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Impact of pure dephasing on the nonlinear optical response of single quantum dots
and dot ensembles
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The nonlinear optical response to ultrafast laser pulses of semiconductor quantum dots coupled to acoustic
phonons is discussed on the basis of closed-form analytical results valid for dots in the strong confinement
regime. General properties of four-wave-mixi(g§WM) signals are derived from the analytical formulas.
Numerical results are presented for two-pulse FWM signals from single quantum dots and from dot ensembles
in the time and the frequency domains. Interestingly, the initial decay time of the signal is found to depend
nonmonotonously on temperature and delay time. In general, the phonon coupling leads to a modulated decay
of the time domain optical response which is neither exponential nor Gaussian. The strength of the modulations
is influenced by inhomogeneous broadening and temperature as well as by the relative localization lengths of
electrons and holes. FWM spectra of single dots evolve from asymmetric functions for coinciding pulses into
symmetric spectra for large delays. Nonlinear signals are compared with linear signals revealing striking
similarities but also significant differences, e.g., concerning the depth of the initial drop.
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[. INTRODUCTION the discrete electronic energy structure, a phenomenon com-
monly refered to as phonon bottlenec& % Although there

The analysis of coherent nonlinear optical signals emitteds considerable theoretical work related to coupled dot-
after ultrafast laser excitation has contributed considerably t®honon systent$*>%*~*4ittle is known about the nonlinear
our present understanding of wide classes of materials. WitRAptical response of such systems. In particular, with respect
regard to semiconductor quantum dots, however, such ex0 dephasing most studies concentrated on e;timation§ of the
periments are bothered by rather low signal intensities. Defesulting  linewidt®**% or the determination of line
spite these difficulties, there are a number of recent reportghapes of linear absorptithor ¢m|55|o_ﬁ spectra.
on experiments demonstrating the manipulation of quantum ' the present paper we discuss in detail the effects of
dots by coherent optical laser pulseéParticularly promis- pure dephasing on FWM signals emitted from single quan-
ing in view of potential applications of quantum dots for tum dots as well as from dot ensembles. Our analysis is

quantum information processiig® s the growing number based on a theoretical approach which formulates the dy-

of demonstrations of Rabi rotations under varying experi-namlcs of the coupled carrier-phonon system in terms of

o 17-22 . . generating  functions for  phonon-assisted density
mental conditiong! Cohe_rent nqnlmear optical measure- matrices’#5-4" By using this formalism we have recently
ments also gave valuable insight into the decoherence pro

Been able to derive in closed form the nonlinear optical re-

erties of quantum dots which are of prime importance forgnonse to an arbitrary sequence of ultrafast laser pulses of

any optoelectronic device and especially for realizations ofjts with strongly confined carriers coupled to an arbitrary
quantum computational operations. In particular, four-waven,ymper of phonon modé& |t is worth noting that within our
mixing (FWM) experiment3**~?° and measurements of model the results are nonperturbative with respect to both the
three-pulse photon echbsr accumulated photon eciié$®  carrier-phonon coupling as well as the carrier-light coupling.
have been most useful for the quantification of the opticalFurthermore, the general form of the solution has been de-
decoherence of quantum dots. For some systems ultralonfyed without making any assumptions about the phonon dis-
dephasing times of the order of hundreds of picosecondpersion, the wave-vector dependence of the carrier-phonon
have been reportetf® Prior to such a slow long-time decay coupling, or the form of the carrier wave functions. In order
a rather rapid initial decay is observed typically on a pico-to illustrate typical properties of the nonlinear optical re-
second timescale, which leads to a significant drop of theponse predicted by our general formulas we consider in the
signal at elevated temperatures. It has been concluded frompaiesent paper a prototype model for a spherical GaAs quan-
number of experimental and theoretical studies that in quartum dot coupled to bulk acoustic phonons via the deforma-
tum dots the so-callegure dephasingnduced by the carrier- tion potential. Using this model we calculate time and fre-
phonon coupling is a major source for this initial optical quency domain two-pulse FWM signals emitted from single
decoherenc& 33 Pure dephasing refers to the decoherencelots as well as from dot ensembles. We analyze the resulting
caused by those parts of the electron-phonon coupling thdine shapes for varying temperatures, delay times, and local-
do not change the electronic occupation numbers. Foization lengths of electrons and holes.

higher-dimensional systems these parts yield only small cor- FWM experiments are often used to extract homogeneous
rections toreal phonon transitions which lead to electronic lifetimes, which in linear experiments are masked by inho-
redistributions and thus to energy relaxation. However, reanogeneous broadening. Therefore, it is also of interest to
transitions are strongly suppressed in quantum dots due fiscuss in detail the relation between the linear response of a
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single dot which is representative for an exclusively homo-electron occupying a conduction-band state confined to the
geneously broadened system and FWM signals emitted frordot. The energy of the uppermost hole state is taken as the
dot ensembles. Here, we consider an ensemble of dots wittero of energy.
varying sizes and discuss the effects caused by the corre- Obviously, the model contains two well-known limiting
sponding fluctuations of the carrier-phonon couplings andctases: when the electron-phonon coupling is disregarded, the
the electronic energies. Hamiltonian generating theptical Bloch equatiorfs is re-
Many features of our numerical results can be related t@wovered; if on the other hand the carrier-light-field coupling
analytical properties of the closed-form solution. A discus-is absent then the so-calldddependent boson modé
sion of these properties reveals that in most cases the quakpproached® which has also been extensively stud&eb?
tative behavior can be derived without knowing details of theln order to treat the carrier-phonon as well as the carrier-light
electronic wave functions. These properties are therefore géateractions nonperturbatively three generating functions for
neric features which do not depend on the simplifying asphonon-assisted density matrices have been introduced in
sumptions made in our specific numerical implementation. Ref. 33:
The paper is organized as follows: we start in Sec. Il by

defining our model. In Sec. lll we then relate the general Y(ag,,Bg,t)=<dce2§”§b£eﬁsﬁgbs),
solution of Ref. 48 to our specific situation and give explicit
formulas for all signals of interest that are discussed in the C(ag”85’t):<CTceZ§a§b2eE§B§b§>'

present paper. In Secs. IV A and IV B we analytically estab-
lish a number of general properties of our solution in the o Seabt S8

time and frequency domains. This analysis is continued in Flag,Be.t)=(e7e ™),

Sec. IV C where we relate features of the optical response twhere «; and 8; are complex valued parameters and the
some basic properties of the form factor for the carrier-brackets denote the guantum-mechanical averaging over
phonon coupling. The remaining sections are devoted to nwelectron and phonon degrees of freedom. All components of
merical investigations. We start in Sec. V A by analyzingthe electronic and phononic density matrices and all
FWM signals from single quantum dots. In Sec. V B theelectron-phonon correlation functions can be obtained from
discussion is extended to dot ensembles. Here, a detailate values of the function¥, C, andF at a;=B;=0 or
comparison with the linear response from a single dot is alsérom their derivatives with respect ta,,3; taken at this
included. Section V C deals with a specific feature of ourpoint.

solution, namely, that even a smooth continuum of acoustic The dynamics defined by the model Ed) is completely
phonons will in general lead to nonmonotonous modulationgietermined by the time evolution of these generating func-
of the time domain response. Finally, we present concludingions which is governed by a closed set of coupled partial
remarks. differential equations. General nonperturbative analytical so-
lutions for the dymamics oY, C, andF have been obtained

for the important case of an excitation by an arbitrary se-
quence of deltalike light pulsé§.in the derivation of these
For semiconductor quantum dots in the limit of Strongsolutions no assumptions have been made about the form of

electronic confinement it is justified to concentrate on onlythe phonon coupling CO“Sta"fﬁ(h), the phonon dispersion
two electronic states representing the uppermost valence aret, Or the electron and hole wave functions. In the present
the lowest conduction-band state, respectively. In this cas@®aper we use a model relevant for a prototype GaAs quantum
the pertinent Hamiltonian for the analysis of phonon-inducecHot coupled to bulk phonons. For such a system it has been
pure dephasing can be writters s found in Ref. 33 that the deformation potential coupling to
longitudinal-acousti¢LA) phonons has the strongest impact
on the optical properties, in particular on the decoherence.
_ T ot A + Therefore, it is justified to concentrate here exclusively on
H=#{clc—(MEC'd'+M"E dc)+2§ frogbeby this mechanism and label the phonons from now on by their
wave vectorg. The corresponding carrier-phonon coupling

Il. MODEL

+E ﬁ[(g§b§+ g?* bg)CTc—(ggngrgg* bg)de], constants are then given by
3
qDeM
1) e(h) — \pre(h) , 5
ops S ™~ 2

wherec, d, andb, are the annihilation operators for elec- wherep is the density of the materialy, is the acoustic-
trons, holes, and phonons, respectively; df, andb} are  phonon dispersionV is the normalization volume, ar®®

the corresponding creation operators; ng(f are phonon s the deformation-potential constant for electrghsles.
coupling constants. Here, the indéxis used to label the Finally, we have to specify the wave functions for electrons
phonon modes antlw, are the corresponding phonon ener-and holes which determine the carrier form factot " (q).
gies.M is the component of the dipole moment in the direc-For simplicity we use the same spherical dot model that has
tion of the laser field polarization arfgl(t) denotes the am- been applied for calculations in Ref. 48, resulting in a carrier
plitude of the laser field. FinallyQ) is the energy of an form factor given by
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for the polaron shifted exciton frequen€y and the dimen-
’ ( sionless phonon coupling, . The factore """ 7 in Eq. (5)
) o sets the overall scale for the free oscillations of the induced
whereag, is the localization length of the trapped electron pojarization, while all other information about the temporal
(hole). Unless otherwise stated we set=4 nm and use a pehavior of the signal is contained in the dimensionless func-
localization ratior =ay,/a,=0.87. This ratio corresponds to tion Gryyy(t, 7).
the assumption that the confinement potentials have the same The expression Eq5) represents the FWM signal emit-
shape for electrons and holes. The ratithen follows from  ted from a single dot. Experiments, however, are much easier

qzaé(h)
e(h) = _ - &
e (q) exp{ 2

the mass ratié® to perform on samples containing few thousands of dots. The
main difference between such dot ensembles and a single dot
1. EWM SIGNALS FROM A SINGLE DOT AND DOT is that the parameters that characterize the dots may strongly
ENSEMBLES fluctuate, and a meaningful comparison with such experi-

ments requires an ensemble averaging of (&Y. The effect
FWM signals are important manifestions of the coherentbof these fluctuations on the optical signal is commonly re-

nonlinear optical response of the system. Unlike signals fronferred to asnhomogeneous broadening
higher-dimensional semiconductor systems, coherent signals We will assume that there are no direct couplings between
from a single quantum dot are usually not selectively emittedlifferent dots in the ensemble and that the wave functions of
in a phase-matching direction. A FWM signal from a dot isall electrons and holes can be described by Gaussians. Then
therefore not related to a corresponding direction selection dEd. (5) represents the contribution of a given dot in the en-
the emitted signal. Typical experiments use heterodyne desemble and the response of the ensemble is determined by
tection technique¥?® which by means of suitable low- averaging over the dot parameters. This leaves four poten-
frequency modulations essentially filter out the componentially fluctuating dot parameters in the model: the energy of
Peww Of the nonlinear polarization that depends on theth® excitonic statef); the localization lengthsa, anday,;
phasesp; and ¢, of the two exciting pulses aa(2¢2~#1)_ |t and the laser I|ght. coyplmg constam._ Fluctuatlons. ofM
is worth noting that the measured signal is proportional toleﬁld toha re_norrrallzatlon of the amfphtude of t?eh&gna}l and
the amplitude| Ppyy| due to the heterodyne detection. when the signals are recorded as functions of the pulse in-

Theoreticallv. anv component of the linear or nonl.neartensities a damping of the Rabi oscillations is obtained, an
. cally, any P In¢ 1onil effect that has been studied, e.g., in Refs. 20 and 21 and that
optical response is determined by the polarizafomhich is

lated h ition densitvb will not be pursued here.
related to the transition density by Little is known about the way in which the remaining

M parameters are distributed in typical ensembles. In this paper
P(H=M Y(aq’ﬂq’t)|“q=ﬁq=°' @ the analysis of ensemble-averaged signals is based on the
In particular, the degenerate FWM signal can be extracteéP!lowing two assumptionsi) the confinement potential is
from the polarizationP, created by two consecutive light 9iVen by the same parabola for electrons and holes, resulting
pulses arriving at timet = — ~ andt,= 0. Within our model in a localization ratior determined by the mass ratio. For
the exact result for two delta-shaped pulses has been deriv&g"ijS parameters we thus have 0.87; (i) the fluctuations
in Ref. 48. It reads of the energies are exclusively due to the dot-size-dependent
o changes of the confinement energies defined by the three-

i f, dimensional harmonic confinement potential, i.e., we assume
P,:WM(t,T)z—E@(t)@(r)M*sW(;)sin(fl) that
i(200— @1) a—iQ(t—17) — - — _ 34%[1 1
X ellev2¢le Grwm(t, 1), (5 hQ=ﬁQo+hQ(ae)=hQO+§—2 FJF 5 , (8
ag\Me r°m,

wheref, , are the pulse areas of the two light pulses, and the _
envelope functiorGgyu(t, 7) is given by where 7.Q), is not fluctuating from dot to dot. Using the
above two assumptions, the fluctuations of the energies and
the localization lengths, anda,, are correlated and can be
_ 2(; H . e h
GFWM(t’T)—eXF{Eq: | vql*(i{2 sin(wq7) = sin wq(t+ 7)1} parametrized by a single quantity. We will use the electron
localization lengtha, to uniquely characterize the different
—(1+2Ng){3—2 cogwy7) —2 cog wyt) dots within the ensemble and assume a Gaussian distribution
of a, with mean valuea, and deviationo,. The ensemble-
. (6) averaged polarization is obtained for this model by substitut-
ing in Eq. (5) the function

+cod wy(t+7)]})

Here, Ng=[expfiw,/ksT)—1] ! denotes the Bose distribu-

tion of the phonons at temperatufeand the theta function E'\‘,\,SM(t,T)::f da.Grym(t, 7)
O(t) is 1 fort>0 and 0 otherwise. Furthermore, we have
used the abbreviations (a,—ay)?
e e c N
e_ h XAoexg — > —1Q(ag)(t—7)
_ Jdqs—9 Ta
Q=0-2 |yq0q, Yyg=—t0 (7)
S | vql g T 0, 9)
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for Geww(t, 7) and replacing the polaron shifted exciton fre- terpart. In order to get more insight into the relation between
quencyQ), occurring in the factoe 't~ by the nonfluc-  linear and nonlinear signals it is helpful to consider as a

tuating partQ. The factorA, in Eq. (9) ensures the normal- rttefertenclze tﬁ' model ﬂ\}/v 't?. phgr:ome?oéog\l/%?\; damlptlng cc;n—
ization of the size distribution. Physically it is clear that dotsStants. In tis case he ime-integrate ampituce of a

of arbitrarily small sizes cannot exist. This implies that theSyStem with infinitely strong mhomogen_equs broadening
integration in Eq.(9) must have a lower cutoff at a finite would, apart from constant prefactors, exhibit the same tem-

value a,,;,- For all calculations we have set the cutoff to porall b(.aha}_)\ilor as the abgolute square of the linear

- — polarization?® Of course, the time argument corresponds to
amn=1 nmand used a mean valueay=4 nm. The local- ¢ delay time in the former case and to the real time in the
ization ratio was kept at=0.87.

latter case. In both cases delta pulse excitation is assumed.

It should be noted that in addition to the energy the factorrparefore. a meaningful comparison is obtained wWi@p|2

Gewm(t,7) is affected by the size fluctuations because the

carrier wave functions and therefore the form factors in Eq.IS compared with a functio®,, representing the FWM en-

(3), which determine the strength of the carrier-phonon couy.EIOpe of an ensemble_z With infin_itely large energy fluctua-
pIir;g depend on the localization lengths anda tions. For this comparison we will disregard the effects of
Fc;r large energy fluctuations the averaging S\I/er the OSC”[Iuctua_tions of the carrier-phonon 9oupling. and concentrate
— exclusively on the energy fluctuations. It is clear that the

lating factor exp—iQ(ag)(t—)] in Eq. (9) produces a sharp |imit of an infinitely broadened ensemble is an idealization
echo peak centered &t 7, which has also been observed in ypich is expected to hold for a system with a finite broad-

recent FWM experiments on dot _ensemtj’la&'hile the oc-  ening that is much larger than the typical spectral width of a
currence of a sharp echo primarily reflects the presence Qfingie dot in the ensemble. We will come back to this point
strong inhomogeneous broadening, the corresponding timgter when we discuss the transition from a finite to an infi-
integral still contains valuable information about the homo-pjte inhomogeneous broadening. In the latter case analytical
geneous de'ca.fﬁ.ln addition to the time resolved signals de- regyits are much easier to obtain. In particular, the echo dis-
fined so far it is, therefore, also interesting to study the time,;ssed above evolves into a delta peak when the broadening

integrated response which is measured in many experiments; |arge and, therefore, the evaluation of the time integral in
Usually, time-integrated amplitudes are recorded, which argq, (10) yields

determined by the functions

~ens

FWM

, G..(7)=|Grwm(7,7)]. (14)
(0= lettolat o

Using Eq.(6) we find explicitly

To facilitate the comparison of the delay-time behavior of _ ) 5
&ene (7) with the behavior of the dimensionless function ~ C=(7)=€X —22(;, |76l (14 2Ng)[ 1~ cogwgm) I
Gewm(t,7) it is convenient to normalize the former accord- (15)
ing to
g Comparing Eq(13) with Eq. (15) we find that the expression
GEs (1) =G (1) G (7=0). (1 for G is related to|_G|.i,]|2 by replazcing the factof 1
—cosqt)] in the definition of |G,|* by the term[1
Besides the discussion of the above-defined signals i{—COS(qu)]Z.
turns out to be instructive to compare nonlinear optical sig-
nals with the linear response. The latter is fully determined IV. GENERAL PROPERTIES
by the linear polarization induced by a single delta-shaped

pulse. For a single dot excited by a delta pulsd,at0 it Thg optical _signals defined above possess a number of
reads348 generic properties that can be observed for a broad class of

models for the phonon coupling constants. With respect to
i : = these properties the numerical results presented below are,
Pin(t)= 50 (OM* fie'#1e™ MGy, (1), (12 therefore, representative for a wide class of dot systems and
are not restricted to the simplified model used in the specific
where evaluation. Some of these generic properties follow from
asymptotic expansions of the corresponding analytical for-
_ _ 20t mulas and thus are observed for any choice of the coupling
G”n(t)—exp( Eq: 7ol Hi sin(eqt) constants. Others are related to elementary features charac-
terizing the form factor for a given dot structure. We consider

+(1+2Ng)[1—cog wgt)]} |. (13) the former first.

First, we note that apart from constant prefactors the single A. Asymptotic behavior

dot FWM signal, Eq.5), in the limit —0 coincides with The FWM envelopeGry\(t, 7) for a single quantum dot
the linear signal, Eq(12). Obviously, for other values of  defined in Eq.(6) is typically a decaying function df pro-
the envelope functio,i,(t) differs from its nonlinear coun-  vided thaty, is a smooth function without singularities ex-
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cept for a possible integrable singularity @=0 and pro- _ )

vided that the phonon spectruay, is a smooth continuum. Gw(r—>oo)=exp[ -3 |y (1+2Nq)], (19

For acoustic phonons coupled by the deformation potential a

this is usually satisfied. Phonon bulk modes may be taken ashich declines exponentially in the high-temperature limit as
a prototype for a typical dependence gf and w, on the

wave vectorg. In this case the coupling is given by E@) — T 6kgT |'yq|2

and a linear dispersion can be used for all modes that are Gu(7—%) — exp — ch % q ] (20)
effectively coupled to the carriers. In the following we as-

sumewy~cq for all relevant modes. As mentioned earlier, a dephasing_model with phenomeno-

The real-time decay oGry\(t,7) confirms the earlier logical decay constants suggests tBatshould behave simi-
observatiof® that LA phonons destroy the optical coherencelarly to |G;,|2. However, from Eq(13) we find asymptoti-
of the exciton. Indeed, despite the absence of phonoreally for t—o that
mediated carrier level transitions a decay of both the linear
polarization and the FWM signal is found. However, as ex-
plained in Ref. 33 it is the asymptotic behavior |gf,|? for
vanishingq which determines whether or not the polarization _
decays to zero in the long-time limit. For an electrically neu-Comparing Eq(21) with the corresponding result f&.. in
tral exciton,|y,|? is expected to have a singularity @=0  Eq.(19) we conclude that using the linear response, (8),
not stronger tha¢yq|2oc 1/g and thus according to the con- t0 estimate the behavior of the time-integrated FWM signal
siderations in Ref. 33 the polarization does not decay to zerG.. (among other thingssystematically overstates the limit-
in this case; instead a finite value is approachedfoero. If ing value of the signal amplitude, especially at large tem-
there is no further singularity ihyq|2 the corresponding lim-  peratures.
iting value of Eq.(6) can be derived according to the proce- The temperature also affects the initial decay rate of the

|G|in(t—’°°)|2:eXP[_2§ |7q|2(1+2Nq)]- (21

dure outlined in the Appendix resulting in signal which is the characteristic time needed for the signal
to approach its limiting value. In the limit of high tempera-
_ 209i si tures the cha_raqter of the corresponding temperature depen-
Grwm(>,7) ex;{% [7al {21 sin(wq7) dence is again independent of the phonon coupling model

and can be obtained by using the high-temperature approxi-
—(1+2Ng)[3—2cogwn]}|. (16) mation for the2 Bose_ faqtor tqgether With_the expansion
cos@qt)wl—wét /2 which is valid for short times. For the

This is in general a decreasing function of temperature angrnplltucje'GFW'V'(t’T—())| we obtain in this way

typically it also decreases with increasing delay time. Ex-

panding the Bose factor (A2N,) in the high-temperature IGFWM(t,O)lscexp(—tchkBT/ﬁ),F=Z q|yq|2, (22
limit, i.e., (1+2Ng)~2kgT/(%icq), it is seen from Eq(16) q

that the absolute value dBryw(>,7) decreases exponen- from which the temperature dependence of the initial decay

tially with temperature according to time is extracted to be
T 2kgT | vql? f
|Grwm(, 7)| — exp[— 7 % Tq[3_2 cogwq7)] ;. to~1\/ cTkgT (23
(17

As expectedty(T) declines monotonously for high tem-

Equation (17) implies that the exponential temperature peratures. In contrast, the decay time of the signal at low
dependence of the limiting value of the optical response is &mperatures turns out to depend on the parameters of the
generic property which is found whenever the carrier-phonor§lot. By assuming an asymptotic behavior determined by the
couplings|y,|? are smooth continuous functions; only the form factor in Eq.(3) it is possible to obtain an estimatith
value of the exponential decay constant is model dependerfo~t,,=2a/c, wherea is a characteristic length describing

Similar to thet—oo limit, Eq. (6) has a finite asymptotic the spatial extension of the dot. Thus, the initial decay time
value also in the limitr—oc. It is worthwhile to note that should be determined by the time phonons need to leave the
this value coincides with the absolute value of ELf), dot. More accurate estimations fap require a detailed

knowledge of the phonon coupling.
Gerwm(t,) =|Gpym(=,1)]. (18)

Equation(18) reveals another interesting generic property:
the FWM envelope of a single dot becomes real at large Besides optical properties in the time domain we shall
delay times. also explore the system response in the frequency domain.

Also the time-integrated FWM amplitude of an infinitely However, some care has to be taken in order to define mean-
strong inhomogeneously broadened dot ensemble(E),.  ingful spectra, because in our model the signals do not decay
yields a finite value forr— given by (cf. also the deriva- to zero for long times. It is therefore helpful to introduce the
tion in the Appendix following decomposition:

B. Spectra
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Grwm(t, 7)=Grym(®,7) + AGrym(t, 7). (24) . Similar to the tin_1e domain, a number of generip proper-
) _ ties can be established for the frequency domain signals.
The function®(t) AGryu(t, 7) decays to zero in the 1ong- gome of them follow directly from the time domain results
time limit t—c and has a well-defined Fourier transform,  giscyssed above. For example, from the fact that the enve-
lope becomes real at large[cf. Eq. (18)] it can be con-

AGpwm(w,7)= f e'“'AGprym(t, 7)dt. (25)  cluded that the spectra obey the symmetry relation
0
. T
According to the decomposition, E(R4), the Fourier trans- TIEZGFWM((”’T)_TITLGFWM( 7). (29
form of O(t)Gpwu(t,7) is the superposition of . ] )
AGgym(w,7) and a singular paGy(w, 1), According to Eq.(27) this holds separately for the singular
part G5 and is, therefore, also valid for the nonsingular part
Grawm(@,7)=Gg4(w,7) +AGrym(w,7), (260 AGpgym alone. Thus, the absolute value of the background

Tspectrum evolves into a symmetric function®fn the limit
of long delay times. In contrast to this, the spectra at zero
delay time exhibit an asymmetry which is especially pro-
nounced at low temperatures. Physically this can be under-
iG (%, 7) stooq as follows: forr—0 the FWM signals _coincide with
Gy w,7):= lim ————— (270 the linear response as has been noted earlier. However, the
5—07" w+id imaginary part of the linear spectfthe real part of the Fou-
Since the FWM polarization differs from Ggyy(t,7) only rier transform ofGy(t)] is proportional to the light absorp-
. - tion, and the total energy of the absorbed light equals the
by the oscillating functiore and some constant pré- gnergy of the created exciton plus or minus the energy of
factors, the polarization spectrum can be obtained fro”bhonons emitted or absorbed in the processTAO there
Grwm(w,7) by a simple scaling and shifting of the resulting 516 g available phonons in the system and, consequently,
CUrves. _ , only phonon emission can take place. Therefore, in the limit
The singular pariG(w,7) is responsible for the sharp fyanishing temperature the linear spectra approach zero for
structure in the polarization spectrum which is commonlyfequencies below the resonance corresponding to the zero-
refered to as theero-phonon lineAccording to Eq(27) its  phonon line. With rising temperature the corresponding spec-
weight is determined by the limiting value tra are in gggeral still asymmetric, but the asymmetry is less
- pronounced:’ Further insight can be obtained by expanding
We(7):=|Grum(t—22,7)]. 28 e background sprectrumGryy(w,7=0) at T=0 in a
It is clear that interactions that have not yet been taken int@ower series with respect 110/q|2. This expansion can be
account in our model such as the radiative decay will evenderived most easily by expandingGgyu(t,7=0) in a se-
tually lead to a vanishing signal in the long-time limit. Ex- ries and then taking the Fourier transform term by term. This
perimentally, several hundreds of picoseconds have been reesults in
ported for low temperature’® Of course, it would be easy
to account phenomenologically for such a decay by assign i|yq|2( 1_2 Iyquz)
q

where the singular part is given by the Fourier transform o
the step functior® (t) Ggym(ee, 7) which results in the dis-
tribution

ing a finite value tos in Eq. (27). However, the measure-
ments show a significant temperature dependence of the ddim AGgrym(w, 7= O)ME

cay constant for long times and it is, therefore, clear that™—0 a W= wgtid

radiative decay alone cannot account for the measured data. o )

The microscopic origin of this long-time decay is still an > i gl “lvq | +0(|4]9

open question which is not addressed in the present paper. aq ©— @ wg+id ’
We also make no attempts to include this feature on a phe- (30

nomenological basis. Instead, we characterize the singular

component of the spectra, E@6), by its weightWs(7) and  where the limit6— 07 is implied. Using the identity
discuss separately the properties of the nonsingular part

AGpym(w,7). As we see below, the nonsingular part pro- im 1 — P(1X) + i 8(X) (31)
vides for a broad background on which the singular part has X—id ’

to be superimposed in order to obtain the full spectrum =0

Grwm(w, 7). We will therefore also refer tAGeyy(w,7) as  whereP denotes the principal value, it can be formally con-
the background spectrumit should be noted that an inclu- firmed that, as expected, the real part of E30) vanishes
sion of interactions that provide for a decay on a long-timeidentically for w<<0. This property is indeed fulfilled sepa-
scale can be expected to have little effect on the short-timeately for each term in the expansifshown explicitly in Eq.
behavior. Since the background spectrum is almost exclu30) up to the second nonvanishing contribufioMoreover,
sively determined by the decoherence on the short-time scaks Iyqlzoc 1/g for g—0 and because the volume element,
of a few tens of picoseconds it is safe to assume that thebtained when thg sum is converted into an integral, scales
background spectrum will not change much by includingas~q? it is seen that the real part of EGR0) goes to zero as
long-time decay mechanisms in the model. w approaches zero from the right. This is enough to conclude
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that the spectrum of the FWM signal at small delays is a 1.5 r
continuous function abb=0. It is therefore asymmetric and
the maximum of its absolute value is shifted to a positive

In the opposite limitr— <, where the absolute value of 1
the spectrum becomes a symmetric function, we expand Eg.

(18) in a series and then take the Fourier transform. The first P

term of this expansion reads 5 05
5 .

LD

. 2 o=
T“LT‘OAGFWM(CU,T—’OO)“; |7q| —w—wq+i5 ": 0

2

&

+ —|+ ). =

w+wq+I5 oy g
Lt

(32

This obviously yields foro<<0 nonvanishing expressions
even atT=0. Nevertheless, using the asymptotic properties
of | y4|? for smallq values and the relation E¢31) we can
conclude in the same way as in the discussion of (B84
that the real part of Eq(32) vanishes in the limitw—0. _1
Furthermore, irrespective of the form [of|?, the imaginary g (nm™)

parts on the right-hand side of E(82) Cf"‘”°e' wher ap- FIG. 1. Form factor for the carrier-phonon couplifig, (a) for
proaches zero. Therefore, when the first-order term in the.. - o oo ¢ the ratio=a. /a. at T=1 K. and (b) for r
expansion, Eq(32), dominates, which should be true for not —0.3 at the temperaturé&=0 K h4 Ke and 40 K.’

too large| yq|?, it follows that the FWM spectrum at large T

delay times is symmetric and has a local minimumeat grand is in all cases a product of an oscillating factor, e.g.,

=0. Thus, only from basic asymptotic properties |of|* 1—cos(wyt) for the linear response in E¢L3), and the time-
can it be deduced that the single dot FWM spectra at lowndependent factor

temperatures are asymmetric for small delays, but with in-
creasing delay time they transform into symmetric functions Fq=174/%(1+2Ny). (33

with a local minimum aiw=0. Thus, the temporal behavior of the above three signals is

On the other hand, in the opposite limit of high tempera- overned by the same quant However. since onlv in-
tures the real-time FWM signal at zero delay time is, accord? y q B ' y

ing to Eq.(22), represented by a Gaussian and therefore théggrated properties dfq enter it should be expected that the

corresponding spectrum is also a Gaussian; in particular it i'%lgn?llqsstaerae dncr);asr?nSIE\elxﬁt;?i\/egigzlatﬂfznsc;Iotlle Il')r;erz?;gg ?;
a symmetric function with a single maximum at=0. ar ' Yy a

Analogous considerations for largevalues using Eq(19) 22 S O ROREIES S B AEL 6 SIEEE Ol
reveal that the corresponding spectra are symmetric also i P
this case. whereF, and wq depend only on the modulus of the wave

Summarizing the results obtained so far we conclude th ectorq and the angle integrations can be easily performed.

at high temperatures the spectra at differershould be al- he integrand of the remainirgyintegration is then given by
most symmetric, have a single maximum nea+ 0, and be fo =T g(1+2Ny)

similar with respect to their line shapes. Indeed, one can e a
trace this generic behavior in our numerical results presente‘(ﬁf'th
below[cf. Fig. 3b) below].

Fq==q2|yq|2. (39
) ) We will refer to f, as the form factor for the carrier-phonon
C. Form factor and optical signals coupling or if there is no risk of ambiguity simply speak of

The aim here is to relate basic properties of the formthe form factor. It is the product of a temperature-
factor for the carrier-phonon coupling to corresponding feaindependent factol; and the factor ¥ 2N, which depends
tures of the optical signals. First, we note that the temporabn T via the Bose distributiom, .
behavior of the absolute values of the envelope functions for In order to get a feeling for the typical structure of the
single dot FWM signal$cf. Eq. (6)], for the linear response form factor we have plottedl, for our model in Fig. 1a) for
[cf. Eq.(13)] as well as for the time-integrated FWM signal T=1 K for different values of the ratio:=a,/a. between
of an infinitly strong inhomogeneously broadened dot enthe localization lengtla,, of the hole anda, of the electron.
semble[cf. Eq. (15)], is given by exponentials which all At low temperatures the form factor is dominated by the
contain a summatiofintegration in the exponent. The inte- temperature-independent factby, which according to our
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model scales a$'>q in the limit g—0. In the opposite fined in Eq.(2), from which y, and therefore alsd’, are
limit, g—o, we f|nd that I'q<exp(—q a’/4), where a  derived, depend on both electronic properfieis the elec-
=min(ae,a,). Consequently, at Ieast one maximumigfata  tronic form factor? ¢ (q)] and phononic properties. It is,
finite g value is ensured. For localization ratios 1 there is  therefore, clear that, in principle, structures in either of these
typically only a single maximum, as seen, e.g., in Fige)1 can lead to corresponding sharp peakk jn For example, if

for ther =2 curve. When the hole is more strongly localized there is an enhanced density of phonon states in modes con-
than the electron, i.er, <1, a second maximum appears, fined in the dot region then it is likely that the corresponding
which grows in amplitude for smaller. It is clearly visible I'q exhibits a sharp structure agavalue Qg of the order of

in Fig. 1(a) for r=0.4 andr=0.3. In the case=0.87 it is  the reciprocal dot dimension and consequently correspond-
also present but appears at a much lamgeralue and its ing optical signals should be modulated with the frequency
amplitude is strongly suppressed. The appearance of the seeg . However, for the bulk modes that we use for the nu-

ond maximum is a consequence of the cancellation of Conmer|ca| evaluations in the present paper, the peaks have a
tributions from the electron and the hole to the phonon coufinite width. The essential features of optical signals resulting
pling v4 in Eq. (7). These cancellations occur only for  from dots which, similar to our present model, exhibit peaks
<1 because we have used parameters where the relatigiI", of a finite width can be captured in a simple Gaussian

|Dp|<|Dg| holds. Furthermore, it is required that, andD, model
have equal signs. Then, indeed, one can see dlrectly from
Egs.(2) and(3) that y, defined in Eq(7) vanishes when I'g (q—Q)?| -
q:\/z_ exp — g2 +Iyg, (39
2 [In(|De/Dy)) 7 7
- a_e T 35 which represents a broadened peak on a smooth background

o ) 1~“q. Again we concentrate on the linear response given by

which is real only forr <1 (since|Dy|<|De|). Eq. (13). The analogous analysis of the FWM signals leads

Thus, the typical behavior of the factby, can be charac-  to similar conclusions. Assuming a linear phonon dispersion,

terized as followsI’, vanishes in the limitsg—0 andq wq=cq, Eq. (13) separates for the model in E(38) as
—oo and has maximépeaks at finite g values; for a single  follows:

dot characterized by ground-state wave functions, i.e., wave

functions without any nodes, the number of maxima is typi- Giin(1) = Gjn(t)ex] — T'ge~ (Cc™r¥2)-iect) - (3g)
cally either one or two. Already by considering only these

basic properties we can deduce some qualitative features 66 in the case of the delta peak the background Gax(t)

the optical response. Let us explore the consequences of tiemodulated by an oscillation, which in this case, however,
fact thatT" is peaked at finiteg values. In a first step we decays with time. The oscillation has a period o
discuss the effect of a single peakgat Q which is infinitely ~ =2#/(Qc) and the decay time is given liy~1/(oc). The

sharp, i.e., we discuss a model o4 defined by number of oscillation periods that can be observed in such a
system can, therefore, be estimated\asQ/o, i.e., by the
Iy=Tgé(q- Q)+T“q, (36)  ratio of the peak position and the corresponding peak width.

_ Looking at the peak structures in Fig(al we conclude
where I'; is assumed to provide a structureless “back-that most of the peaks have a width comparable to their peak
ground” in the vicinity of the peak aj=Q. The contribu-  position. We therefore expect that in these cases the optical
tion of the peak to the integrals in Ed$), (13), and(15) can  response should in general depend on the real time and the
be immediately evaluated in all three cases. For simplicitydelay time in a nonmonotonous way, resembling an over-
we will discuss explicitly the results for the linear response,damped oscillation with only one resolved period. For ex-
Eq. (13). The nonlinear signals in Eqg6) and (15) can be  ample, for ther =0.87 curve in Fig. (a) the dominant peak
analyzed along the same lines. Using B3f) in Eq.(13) we s |ocated at abou@=0.3 nni * with about the same width
obtain corresponding to a modulation period D§~4 ps and a de-

- cay time of the same order of magnitude. Interestingly, some
|Giin(D)]=|Gjin(t)|[exp{ —T'q[1—codwqm)]}, (37  of the peaks occur at @ position larger than their widths.

~ I For example the curve for=0.3 has a peak aQ
where|G;,(t)| denotes the contribution from the background~11nm corresponding to an oscillation period of

which is evaluated froniy . This background component is ~1 1 ps with a noticeably smaller width. Here, we should
modulated by oscillations with the frequenay, . Itis im-  expect more pronounced modulations of the corresponding
portant that althOUgWQ can be relatlvely small Compared S|gna|s We will come back to this po|nt later.

with the weight of the background palftq the correspond- While the form factorf, at zero temperature coincides
ing modulation can still be noticeable. If two or more sharpwith I, at finite temperatures it is also affected by the Bolt-
peaks are present, the resulting modulation is a sum of themann factor in Eq(34). In Fig. 1(b) we have plotted  for
individual modulations, each oscillating with the correspond-three different temperatures and a fixed localization ration of
ing frequency. Thus, we expect oscillations of the opticalr=0.3. As can be seen from the figure, increasing the tem-
signals with a frequency given by, whenever', exhlblts perature leads to systematic changes with respect to the peak
a sharp structure at=Q. The phonon coupllnggq structures. Most notable, the form factor reaches a finite lim-
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iting value whenq approaches zero. This is due to the 1/ 1.0

singularity of the Bose factor which cancels the behavior

of I'y. Expanding the Bose factor it is seen that the corre-
sponding limiting value is proportional to the temperature. 7=
As a result of the Bose singularity, the first maximum moves =
towardsq=0 and the amplitude of the first peak is strongly §
enhanced. Also the position of the second peak shifts to<5
wards lowerg values. Within our simplified Gaussian model

it is easy to prove explicitly that the peak positions should
always shift towards lowey values with increasing tempera-
tures. Indeed, for the temperature-dependent maxi@Qqm)

of the product of the Gaussian in Eq38) and the 0.05 |
temperature-dependent factot- 2N, , we find

108

106

104

0.8 } } } y t } 0.2

1 0.05

N 1+Ngm

Q(T)=Q—2c¢?hc .
keT 1+2Ng

(40)

Grwm(t, 7)]

0.00

This proves that the correction to the zero-temperature valueE
Q is always negative and thus the period of the correspond-
ing modulations increases with the temperature.

As suggested by the asymptotic E@2), at large tem- 005 5 N 2 3 0 1 2 5 0%
peratures there should not be any phonon-induced oscilla t (ps) t (ps)
tions present in the envelope functions discussed so far. In
this limit the first peak completely dominates the form factor  FIG. 2. Absolute valug(a) and(b)] and imaginary parfi(c) and
fq. However, this peak moves tq=0 with increasing (d)] of the single dot FWM envelope functio@rwu(t,7), calcu-
width. Consequently, the oscillation corresponding to thidated forr=0.87 and for different delayst=0 ps (solid ling), 7
peak is increasingly damped and has a period which ap=0.3 ps (dot-dashed ling =1 ps (long-dashed ling 7=6 ps

proaches infinity in accordance with our previous finding. (short-dashed line (a) and(c) correspond tar=1 K and (b) and
(d) to T=30 K. At 7=0 the FWM signal envelope coincides with

the envelope of the linear response.

V. NUMERICAL RESULTS

The following subsections are meant to give a more quanUal the maximum value decreases with increasing delay. All

titative impression of the signals predicted by our theory. Incurves exhibit a fast initial decay from their maximal values
particular, we will present numerical results that have bee@n @ time scale of approximatety~1-2 ps. As discussed
obtained by applying the spherical model defined in Sec. l1€arlier, after the initial drop all curves approach a nonzero
We use standard GaAs parameters. The values of all materi¥@lue in the limitt—co. In accordance with Eq16) we find

parameters used apart from the confinement lengghand ~ that the long-time limiting value declines with increasing
a;, are listed in Table | of Ref. 33. temperature and with increasing A more quantitative

analysis of the initial decay and the behavior of the limiting
value is given below.

By plotting the imaginary parts in Figs(@ and 2d) one

We start the discussion by analyzing FWM signals from acan monitor the prediction that the envelope function
single quantum dot in the time domain. By using B8l.we  Gp,\(t,7) should become real for long delay timjes. Eq.
have plotted in Fig. 2 real-time traces of the FWM envelope(18)] which implies that the imaginary parts should vanish in
Grww(t, 7) for four different values of the delay timebe-  this limit. As seen from Figs.(2) and Zd) the expected limit
tween the external light pulses. Figure@?2and 2b) show s indeed reached after about 2 ps, but it is approached in a
the absolute value of the signals while the correspondingionmonotonous way. Far=0 the imaginary part turns out
imaginary parts are shown in Figs(c2 and Zd). Figures to be entirely negative while for delays longer than 0.3 ps it
2(a) and Zc) are calculated for a temperature =1 K s entirely positive. Furthermore, the shape also changes sig-
while for Figs. Zb) and 2d) a value ofT=30 K has been nificantly with delay time. The most important feature, how-
used. We note that at=0 the FWM response coincides with ever, is that the imaginary part approaches zero after roughly
the linear response, Eq13) according toGgyu(t,7=0) the same time it takes the real-time signal to approach its
=Gjin(t). Consequently, Fig. 2 also provides a comparisorfinite limiting value. The reason for this result is revealed by
between FWM signals and the linear respofsdid line in  looking at Eq.(6) which indicates that the properties of the
Fig. 2. FWM signals in the and 7 domains are qualitatively similar.

As expected from our previous analysis the absolute valOne consequence of this symmetry has already been explic-
ues are nonmonotonous functions that resemble overdampéty expressed in Eq(18) where the corresponding long-time
oscillations. Also obvious from the figure is the general trendimits have been related to each other. The characteristic time
that the nonmonotonous modulations are more pronounceat which the envelope changes as a function of athd 7
for lower temperatures. As usual for a two-pulse FWM sig-has been estimated in Ref. 48 to be approximately given by

A. Single dot FWM response
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three quantities which quantify specific characteristics of the
curves. The first quantity that is analyzed is the welghtof

the singular part of the spectrum. According to E2p) it is
given by the amplitudéGgyy| of the FWM envelope evalu-
ated in the long-time limit— . As discussed in Sec. IV B,
W; is also related to the spectral weight of the zero-phonon
line. It is interesting to contrast the behavior of the singular
part of the spectrum with the corresponding dependencies of
the nonsingular contributions, i.e., of the background spec-
. trum AGgywy - In order to measure the total spectral weight
TN ©=0ps of the background spectrum we introduce the quarifity

P a \ —— .
b) 777N =03 ps defined as
77 . N\ ———=1ps
! ‘Q‘\———— =6 ps

|[AGrwm(w, T)]| (arb. units)

Wi(7)2= fﬁJAGFWM(w:THzE:fO |AGrwm(t,7)]%dt.

(41

Besides the analysis of the weights of singular and nonsin-
. s s gular parts of the spectrum it is also of interest to quantify
—4 -2 0 2 4 the initial decay time. However, the temporal behavior of our
hw (meV) signals is in general neither Gaussian nor exponential and
also, in some casdgf. Fig. 2, the maximum does not co-
FIG. 3. Absolute value of the background spe&@ryu(w,7)  incide with the onset of the signal set by the arrival of the
of the single dot FWM signal calculated according to E2p) for ~ second pulse. Therefore, there is not a distinguished measure
r=0.87 and different delay times: (@ T=1K and (b) T  for the initial decay, and several different choices are pos-
=30 K. sible. We have chosen to identify the initial decay time with
the time 7 it takes from the arrival of the second pulse to
the timet,,=a/c needed for the phonons created in the ex-reach the point at which the signal has dropped half way
citation process to leave the daff. also the Appendix For  from its initial value towards the corresponding long-time
a~4 nm used in the current calculations this estimate givedéimit. Looking at the line shapes of our signals it is seen that
7~1 ps, which is of the right order of magnitude. Interest-the above prescription uniquely defines a measure for the
ingly, only for delay times either much shorter or longer thanduration of the initial decay.
this characteristic time the curves in Figga2and Zb) have The delay-time dependence of the three quantiiés
their maximum att=0, i.e., at the arrival of the second W,, andr, has been calculated for the temperaturesl,
pulse. For intermediate delays the maximum is shifted to30, and 100 K and the results are displayed in Fig. 4. First,
wards finite real-time values. we note that the limiting valuaVy=|Ggym(e,7)| is typi-
The absolute value of the background spectracally a decreasing function af similar to the real-time de-
AGpym(w,7) corresponding to the real-time FWM signals pendence in Figs.(d) and Zb). This reflects once again the
in Fig. 2 are plotted in Fig. @) for T=1 K and in Fig. 3b) approximate symmetry between the real- and delay-time re-
for T=30 K. Clearly it is seen that the signals at low tem- gimes. A close look at Fig.(4) reveals a slightly nonmo-
peratures evolve from an asymmetric shaperat0 (this  notonous decay & =1 K, while at the larger temperatures
curve coincides with the linear background spectrima  the curves drop monotonously towards their limiting values.
symmetric function for long delay times as discussed analytiAs expected from the formulas in Eq4.6) and(17) we find
cally in Sec. IV B. Indeed, atr=6 ps the absence of the thatWs drops significantly with increasing temperature. Fig-
imaginary part yields a symmetrical spectrum. Furthermoreure 4b) quantifies what we have noted earlier that the weight
in accordance with the conclusions drawn from the expanef the background spectrum is a nonmonotonous function of
sion in Eq.(32) the spectra exhibit a local minimum at  the delay time. Typically, a single maximum is found at a
=0 for longer delay times. Also in agreement with our gen-finite delay time. With increasing temperature the maximum
eral considerations in Sec. IV B the spectra at higher temis more pronounced and its value is shifted towards earlier
peratures are almost symmetric with a maximum near times. The crossing of the=30 K and theT =100 K curves
=0 for all delay times. Interestingly, the absolute heights ofindicates thatV, also depends in a nonmonotonous way on
the spectra change in a nonmonotonous way. Starting frorthe temperature.
=0 the total spectral weight of the background spectra first Interestingly, the delay-time dependence of the initial de-
increases for larger delays and then decreases again. cay time 7, shown in Fig. 4c) changes its character with
So far we have discussed a number of qualitative featuredsing temperature: alf=1 K it decreases monotonously,
that nicely illustrate our general results derived in the previ-while for higher temperatures it evolves into a nonmonoto-
ous sections. From the figures some additional overall trendsous function of the delay time. In particulat, has a maxi-
have become apparent which deserve to be analyzed onnaum at a finite delay time. This means that at intermediate
more quantitative level. To this end we study the behavior otemperatures it should be possible to optimize the decay of
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£ FIG. 5. (a) Absolute squaré¢G,,|? of the linear response as a
e function of the real time. (b) Absolute value of the background
spectra corresponding t@). (c) Normalized time-integrated FWM
amplitudesG., from an ensemble with infinitely strong inhomoge-

neous broadening as a function of the delay timed) Absolute
value of the background spectra correspondin(toAll quantities
7 (ps) are plotted for =0.87 and for three temperaturés:= 1 K (solid
line), T=30 K (long-dashed ling and T=100 K (short-dashed
FIG. 4. (a) Spectral weightV, of the singular part of the spec- line).
trum. Wy coincides with the amplitude of the long-time limiting
value of the signal(b) Spectral weighW, of the background spec- Fig. 5(@) we have plottedG;;,|? as a function of real time for
trum defined by Eq(41). (¢) Initial decay timer,. All quantities are  three different temperatures while FigbbdisplaysG.. as a
plotted as functions of the delay timefor r=0.87 and for three  fnction of the delay time for the same temperatures. Obvi-
different temperaturest =1 K (solid ling), T=30 K (long-dashed sy, the corresponding temporal line shapes are very simi-
line), andT=100 K (short-dashed line lar. Qualitatively, the behavior is also similar to the single dot
real-time traces for short or long delay times shown in Figs.
b)(a) and Zb). For temperatures above 10 K the curves
decay monotonously towards a finite limiting value while at
Tow temperatures-1 K a strongly overdamped oscillation is
observed which provides for a slight modulation of the de-
cay. In agreement with the asymptotic formulas, &4) and
Eqg. (19), we find that the initial drop is significantly deeper
A widespread application of FWM experiments is to mea-for the FWM signal than fofGy,|*. However, the time scale
sure the homogeneous linewidth in strongly inhomogefor the drop turns out to be roughly the same.
neously broadened systems. Linear absorption measurementsFollowing the procedure of Sec. IV B, it is possible to
on such systems reflect almost exclusively the width of thedefine background spectra corresponding to the functins
inhomogeneous broadening and give no clue to the intrinsiand |G,;,|2. Of course, the Fourier transform has to be per-
homogeneous decay time. Often the previously mentionetbrmed with respect to the delay time in the former case and
relation between the time-integrated FWM signal from anwith respect to the real time in the latter case. The absolute
infinitely broadened system and the square of the linear revalues of these spectra are displayed in Figp) Sor |G|m|2
sponse from a homogeneously broadened sample is taken 884 in Fig. 5d) for G... Since the time domain functions are
the basis for this extraction. However, by comparing @9  real in both cases the corresponding Fourier transforms obey
with Eq. (E%) it was noted before that the expressions for theyne symmetry relatiori(w) = f* (— ) and consequently the
envelopeG., of an infinitely inhomogeneous broadened en-real parts of the spectra are symmetric functionsofCom-
semble and for the single dot linear envelope funct®p,|>  paring the FWM spectra with their counterparts calculated
are similar but do not coincide. Thus, in contrast to a dephasfor |G;,,|? it is seen that in both cases very similar line shapes
ing model with phenomenological damping rates the abovare obtained with only minor differences concerning the cor-
relation is not strictly fulfilled within our model. Figures®  responding widths. As in the low temperature single dot
and Hc) provide a direct comparison of these functions. Inspectra in Fig. 3, in Figs.(6) and Fd) a local minimum

the optical response towards longer decoherence times
suitably tuning the delay time. Figuréc} also indicates that
the initial decay time is not necessarily a decreasing functio
with rising temperature.

B. FWM signals from dot ensembles
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age decrease while a further risef/a, to 0.3 reduces the
drop. Interestingly, also the initial decay time gets noticeably

longer when the fluctuations change from/gezo.l to
o,/a.,=0.3. The latter effect seems to be related to the fact

1
‘I
2 = ! ---- 6/3,=003 ns
R 09 ¢ i —5/a=01 | that for fluctuations larger thao,/a.,=0.1 the modulation
[ N j ——- 0/a,=03 flattens with increasingr,/a..
| ! As already noted, fluctuations of the dot sizes lead to
08 L. , , [ , ) variations of both the carrier energies and the carrier-phonon
i) 1 2 30 1 2 3 coupling. In order to get more insight into their respective
7 (ps) 7 (ps) roles we have performed galculatiqns vyhere only the effect
of the energy fluctuations is kept, i.e., in these calculations

the carrier-phonon coupling has been determined by using a

the delayr at T=0.1 K for different relative widthsr,/a. of the  fixed dot size corresponding to the mean vadye The re-
dot size distribution and fixed=ay/a.=0.87. (a) Accounts for  sults are plotted in Fig.(6) for the same values af,/a, as
variations of the energies and carrier-phonon couplings caused i, Fig. 6(a). It turns out that the curves calculated only ac-
the size fluctuations, whilgb) only accounts for energy fluctua- counting for energy fluctuations are almost indistinguishable
tions. The curves are nor.mal.lzed accgrdlng t(_) eq) e.xcept for for o, /a,=0.03 and 0.1 from their counterparts in Figap
the o, /a,=0.03 curve which is normalized to its maximum. where changes of the carrier-phonon couplings have also
been taken into account. Thus, for size fluctuations up to
appears atr=0 due to the same reason: the suppression ofibout 10% the effects related to the corresponding energy
the phonon coupling in the limitg—0. For the infinitely  fluctuations clearly dominate. In this case changes of the
broadened ensemble this dip has already been reported @velope functioiGgyy can be disregarded in E(R). Here,
Ref. 48. For higher temperatures the dip disappears. Despiige variations of the depth of the drop are, therefore, caused
the good agreement with respect to the line shapes it ignly by the corresponding changes of the temporal width of
clearly seen that the absolute spectral weights of corresponé€ €cho. A temporally broader echo implies that the time-
ing curves in Figs. &) and Fd) differ noticeably(note the integrated S|gnaI§ effectively sample over a larger time win-
scaling. In conclusion, we have found that apart from sub-dow thus averaging out large temporal variations of the sig-
stantial differences with respect to the depths of the initia"@l amplitudes. This is the main reason for the increase of the
drop and the weights of the background spectra it is a rathd?ercentage drop when the fluctuation is increased from
good approximation to identifi.. with |Gy,|2. Especially ~ a/@=0.03 too,/a.=0.1. However, when the energy dis-
in view of the fact that the shapes of the single dot spectrdfibution gets broader than the width of a typical single dot

may change significantly with the delay tirtef. Fig. 3 this ~ 'eésponse, the echo is already sharp on t_he time scale on
good agreement is quite remarkab'e. Wh|Ch the enVelOp@FWM Changes. A further increase of the

We will now analyze the way in which the results are Proadening has therefore no effect on the signal. This is
affected by the strength of the inhomogeneous broadeninglearly seen in Fig. @) in which the curves foro,/a,
Figure Ga) shows ensemble-averaged time-integrated FWM=0.1 ando,/a,=0.3 are indistinguishable. In contrast, the
signals calculated from Eqe9) and(11) for different values  corresponding curves in Fig(# are substantially different,
of the relative standard deviatian,/a.. These calculations indicating that for size fluctuations above 10% the corre-
have been performed for a rather low temperatureTof sponding variations of the carrier-phonon couplings become
=0.1 K in order to show most clearly the effect of inhomo- indeed important and can no longer be ignored. These results
geneous broadening on the nonmonotonous modulatiorisply that the discussion in the previous sections based on
which are more pronounced at low temperatures. For the lowhe functionG.., where infinitely strong energy fluctuations
value of o,/a,=0.03 the signal is almost unbroadened andhave been assumed together with fixed values of the carrier-
the echo has a rather large real-time extent. Consequentlphonon coupling, is indeed representative for a system with
for delay times shorter than the width of the echo the time-an energy distribution broader than the width of a single dot
integrated signals are strongly suppressed because the echsfgctrum but with size variations not much larger than 10%.
not yet fully developed. The result is a pronounced maxi- In Sec. V A we have characterized the behavior of single
mum at a finite delay time which is located at a time roughlydot FWM signals by three quantities: the weighlis and W,
corresponding to the temporal extent of the fully developedf singular and background parts of the spectrum and the
echo. To facilitate the comparison we have normalized thigime 7o measuring the initial decay time. Obviously, analo-
curve to its maximum rather than using Ed1). Starting gous quantities can be introduced for the time-integrated and
from their maxima all curves exhibit a modulated decay. Sur-ensemb|e_averaged Signg_iinwsm 7—) as well as for the abso-
prisingly, the percentage drop from the maximum to the lim-jyte square of the linear respong®;(t)|?. Here, there is
iting value at large delay times depends nonmonotonously 0Bnly one time argument, namely, the delay time in the former
the strength of the size fluctuations. Increasinga. from  case and the real time in the latter case, and the Fourier
0.03 to 0.1 leads to a significant enhancement of the percentransformation defining the spectra has to be taken with re-

FIG. 6. Time-integrated FWM respon(ﬁ"\,\,sM as a function of
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1 - - - In contrast towW, the weight of the background spectrum
N — FWM, ensemble averaged W, in Fig. 7(b) differs considerably for the linear and FWM
S, T FWM, only energy fluctuations signals. This was already noted in Fig. 5. In addition, the

effect of fluctuations of the carrier-phonon coupling bf
reverses with temperatures: aboVe-40 K the weight of
the background spectrum is enhanced by these fluctuations
while at lower temperatures it is slightly suppressed.
Contrary to what might be expected intuitively, the initial
decay time[Fig. 7(c)] is a nonmonotonous function of the
temperature. The decay time decreases for high temperatures
with a rate that can be extracted from the asymptotic expan-
sion, Eq.(22), to be

~ L (42)
7 Nyrer

However, it increases with for temperatures below 15 K for
both the linear response and the FWM response irrespective
of whether fluctuations of the carrier-phonon coupling are
accounted for. This rather surprising finding can be under-
stood as follows: In Sec. IV C it was concluded that the
temporal behavior of the optical envelope functions consists
in general of one or more damped oscillations depending on
the peak structure of the form factor. The oscillation period is
determined by the corresponding peak position while the

W (arb. units)

Wy (arb. units)

7o (ps)

0 20 20 50 30 damping is related to the width of the peak. With rising tem-
perature the peak at the lowegvalue has a rapidly growing
T (K) amplitude and eventually dominates. Its position moves to-

wards q=0 while its width increases. In addition it was

FIG. 7. (a) Spectral weights of the singular part of the spec- g1 that the position of the second peak is always shifted

trum. Wy coincides with the amplitude of the long-time limiting

. . towards smallerg values(cf. Fig. 1). The increase of the
value of the signalb) Spectral weighW, of the background spec- . of the first peak alone would always lead to a stronger
trum. (c) Initial decay timer,. All quantities are plotted as func-

_ — = T s damping and therefore to a shorter initial decay time. How-
tions of the temperature for=a,/a.=0.87: (solid line) Grwm.  eyer, the shift of the peak positions towards lowevalues
calculated withe, /a.=0.3; (long-dashed lineGgyy, calculated  jmplies longer oscillation periods and thus the first minima
with o,/a.=0.3 neglecting the variations of the carrier-phonon of the oscillations are moved towards later times. But mov-
couplings, andshort-dashed line{Gy;,|*. ing the first minimum to a later time in the case of an over-
damped oscillation implies that the curve decreases on a

spect to this argument. In Fig. 7 these quantities are plottefbnger-time scale, i.e., a longer decay time is observed. Ob-
as functions of the temperatuie In addition, Fig. 7 also viously, this mechanism is effective only at low tempera-
displays a curve calculated for the ensemble-averaged redres. At higher temperatures the first peak has reached the
sponseGgly(7) where only fluctuations of the energies Vicinity of g~0 and dominates. Thus, oscillatory structures
have been accounted for. The calculations have been pewre effectively suppressed and the high-temperature limit de-
formed for a relative standard deviation @f /a,=0.3. For  Scribed by Eq.(42) is approached. The interplay of these

. — . ; . effects results in the nonmonotonous temperature depen-
this va[ug ofo,/a, the res_ults obtained W|t_hout accounting dence ofr, in Fig. 7(c).
for var|at|ons. OT the. cgr'rler-phonon.-coupllng. have already ;g als% worth noting that in agreement with Fig. 6 the
reached the limit of infinite broadening described®y as  njtial decay takes a noticeably longer time when both energy
can be seen from Fig. 6. _ . and carrier-phonon couplings fluctuate than in a system

According to Fig. Ta) the weight of the singular paws,  where only energy fluctuations take place. The shortest initial

which is also the long-time limiting value of the response,decay times are found for the absolute square of the linear
monotonously decreases with temperature in agreement witlasponse.

Eq. (22). All three curves are rather close. They confirm the
general trend that the absolute square of the linear response
yields aWg which is systematically higher than the FWM
results. Also the drop of the long-time limiting value found So far we have studied signals for a fixed localization
in Fig. 6, when the fluctuations of the carrier-phonon cou-ratior =0.87. From Fig. (a) we learned that the form factor
pling are switched off, turns out to be a systematic featurén this case is dominated by the maximum with the lowest
observed for all temperatures. possibleq value. ForT=1 K it is located atQ~0.3 nm 1,

C. Phonon-induced modulation of the optical response
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1 RS T . T single quantum dots in the strong confinement regime and
W\ a) from corresponding dot ensembles. We have concentrated on
09 '\‘ \,\,/ = effects induced by the coupling of the carriers trapped in the
. \\ \_\\ \\———’:_’_—_:__ dot to LA phonons. By using exact closed-form formulas that
£ 08 i R N . N are nonperturbative with respect to the carrier-phonon as
& e T well as the carrier-light-field coupling we were able to estab-
0.7 —rmr=2 mmmr=04 lish a number of generic features of the signals which do not

depend critically on details of the carrier wave functions or
the phonon couplings. These features were then quantified
within a model of a spherical quantum dot coupled to isotro-
pic bulk acoustic phonons. By using this model we explored
the dependencies of FWM signals on the temperature, the
delay time, as well as on the localization ratidbetween
holes and electrons. In particular, we concluded that the
FWM signals from a single dot should coincide for zero
delay timer=0 with the corresponding linear response. The
maximum of the real-time response coincides with the ar-
rival of the second pulse only for delay times that are either
t,7 (ps) much shor.ter or much longer than typical phonon periods;
for delay times of the order of the most efficiently coupled
FIG. 8. (a) Absolute square of the linear respori&;,,|> as a  phonon modes the maximum is shifted towards later times.
function of real timet. (b) Normalized time-integrated FWM am- From their maximum value, the real-time single dot FWM
plitude G.. as a function delay time- for different values of the ~Signals drop at an initial rate which, at not too low tempera-
localization ratior: r =2 (dot dashel r =0.87(solid), r=0.4(long  tures, depends nonmonotonously on the delay time. Eventu-
dashed, andr=0.3 (short dashed ally, the signals reach a finite limiting value. At low tempera-

] ) ) ) tures the single dot FWM spectra evolve from an asymmetric
with a full width that is of the same order of magnitude. Thefqrm 4t 7= 0 into a symmetric function o for delay times
position of the first minimum of the oscillation is given by |5/4er than the initial decay time of the real-time response.
half the period, i.e., all¢/2~2 ps. This value is in good g ghectra at finite delays typically show a local minimum

agreement with the position of the minimum in the-1-K 5y, 0" jtion of the zero-phonon line which is related to a
response in Figs. 2, 5, and 6. However, the oscillatory naturfre duced phonon coupling in the limit of smajlvalues. A
of the response is masked in this case because a completeF '

overdamped situation has been realized. Already in Se Xnilar feature is found for the Fourier transform of time-
IV C it was noted that for lower localization ratios a second't€grated FWM signals emitted from dot ensembles. At el-

maximum appears in the form factor which may not necesévated temperatures the limiting value of the signals decays
sarily be in the fully overdamped limit. In order to investi- €xPonentially with increasing temperature and all spectra are
gate quantitatively the corresponding consequences we ha@@Proximately symmetric. The corresponding line shapes do
plotted in Fig. 8a) the linear respons&;,,|? and in Fig. 8b) not change significantly with delay time and exhibit a maxi-

the time-integrated FWM envelop®,, corresponding to an mum at the position of the zero-phonon line. The weights of

infinitely strong inhomogeneously broadened ensemble fol'€ background spectruw/, and the singular part of the

different values ofr at a temperature of =1 K. For r spectrumWs_(the latter also ingludes the zero-phonon Jine
<0.6 the second peak in the form factor is well separate§how very different dependencies on the temperature and the
from the first. The corresponding oscillations for the valuesdelay time Ws is typically a decaying function of andT for
r=0.3 andr=0.4 are clearly visible in Fig. 8 both in the @ single quantum dot whil&V, may exhibit a pronounced
linear response as well as in the FWM response. From theBonmonotonous dependence on these parameters.
corresponding peak positions one deduces a half period of The temporal and spectral line shapes of the time-
approximately 0.55 ps, in good agreement with the positionghtegrated FWM signal from an infinitely inhomogeneously
of the minima in Fig. 8. Thus, it is indeed the second peak irbroadened dot ensemble are shown to be similar to the ab-
the form factor that governs the observed oscillations. Th&olute square of the linear response of a single dot, a relation
most remarkable point here, however, is the fact that clearlpften used in order to extract information about the homoge-
visible phonon-induced oscillations appear although theéneous broadening of the system from FWM experiments on
phonons form a smooth continuum without any structure indot ensembles. However, the depth of the initial drop as well
the dispersiomw or in the density of states. According to our as the spectral weight of the background spectrum are sig-
analySiS Of the Origin Of the Second peak in Sec. IVC theyr“f'(:ant'y different for these two Signa'sl
are due to.the competition qf electron and hole contributions  The role of inhomogeneous broadening has been further
to the carrier-phonon coupling. investigated by considering time-integrated FWM signals
from dot ensembles with varying strengths of dot size fluc-
tuations. For size fluctuations up to about 10% the effect of
In this work we have presented a comprehensive study dhe corresponding energy fluctuations is clearly dominant.
the impact of pure dephasing on FWM signals emitted fromFor larger fluctuations of the sizes one has to take into ac-

VI. CONCLUDING REMARKS
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count also the variations of the carrier-phonon couplingHere,V is the normalization volume. First, we note that the
strengths. The latter result in longer initial decay times and irintegral in Eq.(A2) exists in the conventional sense, because
an enhanced long-time limiting value of the signal, when thet was assumed thaﬁtyq|2, apart from the poing=0, is a
strength of the size fluctuations is increased. smooth function which decays sufficiently fast for large

A rather unexpected result was the finding that the initialvalues. At the poing=0 we assume that the singular behav-
decay time is a nonmonotonous function of temperature. Foior is not stronger thalhyq|20< 1/g. As discussed in Ref. 33
temperatures below 15 K the signals initially decay on longetthis is the strongest singularity that appears for the most
times for higher temperatures. This result has been explainesbmmonly used carrier-phonon coupling schemes when the
by a shift of the peak in the form factor towards lowegr system is neutral overall. From this assumption it follows
values resulting in a shift of the first minimum of the corre- that the total integrand in E4A2) has no singularity at|
sponding overdamped oscillation towards later times. =0, becausé,>1/q and thus the singularities ¢1§/q|2 and

Another interesting outcome of our analysis is the resuliN, are canceled by the factor from the surface element.
that even for a bulk model of acoustic phonons with a lineatUsing the identity [1—cos(w,)]*=1-2 cos,n)+1/21
energy dispersiomg=cq, well-resolved oscillations of the  + cos(2v,7)] together with the linear dispersian,=cq we
corresponding optical response may be observed. These dind thatA(7) can be expressed in terms of the function
cillations result from a second peak in the carrier-phonon
form factor which occurs due to cancellations between elec-
tron and hole contributions to the coupling. For holes local- AVARN .
ized much more strongly than electrons this second peak is F(X) ‘=—2f dgfqe'?, (A3)

: X . (2m)“Jo

well separated from the first and the corresponding oscilla-
tions are clearly visible in the FWM as well as in the linear
response, although the electronic wave functions are smootiihere the definition, E¢34), of the form factorf, has been
and the phonons provide for a continuum of modes with naused. The functio®\(7) can now be written as
particular structures in the corresponding density of states.

3 F2cT)+F(—2c7)
ACKNOWLEDGMENTS A(T): Ef(O)—]:(CT)—f(_CT)‘I‘ y ( ]
This work has been supported by the European Commis- (A4)
sion within the FET Project No. [ST-1999-11311

(Semiconductor-based implementation of quantum informa- . .
tion devices. However, apart from constant prefactaf§x) is the Fourier

transform of the functior®(q)f,. Due to elementary prop-

erties of the Fourier transformation it thus vanishes for large

argumentgx|— as long asf, does not exhibit singulari-
The asymptotic formulas, Eqél6), (18), (19), and(21), ties. Therefore, the limiting value oA(7) for r—oo can

for the behavior of the optical envelope functions in theeasily be read off from EqA4) without further calculation.

long-time limit can all be derived according to the same This derivation also quantifies the relation between the

scheme. Here, we will explicitly discuss the derivation of Eq.decay properties of the Fourier transform of the form factor

APPENDIX: DERIVATION OF ASYMTOTIC FORMULAS

(19) for G..(7— ). and the time scale on which the optical envelope functions
Our starting point is Eq(15) which can be written as approach their limiting values. The simple estimation given
in the main text was based on the observation thathould
aw(r)zexp[—ZA( Ik (A1) be localized ing space roughly on a scale given by the in-

. . i verse spatial extension of the dot due to the presence of the
where the functiorA(7), after converting the sum into an  caprier form factor? ¢ (q) in the carrier-phonon coupling
integral and performing the angle integrations, is given by [cf. Egs.(2) and(3)]. This implies thatF falls off on a length

oV [ scale given by the dot extensi@nand therefore the typical
2J dqcf| 7q|2(1+ 2Ng)[1-cog qu)]z_ fume scale for the \_/arlatlon of the op_tlcal envelope functions
(2m)2Jo is approximately given by the timtg,=a/c an emitted pho-
(A2) non needs to leave the dot.

A(7):=
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