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Velocity-force characteristics of an interface driven through a periodic potential
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We study creep dynamics of a two-dimensional interface driven through a periodic potential using dynamic
renormalization-group methods. We find that the nature of weak-drive transport depends qualitatively on
whether the temperatuiieis above or below the equilibrium roughening transition temperaftyreAbove T,
the velocity-force characteristics are Ohmic, with linear mobility exhibiting a jump discontinuity across the
transition. ForT=<T_, the transport is highly nonlinear, exhibiting an interesting crossover in temperature and
weak external forcé. For intermediate drivel->F, , we find nearT, a power-law velocity-force charac-

teristicsv (F) ~F, with o— 11, and well belowT,, v(F)~e~F+/®* with T=(1—T/T,). In the limit of
vanishing drive E<F, ), the velocity-force characteristics cross oven{(&)~e~ "o/ and are controlled
by soliton nucleation.
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I. INTRODUCTION pinning transition to a sliding state, with~|F —F.|? play-
ing the role analogous to an order parameter distinguishing

The problem of elastic media pinned by an external poPinned and sliding phasé3 Finite temperature rounds the
tential provides a unifying framework for understanding adepinning transitiod,’ allowing activated creep motion of
large number of condensed-matter phenomena, such as, féi€ €lastic solid even for drive far belok.
example, surface growtt? nonlinear transport in anisotropic imlv(lautcr?a?fi;h?h:ansfé)gcr:}sag?lgutrhI\?vct]rllgh(l)énqggtrflyc;?ri Caresec?alri(ra]_
metals; dissipation in _sueoerconducto‘l‘éf Wigner crys_talé, '?heory of depinned droplet nucleatiéh?>~?This approach ’
earthquakeS, and friction: Randomly pinned elastic Sys- enerically predicts collectively pinned elastic media to ex-
tems are also toy models for considerably more complicate

od ) ) ibit a highly nonlineaw (F), with a vanishing linear mobil-
problems of glasses. Much of the recent interest in such j ~ corresponding to transport activated over barriers that

problems has been rekindled by the discoVeryf high- diverge with system size and vanishing driVveRecently, in
temperature superconductatdTSC), and efforts to under- he case of random pinning, these scaling predictions have
stand the nature of theB-T phase diagram and dissipation pheen put on firmer ground through a detailed dynamic func-
controlled by statics and dynamics of elastic arrays of vortexjonal renormalization-group (DFRG) calculations  of
lines*“~" A combination of thermal fluctuations, pinning, ,,(Fy 3031 \which indeed predics (F)~e~F*, with a uni-

and external drive leads to a wide range of different a”q/ersal,u exponent. However, in the case of random pinning a
interesting collective phenomena that are common to many,mbper of technical problems with DFRG remain, preclud-
physical realizations of elastic medfa. ing a fully controlled analysig?>3

There has been considerable progress in understanding |t turns out, however, that many problems of interest, such
the static properties of pinned elastic metifd-*°*Much of  as surface growtf two-dimensional2D) colloidal crystals
the recent interest has therefore shifted to dynamics, witin periodic potential$®=38 and vortices pinned by artificial
current focus on nonequilibrium, driven dynamics of thesedot array3® or by intrinsic pinning in, e.g., HTSC, involve
rich systemg$" Once the elastic medium is driven, however, the considerably simpler but still nontrivial problem éri-
many new questions arise, such as the governing nonequililpdic pinning. In addition to addressing numerous interesting
rium equation of motion, phase classification and stabilityphysical problems, study of motion in a periodic potential
nature of the corresponding phase transitions, and the resulsrovides a nice laboratory to explore important calculational
ing nonequilibrium phase diagratn’!"'® Among these methods.
many challenging questions, the velocity-) (force (F) char- A driven sine-Gordon model is the simplest description of
acteristics[the IV curve, in the context of superconductors such periodic pinning problem, with an important simplify-
and charge-density wavé€DW's)] is the observable that is ing feature of absence of topological defects such as dislo-
most directly accessible experimentafiand is therefore of cations or phase slips that can be important for understanding
considerable theoretical interest. the dynamics of vortex arrays and CDV§*° Directly appli-

Despite considerable richness of many aspects of theable to crystal-growth phenomena, this model has been ex-
driven state;18-2%t large drives the velocity-force char- tensively studied in the literatufé->°In equilibrium, among
acteristics of a uniformly sliding medium approach Ohmicmany other things, it describes the famous crystal surface
form with deviations Sv that can be computed roughening transitioti from the low-temperature smooth
perturbatively® in the ratio su/v. At zero temperature, if phase with bounded surface roughness to the high-
elastic®? the medium is pinned for drives smaller than atemperature rough phase with logarithmic height correla-
critical T=0 valueF., and undergoes a nonequilibrium de- tions.
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One of the many interesting questions that naturally arisesV“
is: What are the signatures of the roughening transition in
the driven transport?™More specifically, here we are inter-
ested in qualitative difference® any) in v(F) above and
below T.. The equilibrium limit of this question was ad-
dressed in the classic analysis of the equilibrium dynamics
by Chui and Week€ and by Noziees and Gallet® By ex-
tending the standard analysis to equilibriwtpnamics they
found the vanishing of the linear mobility below the rough-
ening transition, consistent with the static picture of the
smooth phase where the interface is pinned by the periodic
potential.

In the presence of an external drive, the sine-Gordon
model was studied sometime ago by Hwa, Kardar, and
Paczuski* and by Rost and SpoHfi.Although these works
led to considerable progress, computing the renormalizatior
group (RG) flow equations for model parameters at nonzero
F, they concentrated mainly on the influence of
Kardar-Parisi-Zharig (KPZ) nonlinearities(not considered FIG. 1. Typical velocity-force characteristics of a driven inter-
in previous studi€®¥) important at strong external drive, but face in a periodic potential. At zero temperature, the interface re-
said little about the actual(F) characteristics of the driven mains pinned§=0) until F reaches the critical forcE.=pg. At
interface in the=—0 creep regime. The driven sine-Gordon finite temperatures, we find that the near-equilibrium response of
model has also been considered by Blat&gral? in a the interface to a small{<F.) driving force depends on whether
complementary approach via a high-velocity perturbative exT is above or below the roughening temperaflige ForT>T,, the
pansion fow (F). Consistent with Refs. 42 and 48, these lastvelocity-force characteristics are Ohmje(F)~F] down to F
authors found that while the correctiody/v) remained fi- =0, while forT<TC_ a_nd forces smaller thaq a characteristic force
nite aboveT,., it diverged belowT,, thereby suggesting Fx. the characteristics are strongly nonlinear-exp(—Fo/F),
nontrivial transport changes across the roughening transitiolf"€eP mgtlon via activation over barriers that diverge in a vanishing
but leaving the form of(F) in the creep regime an open drve limit
problem. Of course, because at finite temperature the inter-
face can move for any finite drive, at sufficiently long the velocity-force characteristics strongly depend on the
scales the periodic potential is averaged away at both lodevel of proximity toT., with
and high temperatures, thereby leading to the rounding of the
roughening transition itself. Nevertheless, we expect that the
velocity-force characteristics in thereep regime are con-

F

Fa+b)  TT,

C

t_rolle_zd by the equ_ilibrium physics and precise qualitative dis- v(F)~ o (Fs IRy T<T,, 1.2
tinction of v(F) in the rough and smooth phases should '
exist3355

In this paper, our goal is to. understand in detajl the thSiwhereT=(1—T/Tc), andb, andb, are nonuniversal con-
cal consequences of the divergences found in the highstants of order unity. For sufficiently low driver
velocity perturbative expansion and in particular to compute F. (3,T), the motion is instead always via activated soli-

the creep velocity-force characteristics in both phases angh, “creep, with the velocity-force characteristics crossing
across the roughening transition, utilizing dynamic R&:* o/ 1o

Consistent with perturbative analysis, we find that the nature
of transport depends qualitatively on whether the tempera-
ture is above or below the equilibrium roughening transition v(F)~e Fo/F F<F,, 1.3
temperaturd .. Above T, the velocity-force characteristics

. . -y . . . . +
are Ohmic, with the moplhty remaining finite fd_'rch ._In with F, another characteristic force that will be defined be-
contrast, forT<T,, we find that the linear mobility vanishes |, , Eq. (5.17.
on long-length scales, and therefore exhibits a nonuniversal -

jlﬁmp discc;]ntirr]]uity aﬁross the roughening tr;ansil‘l@l_ﬁ‘?"‘lnf driven sine-Gordon model in Sec. Il and analyze it in Sec. Il
the smooth phase, the transport is a strongly nonlinear UNGising simple perturbation theory in the pinning potential

tion of applied fgrce, Is_hgv:c/ing a rich univers_al crossdqver instrength. While for weak pinning this computation is conver-
temperature and applied for¢gig. 1). At an intermediate  goni for T~ _ | it fails for arbitrarily weak pinning in the

drive F>F,(9,T), larger than th? pinning- g and smooth phase. In Sec. IV we employ dynamic RG techniques
temperature-dependent strong-coupling crossover force to make sense of these divergences, and in Sec. V, we use

This paper is organized as follows. We introduce the

e b1/%  TTo these results to computgF) through the roughening tran-
F,GT~{ - ¢ (1.1  sition. We conclude in Sec. VI with a summary of the results
g, T<T,. and a discussion of open problems and future directions.
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Il. DRIVEN SINE-GORDON MODEL Our goal here is to apply the machinery of the dynamic
RG to compute the velocity-force(F) characteristics for

the above model, focusing on the nontrivial creep regime of
the smooth phase, where naive perturbative expansion in the
pinning potentialg fails.

In equilibrium, a two-dimensional sine-Gordon model of
an elastic interface is described by a Hamiltonian

1
H=j dr[zK(Vh)Z—g cogph(r)]|, (2.2
IIl. DYNAMIC PERTURBATION THEORY

wherer is a two-dimensional vector in they) plane,h(r) It is instructive to first study the velocity-force character-
is the height of the interface above theyj plane(taken to istics through a simple perturbative expansion in the pinning
be along thez direction in the embedding spacat location  potentialg. Starting from Eq.(2.4), it is convenient to shift

r, K is the interfacial surface tensiorg is the pinning  h(r,t)=vyt+u(r,t) with vo=F/y the unperturbed =X\
strength, andl=2/p is the period of the potential. In the =0) expression of the velocity. Averaging E(.4) over
context of a crystalline surface, withl characterizing its thermal fluctuations, and ignoring the KPZ term, we find that

equilibrium roughness, the periodic pinning potential softlythe velocityv of the moving interface is given by
encodes lattice periodicity of the bulk crystal, corresponding

to the h—h+d a symmetry of the surface energy, with v={(d;h) (3.139
being the crystal lattice constant perpendicular to the inter-
face. F pg .
In the absence of any additional conservation laws, long- =———(sin(pu(r,t)+ pvet]), (3.1b
scale equilibrium dynamics can be described by a simple, L
relaxational(model A) Langevin equation where we used the fact théf(r,t))=0. We now let
u(r,t)=uo(r,t)+uy(r,t), (3.2

d¢h o +£(r,t)
= - — r,
v oh(r,t) where
=KV?h(r,t)—pgsin ph(r,t)]+4(r,t), (2.2

Up(r,t)= | dr'dt'Ro(r—r' t—=t")¢(r't’ 3.3
wherey is the microscopic friction coefficient, anf{r,t) a o(".) f ol ) ) @83
zero-mean, Gaussian thermal noise describing the interaction the th (nonint " t of the interf displ
of the system with the surrounding heat bath at temperatur'f%enf ermalnoninteracting part of the interface displace-

T, with

&, )Lr' t'))y=2yT8(r—r")8(t—t"), (2.3 ug(r,t)=pgj dr'dt’'Ry(r—r',t—t")

in equilibrium imposed by the fluctuation-dissipation theo-

rem (FDT), forbidding independent renormalization ©f Xsin
The dynamic description of an interface driven by an ex-

ternal forceF (in the context of crystal growth proportional s the correction tai linear in the pinning potential strength

to the difference between the chemical potentials of the soligy - and Ry(r—r,t—t)= 8(uo(r,t)}/sF(r',t") is the re-

and vapor phasgds substantially modified. In addition to  gponse function of the free interfateExpanding Eq(3.10

the obvious addition of the driving forde on the right-hand i, |, and averaging over the thermal noisewe find (see
side of Eq.(2.2), nonequilibrium dynamics permits the ap- 559 Sec. 2 of the Appendix

pearance of nonconservative forg¢ésose not expressible as
derivatives o), the most important of which is the famous F p3g?

!

_py +pup(r’,t’) (3.9

KPZ (Vh)2 nonlinearity>? allowed by the explicit breaking v= 5 dr'dt’ e (M2P*Colr=r' t=t)

by the drive of thez— —z symmetry. An additional impor- Y Y

tant effect of driving appears as the renormalization of “tem- pF

perature” T, corresponding to the breakdown of the XSiF{T(t—t’)}Ro(f—f',t—t'), (3.9

fluctuation-dissipation theorem, that is, the renormalization
of the friction coefficienty is independent of that of the WhereCo(r—r’,t—t’):<[uo(r,t)—u0(r’,t’)]2) is the con-
variance of the nois€. Even if these nonequilibrium effects nected correlation function of a free interface given by
are not recognized priori, they appear upon coarse graining

of Eq. (2.2) as soon as the external drids included®® The T
resulting nonequilibrium equation of motion is given*by Co(r,)=5—7In

1+ A2 . (3.6

Kt
r2+ —
Y
A . The above velocity-force characteristics, E®.5, is
_ 2 - 2_ ) 3
y Zh=KV=h+ Z(Vh) pgsinph(r,n]+F+£(r,0). most easily evaluated at zero temperature whegér,t)
(2.9 =0. In this limit, using
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ngzf drfwdt Ft/y) ~(1/2)p?Co(r )
29T 0 cogpFt/y)e .

(3.12

Inserting into this last equation, the expression of the corre-
lation functionCgy(r,t) of a harmonic interface given in Eq.
(3.6) leads to

iq<r
R . E( - ngzf drfmdt cogpFt/y) )
Y 29T 0 [1+A%(r2+Kt/y)]7)’

In the above equations and throughout the rest of this paper, (3.13
we use a shorthand notatigi for fdg/(2)?, and the su- )
perscript A=2/a is the ultraviolet cutoff set by the in- Where we defined
plane lattice constard, generically distinct from the period To?
d=2mx/p perpendicular to the interface. Performing the in- n= P ]
tegration over the space varialldan the last equation, and 4mK
using the resulting Diraé function (2m)28(q) to complete
the g integral, we find ar=0, leading orde(in pinning g)
expression for the (F) characteristics>®?!

o(t) fA A F
Ro(r,t)=%J e Ketvgiar (3.7 v=—|1-
q

[ O(t) is Heaviside’s unit step functigrin Eq. (3.5 and in-
tegrating over the time variablé, we obtain

_F IO
Ty

KZq + p2F2

(3.19

Taking the limitF— 0 in the above expression, and perform-
ing the time integration, we obtain

mp2g? (= dr
 KTA% o (14 A2y @30
(3.15

where F.=pg is the zero-temperature critical force, in We now observe that the integral on the rhs of E315
agreement with the conditiofi,=maxdV(h)/dh| of disap- behaves very differently depending on whetfieis smaller
pearance of metastabilify/(h) = —g cosph) is the pinning  or greater than

potential. As is clear from this result fov(F), even atT

=0, the perturbative corrections are small for sufficiently 87K

large applied forcé& relative to the pinning forc€ . (equiva- Teo=—5 (3.1
lently, for sufficiently weak pinning at fixedF). In this fast P

moving regime, the metastability is absent and pinning givesor T>T,, i.e., »>2, the integral in Eq(3.15 is conver-
only a small correction to the motion with(F) deviating gent, and leads to a finiteand for weak pinningg, to an
only weakly from the pinning-free Ohmic responsg(F) arbitrarily smal) correction to the linear friction coefficient
=F/y. Itis reassuring to note that, since® 0, only the  y(F=0)=1/lim__ (v/F). In strong contrast, forT
g=0 mode contributes to the(F), Eqg.(3.9) agrees with the
high-drive limit of the exact T=0 resulf®®! for a single
particle driven through a one-dimensional sinusoidal poten
tial

2 lim (v/F)= =

, F>F¢, (3.9 F—0

Fe

F

2

v=—

F{l
Y

<T. (7<2) above integral diverges signalling the break-
down of the perturbation theory at small values of the exter-
nal forceF.

Having established the breakdown of perturbation theory
for T<To in the limit of vanishingly small forces, we now
turn our attention to the full velocity-force characteristics at
finite values of the external drive. Starting from E§.13),
and performing the integration over space variables, we ob-
This suggests that the(F) characteristics of a driven inter- tain
face should also exhibit a square-root cusp with an infinite
slope atF=F.. At T=0, the interface is strictly pinned for F ( p*g> g fw cog2f7)

v=—|1- T
F<F.. 8K2A% 71—1Jo (rr1)7 1

Y

2
. F>F.. (3.10

Fe

_F (
U(F)—; 1- F

), (3.17

In contrast, at any finite temperature the interface moves
for arbitrarily weak force and hence there is no sharp depinwhere the dimensionless for¢es given by(henceforth, we
ning transition. The perturbative expression #QrEq. (3.5 shall use both+ andf to designate the driving force on our
can be readily evaluated by using the fluctuation-dissipatiointerface
relation

pF
6(t) 3,Co(r,t)=2TRo(r ) (3.11 = kA (318

obeyed by the equilibrium response and correlation funcPerforming the integr&f on the rhs of Eq(3.17), we finally
tions. Using this relation to eliminafy(r,t) from the right-  arrive at the following result for the effective friction coeffi-
hand side(rhs) of Eq. (3.5 and integrating by parts ovéf cient y(f) of the driven interfac€here 1F, is a generalized
we find hypergeometric function
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FIG. 3. Effective frictiony(f) for =1.8 and p*g%/8K2A%)
=0.1. y(f) diverges af , ~0.022(dashed ling indicating the fail-
ure of perturbation theory at small drives<@<f, .

FIG. 2. Effective friction coefficienty(f) of the driven interface
for n=2.2 and p*g%/8K2A*)=0.02. Asf—0, y(f) remains finite,
in agreement with Eq(3.21).

plg? pl(2-n) = e
p'e® g sin=(7—1)
Y=y 1= ——— ——|(2/)77 T (2-n) 1| 8k2A* (7—1) 2
8KZA* 71 f*(g'T)NE 4.2
p*g 7
1+
X sin| 2f + z(77—1)) 8K2A* (2= 7)(n—1)
2 (3.22
-1
1 4=m3-n. o, As T—Tg (p—2~
— L —_— 7]—) )’
+(n—2)1F2<1’ 2 2 f)“ ' °°
(3.19 _ o1 AK2A%
f*(Tco)ziex _W’ (3.23

which has the following limiting behavior as—0,
showing that the regime of forces<0 <f, where perturba-
tion theory fails becomes exponentially small Bg is ap-
p*g? 7 proached from below. The unbounded growth of the pertur-
y(f—=0)=1vy{ 1+ aK2AL 2= (7—1) bative friction coefficient as the external drive@pproaches
f, from above(see Fig. 3 suggests that the interface in the

- -1 low-temperature, smooth phase is characterized by a vanish-
1-(2—p)T(2— 7;)(2f)’725in<§(77— 1))” . ing linear mobility*®#
Although we will study this in more detail in following
(3.20 sections, already at this stage we can see a physical interpre-
tation of this divergence. Perturbation theory in the pinning
o potential fails because even for an arbitrarily weak pinrgng
As found above, inside the rough phase; Teo (7>2) and  on sufficiently long scales greater thgricomputed in Sec.
for sufficiently weak pinning, the perturbation theory re- ), the periodic potentialfor smallh acting like a “mass,”
mains valid at arbitrary, simply displaying crossover from a 1gp?h?) necessarily dominates over the elastic energy den-
freely moving interface with “bare” mobilityu..=1/y at ity (K/2)(Vh)2. Since[as is quite clear from the equation
high drives to that wittfinitely suppressed low-drive mobil-  of motion, Eq.(2.4)] the applied forcd= dominates the elas-

X

ity (as illustrated in Fig. P tic force on scales longer than
27K 1/2
p*g’ 7p°g’ ¢ =(—) , (3.24)
Yf=0)=y 1+—87,K2A4):7<1+ STRAG ) F7\ pF

(3.2)

a sufficiently weak forceF<F, , probes the interface on
length scales longer thaf and thereby leads to the break-
On the other hand, in agreement with Ref. 4, we find that irdown of perturbation theory about the harmonic interface.
the “smooth,” low-temperaturd <T. (7<2) phase, the be- Hence, although quite instructive, the perturbation theory
havior is strikingly different with the correction toy(F) fails to make predictions fov(F) or any other dynamic
=F/vy, Eg. (3.20, diverging and the perturbative approach quantity in the smooth phase at sufficiently low drife
failing asf is reduced below a characteristic force <F, and a nonperturbative approach is necessary.
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IV. DYNAMIC RENORMALIZATION GROUP required to remain fixed at unity under an RG coarse-
Igraining procedure. The advantage of the MSR formalism is
its close resemblance to the equilibrium statistical mechan-
. ?gs, which makes it a rather straightforward task to apply RG

Armed with the above discussion, we are now wel

the calculation ot (F) in the smoothl <T. phase for weak
drive F<F, . It is convenient to perform this analysis in the
frame comoving with the bare velocity,=F/vy correspond-
ing to the change of the dynamic fields tgr,t)=h(r,t)
—Ft/vy, which obeys

ous parameters entering the equation of mofiér). Like
the static momentum-shell RG, the dynamic RG procedure
consists of three main steps,
(i) Thinning of the degrees of freedom, whereby modes
u(q), with q in an infinitesimal shelh/b<q<A (b=e%)
are perturbativelyin S;) integrated out.
+(r,1). (i) Rescaling of space variables according tebr’, so
as to restordfor conveniencethe ultraviolet cutoff to its
4. original valueA, and rescaling time variable accordingtto
Taking the nonlinear terms in the above equation as a smaikt’b?
perturbation, the equation of motion can be directly ex- (iii) Rescaling of fields, in orddfor conveniencgto keep
panded in these nonlinearittds®® leading to the harmonic part of the action invariant under rescaling in
renormalization-group recursion relations for model paramdii).
eters. An equivalent but more convenient formulation is the We define “slow” {u~,T~} and “fast” fields {u~,0"}
field-theoretic approach of Martin, Siggia, and Rise
(MSR). In this approach, the dynamic correlation and re- u(g,t)=u=(q,t) +u7(q,t), 4.7
sponse functions,

2 A 2 i pF
v du=KVeu+ E(Vu) +pgsin| pu+ 7t

u(g,t)=u~(q,t)+u’(q,t), (4.8

C(r,t)=<u(r,t)u(0,0))=f [dul[dT]u(r,HHu(0,00e” ™, with momentum support in Fourier space in the intervals 0
(4.29 <q<A/b andA/b<qg<A, respectively, and perform a cu-
mulant expansion of in terms ofS;[u,tU], considered as a
- erturbation,
R(r,t)=<ﬁ(r,t)u(o,0)>=f [du][dT]t(r,t)u(0,00e Swil, P
(4.2b

are computed directly by integrating over the phonon and
response fieldss andT, treated as independent stochastic PN 2

fields with a statistical weight ™ SI"" imposed by the equa- :f [du][du]je Solv" ¥ 1= (Svo=+(12(Spo-,  (4.9)

tion of motion, after integrating over the thermal noise

[(r,t). The resulting effective “action”S is given by S  where(---),- denotes an average taken with the statistical
=S,+S,;, where weight So[u=,T~], and where the superscriptin (S3)§.
denotes a connected average. To first order in the pinning
strengthg, there is only one term itSg)g , which renormal-
izes the dynamic actio, namely,

2= [ Tdulidue ST e ST,

1
so[u,m=f drdt{E(ZyT)Uz(r,t)

i F
+|U(r,t)[’yﬁtU—KV2u]} (43) <Sg>o>Epgb7Tp2/4~rrKJ drdtiU<(r,t)Sin(pu<(r,t)+ p—t),

Y
is the action of a pinning-fre€¢harmonig interface, and (4.10
whereS, =S;+ S, with which physically arises from the suppressinom g to

pFt gb~TP47KY of the effective pinning strength due to short-

pu(r,t)+ —) (4.4  scale thermal fluctuations averaging away the periodic poten-
Y tial. In the above and throughout, we will use to indicate

the contribution of the pinning potential and that only the leading term has been kept. Similarly, to first

order in the KPZ coupling., we have the following pertur-

Sglu,t]= pgf drdtiT(r,t)sin

~ N - ) bative correction to the dynamic acti&h
Sk[u,u]z—z drdtit(r,t)(Vu) (4.5
2
the contribution of the KPZ term to the nonlinearitiesSn <SA>§E_f drdtiti=(r,t) a4 @41
To study the renormalization o[ u,U], it is sufficient to
work with the dynamic “partition function” which quite clearly renormalizes the effective external force.
Rescaling the space and time variables
_ ~1a—Slu,T]
Z f [du][dT]e , (4.6) r=br’, (4.123
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t=b?%t’, (4.12b where f=(pF/2KA?) is the dimensionless force of Eq.
. . (3.18. Note that, because of the lack of a FDT for the driven
as well as the conjugate field(r,t), system, in strong contrast to the equilibrium case=F
T<(r,t) =biu(r' t"), 4.13 =0), Eqgs.(4.163 and (4.16b imply that T(¢) flows non-

trivially according to
while for convenience leaving(r,t) unchanged in order to
preserve the periodicity (@/p) of the original problent® dT [T Tpog? f2

we obtain the following lowest-order recursion relations: —_= + (4.17)
) df | 87K3 8wK3A% (1+f2)2
(¥T)(b)=b> 72X (4T), (4.143
. Hence, T(€) is simply a measure of the strength of the
y(b)=b>"¥y, (4.14b  white-noise component of the random force on the driven
it interface and is not associated with any equilibrium bath at a
K(b)=b*"*K, (4140 ell-defined thermodynamic temperature.

The recursion relation&.163—(4.16f) contain mosibut
' (4.149 not all, as discussed in Sec) ¥f the information we need to
investigate the properties of the system beyond the failing

g(b) — b2+Z+)A(7Tp2/47TK g

N(b)=b" i\, (4148  perturbative expansion of Sec. IlI. Before turning to their full
. analysis and to the study of the velocity-force characteristics,
(F/y)(b)=b*(F/y). (4149 it is useful to see how the previously derived static and equi-

The dynamic exponents and % can be fixed by requiring librium dynamic result§°**are recovered. We do this in
thatK andy be unchanged, to linear orderdgnunder the RG  the following sections.
transformation. This leads to the following values:

A. Analysis of the static limit

z=2, x=-2
) i i The static model, Eq(2.1), is characterized by two pa-

and to the following recursion relations fgrandF, rametersK andg with the RG recursion relations reducing to

dg Tp? the familiar Kosterlitz-Thouless for7r(derived by these last

=2 authors in a dual, Coulomb gas fo

0 ( ppdl’] (4.153 gas fofn

dg ( Tp? )

dF ATAZ? bl PO

ur _ = g, (4.18a

ac ~2Ft 7 (4.15h de 47K
while the remaining quantitie, y, A, and temperaturg, dK  Toba?
remain unchanged and suffer no renormalization to first or- = & (4.18H
der ing and\. Similar considerations, with details given in df  8nK2A*
Sec. 2 of the Appendix, lead to the following recursion rela-
tions to second order ig and\: At small g, K(¢) flows slowly, and the recursion relation for

g implies the existence of a phase transiticalled “rough-
ening” in the context of crystal surfat® at T o=87K/p?

(yT), (4.163 (in the limit g—0) between two phases distinguished by the
long-scale({—) behavior ofg(¢). For T>T,,, thermal

fluctuations are strong enough to effectively average away

(4.16h the long-length scale effects of the periodic pinning poten-

™W?  Tp°g® 1
8mK®  16mwK3A% 1+ 2

d —
ﬁ()’T)—

dy Tpbg? 1-f2

df  16mK3A4 (1+f2)2% tial, which is therefore qualitatively unimportant for most
(but not al) physical properties of this so-called “rough”
dg Tp? phase. At these high temperatures, the surface is logarithmi-
ae |\ e m) g, (4.160 cally rough and the effects of a weak periodic potential can
be taken into account in a controlled perturbative expansion.
dK Tplg? 2-3f2—f4 In strong contrast, fol <T,,, the effective strength of the
— = , (4.160  periodic potential relative to that of the harmonic elastic en-
df  16mK2A* (1+f2)3 ergy grows on long-length scales, leading to a breakdown of
perturbation theory iy, no matter how weak its bare value
dn Tp'g? f(f?+5) might be. As a result, at long scales, the interface is pinned in

(4.160  this “smooth” phase, with bounded rms height fluctuations.
It is instructive to recall some of the physics which fol-
dF NTAZ  ToSg?  f lows from the above recursion relations. It is convenient to
el __'P9 first rewrite the flow equations for dimensionless coupliggs
2F + , (4.160
d¢ 47K 87K2A2 1+ f2 and 7,

€ 167K2A% (1+£2)3°
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V2p%g
9= , 4.19
6=~ (4.193
1.
Tp?
=7 (4195
g
which satisfy
5 B 0.
3 =278, (4.20
dn 1,
W: — Z 7]292. (42])

FIG. 4. Renormalization-group flow in thé @) plane. Tem-
These show that in equilibrium, the quantitywhich is ~ Pperature \_/ariation for an act_ual system occurs ?"9”9 th_e dashed line.
the measure of the ratio of thermd to elastic(K) energy, ~©On the high-temperature side of the separdirixg (indicated as
always flows to zero at long scales, indicating that the |0W_.the thick !lne, the periodic pinnin@ renormalizes to zero and the
temperature smooth phase is controlled by a strong couplintjtérface is rough on long-length scales. Below(to the left of the
zero-temperature fixed point. Negy, it is convenient to use nqogl sepa_ratn)g the RG.ﬂOW runs off to strong couplirig de-
a reduced temperature measured relative tdtoeinteract- scribing an interface that is smooth on long-length scales.

H _ 2
Ing) Teo=87K/p, distinct from itsg—0 limit of T.o=8wK/p?. ChangingT

e D (4.223 corresponds to the variation of the dimensionless bare pa-
7 ' rameters along the dashed horizontal line indicated in Fig. 4.
Above T., G§(¢) flows to zero and

=2(TITeo— 1), (4.22h
with the flow equations simplifying to TR=T(E—) (4.273
a9 =\/¢], (4.27h
de ~79, (4.233 corresponding to the long-scale renormalized elastic constant
T Kr=K(£—») (4.28a
a0 = -92 (4.23h

T
=K—(1+ -1 .
These can be easily integrated by multiplying EGs233 KTC(,(1 \/H/2) (4.289

and (4.23b by § and7, respectively, and taking the differ-
ence of the two resulting equations. The result is that ne
T the flows are a family of hyperbolas

it is comforting to find[using Eq.(4.25] thatK reduces to
its bare valueK at high temperatures. Using the fact that
near, but abovéd .,

=2_~=2__
g -m=c .29 C=G2— (Fot )7 (4.29a
labeled by a constant of integration
~—2%.1, (4.290
2
_ \/EIOZQ _ Tp? i 2 (4.25 with the true reduced temperature relative to the ffiréte
KA?2 47K ' ' g) T. given by
determined by the bare value of model parameteand K. (2T T Te (4.30
The resulting flows are illustrated in Fig. 4, showing three T T '

distinct regions of behavior. In the high-temperature region - ) ) .
below the thick line ¢<0), pinning is irrelevant, and it and 7}=g=2(TC/TC0— 1), we find that in the limit
therefore describes the rough phase, separated from the lod—Tc

temperature smooth phage region above the thick line

by a critical line separatri¥=g. The latter therefore defines Ke(T)= Ki(l— VBITIT— 1|22, (4.31)

a true critical temperature given by Teo

This leads afl; to a renormalized value of the elastic con-
(4.26 stantKR(Tf{) that is enhanced relative to the bare vakie
and with the universal ratio t@. given by (Fig. 5

p?g

1+ —2
V2K A2

Te=Teo
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1.05 | diverging extremely fast asT—T., with a=2
=(T¢/Teo— 1)~ 2 a nonuniversal constant.
1.025 \ Outside this critical region, defined by<—1, deep in the
1 | smooth phase, the flows are qualitatively different. At weak
Kr (T) | coupling,gp?<KA? (the only regime where the perturbative
Kk 0.975 : RG analysis is valig because7(¢) grows weakly (addi-
0.95 | tively),
|
0.925 ! G(€)~gel— ¢ (4.36
1 2 3 1 5 grows exponentially fast, reaching strong coupling at the
T/Teo low-T correlation Iengthfg~ae€9 given by
FIG. 5. Effective interface stiffness as a functionfT., for §g~§o(§o/\)”/(2_”) (4.37a
§=0.1. In the smooth phasKy scales with the system size, and is
effectively infinite. AtT=T , Kg takes the valukg(T2)=K(1 ~ATY (A& (4.37H
+p2g/2KA?) with a universal ratiqp?/8 to the transition tem-
peratureT .. Far aboveT ., K goes to its bare valué. The dashed KA\ Y@
line indicates the location off,, which here is given byT, ~A‘1( T) (4.379
:1.05rc0. p g

Ko(T* 2 On scales longer than the roughness correlation length,
M: L (4.32 the interface is smooth and is characterized by a strongly
Te 8’ ' downward renormalized value of the pinning strengghde-
termined by the value afinrescaledcouplingg(€ =In(éA))

consistent with the analogous result first discovered in th%t the scale of the correlation length. Near the transition

context of the XY model/! related to our problem by

duality*72 73 o gr~0(A§) 2<g, T—T, (4.383
Below T, the relative pinning strength runs off to strong

coupling and the interface is smooth on length scales longer ~g e 2al|1-TITV2 (4.38H

than the correlation length that we calculate below. Because

the RG flows are qualitatively very different near and awayDeep in the smooth phase, for weak pinning, we instead find

from the two separatricds= =7, the value of this important

length scale that enters the velocity-force characteristics de- gr~9(A§) " "<g, T<T, (4.393
pends crucially on the distance from. . In the critical re- 22— )
gion, defined by values of the bare parameters such that the ~9 g (4.390
weak-coupling(g) flow is near and roughly along either which for weakg is also substantially reduced by thermal
separatrix, fluctuations.

_ _ For strong pinning, fluctuations are unimportant and the

g(€)~=7(¢), (4333 correlation length reduces to the substantially shorter strong-

~ coupling value £&,=(K/gp?)*? determined by the bare
__9 ' (4.33H model parameters.
1+¢

B. Analysis of the equilibrium dynamics
it is easy to show that the RG “time¥, to reach strong

A We now turn our attention to the equilibriunk € A =0)
coupling is given by

dynamics of the sine-Gordon interface, characterized by an
additional model parameter, the friction coefficiepnt with

0, ~ % (4.343 the RG flow given by
c
dy 1,
5 AR SRS (4.40
= \/T—|| (4.340 Combining this with the recursion relation, E@.18b, we
Te|lT

find that the renormalized surface stiffnésg and friction

Consequently, the correlation length in this critical region isCo€fficientyg are related by

of familiar Kosterlitz-Thoules$KT) form™®

KR 1/2
. YR 7(?) : (4.41
(~aex (4.353
0 This together with the results of the preceding section, show
~a /11T ™ (4.35)  that the macroscopitinear mobility y* is finitely renor-
R
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malized in the rough phase>T. and displays a square-root 1.04 |

cusp approach tgg (TS )=y YTeo/Te) 2 asT— T, , 1 09 !

-1 -1+ 1 1/2 ! :

Yr (T)R’V'VR (Tc) 1+§\/6|T/TC_ 1| , (442 Yzl (T) 0.98 I'

7_1

0.96 !

similar to the results of Petschek and Zippelfufor the !

renormalized diffusion coefficient of th&Y model asT 0.94 |

—Tr. 0.92 :

The effective friction coefficienty(¢) at scalee’ can be N N

obtained by integrating the flow equati¢f.40), T/Teo

1(¢ FIG. 6. Effective linear mobilityy,;1 as a function ofT/T in
y(£)= YGXF{gJ‘ de’”gz(€’)77(€’)} (4.43  equilibrium (F=0) for §=0.1. Below the roughening temperature
0 at T., the mobility vanishes and the interface is pinneﬂ.l(T)
Since belowT ., at weak couplingg?(€) 7(€) grows with¢, shows a square-root cusp®s:> T, , and goes to its bare valye
we find that the effective friction coefficient runs off to in- for T>Tc. The dashed line indicates the locationTgf, which here
finity as ¢—o suggesting a vanishing of the macroscopic'S 9\Ven byTc=1.05Tc,.
linear mobility in the smooth phase. A more detailed analysis

of the equilibrium weak-coupling flow equations for lar§e Y= L (5.1)
gives pK '
are given by
|7l¢ -
eXFLa ’ ; dy 1 _, 1-f
y()=vy 2 (2 ) (4.44 -8 T 2" (5.2
F{ﬂg e (1+f9)
ex ———— T<T,.
16(2—7n) |’ .
Such diverging friction coefficient can be physically inter- d—€=(2— 7)3, (5.3
preted as activated creep dynamics over a pinning energy
be}rrier that asyrrlptotically grows with length scale, logarith- dyg 1 | — 24 5f243f4
mically for T—T, and as a power law foF <T,. ae=327 N2+ s Y (5.9
It is important to keep in mind that this growth of the (1+£9)

friction coefficienty(€) found in Eq.(4.44) extends only up -
to the strong-coupling length scale=ae’+ [&, for T a1 _,f(f?+5) 55
—T,, Eq.(4.35D, andg, for T<T,, Eq.(4.370], since it de 8" (14123’ :
was derived based on a renormalization-group approach that
is perturbative irg. In Sec. V, we will look in more detail at df 1 _ 1 f(3—12)
the physics on scales longer thgnbut we can already say at ai - 2f+ 57 N— 3 n’ng. (5.6
this point that(as we show in Sec. Meven in this strong- (1+19)

coupling regime the effective friction coefficient diverges. The most striking effect of nonequilibrium dynamics is the
Consequently, we find that the interface lingand in fact  preakdown of the FDT and as a result a nontrivial upward
any ordem) mobility exhibits a nonuniversal jump discon- renormalization(flow) of the effective “temperatureT(¢)

tinuity to zero across the roughening transitfi? as illus-  griven by the external force and the KPZ nonlinearity, remi-

trated in Fig. 6. niscent of nonequilibrium “heating” in randomly pinned
systems>°~’ Consequently, even faf<T,, for sufficiently
V. NONEQUILIBRIUM DYNAMICS strong drive the parameter-27(¢) determining the long-
AND THE VELOCITY-FORCE CHARACTERISTICS scale behavior of the periodic potential is driven negative,

leading to the irrelevance of the pinning potential. Hence, as
discussed in the Introduction, a finite external drive removes
We now turn to the full nonequilibrium problem, with the the qualitative distinction between the rough and smooth
aim of deriving the velocity-force characteristics of an inter-phases and  therefore  rounds the  roughening
face driven through a weak periodic potential, going beyondransition?849:5153
the failing (for T<T_) perturbative approach of Sec. lll. As Here, we instead focus on the creep regime, where these
long as the pinning remains weak, the long-scale physics gbarticular nonequilibrium effects are unimportant. In this
the driven interface is contained in the renormalization-groupweak-driving creep regime, we can ignore the KPZ nonlin-
equations, (4.21)—(4.26), which when rewritten in terms earity and the most important role &, as can be clearly
of the dimensionless variabl&s 7, f, and the new KPZ seen even at the level of perturbation theory, 835, and
coupling from the equation of motion, is to introduce a new length

A. Weak-coupling regime
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scale¢r~1/\F defined in Eq(3.24. Beyond this nonequi- 1
librium length scale, the effects of the pinning potential and  A(x,f)=—

)2F1(2,2— X,3—x,—f?)

its ability to renormalizey(¢) andK(¢) are suppressed, as it 2f*[2(27X

is averaged away on scales longer tiar(see, for example, 1

the RG flow equations above and analysis beldvence, for - 2f2(1_x)2|:1( 2.1-X,2—X,— _) (5.1
weak external driveF, the effective values of friction and 2

interface stiffness parameters are givemi§y ) andK(€g) 1 . :
renormalized by Gaussian equilibrium fluctuations up toV<Vrj|_ere[i2£ (zerl(;tii)]a ?;’lzﬁ;giﬁrgeﬁ:%tfuor;Ct;ﬁV\]fSﬁgtign
length scaleg-=e‘F. This therefore translates the strof c_ L€, A7 7 '

g & g A(—7/2f) of Eqg. (5.10 whenf—0 leads to the following

dependence of(f) into strongF dependence of the macro- _ . ; -
scopic mobilityy~L(F). Substitutingés, Eq. (3.24), inside expression for the long-scale inverse of nonlinear mobility

our equilibrium flow, Egs(4.44), and using TR
v(F)=Fly(£s) (5.7) yr(f)=yexf (F, /F)21- Ty, (5.12
ith
we immediately obtain the velocity-force characteristics, Eq.W !
(1.2), quoted in the Introduction. 2KAZ[  g4g? |\ Y21
This prediction forv (F), Eq.(1.2), applies as long as the F.(@,T)= o (16(2— 7])> . (6.13

relevantF probes length scaleg on which the equilibrium
weak-couplinglow equations remain valid. As discussed in in full agreement with earlier more qualitative discussion of
the preceding section, these flows in fact break down due tthe velocity-force characteristics in the intermediate regime
strong-coupling effectgwith g itself cutting off thermal of forcesF>F, , andF, consistent with the perturbative
Gaussian fluctuationdor length scales greater than Eqs.  result(3.22 for g<1 (Fig. 7).
(4.35h and (4.379. Hence, our predictions fow (F), Eq. As F is lowered belowr, , eventually the saturation of
(1.2), remain valid only as long ag<¢ (i.e., it is the ex-  y(¢) breaks down and the flow behavior changes dramati-
ternal force and not the periodic potential itself that cuts offcally as strong-coupling length scalést which our weak-
the Gaussian fluctuatiopswhich translates into the condi- coupling RG solution is invalidare probed. Studying the
tion F>F, , with the crossover forcg, given by Eq.(1.2) point at which this happens as a function of model param-
and in agreement with perturbation theory. eters, allows us to extract the crossover valu& of which

To see this weak-coupling phenomenology emerge diwe plot in Fig. 8. We find that there is a qualitative agree-
rectly from our full nonequilibrium flow equations, Egs. ment between the analytical prediction foy , Eq. (3.22,
(5.2—(5.6), we integrate these equations, witk-0 and ig-  and our numerical analysis.
noring the nonequilibrium flow of (€) (a valid approxima-
tion in theF—0 limit). We find for the renormalized friction B. Strong-coupling regime

coefficient the following intermediate result: . _ . .
The weak-coupling behavior found in the preceding sec-

Y, tion only extends up to the scade Eqgs.(4.35h and(4.370.
1(= f2(€) . ; ; 7
yr(f)=7yex _J de 7/(6)52(5)? . (5.8 Beyond this strong-coupling length, in the equilibrium
8Jo [1+f2(€)] model, the growth ofj(€) andy(¢) is cut off by the pinning

potential, and an approach nonperturbativé jnvhere pin-
ning is treated on equal footing with the elastic energy, is
required. In this strong-coupling regime Gaussian interface
fluctuations, considered so far, are strongly suppressed by
the pinning barrier that scales liKe? relative to the elastic

Since at low drive and weak coupling, well beldwy, 7(€),
K(¢£), and T(€) grow slowly andf(¢) and g(€¢) grow
strongly according to

T(£)=gel> 7", (5.93 energy.
ot Instead, at low temperature the fluctuations are dominated
f(£)~fe”, (5.9b by nontrivial saddle-point solutior(solitong of H, Eq.(2.1),

with model parameter&r, gr, yr renormalized by Gauss-

It is qune clear from Eq.(5.8) that as long as the weak- ian fluctuations on weak-coupling scales<¢é. The domi-
coupling flows remain valid, in the smooth phase the flows

are automatically cut off whef(¢) gets to be>1 leading to nant soliton eXC|_tat|on, illustrated in _prOJect|on in Fig. 9, cor-
. responds to a circular patch of radiRs> ¢ of a nearly flat
€ discussed above.

Substituting Eqs(5.9) into the expression ofs(f), Eq. interface moving over to a neighboring minimum of the pe-

(5.8, and integrating the resulting expression, we find riodic p_otentlal, with an energy cost that clearly grows lin-
early with R,
ye(F)=7 ex;{% 7§ A( - %f) (5.10 Esolitorl R)~P 9rER, (5.14
whereggr [Egs. (4.38 and (4.39] and ¢ [Egs. (4.35b and
with —7/2=(2— 7)/2=(1—-TI/T.g), andA(x,f) is the func-  (4.379] strongly depend on the proximity td.. At zero
tion given by drive, the barrier to such solitonic motion simply diverges
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4 \ L

2 /]
l 3 (

0 5 1(0 15 20 @ .
7 FIG. 9. Schematic representation of the motion of a driven in-
6 terface past the periodic pinning potentigd) WhenT>T., or T

' <T.andf>f, , the large fluctuations of the interface wash out the
5 pinning potential on large length scales and the interface moves
4 with a uniform velocity.(b) On the other hand, fof <T. and f

<f, , the fluctuations of the interface are small; as a result, most of
o3 the interface is pinned at a given minimum of the pinning potential,
and motion from one minimum to the next takes place through

2 soliton excitations.
1
to the effective free energy. Balancirir(R) against the
2.5 5 7.5 10 12.5 15 17.5 20 soliton energyEior(R), We find that solitons of size larger
’ than a critical radius
FIG. 7. Behavior of the pinning strengtl (top) and of the pgré) 1

friction coefficient y(€) (bottom) with length scale¢ for §=0.1, Rc%( R ) (5.16
T=0.8T,, andf=1.7374<10°5. Heref, =1.7373<10°°. 27d | F

are unstable. In th&—0 limit, thermal activation rate of
and linear mobility vanishes identically. A velocity-force solitons of sizeR.~ 1/F is quite clearly the limiting step for
characteristic in the weak driie<F, (i.e., é<&g) regime interface creep motion. We therefore find that the weak-
can be analyzed via scaling nucleation theé8ry this creep  coupling velocity-force characteristics, E@-.2), cross over,
regime, the interface is in near metastable equilibrium Wwith for F<F, , to that given by Eq(1.3) in the Introduction,
introducing a contribution with

(Pgré)®
Er(R)~~F =R’ (5.15 Fo~ 3 g (5.17

For vanishing temperature and strong bare pinning potential,

0.0008 our asymptotigfor F<F, ) result forv(F) reduces to that
found in Refs. 48 and 4. However, at larfec T, and weak

0.0006 bare pinningg, we predict a strong thermal renormalization
of the characteristic pinning energy

£. 0.
0.0004 p292a2_>p2g§§2 (51&
0.0002 by thermal fluctuations on scales smaller than
“~~-__ VI. DISCUSSION AND CONCLUSIONS
0.6 0.65 0.7 0'7T5/T°-8 0.85 0.9 0.95 In this paper, we have studied the creep dynamics of a
c0

two-dimensional interface driven through a periodic poten-
FIG. 8. Characteristic forcg, (T) as obtained from the numeri- tial. Using dynamic renormalization-group methods and
cal solution of the dynamic RG recursion relatidsslid line) and ~ matching to strong coupling, we have calculated the
from the perturbative estimate of E(B.22, (dashed ling forg  velocity-force characteristics across the interface roughening
=0.1. The curvef, (T) delimits two very different physical re- transition. Consistent with previous studies, we find a quali-
gimes. Above this curve, the interface moves with uniform velocity.tative change across the transition in the weak-drive
On the other hand, fof<f, (T), the interface moves through the velocity-force characteristics, with Ohmic transport for
nucleation of soliton excitations. >T. and a jump discontinuity in mobility across the transi-
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tion. For T<T., in the asymptotic creep regimé& ing how the standard momentum sK2IRG with hard
<F,(9g,T) and for strong bare coupling, where transport iscutoff®!can be applied to the static version of this problem
via soliton activation at all scales, we recover previouslybefore deriving the full dynamic equations at nonzero exter-
found results for the velocity-force characteristicéF). nal drive in Sec. 2.
However, for weak bare coupling and strong-thermal fluctua-
tions, we predict an intermediate drite>F, (g,T) nonlin- 1. Static RG
ear regime W'th. a continuously varyingith T) exponent, We decompose the field(r) in the Hamiltonian(2.1) into
which asymptotically crosses over to the strong-coupling rerigh and low wave-vector Components
sult with strongly thermally renormalized characteristic pin- 9 P
ning barrier. Unfortunately, because the characteristic force h(r)=h=<(r)+h>(r) (A1)
F.(9,T) that delineates between the intermediate drive re-
gime and the strong-coupling regime coincides with thesuch that
force marking the breakdown of the perturbative high- _
velocity expansion, we expect it to be difficult to observe this h=(r)= f h(q)e, (A2)
intermediate drive regime. q

The physical picture which emerges from the present
study complements previously made predictfomhich were - = jq-r
based on a more elementary perturbative approach, as well as h=(r)= f h(a)e®", (A3)
known results for the mobilif{f*°at zero external drive. On K
the experimental side, the above picture may shed some lighthere [ =3"°da/(27)? and [ =} ,da/(2m)? denote
on experiments such as those of Wetfal,>* who found that ~ integration in momentum space over the ranges|d
the growth velocityv of a surface of crystalline helium 4 is <A/b and A/b<|g|<A, respectively. In terms of these
strongly reduced af; from an Ohmic behaviov ~F for T high- and low-momentum fields, the equilibrium Hamil-
>T, to an extremely slow growth rate far<T,, a result tonianHg[h]=3/dr K(Vh)? can be written as the sum
which is usually explained in terms of an onset of creep
motion via solitonlike excitation® Holh]=Ho[h=]+He[h~].

An interesting and experimentally relevant generalizationye now want to integrate over the fast componkA(r).
of our results is a study of creep dynamics of a WO-1o this end, we rewrite the partition functiorZ
dimensional solid, driven through a one- or two—dlmensmnalzf[d hlexp(—BH) in the form (here 8= 1/T is the inverse
periodic potential, with applications to driven 2D colloidal temperaturp

crystals and vortices in superconducting films. Despite con-

siderably different geometry, in equilibrium these systems - - P
display a pinned-to-floating solid transition closely related to ZZJ [dh=][dh~]e" Aol 1= AHln] = AHy [N+ 7]
the roughening transition of 2D interfaces. However, differ-
ent interesting ingredients arise. Some of the most important
ones are the nonequilibrium convective-like terth§’®vec-

tor phonon displacement and concomitant possible impor-
tance of dislocations. Combined with the considerably inter-  _ [dh<]e—/3H0[h<]+,Bln z§<e—ﬁH1[h<+h>]> (A4)
esting behavior of the scalar sine-Gordon model studied 0=

here, we expect these to lead to even richer phenomenolo
We expect that studies of these will shed considerable lig
on numerous experiments and simulatiéhs.

:f [dh<]e*ﬁ’Ho[h<]j [dh>]eAHolh"1-AHalh=+h7]

ﬂz(ihere Zy =J[dh”]exp(=pBHJh”]), and where the sub-
script (0>) means that the average with respecthto is
performed with statistical weight exp@Hy[h"1)/Z, . The
term between angular brackets in E44) is then approxi-
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where (H3)S. denotes the second cumulant(H?2
—(H1)?))o~ . When reexponentiated, EGA5) leads to the
result
APPENDIX: STATIC MOMENTUM-SHELL

RENORMALIZATION GROUP (e ARy | = AHer, (A6)

In this appendix, we present technical details on the deriwith the effective Hamiltonian
vation of the renormalization-group recursion relations for
the driven sine-Gordon model i+l dimensions. For com- Herr=(H1)o= — i<H2>c ... (A7)
pleteness, we shall begin in Sec. 2 of this appendix by show- eff Vo= o1\ /0> '
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The averages in EA5) can be easily evaluated, with the Now, the renormalization oK involves the integral
resultg*48

- j drrZIC(r)=j drr2[eP’6 (N —17. (A15)
(Hy)o-=—ge” (2P°C “’)f drcogph=(r)], (A8)
Inserting the expansiofAl4) into this last expression, the

2 L 2a-p%6” 26> (11! first term gives a contributidi
<H1>8>=§g e PG (0)f dr dr/[eP67 (=) 1]

x (cogp[h=(r)+h=(r")]} f drr’G™(nN=-Vi6 (Alg-0  (AL6)
+cogp[h=(r)—h=(r")1}), (A9)  which vanishes identically, sind®” (g) has support only on

. . the shellA/b<g<A. Th dt i
WhereG>(r_rl):<h>(r)h>(r/)>0> is the elastic propaga- e snhe q € secona term gives

tor for fast fields(hereJ, is the zeroth-order Bessel functijon

1 T?p*inb
2 _ T4 2r >\ 12—
) | LI Tde | f drr *K(r)= 7 p jdrr [G™(n)] A
G (r—r )Zqu K—qZ:mJO(A“—T |) (A].O) (A17)
Thus, we obtain for the second cumul&ail3) the following

Given thatG~(0)=Td{/2wK, we see that the first-order
cumulant(A8), after the rescalingéA18) and (A19), leads
straightforwardly to the recursion relatiéf.183 for the pin-
ning strengthg. On the other hand, since the “kernel”

expression:

(HD§-  Tpog?de

fdrE[Vh<(r)]2
5 .

2T 8mK2A4
K(r)=[e"e (0-1] (AL1) . .
We now perform the following rescalings:
takes appreciable values only for small values of its argu-
ment, we see that the first term inside the integral in(B§) r=elr’, (A18)
will contribute higher harmonic terms-cog2ph(r)]) to the
effective Hamiltonian, and hence we shall discard this term h=(r)=eX‘h(r"), (A19)
as irrelevant. In the second term, we shall make the approxi-
mation S0 as to restore the ultraviolet cutoff backAo Because the
pinning potential is a periodic function, it is convenidat-
cogp[h=(r)—h=(r")]} though not necessaryo set the arbitrary field dimensiop
to zero, thereby preserving the perioér/» of the original
~1— %pz[h<(r)—h<(r’)]2 problem under RG transformations. Under such a transfor-

mation, the resulting effective Hamiltonian can be cast into
its original form with effectivel -dependent parametefg ()

1
=1=5pAr—r")o(r=r")gdh=(agh=(r), (A12) andg(¢) such that

—To2/4n
where, in going from the first to the second line, we made g(€)=gelz~ TP (A203)
use of the Taylor expansion
h<(r)—h=<(r")=(r—r"),d,h=(r) K(€)=K+Tp—692d€ (A20Db)
o ' 8mK2AY
Inserting Eq.(A12) back into Eq.(A9), we obtain the fol- o _
lowing approximation to the second cumuldnte here use O, in differential form
the symbol= to indicate that we retain only the term cor- q T2
recting the stiffnes): ag_(,_'P
dc a7k )9 (A213
1 26>
2\¢ — _ T 12~2,—p“G7(0) < 2
<Hl>0> 8p g-e fdr[Vh (r)] dK_ Tpegg oo
d€  gmKk2A4 (A21b)

der’(r—r')ZIC(r—r’). (A13)
Since G™«d¢=Inb, we can expand the exponential in a 2. Dynamic RG
Taylor series inG~, We now turn our attention to the derivation of the dy-
L namic RG flow equationgt.16a—(4.161) for the driven sine-
D267 (1—1) 1 e 2> p /) d o d 2 Gordon model. As we did in the static case, we define the
© 1=p"Gr(r-r )+2! PLG(r=rI% following low- and high-momentum components™(r,t)
(A14)  andh”(r,t):
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< _ [~ i(q-1—wt) > TAZd¢
us(r,t)=| h(quwe : (A22) ASA(yT):fdrdtu<(r,t) , (A27)
Q. 87K
> .
u=(r,t)= f h(q,w)e' @b, (A23)  having been repeatedly derived in the literatth®“°Taking
9. the Gaussian averages in E&25) leads to the following

. ~ _ _l/@2\Cc .
where, here and in what follows,, , on integrals stands for €XPression of the second cumulaii$y[T,u]= —3(Sy)o- :

f ddq d_Lt) AS, ~<,1— 1 2 ZJd d fd "d 1< “<(r! t’'
(27r)d 27" ol U U]——Ep g rdt | dr'dt’a=~(r,0)u~(r’,t")
and the superscripts and < indicate integration over the XK(r—r',t—t")

high- (A/b<g<A) and low- (0<q<A) momentum re-
gions, respectively. Using the fact tha{q,w)=u~(q, )
+u”(g,w), it is not difficult to verify that the free pa®, of
the action decomposes into two diagonal pieSgsand Sy

pF
xcos{ plus(r,t)—u=(r',t")]+ 7(t—t’)}

depending only oni™(q,w) andu”(q, o), respectively, - %p3ng drdtf dr'dt'iti=(r,t)
So[u,U]=S[u=, U ]+ Sy[u”, T~ ]. (A24) XI(r—r1" t—t')
As we did in the static RG, in order to be able to integrate

out the fast component of the fiela(r,t), we rewrite the X sin
generating functionag in the form

plu=(r,t)—u~(r',t")]+ p—:(t—t’)}.
(A28)

2= [ tauirau) )
Here the dynamic kernel§(r,t) and/C(r,t) are given by
Xe—So[u<,n<]+In Zﬁ(e—sl[u<+u>,u<+u>]>g

where Z;=[[du”][dU"] exp(—S[u”,0"]), and where

~ 1
K(r,t)=={1—coslip?G, (r,t)]} —sinH p?G; (r,1)],
(---)o denotes statistical averaging with statistical weight (r:H 2{ ip"Go (0]} f1p"Go(r.t)]

e~Solu"T7] The perturbative correction to the dynamic ac- (A29)
tion can therefore be expressed in terms of a cumulant ex-

ansion
g K(r,ty=e WAPCTOOR (1 1), (A30)

1
=Sy =1— + (St - - i ;
<e >0> 1 <Sl>0> 2<Sl>0> (A25) where Rg(r,t)=f;we"(q'r"”t)/(|yw—i— Kq2) and C;(r,t)
o , , i =([u”(r,t)—u~(0,0)]%) are the response and correlation
Reexponentiation of this expansion allows us to define thg,,tions respectively, and where the correla@g (r,t)

effective action =(u~(r,t)u”(0,0))o~ is given by

1

Serd U.T]=So+ (St~ 5([SI=({S1)g) o=+, co4q-1— at]
(A26) Go (r,t)= 2nyq o R IR (A31)
from which we can derive dynamic RG flows for the param-
eters of the original equation of motion. This procedure, e now decompose the sine and cosine in the integrand on
first order in the pinning strengtyy has already been shown - (s of Eq(A28) according to
in the text. Here we are therefore only going to consider the
second-order correction to the original actiBnin fact, it
turns out® that the only perturbative corrections $to sec- pF
ond order in perturbation theory come from the cumulants COﬁ{ p(uc—ul)+ —(t—t')}
—3(SH)o- and —3(Sf)o- , i.e., we need not consider the 4
cross term—(S;S, )0~ which does not provide any perturba- ) , F ,
tive corrections to the action. In the following, we shall only =sinp(u<—u-)]co 7(t—t )
show how we compute the perturbativze corrections arising

g 1 ; =
o e berroen - v eme o s
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sin p(u-—u’.)+ T(t—t’)

, pF
=Slf{p(u<—u'<)]COS{7(t—t’)}

PHYSICAL REVIEW B 67, 115412 (2003
1
AS(K)= Zp“ng drdtiti=~(r,t)[ — V2u=(r,t)]

xf dr'dt’ (r—r")2K(r—r',t—t")

F pF
+cogp(u-—u’)]sin %(t—t’)} (A32b) XCOS{7('E—I')}, (A37¢)
T ’ ’ ’ ’ : 1
The kernelsC(r—r',t—t") and C(r —r’,t—t’) being short AS()\)=—p5ng drdtit=(r,t){—[Vu=(r,H)]3}
ranged both in space and time, we see that the major contri- 4
bution to the actiorfA28) comes from the regions=r’ and
t=t’ where [u=(r,t)—u=(r’,t’)] is small. We therefore xf dr/dt’ (r—r")2K(r—r't—t")
shall approximate
_|pF )
Sin{p[u<(r,t)—u<(r’,t')]}2p[u<(r,t)—u<(r’,t')], X SsIin 7(t—t ) , (A37d)
(A33)
1
— —n3n2 i< I Ty ! b4t
cog pLu=(r,t) —u=(r’ t"H]} AS(F)—Zp g fdrdtlu (r,t)f dr’dt’'K(r—r't—t")
1 21 < <(p! +71\72 pF
=1-SpTur(r)—u=(r',th]5 (A34) X Si 7(t—t’) . (A37e)

and
us(r)—us(r',t)=(t—t") gu=+(r—r'), d,u~

1
+ E(r—r )a(T—1") gdadgu™,

Here we pause a moment to indicate that if we use the com-
plete expression of the kerngl(r,t)

K(r,t)=e WP DR (1 1) (A38)

(A35) into Eq. (A37¢) and letb—«, then we obtain from Eq.

(A37e) above the following expression for the friction force
F¢, due to the pinning potential to ordgr:

upon which we obtain the following expression for the sec-

.1 2\C . 1 ’ ’
ond cumulant-3(S7)g : Ffrzipsng dr’dt’ e (12 p*Co(r—r",t-t")
AST __E 82 [ pF
S[U,u]= = 5 (ST, u] XRo(r—r',t—t')si 7(t—t') , (A39)
=AS(yT)+AS(y) +AS(K)+AS(N) +AS(F), which leads directly to the perturbative res(®5) of the

(A36)  text.

where
1
AS(yT)=AS,(yT)+ EngZJ drdtt=(r,t)u=~(r,t)

~ pF
xf dr’dt’lC(r—r’,t—t’)cos{7(t—t’)},

We now go back to our dynamic RG recursion relations
(A379—(A37e). In the dynamic kernels of Eq$A29) and
(A30), we expand

1

K(r,t)=—p%G, (r,t)— 7

p[Go(r,1)]% (A40a)

1
K(r,t)=Rg (r,t)— 5pzcg(r,t)Rg(r,t), (A40b)

(A373)

AS(y)= %p“ng drdtit=(r,t) [gu=(r,t)]

xf dr'dt’ (t—t") C(r—r',t—t")

and keep only the second téffron the rhs of the above
equationgthe first term gives a vanishing contribution, for
reasons which are identical to those explained after Eq.
(A16) of Sec. 1. Now, from Egs.(A37b)—(A37¢e), we see
that the perturbative corrections to the bare parameters of the
theory are given by the flows

d(yT) TAZ

F
PF — = +p2g2f drdtl?(r,t)cos{p—t),
XCO{ > (t—t )}, (A37b) af¢ pert 87K3 v
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dy _1 ) pF
a0 —Ep g Jdrdtth(r,t)cos(Tt ,
pert
R —_ n4n2 2 bl
ae 2P9 Jdrdtr K(r,t)co{ 5 t),
pert
_ — _ n5n2 2 P
de 2P Jdrdtr IC(r,t)sm( 5 t),
pert
- —_n3n2 M
ae 2p g jdr dtIC(r,t)sm( 5 t).
pert
Using Egs.(A40a) and(A40b), the above recursion relations
become
d( T)= LS TP'e" (yT), (A4la
de "V gak?  16mKeAG 14 £2]
dy Tp°g* 1-f2
de , A41b
dl "~ 167K3A% (141227 (Ad1D
dg Tp?
@‘( T Ak 9 (Ad1o)
dK  Tp°g® 2-3f°—f*
S (A41d)

Al 16mK2A% (1+£2)3

PHYSICAL REVIEW B7, 115412 (2003

dn Tp'g? f(f2+5)
— = , (Ad41e
df  16mK2A% (1+f2)3

dF ATAZ2 Tp°g%2 f

ar _ P9 (A41f)

d€  4mK  ggK2AZ 1412

On the other hand, we know from Eq#.123—(4.13 that
the rescaling of fields and space and time variables produces
the recursion relations

d(yT) _d)/ _dK _d)\ B
d¢ Tde| . de| T de :
resc resc resc resc
dF
—| =2F. (A41g)

resc

Using the recursion relations above along with the fact that,
in a renormalization-group transformation,

d d
de de

K
de¢

pert

, (A42)

resc

leads directly to Eqs(4.16b—(4.16% of the text.
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even before a continuum limit is reached. Consequently, at con-

temperature and therefore survive in thie-0 limit. Clearly,
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such terms cannot contribute to fluctuation-driven renormaliza- exponent 1/2 o€ and the universal jump &t; of the ratioK/T

tion of model parameters. However, ndarthe only universal unchanged. It is for this reason that conceptually erroneous cal-
part of the correction t& is its quadratic dependence gnwith culations can and have gotten away with reproducing the usual
the coefficient ofg? only affecting the nonuniversal quantities sine-GordonKT) phenomenology.

such asa in Eq. (4.35h, but leaving universal details, like the 83T, Nattermann and L.-H. Tang, Phys. Rev4B, 7156(1992.
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