

u.~r ,t !5E
q,v

.

h~q,v!ei (q•r2vt), ~A23!

where, here and in what follows,*q,v on integrals stands fo

E ddq

~2p!d

dv

2p
,

and the superscripts. and , indicate integration over the
high- (L/b,q,L) and low- (0,q,L) momentum re-
gions, respectively. Using the fact thatu(q,v)5u,(q,v)
1u.(q,v), it is not difficult to verify that the free partS0 of
the action decomposes into two diagonal piecesS0

, andS0
.

depending only onu,(q,v) andu.(q,v), respectively,

S0@u,ũ#5S0@u,,ũ,#1S0@u.,ũ.#. ~A24!

As we did in the static RG, in order to be able to integra
out the fast component of the fieldu(r ,t), we rewrite the
generating functionalZ in the form

Z5E @du,#@dũ,#

3e2S0[u,,ũ,] 1 ln Z 0
.

^e2S1[u,1u.,u,1u.]&0
. ,

where Z 0
.5*@du.#@dũ.# exp(2S0@u

.,ũ .#), and where
^•••&0

. denotes statistical averaging with statistical weig

e2S0[u.,ũ.] . The perturbative correction to the dynamic a
tion can therefore be expressed in terms of a cumulant
pansion

^e2S1&0.512^S1&0.1
1

2
^S1

2&0.1•••. ~A25!

Reexponentiation of this expansion allows us to define
effective action

Se f f@u,ũ#5S01^S1&0.2
1

2
^@S1

22~^S1&0
.!2#&0.1•••,

~A26!

from which we can derive dynamic RG flows for the para
eters of the original equation of motion. This procedure,
first order in the pinning strengthg, has already been show
in the text. Here we are therefore only going to consider
second-order correction to the original actionS. In fact, it
turns out49 that the only perturbative corrections toS to sec-
ond order in perturbation theory come from the cumula
2 1

2 ^Sg
2&0. and 2 1

2 ^Sl
2&0. , i.e., we need not consider th

cross term2^SgSl&0. which does not provide any perturba
tive corrections to the action. In the following, we shall on
show how we compute the perturbative corrections aris
from the sine-Gordon perturbation2 1

2 ^Sg
2&0. , the unique

term arising from2 1
2 ^Sl

2&0. ,
11541
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DSl~gT!5E drdtũ,
2 ~r ,t !FTl2 d,

8pK3 G , ~A27!

having been repeatedly derived in the literature.51,83,49Taking
the Gaussian averages in Eq.~A25! leads to the following
expression of the second cumulantDSg@ ũ,u#52 1

2 ^Sg
2&0.

c :

DSg@ ũ,u#52
1

2
p2g2E drdtE dr 8dt8ũ,~r ,t !ũ,~r 8,t8!

3K̃~r2r 8,t2t8!

3cosFp@u,~r ,t !2u,~r 8,t8!#1
pF

g
~ t2t8!G

2
1

2
p3g2E drdtE dr 8dt8i ũ,~r ,t !

3K~r2r 8,t2t8!

3sinFp@u,~r ,t !2u,~r 8,t8!#1
pF

g
~ t2t8!G .

~A28!

Here the dynamic kernelsK̃(r ,t) andK(r ,t) are given by

K̃~r ,t !5
1

2
$12cosh@p2G0

.~r ,t !#%2sinh@p2G0
.~r ,t !#,

~A29!

K~r ,t !5e2(1/2) p2C0
.(r ,t)R0

.~r ,t !, ~A30!

where R0
.(r ,t)5*q,v

. e2 i (q•r2vt)/( igv1Kq2) and C0
.(r ,t)

5^@u.(r ,t)2u.(0,0)#2& are the response and correlatio
functions, respectively, and where the correlatorG0

.(r ,t)
5^u.(r ,t)u.(0,0)&0. is given by

G0
.~r ,t !52gTE

q,v

cos@q•r2vt#

g2v21K2q4
~A31!

We now decompose the sine and cosine in the integrand
the rhs of Eq.~A28! according to

cosFp~u,2u,8 !1
pF

g
~ t2t8!G

5sin@p~u,2u,8 !#cosFpF

g
~ t2t8!G

1cos@p~u,2u,8 !#sinFpF

g
~ t2t8!G , ~A32a!
2-15
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sinFp~u,2u,8 !1
pF

g
~ t2t8!G

5sin@p~u,2u,8 !#cosFpF

g
~ t2t8!G

1cos@p~u,2u,8 !#sinFpF

g
~ t2t8!G . ~A32b!

The kernelsK̃(r2r 8,t2t8) andK(r2r 8,t2t8) being short
ranged both in space and time, we see that the major co
bution to the action~A28! comes from the regionsr.r 8 and
t.t8 where @u,(r ,t)2u,(r 8,t8)# is small. We therefore
shall approximate

sin$p@u,~r ,t !2u,~r 8,t8!#%.p@u,~r ,t !2u,~r 8,t8!#,
~A33!

cos$p@u,~r ,t !2u,~r 8,t8!#%

.12
1

2
p2@u,~r ,t !2u,~r 8,t8!#2, ~A34!

and

u,~r ,t !2u,~r 8,t8!5~ t2t8! ] tu
,1~r2r 8!a ]au,

1
1

2
~r2r 8!a~r2r 8!b]a]bu,, ~A35!

upon which we obtain the following expression for the se
ond cumulant2 1

2 ^S1
2&0.

c :

DS@ ũ,u#52
1

2
^S2&0.

c @ ũ,u#

5DS~gT!1DS~g!1DS~K !1DS~l!1DS~F !,

~A36!

where

DS~gT!5DSl~gT!1
1

2
p2g2E drdtũ,~r ,t !ũ,~r ,t !

3E dr 8dt8K̃~r2r 8,t2t8!cosFpF

g
~ t2t8!G ,

~A37a!

DS~g!5
1

2
p4g2E drdtiũ,~r ,t ! @] tu

,~r ,t !#

3E dr 8dt8 ~ t2t8! K~r2r 8,t2t8!

3cosFpF

g
~ t2t8!G , ~A37b!
11541
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DS~K !5
1

4
p4g2E drdtiũ,~r ,t !@2¹2u,~r ,t !#

3E dr 8dt8~r2r 8!2 K~r2r 8,t2t8!

3cosFpF

g
~ t2t8!G , ~A37c!

DS~l!5
1

4
p5g2E drdtiũ,~r ,t !$2@“u,~r ,t !#2%

3E dr 8dt8 ~r2r 8!2K~r2r 8,t2t8!

3sinFpF

g
~ t2t8!G , ~A37d!

DS~F !5
1

2
p3g2E drdtiũ,~r ,t !E dr 8dt8K~r2r 8,t2t8!

3sinFpF

g
~ t2t8!G . ~A37e!

Here we pause a moment to indicate that if we use the c
plete expression of the kernelK(r ,t)

K~r ,t !5e2(1/2)p2C0
.(r ,t)R0

.~r ,t ! ~A38!

into Eq. ~A37e! and let b→`, then we obtain from Eq.
~A37e! above the following expression for the friction forc
F f r due to the pinning potential to orderg2:

F f r5
1

2
p3g2E dr 8dt8e2(1/2) p2C0(r2r8,t2t8)

3R0~r2r 8,t2t8!sinFpF

g
~ t2t8!G , ~A39!

which leads directly to the perturbative result~3.5! of the
text.

We now go back to our dynamic RG recursion relatio
~A37a!–~A37e!. In the dynamic kernels of Eqs.~A29! and
~A30!, we expand

K̃~r ,t !52p2G0
.~r ,t !2

1

4
p4@G0

.~r ,t !#2, ~A40a!

K~r ,t !5R0
.~r ,t !2

1

2
p2C0

.~r ,t !R0
.~r ,t !, ~A40b!

and keep only the second term82 on the rhs of the above
equations@the first term gives a vanishing contribution, fo
reasons which are identical to those explained after
~A16! of Sec. 1#. Now, from Eqs.~A37b!–~A37e!, we see
that the perturbative corrections to the bare parameters o
theory are given by the flows

d~gT!

d, U
pert

5
Tl2

8pK3
1p2g2E drdtK̃~r ,t !cosS pF

g
t D ,
2-16
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dg

d,
U

pert

5
1

2
p4g2E drdttK~r ,t !cosS pF

g
t D ,

dK

d, U
pert

5
1

4
p4g2E dr dtr2K~r ,t !cosS pF

g
t D ,

dl

d,
U

pert

5
1

4
p5g2E dr dtr2K~r ,t !sinS pF

g
t D ,

dF

d, U
pert

5
1

2
p3g2E dr dtK~r ,t !sinS pF

g
t D .

Using Eqs.~A40a! and~A40b!, the above recursion relation
become

d

d,
~gT!5F Tl2

8pK3
1

Tp6g2

16pK3L4

1

11 f 2G ~gT!, ~A41a!

dg

d,
5

Tp6g2

16pK3L4

12 f 2

~11 f 2!2
g, ~A41b!

dg

d,
5S 22

Tp2

4pK D g, ~A41c!

dK

d,
5

Tp6g2

16pK2L4

223 f 22 f 4

~11 f 2!3
, ~A41d!
o
a;

d

tt

,

hy

l,
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dl

d,
5

Tp7g2

16pK2L4

f ~ f 215!

~11 f 2!3
, ~A41e!

dF

d,
5

lTL2

4pK
2

Tp5g2

8pK2L2

f

11 f 2
. ~A41f!

On the other hand, we know from Eqs.~4.12a!–~4.13! that
the rescaling of fields and space and time variables produ
the recursion relations

d~gT!

d, U
resc

5
dg

d,U
resc

5
dK

d, U
resc

5
dl

d,U
resc

50,

dF

d, U
resc

52F. ~A41g!

Using the recursion relations above along with the fact th
in a renormalization-group transformation,

d

d,
5

d

d,
U

pert

1
d

d,
U

resc

, ~A42!

leads directly to Eqs.~4.16b!–~4.16f! of the text.
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