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Impact of pure dephasing on the nonlinear optical response of single quantum dots
and dot ensembles

A. Vagov, V. M. Axt, and T. Kuhn
Institut für Festkörpertheorie, Westfa¨lische-Wilhelms Universita¨t, Wilhelm-Klemm-Strasse 10, 48149 Mu¨nster, Germany

~Received 6 December 2002; published 28 March 2003!

The nonlinear optical response to ultrafast laser pulses of semiconductor quantum dots coupled to acoustic
phonons is discussed on the basis of closed-form analytical results valid for dots in the strong confinement
regime. General properties of four-wave-mixing~FWM! signals are derived from the analytical formulas.
Numerical results are presented for two-pulse FWM signals from single quantum dots and from dot ensembles
in the time and the frequency domains. Interestingly, the initial decay time of the signal is found to depend
nonmonotonously on temperature and delay time. In general, the phonon coupling leads to a modulated decay
of the time domain optical response which is neither exponential nor Gaussian. The strength of the modulations
is influenced by inhomogeneous broadening and temperature as well as by the relative localization lengths of
electrons and holes. FWM spectra of single dots evolve from asymmetric functions for coinciding pulses into
symmetric spectra for large delays. Nonlinear signals are compared with linear signals revealing striking
similarities but also significant differences, e.g., concerning the depth of the initial drop.
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I. INTRODUCTION

The analysis of coherent nonlinear optical signals emit
after ultrafast laser excitation has contributed considerabl
our present understanding of wide classes of materials. W
regard to semiconductor quantum dots, however, such
periments are bothered by rather low signal intensities.
spite these difficulties, there are a number of recent rep
on experiments demonstrating the manipulation of quan
dots by coherent optical laser pulses.1–7 Particularly promis-
ing in view of potential applications of quantum dots f
quantum information processing8–16 is the growing number
of demonstrations of Rabi rotations under varying expe
mental conditions.17–22 Coherent nonlinear optical measur
ments also gave valuable insight into the decoherence p
erties of quantum dots which are of prime importance
any optoelectronic device and especially for realizations
quantum computational operations. In particular, four-wa
mixing ~FWM! experiments3,23–26 and measurements o
three-pulse photon echos7 or accumulated photon echos27,28

have been most useful for the quantification of the opti
decoherence of quantum dots. For some systems ultra
dephasing times of the order of hundreds of picoseco
have been reported.3,26 Prior to such a slow long-time deca
a rather rapid initial decay is observed typically on a pic
second timescale, which leads to a significant drop of
signal at elevated temperatures. It has been concluded fr
number of experimental and theoretical studies that in qu
tum dots the so-calledpure dephasinginduced by the carrier-
phonon coupling is a major source for this initial optic
decoherence.29–33 Pure dephasing refers to the decohere
caused by those parts of the electron-phonon coupling
do not change the electronic occupation numbers.
higher-dimensional systems these parts yield only small
rections toreal phonon transitions which lead to electron
redistributions and thus to energy relaxation. However, r
transitions are strongly suppressed in quantum dots du
0163-1829/2003/67~11!/115338~16!/$20.00 67 1153
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the discrete electronic energy structure, a phenomenon c
monly refered to as aphonon bottleneck.34,35Although there
is considerable theoretical work related to coupled d
phonon systems29,32,36–44little is known about the nonlinea
optical response of such systems. In particular, with resp
to dephasing most studies concentrated on estimations o
resulting linewidth29,32,36,37 or the determination of line
shapes of linear absorption33 or emission30 spectra.

In the present paper we discuss in detail the effects
pure dephasing on FWM signals emitted from single qu
tum dots as well as from dot ensembles. Our analysis
based on a theoretical approach which formulates the
namics of the coupled carrier-phonon system in terms
generating functions for phonon-assisted dens
matrices.33,45–47 By using this formalism we have recentl
been able to derive in closed form the nonlinear optical
sponse to an arbitrary sequence of ultrafast laser pulse
dots with strongly confined carriers coupled to an arbitra
number of phonon modes.48 It is worth noting that within our
model the results are nonperturbative with respect to both
carrier-phonon coupling as well as the carrier-light couplin
Furthermore, the general form of the solution has been
rived without making any assumptions about the phonon
persion, the wave-vector dependence of the carrier-pho
coupling, or the form of the carrier wave functions. In ord
to illustrate typical properties of the nonlinear optical r
sponse predicted by our general formulas we consider in
present paper a prototype model for a spherical GaAs qu
tum dot coupled to bulk acoustic phonons via the deform
tion potential. Using this model we calculate time and fr
quency domain two-pulse FWM signals emitted from sing
dots as well as from dot ensembles. We analyze the resu
line shapes for varying temperatures, delay times, and lo
ization lengths of electrons and holes.

FWM experiments are often used to extract homogene
lifetimes, which in linear experiments are masked by inh
mogeneous broadening. Therefore, it is also of interes
discuss in detail the relation between the linear response
©2003 The American Physical Society38-1
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single dot which is representative for an exclusively hom
geneously broadened system and FWM signals emitted f
dot ensembles. Here, we consider an ensemble of dots
varying sizes and discuss the effects caused by the co
sponding fluctuations of the carrier-phonon couplings a
the electronic energies.

Many features of our numerical results can be related
analytical properties of the closed-form solution. A discu
sion of these properties reveals that in most cases the q
tative behavior can be derived without knowing details of
electronic wave functions. These properties are therefore
neric features which do not depend on the simplifying
sumptions made in our specific numerical implementatio

The paper is organized as follows: we start in Sec. II
defining our model. In Sec. III we then relate the gene
solution of Ref. 48 to our specific situation and give expli
formulas for all signals of interest that are discussed in
present paper. In Secs. IV A and IV B we analytically esta
lish a number of general properties of our solution in t
time and frequency domains. This analysis is continued
Sec. IV C where we relate features of the optical respons
some basic properties of the form factor for the carri
phonon coupling. The remaining sections are devoted to
merical investigations. We start in Sec. V A by analyzi
FWM signals from single quantum dots. In Sec. V B t
discussion is extended to dot ensembles. Here, a det
comparison with the linear response from a single dot is a
included. Section V C deals with a specific feature of o
solution, namely, that even a smooth continuum of acou
phonons will in general lead to nonmonotonous modulati
of the time domain response. Finally, we present conclud
remarks.

II. MODEL

For semiconductor quantum dots in the limit of stro
electronic confinement it is justified to concentrate on o
two electronic states representing the uppermost valence
the lowest conduction-band state, respectively. In this c
the pertinent Hamiltonian for the analysis of phonon-induc
pure dephasing can be written as33,48

H5\Vc†c2~MEc†d†1M* E* dc!1(
j

\vjbj
†bj

1(
j

\@~gj
ebj1gj

e* bj
†!c†c2~gj

hbj1gj
h* bj

†!d†d#,

~1!

wherec, d, and bj are the annihilation operators for ele
trons, holes, and phonons, respectively;c†, d†, and bj

† are
the corresponding creation operators; andgj

e,h are phonon
coupling constants. Here, the indexj is used to label the
phonon modes and\vj are the corresponding phonon ene
gies.M is the component of the dipole moment in the dire
tion of the laser field polarization andE(t) denotes the am
plitude of the laser field. Finally,V is the energy of an
11533
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electron occupying a conduction-band state confined to
dot. The energy of the uppermost hole state is taken as
zero of energy.

Obviously, the model contains two well-known limitin
cases: when the electron-phonon coupling is disregarded
Hamiltonian generating theoptical Bloch equations49 is re-
covered; if on the other hand the carrier-light-field coupli
is absent then the so-calledindependent boson modelis
approached,50 which has also been extensively studied.50–53

In order to treat the carrier-phonon as well as the carrier-li
interactions nonperturbatively three generating functions
phonon-assisted density matrices have been introduce
Ref. 33:

Y~aj ,bj ,t !5^dce(jajbj
†
e(jbjbj&,

C~aj ,bj ,t !5^c†ce(jajbj
†
e(jbjbj&,

F~aj ,bj ,t !5^e(jajbj
†
e(jbjbj&,

where aj and bj are complex valued parameters and t
brackets denote the quantum-mechanical averaging
electron and phonon degrees of freedom. All component
the electronic and phononic density matrices and
electron-phonon correlation functions can be obtained fr
the values of the functionsY, C, and F at aj5bj50 or
from their derivatives with respect toaj ,bj taken at this
point.

The dynamics defined by the model Eq.~1! is completely
determined by the time evolution of these generating fu
tions which is governed by a closed set of coupled par
differential equations. General nonperturbative analytical
lutions for the dymamics ofY, C, andF have been obtained
for the important case of an excitation by an arbitrary
quence of deltalike light pulses.48 In the derivation of these
solutions no assumptions have been made about the for
the phonon coupling constantsgj

e(h) , the phonon dispersion
vj , or the electron and hole wave functions. In the pres
paper we use a model relevant for a prototype GaAs quan
dot coupled to bulk phonons. For such a system it has b
found in Ref. 33 that the deformation potential coupling
longitudinal-acoustic~LA ! phonons has the strongest impa
on the optical properties, in particular on the decoheren
Therefore, it is justified to concentrate here exclusively
this mechanism and label the phonons from now on by th
wave vectorq. The corresponding carrier-phonon couplin
constants are then given by

gq
e(h)5Ce(h)~q!

qDe(h)

A2Vr\vq

, ~2!

wherer is the density of the material,vq is the acoustic-
phonon dispersion,V is the normalization volume, andDe(h)

is the deformation-potential constant for electrons~holes!.
Finally, we have to specify the wave functions for electro
and holes which determine the carrier form factorCe(h)(q).
For simplicity we use the same spherical dot model that
been applied for calculations in Ref. 48, resulting in a carr
form factor given by
8-2
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Ce(h)~q!5expF2
q2ae(h)

2

4 G , ~3!

whereae(h) is the localization length of the trapped electr
~hole!. Unless otherwise stated we setae54 nm and use a
localization ratior 5ah /ae50.87. This ratio corresponds t
the assumption that the confinement potentials have the s
shape for electrons and holes. The ratior then follows from
the mass ratio.33

III. FWM SIGNALS FROM A SINGLE DOT AND DOT
ENSEMBLES

FWM signals are important manifestions of the coher
nonlinear optical response of the system. Unlike signals fr
higher-dimensional semiconductor systems, coherent sig
from a single quantum dot are usually not selectively emit
in a phase-matching direction. A FWM signal from a dot
therefore not related to a corresponding direction selectio
the emitted signal. Typical experiments use heterodyne
tection techniques,3,25 which by means of suitable low
frequency modulations essentially filter out the compon
PFWM of the nonlinear polarization that depends on t
phasesw1 andw2 of the two exciting pulses asei (2w22w1). It
is worth noting that the measured signal is proportional
the amplitudeuPFWMu due to the heterodyne detection.

Theoretically, any component of the linear or nonline
optical response is determined by the polarizationP which is
related to the transition densityY by

P~ t !5M* Y~aq ,bq ,t !uaq5bq50 . ~4!

In particular, the degenerate FWM signal can be extrac
from the polarizationP, created by two consecutive ligh
pulses arriving at timest152t andt250. Within our model
the exact result for two delta-shaped pulses has been de
in Ref. 48. It reads

PFWM~ t,t!52
i

2
Q~ t !Q~t!M* sin2S f 2

2 D sin~ f 1!

3ei (2w22w1)e2 i V̄(t2t)GFWM~ t,t!, ~5!

wheref 1,2 are the pulse areas of the two light pulses, and
envelope functionGFWM(t,t) is given by

GFWM~ t,t!5expF(
q

ugqu2
„i $2 sin~vqt!2sin@vq~ t1t!#%

2~112Nq!$322 cos~vqt!22 cos~vqt !

1cos@vq~ t1t!#%…G . ~6!

Here, Nq5@exp(\vq /kBT)21#21 denotes the Bose distribu
tion of the phonons at temperatureT and the theta function
Q(t) is 1 for t.0 and 0 otherwise. Furthermore, we ha
used the abbreviations

V̄5V2(
q

ugqu2vq , gq5
gq

e2gq
h

vq
~7!
11533
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for the polaron shifted exciton frequencyV̄ and the dimen-
sionless phonon couplinggq . The factore2 i V̄(t2t) in Eq. ~5!
sets the overall scale for the free oscillations of the indu
polarization, while all other information about the tempor
behavior of the signal is contained in the dimensionless fu
tion GFWM(t,t).

The expression Eq.~5! represents the FWM signal emi
ted from a single dot. Experiments, however, are much ea
to perform on samples containing few thousands of dots.
main difference between such dot ensembles and a single
is that the parameters that characterize the dots may stro
fluctuate, and a meaningful comparison with such exp
ments requires an ensemble averaging of Eq.~5!. The effect
of these fluctuations on the optical signal is commonly
ferred to asinhomogeneous broadening.

We will assume that there are no direct couplings betw
different dots in the ensemble and that the wave function
all electrons and holes can be described by Gaussians. T
Eq. ~5! represents the contribution of a given dot in the e
semble and the response of the ensemble is determine
averaging over the dot parameters. This leaves four po
tially fluctuating dot parameters in the model: the energy
the excitonic state,V; the localization lengths,ae and ah ;
and the laser light coupling constantM. Fluctuations ofM
lead to a renormalization of the amplitude of the signal a
when the signals are recorded as functions of the pulse
tensities a damping of the Rabi oscillations is obtained,
effect that has been studied, e.g., in Refs. 20 and 21 and
will not be pursued here.

Little is known about the way in which the remainin
parameters are distributed in typical ensembles. In this pa
the analysis of ensemble-averaged signals is based on
following two assumptions:~i! the confinement potential is
given by the same parabola for electrons and holes, resu
in a localization ratior determined by the mass ratio. Fo
GaAs parameters we thus haver 50.87; ~ii ! the fluctuations
of the energies are exclusively due to the dot-size-depen
changes of the confinement energies defined by the th
dimensional harmonic confinement potential, i.e., we assu
that

\V̄5\V̄01\V̄~ae!5\V̄01
3

2

\2

ae
2 S 1

me
1

1

r 2mh
D , ~8!

where \V̄0 is not fluctuating from dot to dot. Using th
above two assumptions, the fluctuations of the energies
the localization lengthsae andah are correlated and can b
parametrized by a single quantity. We will use the electr
localization lengthae to uniquely characterize the differen
dots within the ensemble and assume a Gaussian distribu
of ae with mean valueāe and deviationsa . The ensemble-
averaged polarization is obtained for this model by substi
ing in Eq. ~5! the function

GFWM
ens ~ t,t!ªE daeGFWM~ t,t!

3A0 expF2
~ae2āe!

2

2sa
2

2 i V̄~ae!~ t2t!G
~9!
8-3
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for GFWM(t,t) and replacing the polaron shifted exciton fr
quencyV̄, occurring in the factore2 i V̄(t2t), by the nonfluc-
tuating partV̄0. The factorA0 in Eq. ~9! ensures the normal
ization of the size distribution. Physically it is clear that do
of arbitrarily small sizes cannot exist. This implies that t
integration in Eq.~9! must have a lower cutoff at a finit
value amin . For all calculations we have set the cutoff
amin51 nm and used a mean value ofāe54 nm. The local-
ization ratio was kept atr 50.87.

It should be noted that in addition to the energy the fac
GFWM(t,t) is affected by the size fluctuations because
carrier wave functions and therefore the form factors in E
~3!, which determine the strength of the carrier-phonon c
pling, depend on the localization lengthsae andah .

For large energy fluctuations the averaging over the os
lating factor exp@2iV̄(ae)(t2t)# in Eq. ~9! produces a sharp
echo peak centered att5t, which has also been observed
recent FWM experiments on dot ensembles.3 While the oc-
currence of a sharp echo primarily reflects the presenc
strong inhomogeneous broadening, the corresponding
integral still contains valuable information about the hom
geneous decay.54 In addition to the time resolved signals d
fined so far it is, therefore, also interesting to study the tim
integrated response which is measured in many experime
Usually, time-integrated amplitudes are recorded, which
determined by the functions

G̃FWM
ens ~t!ªE

0

`

uGFWM
ens ~ t,t!udt. ~10!

To facilitate the comparison of the delay-time behavior
G̃FWM

ens (t) with the behavior of the dimensionless functio
GFWM(t,t) it is convenient to normalize the former accor
ing to

ḠFWM
ens ~t!ªG̃FWM

ens ~t!/G̃FWM
ens ~t50!. ~11!

Besides the discussion of the above-defined signal
turns out to be instructive to compare nonlinear optical s
nals with the linear response. The latter is fully determin
by the linear polarization induced by a single delta-sha
pulse. For a single dot excited by a delta pulse att150 it
reads33,48

Plin~ t !5
i

2
Q~ t !M* f 1eiw1e2 i V̄tGlin~ t !, ~12!

where

Glin~ t !5expS 2(
q

ugqu2$ i sin~vqt !

1~112Nq!@12cos~vqt !#% D . ~13!

First, we note that apart from constant prefactors the sin
dot FWM signal, Eq.~5!, in the limit t→0 coincides with
the linear signal, Eq.~12!. Obviously, for other values oft
the envelope functionGlin(t) differs from its nonlinear coun-
11533
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terpart. In order to get more insight into the relation betwe
linear and nonlinear signals it is helpful to consider as
reference a model with phenomenological damping c
stants. In this case the time-integrated FWM amplitude o
system with infinitely strong inhomogeneous broaden
would, apart from constant prefactors, exhibit the same te
poral behavior as the absolute square of the lin
polarization.54 Of course, the time argument corresponds
the delay time in the former case and to the real time in
latter case. In both cases delta pulse excitation is assum
Therefore, a meaningful comparison is obtained whenuGlinu2

is compared with a functionḠ` representing the FWM en
velope of an ensemble with infinitely large energy fluctu
tions. For this comparison we will disregard the effects
fluctuations of the carrier-phonon coupling and concentr
exclusively on the energy fluctuations. It is clear that t
limit of an infinitely broadened ensemble is an idealizati
which is expected to hold for a system with a finite broa
ening that is much larger than the typical spectral width o
single dot in the ensemble. We will come back to this po
later when we discuss the transition from a finite to an in
nite inhomogeneous broadening. In the latter case analy
results are much easier to obtain. In particular, the echo
cussed above evolves into a delta peak when the broade
is large and, therefore, the evaluation of the time integra
Eq. ~10! yields

Ḡ`~t!5uGFWM~t,t!u. ~14!

Using Eq.~6! we find explicitly

Ḡ`~t!5expH 22(
q

ugqu2~112Nq!@12cos~vqt!#2J .

~15!

Comparing Eq.~13! with Eq. ~15! we find that the expression
for Ḡ` is related to uGlinu2 by replacing the factor@1
2cos(vqt)# in the definition of uGlinu2 by the term @1
2cos(vqt)#2.

IV. GENERAL PROPERTIES

The optical signals defined above possess a numbe
generic properties that can be observed for a broad clas
models for the phonon coupling constants. With respec
these properties the numerical results presented below
therefore, representative for a wide class of dot systems
are not restricted to the simplified model used in the spec
evaluation. Some of these generic properties follow fro
asymptotic expansions of the corresponding analytical
mulas and thus are observed for any choice of the coup
constants. Others are related to elementary features ch
terizing the form factor for a given dot structure. We consid
the former first.

A. Asymptotic behavior

The FWM envelopeGFWM(t,t) for a single quantum do
defined in Eq.~6! is typically a decaying function oft pro-
vided thatgq is a smooth function without singularities ex
8-4
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cept for a possible integrable singularity atq50 and pro-
vided that the phonon spectrumvq is a smooth continuum
For acoustic phonons coupled by the deformation poten
this is usually satisfied. Phonon bulk modes may be take
a prototype for a typical dependence ofgq and vq on the
wave vectorq. In this case the coupling is given by Eq.~2!
and a linear dispersion can be used for all modes that
effectively coupled to the carriers. In the following we a
sumevq'cq for all relevant modes.

The real-time decay ofGFWM(t,t) confirms the earlier
observation33 that LA phonons destroy the optical coheren
of the exciton. Indeed, despite the absence of phon
mediated carrier level transitions a decay of both the lin
polarization and the FWM signal is found. However, as e
plained in Ref. 33 it is the asymptotic behavior ofugqu2 for
vanishingq which determines whether or not the polarizati
decays to zero in the long-time limit. For an electrically ne
tral exciton,ugqu2 is expected to have a singularity atq50
not stronger thanugqu2}1/q and thus according to the con
siderations in Ref. 33 the polarization does not decay to z
in this case; instead a finite value is approached fort→`. If
there is no further singularity inugqu2 the corresponding lim-
iting value of Eq.~6! can be derived according to the proc
dure outlined in the Appendix resulting in

GFWM~`,t!5expS (
q

ugqu2$2i sin~vqt!

2~112Nq!@322 cos~vqt!#% D . ~16!

This is in general a decreasing function of temperature
typically it also decreases with increasing delay time. E
panding the Bose factor (112Nq) in the high-temperature
limit, i.e., (112Nq)'2kBT/(\cq), it is seen from Eq.~16!
that the absolute value ofGFWM(`,t) decreases exponen
tially with temperature according to

uGFWM~`,t!u →
T→`

expH 2
2kBT

\c (
q

ugqu2

q
@322 cos~vqt!#J .

~17!

Equation ~17! implies that the exponential temperatu
dependence of the limiting value of the optical response
generic property which is found whenever the carrier-phon
couplings ugqu2 are smooth continuous functions; only th
value of the exponential decay constant is model depend

Similar to thet→` limit, Eq. ~6! has a finite asymptotic
value also in the limitt→`. It is worthwhile to note that
this value coincides with the absolute value of Eq.~16!,

GFWM~ t,`!5uGFWM~`,t !u. ~18!

Equation ~18! reveals another interesting generic proper
the FWM envelope of a single dot becomes real at la
delay times.

Also the time-integrated FWM amplitude of an infinite
strong inhomogeneously broadened dot ensemble, Eq.~15!,
yields a finite value fort→` given by ~cf. also the deriva-
tion in the Appendix!
11533
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Ḡ`~t→`!5expH 23(
q

ugqu2~112Nq!J , ~19!

which declines exponentially in the high-temperature limit

Ḡ`~t→`! →
T→`

expH 2
6kBT

c\ (
q

ugqu2

q J . ~20!

As mentioned earlier, a dephasing model with phenome
logical decay constants suggests thatḠ` should behave simi-
larly to uGlinu2. However, from Eq.~13! we find asymptoti-
cally for t→` that

uGlin~ t→`!u25expH 22(
q

ugqu2~112Nq!J . ~21!

Comparing Eq.~21! with the corresponding result forḠ` in
Eq. ~19! we conclude that using the linear response, Eq.~13!,
to estimate the behavior of the time-integrated FWM sig
Ḡ` ~among other things! systematically overstates the limi
ing value of the signal amplitude, especially at large te
peratures.

The temperature also affects the initial decay rate of
signal which is the characteristic time needed for the sig
to approach its limiting value. In the limit of high tempera
tures the character of the corresponding temperature de
dence is again independent of the phonon coupling mo
and can be obtained by using the high-temperature appr
mation for the Bose factor together with the expans
cos(vqt)'12vq

2t2/2 which is valid for short times. For the
amplitudeuGFWM(t,t50)u we obtain in this way

uGFWM~ t,0!u}exp~2t2cGkBT/\!,G5(
q

qugqu2, ~22!

from which the temperature dependence of the initial de
time is extracted to be

t0'A \

cGkBT
. ~23!

As expected,t0(T) declines monotonously for high tem
peratures. In contrast, the decay time of the signal at
temperatures turns out to depend on the parameters o
dot. By assuming an asymptotic behavior determined by
form factor in Eq.~3! it is possible to obtain an estimation48

t0'tph5a/c, wherea is a characteristic length describin
the spatial extension of the dot. Thus, the initial decay ti
should be determined by the time phonons need to leave
dot. More accurate estimations fort0 require a detailed
knowledge of the phonon coupling.

B. Spectra

Besides optical properties in the time domain we sh
also explore the system response in the frequency dom
However, some care has to be taken in order to define m
ingful spectra, because in our model the signals do not de
to zero for long times. It is therefore helpful to introduce t
following decomposition:
8-5
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GFWM~ t,t!5GFWM~`,t!1DGFWM~ t,t!. ~24!

The functionQ(t)DGFWM(t,t) decays to zero in the long
time limit t→` and has a well-defined Fourier transform,

DGFWM~v,t!5E
0

`

eivtDGFWM~ t,t!dt. ~25!

According to the decomposition, Eq.~24!, the Fourier trans-
form of Q(t)GFWM(t,t) is the superposition o
DGFWM(v,t) and a singular partGs(v,t),

GFWM~v,t!5Gs~v,t!1DGFWM~v,t!, ~26!

where the singular part is given by the Fourier transform
the step functionQ(t)GFWM(`,t) which results in the dis-
tribution

Gs~v,t!ª lim
d→01

iGFWM~`,t!

v1 id
. ~27!

Since the FWM polarization differs fromDGFWM(t,t) only
by the oscillating functione2 i V̄(t2t) and some constant pre
factors, the polarization spectrum can be obtained fr
GFWM(v,t) by a simple scaling and shifting of the resultin
curves.

The singular partGs(v,t) is responsible for the shar
structure in the polarization spectrum which is commo
refered to as thezero-phonon line. According to Eq.~27! its
weight is determined by the limiting value

Ws~t!ªuGFWM~ t→`,t!u. ~28!

It is clear that interactions that have not yet been taken
account in our model such as the radiative decay will ev
tually lead to a vanishing signal in the long-time limit. E
perimentally, several hundreds of picoseconds have bee
ported for low temperatures.3,26 Of course, it would be easy
to account phenomenologically for such a decay by ass
ing a finite value tod in Eq. ~27!. However, the measure
ments show a significant temperature dependence of the
cay constant for long times and it is, therefore, clear t
radiative decay alone cannot account for the measured d
The microscopic origin of this long-time decay is still a
open question which is not addressed in the present pa
We also make no attempts to include this feature on a p
nomenological basis. Instead, we characterize the sing
component of the spectra, Eq.~26!, by its weightWs(t) and
discuss separately the properties of the nonsingular
DGFWM(v,t). As we see below, the nonsingular part pr
vides for a broad background on which the singular part
to be superimposed in order to obtain the full spectr
GFWM(v,t). We will therefore also refer toDGFWM(v,t) as
the background spectrum. It should be noted that an inclu
sion of interactions that provide for a decay on a long-ti
scale can be expected to have little effect on the short-t
behavior. Since the background spectrum is almost ex
sively determined by the decoherence on the short-time s
of a few tens of picoseconds it is safe to assume that
background spectrum will not change much by includi
long-time decay mechanisms in the model.
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Similar to the time domain, a number of generic prop
ties can be established for the frequency domain sign
Some of them follow directly from the time domain resu
discussed above. For example, from the fact that the en
lope becomes real at larget @cf. Eq. ~18!# it can be con-
cluded that the spectra obey the symmetry relation

lim
t→`

GFWM~v,t!5 lim
t→`

GFWM* ~2v,t!. ~29!

According to Eq.~27! this holds separately for the singula
part Gs and is, therefore, also valid for the nonsingular p
DGFWM alone. Thus, the absolute value of the backgrou
spectrum evolves into a symmetric function ofv in the limit
of long delay times. In contrast to this, the spectra at z
delay time exhibit an asymmetry which is especially pr
nounced at low temperatures. Physically this can be un
stood as follows: fort→0 the FWM signals coincide with
the linear response as has been noted earlier. However
imaginary part of the linear spectra@the real part of the Fou-
rier transform ofGlin(t)] is proportional to the light absorp
tion, and the total energy of the absorbed light equals
energy of the created exciton plus or minus the energy on
phonons emitted or absorbed in the process. AtT50 there
are no available phonons in the system and, conseque
only phonon emission can take place. Therefore, in the li
of vanishing temperature the linear spectra approach zero
frequencies below the resonance corresponding to the z
phonon line. With rising temperature the corresponding sp
tra are in general still asymmetric, but the asymmetry is l
pronounced.33 Further insight can be obtained by expandi
the background sprectrumDGFWM(v,t50) at T50 in a
power series with respect tougqu2. This expansion can be
derived most easily by expandingDGFWM(t,t50) in a se-
ries and then taking the Fourier transform term by term. T
results in

lim
T→0

DGFWM~v,t50!}(
q

i ugqu2S 12(
q8

ugq8u
2D

v2vq1 id

1 (
q,q8

i ugqu2ugq8u
2

v2vq2vq81 id
1O~ ugu6!,

~30!

where the limitd→01 is implied. Using the identity

lim
d→01

1

x2 id
5P~1/x!1 ipd~x!, ~31!

whereP denotes the principal value, it can be formally co
firmed that, as expected, the real part of Eq.~30! vanishes
identically for v,0. This property is indeed fulfilled sepa
rately for each term in the expansion@shown explicitly in Eq.
~30! up to the second nonvanishing contribution#. Moreover,
as ugqu2}1/q for q→0 and because the volume eleme
obtained when theq sum is converted into an integral, scal
as;q2 it is seen that the real part of Eq.~30! goes to zero as
v approaches zero from the right. This is enough to concl
8-6
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IMPACT OF PURE DEPHASING ON THE NONLINEAR . . . PHYSICAL REVIEW B 67, 115338 ~2003!
that the spectrum of the FWM signal at small delays is
continuous function atv50. It is therefore asymmetric an
the maximum of its absolute value is shifted to a positivev.

In the opposite limitt→`, where the absolute value o
the spectrum becomes a symmetric function, we expand
~18! in a series and then take the Fourier transform. The
term of this expansion reads

lim
T→0

DGFWM~v,t→`!}(
q

ugqu2F i

v2vq1 id

1
i

v1vq1 idG1O~ ugu4!.

~32!

This obviously yields forv,0 nonvanishing expression
even atT50. Nevertheless, using the asymptotic propert
of ugqu2 for small q values and the relation Eq.~31! we can
conclude in the same way as in the discussion of Eq.~30!
that the real part of Eq.~32! vanishes in the limitv→0.
Furthermore, irrespective of the form ofugqu2, the imaginary
parts on the right-hand side of Eq.~32! cancel whenv ap-
proaches zero. Therefore, when the first-order term in
expansion, Eq.~32!, dominates, which should be true for n
too largeugqu2, it follows that the FWM spectrum at larg
delay times is symmetric and has a local minimum atv
50. Thus, only from basic asymptotic properties ofugqu2

can it be deduced that the single dot FWM spectra at
temperatures are asymmetric for small delays, but with
creasing delay time they transform into symmetric functio
with a local minimum atv50.

On the other hand, in the opposite limit of high tempe
tures the real-time FWM signal at zero delay time is, acco
ing to Eq.~22!, represented by a Gaussian and therefore
corresponding spectrum is also a Gaussian; in particular
a symmetric function with a single maximum atv50.
Analogous considerations for larget values using Eq.~18!
reveal that the corresponding spectra are symmetric als
this case.

Summarizing the results obtained so far we conclude
at high temperatures the spectra at differentt should be al-
most symmetric, have a single maximum nearv50, and be
similar with respect to their line shapes. Indeed, one
trace this generic behavior in our numerical results prese
below @cf. Fig. 3~b! below#.

C. Form factor and optical signals

The aim here is to relate basic properties of the fo
factor for the carrier-phonon coupling to corresponding f
tures of the optical signals. First, we note that the tempo
behavior of the absolute values of the envelope functions
single dot FWM signals@cf. Eq. ~6!#, for the linear response
@cf. Eq. ~13!# as well as for the time-integrated FWM sign
of an infinitly strong inhomogeneously broadened dot
semble@cf. Eq. ~15!#, is given by exponentials which a
contain a summation~integration! in the exponent. The inte
11533
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grand is in all cases a product of an oscillating factor, e
12cos(vqt) for the linear response in Eq.~13!, and the time-
independent factor

Fq5ugqu2~112Nq!. ~33!

Thus, the temporal behavior of the above three signal
governed by the same quantityFq . However, since only in-
tegrated properties ofFq enter it should be expected that th
signals are not sensitive to every detail of the line shape
Fq . Instead, many qualitative features should be related
only a few basic properties ofFq . In order to analyze this
relation in more detail we concentrate on isotropic mod
whereFq andvq depend only on the modulus of the wav
vectorq and the angle integrations can be easily perform
The integrand of the remainingq integration is then given by

f qªGq~112Nq!

with

Gqªq2ugqu2. ~34!

We will refer to f q as the form factor for the carrier-phono
coupling or if there is no risk of ambiguity simply speak
the form factor. It is the product of a temperatur
independent factorGq and the factor 112Nq which depends
on T via the Bose distributionNq .

In order to get a feeling for the typical structure of th
form factor we have plottedf q for our model in Fig. 1~a! for
T51 K for different values of the ratiorªah /ae between
the localization lengthah of the hole andae of the electron.
At low temperatures the form factor is dominated by t
temperature-independent factorGq which according to our

FIG. 1. Form factor for the carrier-phonon couplingf q , ~a! for
different values of the ratior 5ah /ae at T51 K, and ~b! for r
50.3 at the temperaturesT50 K, 4 K, and 40 K.
8-7
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A. VAGOV, V. M. AXT, AND T. KUHN PHYSICAL REVIEW B 67, 115338 ~2003!
model scales asGq}q in the limit q→0. In the opposite
limit, q→`, we find that Gq}exp(2q2a2/4), where a
5min(ae,ah). Consequently, at least one maximum ofGq at a
finite q value is ensured. For localization ratiosr .1 there is
typically only a single maximum, as seen, e.g., in Fig. 1~a!
for the r 52 curve. When the hole is more strongly localiz
than the electron, i.e.,r ,1, a second maximum appear
which grows in amplitude for smallerr. It is clearly visible
in Fig. 1~a! for r 50.4 andr 50.3. In the caser 50.87 it is
also present but appears at a much largerq value and its
amplitude is strongly suppressed. The appearance of the
ond maximum is a consequence of the cancellation of c
tributions from the electron and the hole to the phonon c
pling gq in Eq. ~7!. These cancellations occur only forr
,1 because we have used parameters where the rel
uDhu,uDeu holds. Furthermore, it is required thatDh andDe
have equal signs. Then, indeed, one can see directly f
Eqs.~2! and ~3! that gq defined in Eq.~7! vanishes when

q5
2

ae
Aln~ uDe /Dhu!

12r 2
, ~35!

which is real only forr ,1 ~sinceuDhu,uDeu).
Thus, the typical behavior of the factorGq can be charac-

terized as follows:Gq vanishes in the limitsq→0 and q
→` and has maxima~peaks! at finite q values; for a single
dot characterized by ground-state wave functions, i.e., w
functions without any nodes, the number of maxima is ty
cally either one or two. Already by considering only the
basic properties we can deduce some qualitative feature
the optical response. Let us explore the consequences o
fact that G is peaked at finiteq values. In a first step we
discuss the effect of a single peak atq5Q which is infinitely
sharp, i.e., we discuss a model forGq defined by

Gq5GQd~q2Q!1G̃q , ~36!

where G̃q is assumed to provide a structureless ‘‘bac
ground’’ in the vicinity of the peak atq5Q. The contribu-
tion of the peak to the integrals in Eqs.~6!, ~13!, and~15! can
be immediately evaluated in all three cases. For simplic
we will discuss explicitly the results for the linear respon
Eq. ~13!. The nonlinear signals in Eqs.~6! and ~15! can be
analyzed along the same lines. Using Eq.~36! in Eq. ~13! we
obtain

uGlin~ t !u5uG̃lin~ t !uexp$2GQ@12cos~vQt!#%, ~37!

whereuG̃lin(t)u denotes the contribution from the backgrou
which is evaluated fromG̃q . This background component i
modulated by oscillations with the frequencyvQ . It is im-
portant that althoughGQ can be relatively small compare
with the weight of the background partG̃q , the correspond-
ing modulation can still be noticeable. If two or more sha
peaks are present, the resulting modulation is a sum of
individual modulations, each oscillating with the correspon
ing frequency. Thus, we expect oscillations of the opti
signals with a frequency given byvQ wheneverGq exhibits
a sharp structure atq5Q. The phonon couplingsgq

e(h) de-
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fined in Eq. ~2!, from which gq and therefore alsoGq are
derived, depend on both electronic properties@via the elec-
tronic form factorCe(h)(q)] and phononic properties. It is
therefore, clear that, in principle, structures in either of the
can lead to corresponding sharp peaks inGq . For example, if
there is an enhanced density of phonon states in modes
fined in the dot region then it is likely that the correspondi
Gq exhibits a sharp structure at aq valueQdot of the order of
the reciprocal dot dimension and consequently correspo
ing optical signals should be modulated with the frequen
vQdot

. However, for the bulk modes that we use for the n
merical evaluations in the present paper, the peaks ha
finite width. The essential features of optical signals result
from dots which, similar to our present model, exhibit pea
in Gq of a finite width can be captured in a simple Gauss
model

Gq5
GQ

A2ps
expF2

~q2Q!2

2s2 G1G̃q , ~38!

which represents a broadened peak on a smooth backgr
G̃q . Again we concentrate on the linear response given
Eq. ~13!. The analogous analysis of the FWM signals lea
to similar conclusions. Assuming a linear phonon dispersi
vq5cq, Eq. ~13! separates for the model in Eq.~38! as
follows:

Glin~ t !5G̃lin~ t !exp@2GQe2(t2c2s2/2)2 iQct#. ~39!

As in the case of the delta peak the background partG̃lin(t)
is modulated by an oscillation, which in this case, howev
decays with time. The oscillation has a period ofT0
52p/(Qc) and the decay time is given byt0'1/(sc). The
number of oscillation periods that can be observed in suc
system can, therefore, be estimated asN'Q/s, i.e., by the
ratio of the peak position and the corresponding peak wid

Looking at the peak structures in Fig. 1~a! we conclude
that most of the peaks have a width comparable to their p
position. We therefore expect that in these cases the op
response should in general depend on the real time and
delay time in a nonmonotonous way, resembling an ov
damped oscillation with only one resolved period. For e
ample, for ther 50.87 curve in Fig. 1~a! the dominant peak
is located at aboutQ50.3 nm21 with about the same width
corresponding to a modulation period ofT0'4 ps and a de-
cay time of the same order of magnitude. Interestingly, so
of the peaks occur at aQ position larger than their widths
For example, the curve forr 50.3 has a peak atQ
'1.1 nm21, corresponding to an oscillation period o
'1.1 ps with a noticeably smaller width. Here, we shou
expect more pronounced modulations of the correspond
signals. We will come back to this point later.

While the form factorf q at zero temperature coincide
with Gq , at finite temperatures it is also affected by the Bo
zmann factor in Eq.~34!. In Fig. 1~b! we have plottedf q for
three different temperatures and a fixed localization ration
r 50.3. As can be seen from the figure, increasing the te
perature leads to systematic changes with respect to the
structures. Most notable, the form factor reaches a finite l
8-8
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IMPACT OF PURE DEPHASING ON THE NONLINEAR . . . PHYSICAL REVIEW B 67, 115338 ~2003!
iting value whenq approaches zero. This is due to the 1q
singularity of the Bose factor which cancels the;q behavior
of Gq . Expanding the Bose factor it is seen that the cor
sponding limiting value is proportional to the temperatu
As a result of the Bose singularity, the first maximum mov
towardsq50 and the amplitude of the first peak is strong
enhanced. Also the position of the second peak shifts
wards lowerq values. Within our simplified Gaussian mod
it is easy to prove explicitly that the peak positions sho
always shift towards lowerq values with increasing tempera
tures. Indeed, for the temperature-dependent maximumQ(T)
of the product of the Gaussian in Eq.~38! and the
temperature-dependent factor 112Nq , we find

Q~T!5Q22s2\c
NQ(T)

kBT

11NQ(T)

112NQ(T)
. ~40!

This proves that the correction to the zero-temperature v
Q is always negative and thus the period of the correspo
ing modulations increases with the temperature.

As suggested by the asymptotic Eq.~22!, at large tem-
peratures there should not be any phonon-induced osc
tions present in the envelope functions discussed so fa
this limit the first peak completely dominates the form fac
f q . However, this peak moves toq50 with increasing
width. Consequently, the oscillation corresponding to t
peak is increasingly damped and has a period which
proaches infinity in accordance with our previous finding

V. NUMERICAL RESULTS

The following subsections are meant to give a more qu
titative impression of the signals predicted by our theory.
particular, we will present numerical results that have be
obtained by applying the spherical model defined in Sec
We use standard GaAs parameters. The values of all mat
parameters used apart from the confinement lengthsae and
ah are listed in Table I of Ref. 33.

A. Single dot FWM response

We start the discussion by analyzing FWM signals from
single quantum dot in the time domain. By using Eq.~6! we
have plotted in Fig. 2 real-time traces of the FWM envelo
GFWM(t,t) for four different values of the delay timet be-
tween the external light pulses. Figures 2~a! and 2~b! show
the absolute value of the signals while the correspond
imaginary parts are shown in Figs. 2~c! and 2~d!. Figures
2~a! and 2~c! are calculated for a temperature ofT51 K
while for Figs. 2~b! and 2~d! a value ofT530 K has been
used. We note that att50 the FWM response coincides wit
the linear response, Eq.~13! according toGFWM(t,t50)
5Glin(t). Consequently, Fig. 2 also provides a comparis
between FWM signals and the linear response~solid line in
Fig. 2!.

As expected from our previous analysis the absolute
ues are nonmonotonous functions that resemble overdam
oscillations. Also obvious from the figure is the general tre
that the nonmonotonous modulations are more pronoun
for lower temperatures. As usual for a two-pulse FWM s
11533
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nal the maximum value decreases with increasing delay.
curves exhibit a fast initial decay from their maximal valu
on a time scale of approximatelyt0'1 –2 ps. As discussed
earlier, after the initial drop all curves approach a nonz
value in the limitt→`. In accordance with Eq.~16! we find
that the long-time limiting value declines with increasin
temperature and with increasingt. A more quantitative
analysis of the initial decay and the behavior of the limiti
value is given below.

By plotting the imaginary parts in Figs. 2~c! and 2~d! one
can monitor the prediction that the envelope functi
GFWM(t,t) should become real for long delay times@cf. Eq.
~18!# which implies that the imaginary parts should vanish
this limit. As seen from Figs. 2~c! and 2~d! the expected limit
is indeed reached after about 2 ps, but it is approached
nonmonotonous way. Fort50 the imaginary part turns ou
to be entirely negative while for delays longer than 0.3 p
is entirely positive. Furthermore, the shape also changes
nificantly with delay time. The most important feature, ho
ever, is that the imaginary part approaches zero after roug
the same time it takes the real-time signal to approach
finite limiting value. The reason for this result is revealed
looking at Eq.~6! which indicates that the properties of th
FWM signals in thet andt domains are qualitatively similar
One consequence of this symmetry has already been ex
itly expressed in Eq.~18! where the corresponding long-tim
limits have been related to each other. The characteristic t
at which the envelope changes as a function of botht andt
has been estimated in Ref. 48 to be approximately given

FIG. 2. Absolute value@~a! and~b!# and imaginary part@~c! and
~d!# of the single dot FWM envelope function,GFWM(t,t), calcu-
lated for r 50.87 and for different delays:t50 ps ~solid line!, t
50.3 ps ~dot-dashed line!, t51 ps ~long-dashed line!, t56 ps
~short-dashed line!. ~a! and ~c! correspond toT51 K and ~b! and
~d! to T530 K. At t50 the FWM signal envelope coincides wit
the envelope of the linear response.
8-9
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A. VAGOV, V. M. AXT, AND T. KUHN PHYSICAL REVIEW B 67, 115338 ~2003!
the timetph5a/c needed for the phonons created in the e
citation process to leave the dot~cf. also the Appendix!. For
a'4 nm used in the current calculations this estimate gi
t'1 ps, which is of the right order of magnitude. Intere
ingly, only for delay times either much shorter or longer th
this characteristic time the curves in Figs. 2~a! and 2~b! have
their maximum att50, i.e., at the arrival of the secon
pulse. For intermediate delays the maximum is shifted
wards finite real-time values.

The absolute value of the background spec
DGFWM(v,t) corresponding to the real-time FWM signa
in Fig. 2 are plotted in Fig. 3~a! for T51 K and in Fig. 3~b!
for T530 K. Clearly it is seen that the signals at low tem
peratures evolve from an asymmetric shape att50 ~this
curve coincides with the linear background spectrum! to a
symmetric function for long delay times as discussed ana
cally in Sec. IV B. Indeed, att56 ps the absence of th
imaginary part yields a symmetrical spectrum. Furthermo
in accordance with the conclusions drawn from the exp
sion in Eq. ~32! the spectra exhibit a local minimum atv
50 for longer delay times. Also in agreement with our ge
eral considerations in Sec. IV B the spectra at higher te
peratures are almost symmetric with a maximum nearv
50 for all delay times. Interestingly, the absolute heights
the spectra change in a nonmonotonous way. Starting f
t50 the total spectral weight of the background spectra fi
increases for larger delays and then decreases again.

So far we have discussed a number of qualitative featu
that nicely illustrate our general results derived in the pre
ous sections. From the figures some additional overall tre
have become apparent which deserve to be analyzed
more quantitative level. To this end we study the behavio

FIG. 3. Absolute value of the background spectraDGFWM(v,t)
of the single dot FWM signal calculated according to Eq.~25! for
r 50.87 and different delay timest: ~a! T51 K and ~b! T
530 K.
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three quantities which quantify specific characteristics of
curves. The first quantity that is analyzed is the weightWs of
the singular part of the spectrum. According to Eq.~28! it is
given by the amplitudeuGFWMu of the FWM envelope evalu-
ated in the long-time limitt→`. As discussed in Sec. IV B
Ws is also related to the spectral weight of the zero-phon
line. It is interesting to contrast the behavior of the singu
part of the spectrum with the corresponding dependencie
the nonsingular contributions, i.e., of the background sp
trum DGFWM . In order to measure the total spectral weig
of the background spectrum we introduce the quantityWb
defined as

Wb~t!25E
2`

`

uDGFWM~v,t!u2
dv

2p
5E

0

`

uDGFWM~ t,t!u2dt.

~41!

Besides the analysis of the weights of singular and non
gular parts of the spectrum it is also of interest to quan
the initial decay time. However, the temporal behavior of o
signals is in general neither Gaussian nor exponential
also, in some cases~cf. Fig. 2!, the maximum does not co
incide with the onset of the signal set by the arrival of t
second pulse. Therefore, there is not a distinguished mea
for the initial decay, and several different choices are p
sible. We have chosen to identify the initial decay time w
the timet0 it takes from the arrival of the second pulse
reach the point at which the signal has dropped half w
from its initial value towards the corresponding long-tim
limit. Looking at the line shapes of our signals it is seen th
the above prescription uniquely defines a measure for
duration of the initial decay.

The delay-time dependence of the three quantitiesWs ,
Wb , andt0 has been calculated for the temperaturesT51,
30, and 100 K and the results are displayed in Fig. 4. Fi
we note that the limiting valueWs5uGFWM(`,t)u is typi-
cally a decreasing function oft similar to the real-time de-
pendence in Figs. 2~a! and 2~b!. This reflects once again th
approximate symmetry between the real- and delay-time
gimes. A close look at Fig. 4~a! reveals a slightly nonmo-
notonous decay atT51 K, while at the larger temperature
the curves drop monotonously towards their limiting valu
As expected from the formulas in Eqs.~16! and~17! we find
thatWs drops significantly with increasing temperature. Fi
ure 4~b! quantifies what we have noted earlier that the wei
of the background spectrum is a nonmonotonous function
the delay time. Typically, a single maximum is found at
finite delay time. With increasing temperature the maximu
is more pronounced and its value is shifted towards ear
times. The crossing of theT530 K and theT5100 K curves
indicates thatWb also depends in a nonmonotonous way
the temperature.

Interestingly, the delay-time dependence of the initial d
cay time t0 shown in Fig. 4~c! changes its character wit
rising temperature: atT51 K it decreases monotonously
while for higher temperatures it evolves into a nonmono
nous function of the delay time. In particular,t0 has a maxi-
mum at a finite delay time. This means that at intermedi
temperatures it should be possible to optimize the deca
8-10
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the optical response towards longer decoherence time
suitably tuning the delay time. Figure 4~c! also indicates tha
the initial decay time is not necessarily a decreasing func
with rising temperature.

B. FWM signals from dot ensembles

A widespread application of FWM experiments is to me
sure the homogeneous linewidth in strongly inhomo
neously broadened systems. Linear absorption measurem
on such systems reflect almost exclusively the width of
inhomogeneous broadening and give no clue to the intrin
homogeneous decay time. Often the previously mentio
relation between the time-integrated FWM signal from
infinitely broadened system and the square of the linear
sponse from a homogeneously broadened sample is take
the basis for this extraction. However, by comparing Eq.~15!
with Eq. ~13! it was noted before that the expressions for
envelopeḠ` of an infinitely inhomogeneous broadened e
semble and for the single dot linear envelope functionuGlinu2

are similar but do not coincide. Thus, in contrast to a deph
ing model with phenomenological damping rates the ab
relation is not strictly fulfilled within our model. Figures 5~a!
and 5~c! provide a direct comparison of these functions.

FIG. 4. ~a! Spectral weightWs of the singular part of the spec
trum. Ws coincides with the amplitude of the long-time limitin
value of the signal.~b! Spectral weightWb of the background spec
trum defined by Eq.~41!. ~c! Initial decay timet0. All quantities are
plotted as functions of the delay timet for r 50.87 and for three
different temperatures:T51 K ~solid line!, T530 K ~long-dashed
line!, andT5100 K ~short-dashed line!.
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Fig. 5~a! we have plotteduGlinu2 as a function of real time for
three different temperatures while Fig. 5~b! displaysḠ` as a
function of the delay time for the same temperatures. Ob
ously, the corresponding temporal line shapes are very s
lar. Qualitatively, the behavior is also similar to the single d
real-time traces for short or long delay times shown in Fi
2~a! and 2~b!. For temperatures above;10 K the curves
decay monotonously towards a finite limiting value while
low temperatures;1 K a strongly overdamped oscillation i
observed which provides for a slight modulation of the d
cay. In agreement with the asymptotic formulas, Eq.~21! and
Eq. ~19!, we find that the initial drop is significantly deepe
for the FWM signal than foruGlinu2. However, the time scale
for the drop turns out to be roughly the same.

Following the procedure of Sec. IV B, it is possible
define background spectra corresponding to the functionsḠ`

and uGlinu2. Of course, the Fourier transform has to be p
formed with respect to the delay time in the former case a
with respect to the real time in the latter case. The abso
values of these spectra are displayed in Fig. 5~b! for uGlinu2

and in Fig. 5~d! for Ḡ` . Since the time domain functions ar
real in both cases the corresponding Fourier transforms o
the symmetry relationf (v)5 f * (2v) and consequently the
real parts of the spectra are symmetric functions ofv. Com-
paring the FWM spectra with their counterparts calcula
for uGlinu2 it is seen that in both cases very similar line shap
are obtained with only minor differences concerning the c
responding widths. As in the low temperature single d
spectra in Fig. 3, in Figs. 5~b! and 5~d! a local minimum

FIG. 5. ~a! Absolute squareuGlinu2 of the linear response as
function of the real timet. ~b! Absolute value of the backgroun
spectra corresponding to~a!. ~c! Normalized time-integrated FWM

amplitudesḠ` from an ensemble with infinitely strong inhomoge
neous broadening as a function of the delay timet. ~d! Absolute
value of the background spectra corresponding to~c!. All quantities
are plotted forr 50.87 and for three temperatures:T 5 1 K ~solid
line!, T530 K ~long-dashed line!, and T5100 K ~short-dashed
line!.
8-11
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appears atv50 due to the same reason: the suppression
the phonon coupling in the limitq→0. For the infinitely
broadened ensemble this dip has already been reporte
Ref. 48. For higher temperatures the dip disappears. Des
the good agreement with respect to the line shapes
clearly seen that the absolute spectral weights of corresp
ing curves in Figs. 5~b! and 5~d! differ noticeably~note the
scaling!. In conclusion, we have found that apart from su
stantial differences with respect to the depths of the ini
drop and the weights of the background spectra it is a ra
good approximation to identifyḠ` with uGlinu2. Especially
in view of the fact that the shapes of the single dot spe
may change significantly with the delay time~cf. Fig. 3! this
good agreement is quite remarkable.

We will now analyze the way in which the results a
affected by the strength of the inhomogeneous broaden
Figure 6~a! shows ensemble-averaged time-integrated FW
signals calculated from Eqs.~9! and~11! for different values
of the relative standard deviationsa /āe . These calculations
have been performed for a rather low temperature oT
50.1 K in order to show most clearly the effect of inhom
geneous broadening on the nonmonotonous modulat
which are more pronounced at low temperatures. For the
value ofsa /āe50.03 the signal is almost unbroadened a
the echo has a rather large real-time extent. Conseque
for delay times shorter than the width of the echo the tim
integrated signals are strongly suppressed because the e
not yet fully developed. The result is a pronounced ma
mum at a finite delay time which is located at a time roug
corresponding to the temporal extent of the fully develop
echo. To facilitate the comparison we have normalized
curve to its maximum rather than using Eq.~11!. Starting
from their maxima all curves exhibit a modulated decay. S
prisingly, the percentage drop from the maximum to the li
iting value at large delay times depends nonmonotonously
the strength of the size fluctuations. Increasingsa /āe from
0.03 to 0.1 leads to a significant enhancement of the perc

FIG. 6. Time-integrated FWM responseḠFWM
ens as a function of

the delayt at T50.1 K for different relative widthssa /āe of the

dot size distribution and fixedr 5āh /āe50.87. ~a! Accounts for
variations of the energies and carrier-phonon couplings cause
the size fluctuations, while~b! only accounts for energy fluctua
tions. The curves are normalized according to Eq.~11! except for

the sa /āe50.03 curve which is normalized to its maximum.
11533
of

in
ite
is
d-

-
l
er

a

g.

ns
w
d
tly,
-
o is

i-

d
is

r-
-
n

nt-

age decrease while a further rise ofsa /āe to 0.3 reduces the
drop. Interestingly, also the initial decay time gets noticea

longer when the fluctuations change fromsa /āe50.1 to

sa /āe50.3. The latter effect seems to be related to the f

that for fluctuations larger thansa /āe50.1 the modulation

flattens with increasingsa /āe .
As already noted, fluctuations of the dot sizes lead

variations of both the carrier energies and the carrier-pho
coupling. In order to get more insight into their respecti
roles we have performed calculations where only the eff
of the energy fluctuations is kept, i.e., in these calculatio
the carrier-phonon coupling has been determined by usin

fixed dot size corresponding to the mean valueāe . The re-

sults are plotted in Fig. 6~b! for the same values ofsa /āe as
in Fig. 6~a!. It turns out that the curves calculated only a
counting for energy fluctuations are almost indistinguisha
for sa /āe50.03 and 0.1 from their counterparts in Fig. 6~a!
where changes of the carrier-phonon couplings have
been taken into account. Thus, for size fluctuations up
about 10% the effects related to the corresponding ene
fluctuations clearly dominate. In this case changes of
envelope functionGFWM can be disregarded in Eq.~9!. Here,
the variations of the depth of the drop are, therefore, cau
only by the corresponding changes of the temporal width
the echo. A temporally broader echo implies that the tim
integrated signals effectively sample over a larger time w
dow thus averaging out large temporal variations of the s
nal amplitudes. This is the main reason for the increase of
percentage drop when the fluctuation is increased fr
sa /āe50.03 tosa /āe50.1. However, when the energy dis
tribution gets broader than the width of a typical single d
response, the echo is already sharp on the time scale
which the envelopeGFWM changes. A further increase of th
broadening has therefore no effect on the signal. This
clearly seen in Fig. 6~b! in which the curves forsa /āe

50.1 andsa /āe50.3 are indistinguishable. In contrast, th
corresponding curves in Fig. 6~a! are substantially different
indicating that for size fluctuations above 10% the cor
sponding variations of the carrier-phonon couplings beco
indeed important and can no longer be ignored. These res
imply that the discussion in the previous sections based
the functionḠ` , where infinitely strong energy fluctuation
have been assumed together with fixed values of the car
phonon coupling, is indeed representative for a system w
an energy distribution broader than the width of a single
spectrum but with size variations not much larger than 10

In Sec. V A we have characterized the behavior of sin
dot FWM signals by three quantities: the weightsWs andWb
of singular and background parts of the spectrum and
time t0 measuring the initial decay time. Obviously, anal
gous quantities can be introduced for the time-integrated
ensemble-averaged signalsḠFWM

ens (t) as well as for the abso
lute square of the linear responseuGlin(t)u2. Here, there is
only one time argument, namely, the delay time in the form
case and the real time in the latter case, and the Fou
transformation defining the spectra has to be taken with

by
8-12
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IMPACT OF PURE DEPHASING ON THE NONLINEAR . . . PHYSICAL REVIEW B 67, 115338 ~2003!
spect to this argument. In Fig. 7 these quantities are plo
as functions of the temperatureT. In addition, Fig. 7 also
displays a curve calculated for the ensemble-averaged
sponseḠFWM

ens (t) where only fluctuations of the energie
have been accounted for. The calculations have been
formed for a relative standard deviation ofsa /āe50.3. For
this value ofsa /āe the results obtained without accountin
for variations of the carrier-phonon-coupling have alrea
reached the limit of infinite broadening described byḠ` as
can be seen from Fig. 6.

According to Fig. 7~a! the weight of the singular partWs ,
which is also the long-time limiting value of the respons
monotonously decreases with temperature in agreement
Eq. ~22!. All three curves are rather close. They confirm t
general trend that the absolute square of the linear resp
yields a Ws which is systematically higher than the FWM
results. Also the drop of the long-time limiting value foun
in Fig. 6, when the fluctuations of the carrier-phonon co
pling are switched off, turns out to be a systematic feat
observed for all temperatures.

FIG. 7. ~a! Spectral weightWs of the singular part of the spec
trum. Ws coincides with the amplitude of the long-time limitin
value of the signal.~b! Spectral weightWb of the background spec
trum. ~c! Initial decay timet0. All quantities are plotted as func

tions of the temperature forr 5āh /āe50.87: ~solid line! ḠFWM
ens ,

calculated withsa /āe50.3; ~long-dashed line! ḠFWM
ens , calculated

with sa /āe50.3 neglecting the variations of the carrier-phon
couplings, and~short-dashed line! uGlinu2.
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In contrast toWs the weight of the background spectru
Wb in Fig. 7~b! differs considerably for the linear and FWM
signals. This was already noted in Fig. 5. In addition, t
effect of fluctuations of the carrier-phonon coupling onWb
reverses with temperatures: aboveT'40 K the weight of
the background spectrum is enhanced by these fluctuat
while at lower temperatures it is slightly suppressed.

Contrary to what might be expected intuitively, the initi
decay time@Fig. 7~c!# is a nonmonotonous function of th
temperature. The decay time decreases for high tempera
with a rate that can be extracted from the asymptotic exp
sion, Eq.~22!, to be

t0'A \

kTc2G
. ~42!

However, it increases withT for temperatures below 15 K fo
both the linear response and the FWM response irrespec
of whether fluctuations of the carrier-phonon coupling a
accounted for. This rather surprising finding can be und
stood as follows: In Sec. IV C it was concluded that t
temporal behavior of the optical envelope functions cons
in general of one or more damped oscillations depending
the peak structure of the form factor. The oscillation period
determined by the corresponding peak position while
damping is related to the width of the peak. With rising te
perature the peak at the lowestq value has a rapidly growing
amplitude and eventually dominates. Its position moves
wards q50 while its width increases. In addition it wa
shown that the position of the second peak is always shi
towards smallerq values ~cf. Fig. 1!. The increase of the
width of the first peak alone would always lead to a stron
damping and therefore to a shorter initial decay time. Ho
ever, the shift of the peak positions towards lowerq values
implies longer oscillation periods and thus the first minim
of the oscillations are moved towards later times. But mo
ing the first minimum to a later time in the case of an ov
damped oscillation implies that the curve decreases o
longer-time scale, i.e., a longer decay time is observed.
viously, this mechanism is effective only at low temper
tures. At higher temperatures the first peak has reached
vicinity of q'0 and dominates. Thus, oscillatory structur
are effectively suppressed and the high-temperature limit
scribed by Eq.~42! is approached. The interplay of thes
effects results in the nonmonotonous temperature dep
dence oft0 in Fig. 7~c!.

It is also worth noting that in agreement with Fig. 6 th
initial decay takes a noticeably longer time when both ene
and carrier-phonon couplings fluctuate than in a syst
where only energy fluctuations take place. The shortest in
decay times are found for the absolute square of the lin
response.

C. Phonon-induced modulation of the optical response

So far we have studied signals for a fixed localizati
ratio r 50.87. From Fig. 1~a! we learned that the form facto
in this case is dominated by the maximum with the low
possibleq value. ForT51 K it is located atQ'0.3 nm21,
8-13
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A. VAGOV, V. M. AXT, AND T. KUHN PHYSICAL REVIEW B 67, 115338 ~2003!
with a full width that is of the same order of magnitude. T
position of the first minimum of the oscillation is given b
half the period, i.e., atT0/2'2 ps. This value is in good
agreement with the position of the minimum in theT51-K
response in Figs. 2, 5, and 6. However, the oscillatory na
of the response is masked in this case because a comp
overdamped situation has been realized. Already in S
IV C it was noted that for lower localization ratios a seco
maximum appears in the form factor which may not nec
sarily be in the fully overdamped limit. In order to invest
gate quantitatively the corresponding consequences we
plotted in Fig. 8~a! the linear responseuGlinu2 and in Fig. 8~b!

the time-integrated FWM envelopeḠ` corresponding to an
infinitely strong inhomogeneously broadened ensemble
different values ofr at a temperature ofT51 K. For r
,0.6 the second peak in the form factor is well separa
from the first. The corresponding oscillations for the valu
r 50.3 andr 50.4 are clearly visible in Fig. 8 both in th
linear response as well as in the FWM response. From
corresponding peak positions one deduces a half perio
approximately 0.55 ps, in good agreement with the positi
of the minima in Fig. 8. Thus, it is indeed the second peak
the form factor that governs the observed oscillations. T
most remarkable point here, however, is the fact that cle
visible phonon-induced oscillations appear although
phonons form a smooth continuum without any structure
the dispersionvq or in the density of states. According to ou
analysis of the origin of the second peak in Sec. IV C th
are due to the competition of electron and hole contributi
to the carrier-phonon coupling.

VI. CONCLUDING REMARKS

In this work we have presented a comprehensive stud
the impact of pure dephasing on FWM signals emitted fr

FIG. 8. ~a! Absolute square of the linear responseuGlinu2 as a
function of real timet. ~b! Normalized time-integrated FWM am

plitude Ḡ` as a function delay timet for different values of the
localization ratior: r 52 ~dot dashed!, r 50.87~solid!, r 50.4 ~long
dashed!, andr 50.3 ~short dashed!.
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single quantum dots in the strong confinement regime
from corresponding dot ensembles. We have concentrate
effects induced by the coupling of the carriers trapped in
dot to LA phonons. By using exact closed-form formulas th
are nonperturbative with respect to the carrier-phonon
well as the carrier-light-field coupling we were able to esta
lish a number of generic features of the signals which do
depend critically on details of the carrier wave functions
the phonon couplings. These features were then quant
within a model of a spherical quantum dot coupled to isot
pic bulk acoustic phonons. By using this model we explor
the dependencies of FWM signals on the temperature,
delay time, as well as on the localization ratior between
holes and electrons. In particular, we concluded that
FWM signals from a single dot should coincide for ze
delay timet50 with the corresponding linear response. T
maximum of the real-time response coincides with the
rival of the second pulse only for delay times that are eit
much shorter or much longer than typical phonon perio
for delay times of the order of the most efficiently coupl
phonon modes the maximum is shifted towards later tim
From their maximum value, the real-time single dot FW
signals drop at an initial rate which, at not too low tempe
tures, depends nonmonotonously on the delay time. Eve
ally, the signals reach a finite limiting value. At low temper
tures the single dot FWM spectra evolve from an asymme
form att50 into a symmetric function ofv for delay times
larger than the initial decay time of the real-time respon
The spectra at finite delays typically show a local minimu
at the position of the zero-phonon line which is related to
reduced phonon coupling in the limit of smallq values. A
similar feature is found for the Fourier transform of tim
integrated FWM signals emitted from dot ensembles. At
evated temperatures the limiting value of the signals dec
exponentially with increasing temperature and all spectra
approximately symmetric. The corresponding line shapes
not change significantly with delay time and exhibit a ma
mum at the position of the zero-phonon line. The weights
the background spectrumWb and the singular part of the
spectrumWs ~the latter also includes the zero-phonon lin!
show very different dependencies on the temperature and
delay time.Ws is typically a decaying function oft andT for
a single quantum dot whileWb may exhibit a pronounced
nonmonotonous dependence on these parameters.

The temporal and spectral line shapes of the tim
integrated FWM signal from an infinitely inhomogeneous
broadened dot ensemble are shown to be similar to the
solute square of the linear response of a single dot, a rela
often used in order to extract information about the homo
neous broadening of the system from FWM experiments
dot ensembles. However, the depth of the initial drop as w
as the spectral weight of the background spectrum are
nificantly different for these two signals.

The role of inhomogeneous broadening has been fur
investigated by considering time-integrated FWM sign
from dot ensembles with varying strengths of dot size flu
tuations. For size fluctuations up to about 10% the effec
the corresponding energy fluctuations is clearly domina
For larger fluctuations of the sizes one has to take into
8-14



in
i

th

tia
F
ge
in

e-

u
ea

e
o

le
a
k
illa
ar
oo
n
s

i
1
a

he
e

q

y

he
se

v-

ost
the
s

.

-
rge

the
tor
ns

en

n-
f the

l
ns

IMPACT OF PURE DEPHASING ON THE NONLINEAR . . . PHYSICAL REVIEW B 67, 115338 ~2003!
count also the variations of the carrier-phonon coupl
strengths. The latter result in longer initial decay times and
an enhanced long-time limiting value of the signal, when
strength of the size fluctuations is increased.

A rather unexpected result was the finding that the ini
decay time is a nonmonotonous function of temperature.
temperatures below 15 K the signals initially decay on lon
times for higher temperatures. This result has been expla
by a shift of the peak in the form factor towards lowerq
values resulting in a shift of the first minimum of the corr
sponding overdamped oscillation towards later times.

Another interesting outcome of our analysis is the res
that even for a bulk model of acoustic phonons with a lin
energy dispersionvq5cq, well-resolved oscillations of the
corresponding optical response may be observed. Thes
cillations result from a second peak in the carrier-phon
form factor which occurs due to cancellations between e
tron and hole contributions to the coupling. For holes loc
ized much more strongly than electrons this second pea
well separated from the first and the corresponding osc
tions are clearly visible in the FWM as well as in the line
response, although the electronic wave functions are sm
and the phonons provide for a continuum of modes with
particular structures in the corresponding density of state
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APPENDIX: DERIVATION OF ASYMTOTIC FORMULAS

The asymptotic formulas, Eqs.~16!, ~18!, ~19!, and~21!,
for the behavior of the optical envelope functions in t
long-time limit can all be derived according to the sam
scheme. Here, we will explicitly discuss the derivation of E
~19! for Ḡ`(t→`).

Our starting point is Eq.~15! which can be written as

Ḡ`~t!5exp$22A~t!%, ~A1!

where the functionA(t), after converting theq sum into an
integral and performing the angle integrations, is given b

A~t!ª
2V

~2p!2E0

`

dqq2ugqu2~112Nq!@12cos~vqt!#2.

~A2!
an

an

D
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Here,V is the normalization volume. First, we note that t
integral in Eq.~A2! exists in the conventional sense, becau
it was assumed thatugqu2, apart from the pointq50, is a
smooth function which decays sufficiently fast for largeq
values. At the pointq50 we assume that the singular beha
ior is not stronger thanugqu2}1/q. As discussed in Ref. 33
this is the strongest singularity that appears for the m
commonly used carrier-phonon coupling schemes when
system is neutral overall. From this assumption it follow
that the total integrand in Eq.~A2! has no singularity atq
50, becauseNq}1/q and thus the singularities ofugqu2 and
Nq are canceled by the factorq2 from the surface element
Using the identity @12cos(vqt)#25122 cos(vqt)11/2@1
1cos(2vqt)# together with the linear dispersionvq5cq we
find thatA(t) can be expressed in terms of the function

F~x!ª
2V

~2p!2E0

`

dq fqeiqx, ~A3!

where the definition, Eq.~34!, of the form factorf q has been
used. The functionA(t) can now be written as

A~t!5
3

2
F~0!2F~ct!2F~2ct!1

F~2ct!1F~22ct!

4
.

~A4!

However, apart from constant prefactors,F(x) is the Fourier
transform of the functionQ(q) f q . Due to elementary prop
erties of the Fourier transformation it thus vanishes for la
argumentsuxu→` as long asf q does not exhibit singulari-
ties. Therefore, the limiting value ofA(t) for t→` can
easily be read off from Eq.~A4! without further calculation.

This derivation also quantifies the relation between
decay properties of the Fourier transform of the form fac
and the time scale on which the optical envelope functio
approach their limiting values. The simple estimation giv
in the main text was based on the observation thatf q should
be localized inq space roughly on a scale given by the i
verse spatial extension of the dot due to the presence o
carrier form factorCe(h)(q) in the carrier-phonon coupling
@cf. Eqs.~2! and~3!#. This implies thatF falls off on a length
scale given by the dot extensiona and therefore the typica
time scale for the variation of the optical envelope functio
is approximately given by the timetph5a/c an emitted pho-
non needs to leave the dot.
nd
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