PHYSICAL REVIEW B 67, 115331 (2003

Plasmon excitations and one- to two-dimensional crossover in quantum crossbars
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The spectrum of boson fields and two-point correlators are analyzed in quantum cr¢&bBrsa super-
lattice formed bym crossed interacting arrays of quantum wjresith short-range interarray capacitive inter-
action. Spectral and correlation properties of doule=2) and triple fn—3) QCB are studied. It is shown
that the standard bosonization procedure is valid, and the system behaves as a sliding Luttinger liquid in the
infrared limit, but the high-frequency spectral and correlation characteristics have either one-dimga&ipnal
or 2D nature depending on the direction of the wave vector in the 2D elementary cell of the reciprocal lattice.
As a result, the crossover from the 1D to 2D regime may be experimentally observed. It manifests itself as the
appearance of additional peaks of optical absorption, nonzero transverse space correlators, and periodic energy
transfer between array$Rabi oscillations”).
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[. INTRODUCTION ing arises due to their finite transverse size, the latter being
the characteristic screening lendth.

The behavior of electrons in arrays of one-dimensional The interwire interaction may transform the LL state ex-
(1D) quantum wires was recognized as a challenging probisting in isolated quantum wires into various phases of a 2D
lem soon after the consistent theory of elementary excitaquantum liquid. The most drastic transformation is caused by
tions and correlations in a Luttinger liquidlL ) of interact-  the interwire tunnelingt, in arrays of quantum wires with
ing electrons in one dimension was formulatege Ref. 1 intrawire Coulomb repulsion. This coupling constant res-
for a review. One of the fascinating targets is a search forcales towards higher values for strong interactioms (
LL features in higher dimensiorfsAlthough the Fermi liquid <1/2), and the electrons in the array transform into a 2D
state seems to be rather robust br-1, a possible way to  Fermi liquid® The reason for this instability is the orthogo-
retain some 1D excitation modes in 2D and even 3D systemsality catastrophe, i.e., the infrared divergence in the low-
is to consider highly anisotropic objects, in which the elec-energy excitation spectrum that accompanies the interwire
tron motion is spatially confined in a major part of real spacehopping processes.

(e.g., it is confined to separate linear regions by the potential Unlike interwire tunneling, the density-density or current-
relief). One may hope that in this case a weak enough intereurrent interwire interactions do not modify the low-energy
action does not violate the generic long-wave properties obehavior of quantum arrays under certain conditions. In par-
the LL state. Arrays of interacting quantum wires may beticular, it was shown recently''that a “vertical” interaction
formed in organic materials and in striped phases of dopedf the typeW(n—n")§(x—x"), which depends only on the
transition-metal oxides. Artificially fabricated structures with distance between the wiresandn’, imparts the properties
controllable configurations of arrays and variable interac-of asliding phaseo a 2D array of 1D quantum wires. In this
tions are available now due to recent achievements in nanatate an additional interwire coupling leaves the fixed-point
technology(see, e.g., Refs. 3 and.4 action invariant under the “sliding” transformations,

The simplest 2D ensemble of 1D nanoobjects is an array- 4, + «,, and m,— m,+ «;,. The contribution of interwire
of parallel quantum wires or nanotubes. The conventional LLcoupling reduces to a renormalization of the parameters
regime in a single 1D quantum wire is characterized by—y(q,), g—g(q,) in the LL Hamiltonian(1), whereq, is
bosonic fields describing charge and spin modes. We confingge momentum perpendicular to the chain orientation. Such
our discussion to the charge sectot in the spin-gapped LL structure can be interpreted as a quantum analog of clas-
phasg¢. The Hamiltonian of an isolated quantum wire may sjcal sliding phases of coupletly chains!? Recently, it was

then be represented in a canonical form found™ that a hierarchy of quantum Hall states emerges in
. sliding phases when a quantizing magnetic field is applied to
v L2 1 an array.
- 2 - 2 .
H= 2 _L,de{gW (X)+g (@x00))" @ In the present paper we concentrate on another aspect of

the problem of capacitively interacting arrays of quantum
whereL is the wire lengthp is the Fermi velocity,7 are  wires. Instead of studying the conditions under which the LL
the conventional canonically conjugate boson fields,@isd  behavior is preserved in spite of the interwire interaction, we
the dimensionless parameter which describes the strength obnsider situations where tldémensional crossovérom 1D
the interaction within the chaifisee, e.g., Refs. 1 and.5 to 2D occurs. Dimensional crossover is quite well studied,
Here we follow the common LL description of a single wire e.g., in thin semiconducting or superconducting films where
based on the assumption that the Coulomb interaction ithe film thickness is the control parameter that rules the
screened in the long-wave limig& const)® Indeed, quan-  crossoversee, e.g., Ref. 14. It occurs in strongly anisotropic
tum wires and nanotubes are not pure 1D objects and screegystems like quasi-one-dimensional organic conduttans

0163-1829/2003/671.1)/11533119)/$20.00 67 115331-1 ©2003 The American Physical Society



I. KUZMENKO, S. GREDESKUL, K. KIKOIN, AND Y. AVISHAI PHYSICAL REVIEW B 67, 115331 (2003

layered metald® In the latter cases temperature serves as &

control parameter and crossover manifests itself in interlayel / / / /
transport. In metals the layers appear “isolated” at high tem- . . ' .
perature, but become connected at low temperatures to man &) ©

fest 3D conducting properties. Here we intend to study an- 401 id

other type of dimensional crossover, i.e., ggometrical a

crossover. It will be shown below that in this case the phase / / / /
variable(quasimomentuinserves as a control parameter, and / / / /

the excitations in a system of quantum arrays demonstratt / / 7/ /

either 1D or 2D behavior in different parts of reciprocal

FIG. 1. Two-dimensional crossbars formed by two interacting
arrays of parallel guantum wires. Hegg, e, are the unit vectors of
the superlatticea;,a, are the superlattice periods, addis the
vertical interarray distance.

space.
The most promising type of artificial structures where this

effect is expected is a periodic 2D system rofcrossing

arrays of parallel quantum wires. We call it “quantum cross-

bars” (QCB). Square grids of this type consisting of two Triple QCB (m=3) formed by three arrays lying in par-
arrays were considered in various physical contexts in early|le| planes are studied in Sec. IIl. Such hexagonal grids may
papers.’~**In Refs. 19 and 20 the fragility of the LL state pe useful for three—terminal nanoelectronic deviéeshe
against interwire tunneling in the crossing areas of QCB waglasmon spectra of triple QCB possess some specific features
studied. It was found that a new periodicity imposed by thein comparison with double QCB. We introduce the main no-
interwire hopping term results in the appearance of a lowtions and construct the Hamiltonian of symmetric triple QCB
energy cutoffA|~#v/a wherea is the period of the quantum (Sec. Il A), analyze the peculiarities of the frequency spec-
grid. Below this energy, the system is “frozen” in its lowest trum (Sec. Il B), and illustrate them by a description of
one-electron state. As a result, the LL state remains robustiple Rabi oscillations—periodic energy transfer between all
against orthogonality catastrophe, and the Fermi surface cotaree arraygSec. Il O. The results are summarized in the
serves its 1D character in the corresponding parts of the 2[@onclusion. All technical details are placed in Appendixes
Brilllouin zone (BZ). This cutoff energy tends to zero at the A—E.

points where the one-electron energies for two perpendicular

arraysey, and €k, become degenerate. As a result, a dimen- Il. DOUBLE QCB

sional crossover from 1D to 2D Fermi surfaoe from LL to
FL behavioj arises around the pointgicl: €F,-

We study this dimensional crossover for Bose excitations The double QCB is a 2D periodic grid which is formed by
(plasmong described by canonical variablésr in QCB. In  two periodically crossed arrays of 1D quantum wires. In ex-
order to unravel the pertinent physics we consider a grid witiperimentally realizable setubthese are cross structures of
a short-range capacitive interarray interactioriThis ap-  suspended single-wall carbon nanotubes placed in two paral-
proximation seems natural for 2D grids of carbonlel planes separated by an interplane distadcélowever,
nanotubes, or artificially fabricated bars of quantum wires some generic properties of QCB may be described with the
with grid periods which exceed the lattice spacing of a singleassumption that the QCB is a genuine 2D system. We assume
wire or the diameter of a nanotube. It will be shown belowthat all wires of thejth array,j=1,2, are identical. They
that this interaction can be made effectively weak. Thereforehave the same length;, Fermi velocityv;, and Luttinger
the QCB retains the 1D LL character for motion along theparameteg; . The arrays are oriented along the unit vectors
wires similarly to the case considered in Ref. 11. At the samé; > With an angleey between them. The periods of a cross-
time, e boson mode propagation along some resonant direbars along these directions aag and a,, and the corre-
tions is also feasible. This is essentially a 2D process in theponding basic vectors agg=a;g; (Fig. 1).
2D BZ (or in the elementary cell of the reciprocal lattice The interaction between the excitations in different wires

We start the studies of QCB with a double Q@B=2 is assumed to be concentrated around the crossing points
(Sec. 1). In the first two subsections, Secs. Il A and 1l B, we with coordinates;a; + n,a,=(n;a;,n,a,). The integers,
introduce basic notions and construct the Hamiltonian of theenumerate the wires within tfj¢h array. Such an interaction
QCB. The main approximations are discussed in Sec. Il Cimposes a superperiodicity on the energy spectrum of ini-
Here we substantiate the used metliselparable interaction tially one-dimensional quantum wires, and the eigenstates of
approximation and show that interaction between arrays inthis superlattice are characterized by a 2D quasimomentum
QCB is weak. The energy spectra for square QCB and tilted|=0,09; + 9,0,=(0;,0,). Here g, , are the vectors of the
QCB are described in detail in two parts, Secs. Il D 1 andreciprocal superlattice satisfying the standard orthogonality
I1D 2 of Sec. Il D. Various correlation functions and related relations € -g;)=&;;. The corresponding basic vectors of
experimentally observable quantitig@ptical absorption, the reciprocal superlattice have the forrm;Qq0;
space correlatoysare discussed in the last subsection, Sec+m,Q,g,, whereQ;=2=/a; andm, , are integers.

A. Basic notions

Il E. We predict here effect of peculiar “Rabi oscillations”"— However, the crossbar kinematics differs from that of a
periodic energy transfer from one of the QCB arrays to anstandard 2D periodic system. In conventional 2D systems,
other. forbidden states in inverse space arise due to Bragg diffrac-
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tion in a 2D periodic potential, whereas the whole plane is ko
allowed for wave propagation in real space, at least until the
periodic potential is weak enough. A Brillouin zone is
bounded by the Bragg lines. It coincides with a Wigner-Seitz -~
cell of the reciprocal lattice. In sharply anisotropic QCB R
most of the real space is forbidden for electron and plasmor .~ N\~ 0 0~3

propagation. The Bragg conditions for the wave vectors ar
modulated by a periodic potential unlike those in the conven-
tional 2D plane. These conditions are essentially one dimen:
sional. The corresponding BZ is not a Wigner-Seitz cell of a
reciprocal lattice but an elementary cell containing a site in
its center.

Indeed, the excitation motion in QCB is one dimensional
in a major part of the 2D plane. The anisotropy in real space
imposes restrictions on the possible values of the 2D coordi-
natesx;,X, (r=x;€;+Xx»&,). At least one of them, e.gx,

[x1], should be an integer multiple of the corresponding ar-
ray perioda, [a;], so that the vector=(x;,n,a,) [r
=(njaq,X,)] characterizes the point with the 1D coordinate
X1 [X5] lying at the n,th [n,th] wire of the first(second
array. As a result, one cannot resort to the standard basis of
2D plane waves when constructing the eigenstate with a FIG. 2. Fermi surface of 2D metallic quantum bars in the ab-
given wave vectok. Even in thenoninteractingarrays of  sence of charge transfer between wigsg, are the unit vectors of
quantum wiregempty superlattioethe 2D basis is formed as the reciprocal superlattice.

a superposition of two sets of 1D waves. The first of them is

a set of 1D excitations propagating aloegchwire of the  riodic potential. Moreover, the classification of eigenstates of
first array characterized by a unit vectoyg, with a phase an empty superlattice may be effectively used for the classi-
shift a,k, between adjacent wires. The second set is a similafication of energy bands in a real QCB superlattice where the
manifold of excitations propagating along the wires of thesuperperiodicity is imposed by the interaction. _

second array with the wave vectksg, and the phase shift ~ The complete kinematics of an empty superchaave

a,k;. The dispersion law of these excitations has the form functions, dispersion laws, relations between quasiparticle
second-quantization operatpis developed in Appendix A.

0O(K)=wq(ky)+ wy(Ky). (2)  Interms of these 1D Bloch functiofisee Eqs(A2) and(A3)

) _ of Appendix A] we construct the 2D basis of Bloch functions
The states of equal energy obtained by means of this procggr an empty superlattice:

dure form straight lines in 2D reciprocal space. For example,

the Fermi surface of QCB developed from the pointke; » Voo o(N=15q (X)) Was q.(X0). 3
for individual quantum wires consists of two sets of lines 4 o ok
|ky,d =Kr1,2. Respectively, the Fermi sea is not a circle with Heres,s'=1,2, ... are thévand numbers, and the 2D qua-

radiuskg as in the case of a free 2D gas, but a cross irkthe simomentum q=(q;,9,) belongs to the first BZ,|q|

plane bounded by these four lifd¢see Fig. 2 Finally, the <Q,/2. The corresponding eigenfrequencies are
Bragg conditions read

wss (Q) = w15(0) +wrs(q). (4)
w1(Ky) = @1(kg+mMyQ1) + wa(kz) — wo(Ky +MyQ3) =0 * e 2
and the linek; =0, |k,| =Q,/2, and|k;|=Q4/2, k,=0, sat-
isfying these conditions, form a 2D BZ of a double QCB. o (D= (q)
Due to the interarray interaction, the excitations of QCB i RS
(see Figs. 3 and 6 belgvacquire genuine two dimensional- g ;(d;) is dispersion law of the empty superlattice
ity characterized by the quasimomentaps (q,,d2). HOW-  0de propagating along thgh array and belonging to the
ever, in case of a weak interaction the 2D waves constructegands. Its explicit form is defined in Appendix FEq. (A4)].
from the 1D plane waves in accordance with the above proyye il yse this basis in the next subsection when construct-

cedure form an appropriate basis for the description of eling the excitation spectrum of QCB within the reduced band
ementary excitations in QCB in close analogy with thegcheme.

nearly free electron approximation in conventional crystal-
line lattices. It is easily foreknown that a weak interarray
interaction does not completely destroy the above quasimo-
mentum classification of eigenstates, and the 2D reconstruc- When turning to a description of the interaction in a QCB,
tion of the spectrum may be described in terms of waveone should refer to a real geometry of crossbars and recollect
mixing similarly to standard Bragg diffraction in a weak pe- the important fact that the equilibrium distance between two

Here

B. Hamiltonian

115331-3



I. KUZMENKO, S. GREDESKUL, K. KIKOIN, AND Y. AVISHAI PHYSICAL REVIEW B 67, 115331 (2003

arrays is finite and large enough to suppress direct electroit can be written in the form
tunneling® We neglect also the elastic and van der Waals
components of the intertactions between real nanotubes, be- Vo _[X1 X2

. : X ! ; V(r)y=—=&|—,—/,
cause these interactions are not involved in the formation of 2 \ry'r,

collective excitations in QCB. Then the full Hamiltonian of where the functionb(£,,£,) is

the QCB is
H=H.+H,+H: , 5 §1(§1)§2(§2)
o Hin © Dby, b)) = — e ®
whereH; describes the 1D boson field in thith array, |12
1+
vy Ly/2 ( 5 G
Hi=—7 dx X1,Na
1= o 1) 9177(X1,N282) and
1 r,=rié.18,—r .
+ _[axﬂl(xl,nzaz)]z], . 12=r1§1 1 2626 |
91 It is seen from these equations thh{¢,,&,) vanishes for
" " |€14=1 and satisfies the conditioi(0,0)~1. The effec-
Uop 2 i i i
HZ:T E dxz(gzwg(nlal,xz) tive coupling strength is
ng J-L,2 2
v _2e ©
0~ d -

1
+ g_[axzaz(nlabxz)]z] ,
2 In terms of the boson field operatofis, the interarray inter-
and#; ,m; are the conventional canonically conjugated bosoraction is written as
fields (see, e.g., Ref.)5

The interwire interaction includes both interactions be- _ X137 M8 Na8r—Xp
. . . . Hin=Vo 2 | dxdx,® ,
tween wires from the same arréntra-array interactionand Ny, ro
wires from different array§interarray interaction The latter
results from a contact capacitive coupling in the crosses of X dy, 01(X1,N282) dx, 02(N181,X3). (10
the bars,

As for the interaction within each array, one can neglect it
for a couple of reasons. First, the interwire distance within

Hine= 2 dx XV (X1 —Nga;,Nz8, = X;) the same array is much larger than the interarray distance.
1 Second, this interaction is irrelevant in the long-wave lithit.
X p1(X1,N085) pa(Niag,Xs), Thus Eq.(10) is the full interaction Hamiltonian.

) o ] In the quasimomentum representati@ the full Hamil-
where the integration is restricted by the ared ;/2<x; tonian (5) acquires the form

<L;/2. Here p;(r) are density operators and/(x;

—n;a;,n,a,—X,) is a short-range interarray interaction. fivg 2 ;
Physically, it represents the screened Coulomb interaction H:TZ 2 TisqTjsq
between charge fluctuations around the crossing point I=1 =q
(niag,n,a,). We assume that the crossed nanotubes are sus- 5 2
: . : ; | N
pended in an unpolarized medium, and screening arises due > > Wisjrsqfisqfrs'q (11

to intrawire interactions. The nanotube diameter is the only 29521 557

physical parametgr which determines the screening Iength where ’—vg/v,-gjﬂjsq and /—ngj Jvgmieq are the Fourier com-
in a tube from thejth array(see, e.g., Ref.)7 We describe ponents of the boson fieldy and;, and effective velocity
the redistribution of a charge in tuhenduced by the inter- 4 coupling are = \u10,, g=g.0,, respectively.

action with tubel by the envelope functiofintroduced phe- The matrix elements for interarray coupling are given by

nomenologically
«—na Wisjrsq= 0js(dj) 0jr5/(Qj)[ 6jj Fsg + Pjsjrsrq(1— 6jj 1) 1.
(&), §="— {H=U-8, ((0)~1.(6) Here

r
i

This function is of order of unity fof&|~1 and vanishes

outside this region. Thus the on-cross interaction is intro-

duced as

s
wjs(a) =vj| |5

Qj+<—1>s-1|q,-|) 12

are eigenfrequencies of the “unperturbed” 1D mddee Eg.
2 _ B (A4) of Appendix A], pertaining to an array, bands, and
el —May) (X n2a2)' quasimomentung=q;g; . The coefficients
Vd?+r3,

V(X1—Nja;,N8,—Xp) =
(7) ¢’1525’q: d(— 1)S+S, Sgr(QlQZ)(DlsZs’q )
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Var2 Due to separability of the interaction, the equations of mo-
gVol'g . X .
= hva ro=+vrir,, a=vya;a, tion (14) can be solved exactly. Corresponding square eigen-
frequencies are determined by the characteristic equation
are proportional to the dimensionless Fourier component of

. : _ 1
the interaction strengths: qul(“’z)':ZqZ(“’z)z - (17)
qDlsZs’q:f dgldgzq)(gl,gz)e*i(rﬂh&*rz%‘ﬁz) where
2 2
X UTs q,(F181)Uzgr q,(F262) = Pogiisg- Fra(o?)= 13, L@ (19
aj S sz(CI)_w

The Hamiltonian(11) describes a system of coupled har- ) ) s 2
monic oscillators, which can kexactlydiagonalized with the ~ The functionFjq(w?) has a set of poles ab“=wjs(q), s
help of a certain canonical linear transformatioote thatit =1,2,3... . For asquared frequency smaller than all
is already diagonal with respect to the quasimomeng)m Squared initial eigenfrequencieg,(q), i.e., within the inter-
The diagonalization procedure is, nevertheless, rather cumyal [0, ], this is a positive and growing function. Its mini-
bersome due to the mixing of states belonging to differenmal valueF; on the interval is reached a=0, and it does
bands and arrays. However, it will be shown below that pro-not depend on the quasimomentgm
videdd>r, ,, a separable potential approximation is appli-

cable that shortens calculations noticeably. qu(o):;'. ES: ¢jzs(q):J dfgjz(é)EFj (19)
]

C. Approximations [here Eqs(18) and(15) are usedl If parametere is smaller

As was already mentioned, we consider the rarefied QCBhan its critical value
with a short-range capacitive interaction. In the case of QCB
formed by nanotubes, this is a Coulomb interaction screened 1
at a distance of the order of the nanotube radRg and SC_FlFZ’

thereforero~R,o. The minimal radius of a single-wall carbon . o 1 tionsw? of the characteristic equation are posi-

nanotube is abowR;=0.35-0.4 nm(see Ref. 28 The inter- . ) .
tube vertical distancd in artificially produced nanotube net- tive. Whene increases, the lowest QCB mode softens and its
square frequency vanishasa whole BZate=¢.. For ex-

works is estimated ad~2 nm (see Ref. 3 Therefore the . . S o ¢
ratio r3/d?~0.04 is really small anthe dimensionless inter- 28?;22:' :fllarge density distributiaf(¢£) =exp(-|¢]), one
~1.

f‘;g'lzh(b(él’&)' Eq.(8), in the main approximation is sepa- In our model the dimensionless interactierin Eq. (16)
’ can be written as

D(£1,62)~DPo(£1,82)=L1(81){2(E2). 13 (2RO g€
e=| 02

(20

2

It should be noted that the interaction in this form is an even d Av 21

function of its arguments, and the odd correction todhgis i - .
g the For nanotube QCB, the first factor within parentheses is

2/42 ;
of orderrg/d”, whereasb, is of order of 1. about 0.35. The second one, which is nothing but the corre-

To diagonalize the Hamiltoniafil), one should solve the : o ) .
system of equations of motion for the field operators. Gen—Spondlng QCB "fine structure” canstant, can be estimated as

. . . : 0.9 (we used the values aj=1/3 andv=8x10" cm/sec;
eralized coordinated satisfy the equations see Ref. 21 Therefores approximately equals 0.1, so this
2 _ .2 parameter is really small. Thus the considered system is
0159+
[03(0) ~ "] 15q Vo ds(An)o1s(a) stable; its spectrum is described by E(s7) and(18) with a

ro small parametek .
i E b2s(02) @251 (A2) b2 =0, The general equatiofil7) reduces in the infrared limit
S g,0—0 to an equation describing the spectrum of two
s=12, ..., (14) coupled sliding phases, i.e., 1:1 arrays in accordance with

the classification offered in Ref. 11. Equatié®13 of this
and similar equations obtained by permutatior 2. Here paper is a long-wave limit of our equatidB2) derived in
Appendix B. Therefore the general analysis of stability of the

qﬁjs(q):(—l)ssgr(q)f dggj(é_—)eiroqgujsq(rog), (15) LL fixed point is applicable in our approach.

Bloch amplitudesujsq(ro€) are defined by Eq(A3) of Ap- D. Specirum
pendix A, and Due to the smallness of interaction, the systematics of
5 , unperturbed levels and states is grossly conserved, at least in
o= ¢3 :<9Voro) (16) the low-energy region corresponding to the first few energy
ro hv | bands. This means that perturbed eigenstates could be de-
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qz2
c - 8] F O
Q2 I
m/vQ
A
E 05 -
-Q/3 0 Q2 41 i
{a.1}
0.25
-Q/2
(1,1} g
FIG. 3. Two-dimensional BZ of a square QCB. @1
scribed by the same quantum numb@say number, band ! @ {u,1)
number, and quasimomentuas the unperturbed ones. Such 3 '
a description fails in two specific regions of reciprocal space. o F A c O

The first of them is the vicinity of lines|;=nQ;/2 with n
integer. Indeed, as follows from the equations of motion
(14), around these lines the interband mixing is significant.
These lines withn==*1 include boundaries of elementary
cell of reciprocal lattice which we choose as BZ for double
QCB. Because of this BZ, which is, generally speaking, nonunperturbed boson propagating along jtrearray in thesth
relevant, and in this subsection we refer mostly to the BZ. band. Then the lowest curve in this part of Fig. 4 is in fact,
The second region is the vicinity of the lines where thethe slightly renormalized dispersion of a (2,1) boson. The

FIG. 4. The energy spectrum of QGBolid lineg and noninter-
acting arraygdashed linesfor quasimomenta at the lin€3A, FC,
and OC of the BZ.

resonance conditions are fulfilled: middle curve describes a (1,1) boson, and the upper curve is
the dispersion of a (1,2) boson. The fourth frequency, corre-
wis(q1)=w§s,(q2). (22 sponding to a (2,2) boson, is far above and is not displayed

) o o in the figure. It is seen that the dispersion remains linear
Here interarray mixing within the same energy bar&l ( along the whole lind A except a nearest vicinity of the BZ
=s') or between neighboring bands# s) is significant. In - poundary(point A in Fig. 3.
What fO”OWS we will pay attention fiI’St Of a" to these two Dispersion curves Corresponding to quasimomenta |y|ng
regions because in the rest of the BZ the initial systematicgt the Bz boundaryj; = Q/2, 0<qg,<Q/2 (line FC in Fig.
of the energy spectrum can be successfully used. 3) are displayed in the central part in Fig. 4. The character-

Equations(14) and (17) describing the wave functions istic feature of this boundary is the intraband degeneracy in
and the dispersion laws are analyzed in Appendix B. Weyne of two arrays. Indeed, in zero approximation, two modes
describe below some of thesg dispersion qurves for two typegl s), s=1,2, propagating along the first array are degener-
of QCB based on this analysis. ate with unperturbed frequeney=0.5. The interaction lifts

the degeneracy. This interaction occurs to be repulsive at the
1. Square QCB BZ boundaries. As a result the lowest of the two middle

We start with the simplest case of a square QCB formedurves in Fig. 4 corresponds to a f},boson, and upper of
by identical wires. This means that all parametérsre  them describes a (d) boson. Here the indiceg u denote a
length, space period, Fermi velocity, LL parameter, screeningposon parity with respect to the transposition of the band
radiug are the same for both arrays. The corresponding BZiumbers. Note that the (), boson exactly conserves its
is also a squarésee Fig. 3. Resonant lines are the diagonals unperturbed frequency=0.5. The latter fact is related to
of the BZ. the square symmetry of the QCB.

In the major part of the BZ, for quasimomergdying far Two other curves correspond to almost nonpertubed
from the diagonals, each eigenstate mostly conserves its inbosons of the second array. The lowest curve describes the
tial systematics, i.e., belongs to a given array, and mostlglispersion of the (2,1) wave. Its counterpart in the second
depends on a given quasimomentum component. Corrésand, (2,2), is described by the highest curve in the figure.
sponding dispersion laws remain linear, being slightly modi-Their dispersion laws are nearly linear, and deviations from
fied near the BZ boundaries only. The main change is therdinearity are observed only near the corner of the(B@intC
fore the renormalization of the plasmon velocity. in Fig. 3.

In the left part of Fig. 4 we display dispersion curves Consider now the dispersion relations of modes with
corresponding to quasimomenta belonging to a gef@Ac  quasimomenta on the diagon@lC of the BZ and start with
line in the BZ. In what follows we usej(s) notation for the g not too close to the BZ corneC (q;=0,=Q/2). This
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0 0.1 0.2 0.3 0.4 0.5

q+/Q single-particle hybridization(tunneling for Fermi excita-

tions was noticed in Refs. 19 and 20, where a mesh of hori-
zontal and vertical stripes in superconducting cuprates was
studied.

FIG. 5. Lines of equal frequency of the lowest mode for QCB
(solid lineg and for noninteracting arrayglashed lines The lines
1,2,3 correspond to the frequencies=0.1, w,=0.25, w3=0.4.

diagonal is actually one of the resonance lines. Two modes in 2. Tilted QCB

the first band coressponding to different arrays are strongly Now we consider the spectrum of a generic double QCB.
mixed. They mostly have a definifeparity with respect to In this case all paramete(wire length, space period, Fermi
the transposition of array numbejs=1,2. The interaction velocity, LL parameter, screening radjugepend, generally
between these modes results in being repulgateactive  speaking, on the array indgxIn what follows we refer to
for g;9,>0 (g;9,<0). Therefore the odd modes,E), at  such a QCB as a tilted QCB. Now the resonance condition
the BZ diagonaDC s=1,2, correspond to lower frequencies (22) is fulfilled not at the BZ diagonal but at the resonant
and the even modegy(s) correspond to higher ones. The polygonal line. Its parODE, lying in the first quarter of the
corresponding dispersion curves are displayed in the righBZ, is displayed in Fig. Gall figures of this subsection cor-
part of Fig. 4. respond to specific values,Q,=1, v,Q,=1.4). This re-

At the BZ cornerg,=q,=Q/2 (point C in Fig. 3) all four  sults in qualitative changes of the spectrum that are related
initial modesj,s=1,2 are degenerate in the lowest approxi-first of all to the appearance of two poinis and E of the
mation. This fourfold degeneracy results from the squardghreefold degeneracy for a titted QCBig. 6) instead of a
symmetry of the BZthe resonant lines are diagonals of thesingle pointC of fourfold degeneracy for a square QCB
Z). A weak interarray interaction partially lifts the degen- (Fig. 3).
eracy; however, the split modes have a defisiparity with

respect to the transposition of band numbstsl,2. The 0] D B E
lowest frequency corresponds mostly to thggu) boson, / QO'8 B : '
symmetric with respect to the transposition of array numbers, ©®V2%2_: N P12 ;
but antisymmetric with respect to the transposition of band . (22)\ L (s
numbers. The upper curve describesiau] boson with odd 0.6 | h i o
bothj parity ands parity. The two middle modes with even L if. A7 (9)
band parity, §,9) and (u,g) bosons, remain degenerate and e S .

their frequencies conserve the unperturbed value0.5.

[}
H
r i i
This also results from the square symmetry of the Q8B 04 _; | h
All these results show that the quantum states of the 2D 0.3 L i 5(21)
QCB conserve the quasi-1D character of the Luttinger-like r (a1) ! '
liquid in the major part of momentum space and that 2D 0.2 ¢ i i
effects can be successfully calculated within the framework F (ut) i i
of perturbation theory. However, bosons with quasimomenta 011 i i
close to the resonant lin&diagonal OC) of the BZ are P A SR N S
strongly mixed bare 1D bosons. These excitations are essen- 0 04 02 03 0.4 05
tially two dimensional, and therefore the lines of equal en- a/Q4

ergy in this part of the BZ are modified by the 2D interaction

(see Fig. . It is clearly seen that deviations from linearity  FIG. 7. The energy spectrum of a tilted QG8bolid lines and
occur only in a small part of the BZ. The crossover from LL noninteracting array&ashed linesfor quasimomenta on the reso-
to FL behavior around isolated points of the BZ due to anant line of the BZ(line ODE in Fig. 6).
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FIG. 9. The energy spectrum of a titled QG8olid lineg and

FIG. 8. Energy spectrum of a tilted QGBolid lineg and non-  noninteracting array¢édashed linesfor quasimomenta on the BZ
interacting arrays(dashed lings for quasimomenta at the BZ diagonal(line OC in Fig. 6).
boundary(line FCF’ in the Fig. 6.

frequency combinations, and the (@) mode(middle leve).

We start with the resonant lif@ DE (Fig. 7). The disper- There are two separate degeneracies within each array at
sion curves at it© D part and the symmetry properties of the the cornelC of a titted QCB BZ. Both of them are related to
corresponding eigenstates are similar to those atQl® the interband mixing conserving array index. The spectral
resonant line for the square QQBig. 3. The only differ-  behavior along th€F’ boundary of the BZ is similar to that
ence is that instead of the fourfold degeneracy at the BZonsidered above but in the vicinity of the pobtof three-
cornerC of the square QCB, there is a threefold degeneracyold degeneracy. Here, the two modes propagating along the
at the pointD lying at the BZ boundary. A completely new second array in the 'separable potential approximatiis)
situation takes place at tHeE line, where two other modes remain degenerate. This degeneracy is lifted only if the de-
(1,1) and (2,2), corresponding to different arrays and differviation from separability is accounted for.
ent bands, are degenerate. The interaction lifts this degen- The diagonalOC of a tilted QCB BZ represents a new
eracy, and the two middle lines in Fig. 7 describe e#®n type of generic line, which crosses a resonant lifig. 9).
and odd(u) combinations of these modes. The even modeHere the spectrum mostly conserves its initial systematics,
corresponds to the lowest frequency, and the odd mode core., belongs to a given array, and mostly depends on a given
responds to the higher one. At the poihbne meets another quasimomentum component. However, at the crossing point
type of a threefold degeneracy described in more detail in thg, the modes (1,1) and (2,2), corresponding to both different
next paragraph. arrays and bands, become degenefat® middle dashed

Dispersion curves corresponding to quasimomenta lyingines in Fig. 9. The interaction between the wires lifts the
at the BZ boundary; =Q1/2, 0<q,<Q/2 (FClinein Fig.  degeneracy. The eigenstates of QCB have a definite parity
6) andd,=Q,/2, 0=q;=<Q4/2 (CF’ line in Fig. 6 are dis-  with respect to transposition of these two modes. The lowest
played in Fig. 8. The lowest and highest curves in B  and upper of the two middle lines correspond to the eggn
part of the latter figure describe two waves propagating alon@gnd odd(u) modes, respectively.
the second array. They are nearly linear, and deviations from As in square QCB, bosons with quasimomenta close to
linearity are observed only near the poiatvhere the inter-  the resonant lines are strongly mixed bare 1D bosons. These
action has a resonant character. Two modes propagatingkcitations are essentially two dimensional, and therefore
along the first array, in zero approximation, are degeneratines of equal energy in the vicinity of the resonant lines are
with an unperturbed frequenay=0.7. The interaction lifts modified by the 2D interactiofsee Figs. 10 and 11Devia-
the degeneracy. The lowest of the two middle curves corretions from 1D behavior occur only in this small part of the
sponds to a (1) boson, and the upper of one describes aBZ. For w<0.5,Q, the lines of equal energy within the BZ
(1,9) boson. Note that (&) boson conserves its unperturbed consist of a closed line around the BZ center and four open
frequencyw=0.7. The latter fact is related to the symmetry lines (within the extended band scheme these lines are cer-
£i(€&)=¢;(— &) of the separable interactiof). At point E,  tainly closed around the BZ corner@ines 1, 2, 3 in Fig. 1D
the two modes propagating along the first array and the modat the lineOD in the BZ, the modes of the QCB are strongly
propagating along the second array in the second band atupled bare bosons propagating along both arrays in the
degenerate. Interactions lift the degeneracy, and, as a resuist band.
the (1p) and (2,2) waves are strongly mixed and the eigen- For 0.9,Q,<w<0.%,Q; (lines 4 and 5 in Fig. 1jithe
modes are their evethighest-frequengyand odd(lowest-  topology of lines of equal energy is modified. In this case
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92/Q; The real part(rj’j,(q,w) determines an optical absorption.
The spectral properties of ac conductivity are given by a
current-current correlator

77

1(= i ot T
Ujj'(q,w)zafo dte' X[ Jj14(t).J;,14(0)]). (29

i o
,% E Here J;sq= \2vg s is @ current operator for thgh array
“T | (we restrict ourselves to the first band, for the sake of sim-
~y plicity).
The current-current correlator for noninteracting wires is
™ e reduced to the conventional LL expression

i

([3j10(1).3]114(0)1)o= — 2ivgwj1q SN wj141) & .

with metalliclike peak

FIG. 10. Lines of equal frequency for a tilted QC8olid lines 0jj(q,0>0)=m0g (0= wj19) §jj . (25

and noninteracting arrayglashed lines Lines 1,2,3 correspond to

frequenciess; = 0.1, w,=0.25, w3=0.45. For QCB this correlator is calculated in Appendix C. Its

analysis leads to the following results.

. - , The longitudinal absorption
lines of equal energy within the BZ consist of four open

lines. The splitting of lines at the directidDE corresponds , 2 =~ 2 =
to a strong coupling of modes propagating along the first 711(0,@) % (1= $1g) A0 = w1q) + h1q8(w— waq) (26)
array in the first band with those propagating along the seceontains a well-pronounced peak on the modified first array

ond array in the second band. frequency and a weak peak at the second array frequency
[the parametet,,, defined by Eq(B13) of Appendix B, is
E. Correlations and observables smalll. The modified frequencies;, and w,, coincide with

the eigenfrequencies and w_,,, respectively, if
The structure of the energy spectrum analyzed above pre>—w2 9 In tr?e opposrtcleq casewthzeq sign‘g — sh%uldwlt()qe
q- '

determines the optical and transport properties of QCB. W%hanged to the opposite ones

canIde_r here three types of correlation functions manifesting The transverse absorption component contains two weak
dimensional crossover in QCB. peaks

1. Optical absorption 0 0,0)% Py Sw— w19+ S w—wyg)].  (27)

We start with ac conductivity
At the resonant line, the results change drastically. Both
, o, longitudinal and transverse components of the optical ab-
ojj(dw)=0j,(0,w)+io; (0 ). (23)  sorption contain two well-pronounced peaks corresponding
to slightly split modified frequencies:

R/Qe

1 ~ ~
o-il(q!w)oci[&(w_wlq)—'— (0= wyg) ]. (28

2. Space perturbation

One of the main effects specific for QCB is the appear-
ance of a nonzero transverse momentum-momentum correla-
tion function. In space-time coordinates ) its representa-
tion reads

GlZ(X!t):i<[W1(X110;t)1772(oix2;O)]>' (29)

This function describes the momentum response at the
point (Ox,) of the second array for timé caused by an

FIG. 11. Lines of equal frequency for a tilted QG8olid lineg initial (t=0) perturbation localized in coordinate space at
and noninteracting array&lashed lines Lines 4,5 in the lower the point f,,0) of the first array. Standard calculations simi-
panel correspond to frequencieg=0.55, ws=0.65. lar to those described above lead to the expression
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FIG. 12. The transverse corre-
lation function Gq5(Xq,%5;t) for
ro=1 andot=10.

2]

2 o g lying on the resonant linevl|q:|=v,|d,l=wy), both
f dkidksp1(Ky) da(ko)kqky components within the main approximation have the same

Vor

Gx;t)=

47*h order of magnitude:
X sin(kqxq)sin(k,x5) 1
| vaka Sinvakat) ~viks sin(vk) 01(X1:N28231) = b COS(E‘ﬁlq“’qt)

2,2 2,2
vok;—vik]

where ¢;(k) is the form factor(15) written in the extended

X sin(gyX; +dznza— wgt),

BZ. This correlator is shown in Fig. 12. It is mostly localized e (1

at the line determined by the obvious kinematic condition 02(N181,X2;1) = O SiN| 5 gt
M M:t X cogqg1nia;+ X, — wgt).
Uq Uo '

) _ ) _ ) This corresponds to 2D propagation of a plane wave with
The timet on the right-hand sidéRHS) is the total time of oo vectorg, modulatecby a “slow” frequency ~ . As

plasmon propagation from the starting point;,0) to the 5 reqult, beating arises due to periodic energy transfer from
final point (0?<2) or vice versa, along any of the shortefst one array to another during a long peridd-(pw) ! (see
ways compatible with a restricted geometry of the 2D grld.Fig_ 13. These peculiar “Rabi oscillations” may be consid-

The finiteness of the interaction radius slightly spreads thig, eq as one of the fingerprints of the physics exposed in QCB
peak and modifies its profile. systems.

3. Rabi oscillations

. . Il. TRIPLE QCB
A further manifestation of the 2D character of the QCB Q

system is related to the possibility of periodic energy transfer A. Notions and Hamiltonian
between the two arrays. Consider an initial perturbation Triple quantum bars are a 2D periodic grid with=3
which excites a plane wave with amplitudg within the first ¢4 by three periodically crossed arrays1,2,3 of 1D

array in the system afioninteractingarrays: quantum wires. In fact these arrays are placed on three
) — ; lanes parallel to th&Y plane and separated by an inter-
01(X1,1232:1) = 0 SIN(G1X1 + A2N282~ 04| qalt). glane digtancei. The uppgr and lower grrays cor);espond to
If the wave vecton, satisfying the conditiong|<Q; /2, is  j=1,2, while the middle array has number 3. All wires in
not close to the resonant line of the BZ, the weak interarrayll arrays are identical. They have the same lergtRermi
interaction¢ = erq/a slightly changes thé, component and velocity v, and Luttinger parametey. The arrays are ori-
leads to the appearance of a sntgh- ¢ component. But for ented along the 2D unit vectors
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FIG. 13. Periodic energy exchange between arf&abi oscil-
lations.

{2

- 517)1 32:(1,0), =6,—6;. (30)

The periods of QCB along these directions are eqagl,
=a, so we deal with a regular triangular lattice. In what
follows we choosey ,=ae, , as the basic vectors of a super-

lattice (see Fig. 14

The wires within thejth array are enumerated with the
Define 2D coordinates along timeth wirer; as

integersn; .
r;=X;€+n;ae; for upper and lower arrayg € 1,2) andr;

=X3€3+ Nn3ae, for the middle array. Herg; are 1D continu-
ous coordinates along the wire. The system of three nonin-

teracting arrays is described by the Hamiltonian
HO:H1+H2+H3, (31)

where

3\/ 1
\/ \/2

\
N7\ e<_'e)

FIG. 14. Triple QCB.

PHSBICAL REVIEW B 67, 115331 (2003

:_2 Xm

gmi(x,€,+ n;ae;)

+ é[axl O1(x181+ nlae3)]2} , (32)

:_2 dX2

gm5( X6+ Nyaes)

1
+ 5[3x292(xzez+ nza%)]2:|, (33

:—Z dX3

gm5(X3e3+ nzae;)

(34

1
+ §[5x393(xse3+ nsae;)]?

andm; andaxj 0; are canonically conjugated fields describing
a LL within the jth array.

The interaction between the excitations in different wires
of adjacent arrayg,j’ is concentrated near the crossing
points with coordinates;a; + n;,g;. . It is actually Coulomb
interaction screened on a distangealong each wire which
is described by the Hamiltonian

Hint=H1zTHas, (39
where

—nzga  Xg—nja
e —

1

H X
_13_ 2 XmdX3(I) !

VO nqy,ng o

X dy, 01(x1€1+ N1ae3)dy, O3(Nzae; +X3€3), (36)

n3a X3_n2a
& &
0

H
23 = 2 d X2d X3(I)
VO n2.Nn3

X dy,02(X28,+ Np8€3) Iy B3(N3a€ + X3€3).  (37)

Here the effective coupling strength, is defined by Eq(9);
the dimensionless interactich is separable,

D(&g+8383)=0(§))8(&3), =12 (38)

and {(¢) is dimensionless charge fluctuation in tite wire
[see Eq(6)].

Such an interaction imposes a superperiodicity on the en-
ergy spectrum of initially one-dimensional quantum wires,
and the eigenstates of this superlattice are characterized by a
2D quasimomentuny=q;0; +0,8,=(0d;,0,). Hereg, , are
the unit vectors of the reciprocal superlattice satisfying the
standard orthogonality relationsg (g;)=6j;, j=1,2. The
corresponding basic vectors of the reciprocal superlattice
have the formQ(m,g; +m,g,), whereQ=2=/a andm, ,
are integers. In Fig. 15 elementary cBIIJL of the recipro-
cal lattice is displayed together with the hexagon of the
Wigner-Seitz cell that we choose as the BZ of the triple
QCB.
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FIG. 15. Elementary ceBIJL of the reciprocal lattice and the
BZ hexagon of the triple QCB.
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Thus the total Hamiltonian(39) describes a system of
coupled harmonic oscillators and can be diagonalized exactly
like in the case of a double QCB.

B. Spectrum

Separability of the interactio38) allows one to derive
analytical equations for the spectrum of the total Hamil-
tonian(39) (see Appendix D Here we describe the behavior
of the spectrum and the states along some specific lines of
reciprocal space.

The high symmetry of the triple QCB leads to a number
of lines where an interarray or interband resonant interaction
occurs:all lines in Fig. 15 possess some resonant properties.
These lines may be classified as follows.

On the Bragg lines where one of three array wave num-
bersq; is a multiple integer oRQ/2, there is a strong intra-

To study the energy spectrum and the eigenstates of tHeand mixing of modes of thith array. In Fig. 15, these lines

total Hamiltonian
H=Hy+Hy, (39

we define the Fourier components of the field operators

61(X1€1+ N a63)=(NL)~ 1/2;1 0154€ (qlxﬁq?’nla)us,ql(xl),

(40)

02<x2e2+n2ae3)=(NL>*1’22q Oasq€' (1227 92U o (%,),
S,

(41)

93<x3e3+n3ae1>=(NL>—1’2§ O35q€! (3 Uy o (x5).
(42

Here

0=0:81t 028, 03=0>—0y,

andN=L/a is the dimensionless length of a wire. In the
representation, the Hamiltonians; [Egs. (32)—(34)] and
Hjs [Egs.(36) and(37)] can be written as

hvg + h +
HJ:T % TjsqTjsq T % % “’g(qj)eisqajsqv
j:112731
Vor3
His=5— 2 ¢s(03) ds(0)) ws(da) 0 (a))
2Ug s,s’,q
X[ ObisrqtHel, =12,
where
S 1 2w
0g(q)=v §Q+(—1) lal |, QZ?-

are the boundaries of the elementary cell of the reciprocal
lattice 1JLB, axesq; and g,, and linesOB and EH. In
particular, along the line®A (gq,=0) andOB (gq3;=0) two
modes corresponding to 2D and 3D bands and to the second
(OA) or third (OB) array are mixed. Along the lin&B
(q;=Q/2) the same mixing happens between (1,1) and
(1,2) modes. Moreover, the resonant mixing of different ar-
rays within the same band occurs along the mediais

OB, etc. There are two types of such a resonance. The first
of one(e.g.,0A line) is the resonance between neighboring
arrays ;= —qs) and therefore it is of the main order with
respect to interaction. The second deeg.,OB line) is the
resonance between remote arrags=q,) and is one order
smaller.

The second family consists of resonant lines formed by
the BZ hexagon boundaries and diagonals. Thus, the diago-
nal OC realizes a first-order resonance between the first and
third arraysq;=qs, and the BZ boundarieslD and AN
correspond to the same resonance up to an umklapp process
(01=093—Q andqg; =093+ Q, respectively. Along the diag-
onalOD and the BZ boundaril C a second-order resonance
takes place with resonance conditiogs=—q; and Q,
=—q;+Q, respectively.

In the reciprocal space of the triple QCB there are four
different types of crossing points. Two of them include the
bases of BZ median@.g., pointsA, B, E, and so oh Here
one deals with the fourfold degeneracy of the modes corre-
sponding to the first-order resonance between the neighbor-
ing arrays(e.g., pointA, w;s=w3s , S,8'=1,2) or to the
second-order resonance between remote aftikgspoint B,
w1s=wyg , S,8'=1,2). One more family consists of cross-
ing points of the BZ diagonals and the lines connecting the
bases of its mediangointsM, F, G, and so oh Here one
deals with three types of twofold degeneracy simultaneously.
For example, at the poif¥l two separate pairs of modes
corresponding to neighboring array®,1), (3,1), and (2,2),

(3,2 are degenerate, as well as two modes corresponding to
the first array(1,1), (1,2. Finally the BZ hexagon vertices
form the most interesting group of points where the threefold
degeneracy between modes corresponding to all three arrays
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FIG. 16. Dispersion curves at tt@AMB O polygon of the BZ.

takes place. The typical example of such a point is the vertex
C where the resonance conditign= —q,+Q=0q3=Q/3 is
satisfied.

Almost all these peculiarities of the triple QCB spectrum
are illustrated in Fig. 16 where the dispersion curves along
the closed lineOABO are displayed. We emphasize once
more that in the infrared limito,q— 0 the triple QCB like
the double QCB preserves the characteristic LL properties of
the initial arrays.

C. Observables

FIG. 17. Periodic energy transfer between three arrays at the
The structure of the energy spectrum analyzed abowgrilole resonant poinC of the BZ

strongly influences the optical and transport properties of the

triple QCB. As in the case of the double Q@Bec. Il B, The field operators of all three arrays demonstrate fast oscil-

one expects to observe four peaks of the optical absorptioL]jltions with the resonant freauenev. modulated by a slow
near the point#\,B,E,H of the fourfold degeneracy. Then, ) quenay, y
frequency. It is the same for the two remote arrays and

specific features of space correlators like those considered in . : .
Sec. Il E 2 can be observed. But the most pronounced rnang_oubled for the intermediate array. These beatings are syn-

. . . .. chronized in a sense that zero intensity on the intermediate
festation of a triangular symmetry of the triple QCB are its L ; . .
Rabi oscillations. array always coincides with the same intensity on one of the

Consider the vicinity of the poin€ of threefold degen- remote arrays. A.t these moments all the energy is concen-
eracy mixing all three arrays. Appropriate initial conditions gztédozcc)liﬁgi;vr"tshIgrgré?sojathg dr(iarzn::)ite alr;ays. These peculiar
lead (see Appendix E for detailgo the following time de- pilay 9. 1
pendence of the field operators in the coordinate origin in
real space: IV. CONCLUSION

75 ? We discussed in this paper the kinematics and dynamics
0,(0,0:t) = 6, sin(wot)co§(Lwot), of the plasmon spectrum in QCB. These nanostructures may
4 be fabricated from single-wall carbon nanotuBé30On the
one hand, the QCB is promised to become an important com-
J2¢ $? ponent of future molecular electronit4® On the other hand,
4 @o ) the spectrum of elementary excitatiofidasmonsg in these
grids possesses the features of both 1D and 2D electron lig-
) uids. As is shown in Refs. 9 and 11 and confirmed in the
¢ © t) 43) present study, the energy spectrum of the QCB preserves the
ot characteristic properties of LL &|, o— 0. At finite g,» the

02(0,01) = 00 COS(wot)Sinz(

03(0,0,t)= 00 Sin(wot)CO{ 2
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density and momentum waves in double and triple QCB mayvhere 5, stands for the periodic delta function,
have either 1D or 2D character depending on the direction of

the wave vector. Due to the interarray interaction, unper-

turbed states, propagating along arrays, are always mixed, SL(x—x")=2 8(x—x'—nL).
and transverse components of correlation functions do not "
vanish. For a quasimomentum lying on the resonant lines of The * hain” is ch ized b
the BZ, such mixing is strong and transverse correlators have e “emply superchain” is characterized by a space pe-

the same order of magnitude as the longitudinal ones. PerﬂOd a and corresponding reciprocal lattice wave numQer

odic energy transfer betweem arrgyRabi oscillations”) is _:277/6" I_Each excitation in such a superchain is described by
predicted. its quasi wave numberg and a band numbers (s

The crossover from the 1D to the 2D regime may be 1,2,...)that are related to the corresponding wave num-

experimentally observed. One of the experimental manifesP€" K by the relation
tations, i.e., the crossover from isotropic to anisotrdgjza-
tially nonuniform) conductivity, was pointed out in Ref. 11. k=q+Q(—1)5?
The current may be inserted in the QCB at a point on an
arrayj and extracted from another arrayat a distancer.
Then a temperature-dependent length s¢él8 arises, so Here square brackets denote an integral part of a number.
that for r>| the resistance is dominated by smalland, ~ The corresponding wave functiah 4(x) has the Bloch-type
therefore, the current is isotropic. In the opposite limitl structure,
the dependence of the current on the points of injection and
extraction may be detected. At=0 the lengthl becomes 1
infinite, and current can only be carried along the wires. l//s,q(X)Z\/——e'qXUs,q(X), (A2)
These effects are in fact manifestations of the LL behavior of L
the QCB in the infrared limit.

To observe the crossover at finite,q}, one should find
a way of exciting the corresponding plasmon modes. Then, L2
scanning then(q4,q,) surfaces, one may in principle detect ,r/,;q(x),r/,s, o (X)AX= 85 5 80.q.q'
the crossover from quasi-1D to -2D behavior in accordance Lz ’ T
with the properties of the energy spectra presented in Secs. Il
and lll. Plasmons in QCB may be excited either by means of
an microwave resonators or by means of interaction with 2 W () s q(X') = 8L(x—X"),
surface plasmons. In the latter case one should prepare the 4
grid on a corresponding semiconductor substrate and meghere
sure, e.g., the plasmon loss spectra. The theory of these plas-
mon losses will be presented in a forthcoming publication.

s
>/s9nq. (A1)

and satisfies the orthogonality relations

0Qq.0' = ; 8q+nQ.q’ -
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S
uslq(x)zexp{ iQx(—1)S1t 5|sgn q], (A3)
APPENDIX A: EMPTY SUPERCHAIN
Here we construct eigenfunctions, spectrum, and quasi- s ]
particle operators for an “empty superchain”"—a quantum ws(q)=vQ > +(_1)516)' (A4)

wire in an infinitely weak periodic potential with perical

Excitations in an initial wire are described as plane WaveSraking into account that both the Bloch amplitudg,(x)
~172 : - o '
L~ "“exp(kx) with wave numbek=2zn/L, with integern, 54 gispersion law<(q) are periodic functions o with

and dispersion lawo(k) =v|k| (the array number is tempo- periodQ, one obtains general equations for the Bloch ampli-
rarily omitted. The following orthogonality relations are {,qe

valid:
L/2 - o Siné, _ F{‘l ﬂ)
R0 (0= B UsalX)= 2 =g Food (25~ Dfnlexe ~dicngy).
4£,=Q(x—na),

2k Y (X) (X" ) =8 (x—x"),

and dispersion law(q),
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. 2s—1 BZ boundaries, the energy spectrum of the first band can be
(WQ) twy(q)=—4— calculated explicitly. Assuming thate?<wi(q;), s
=2,3,4 ..., weomit w? in all terms on the RHS of Eq18)
* 2(—1)3 2mw(2n+1)q except the first ones=1. As a result the secular equation
S 2en+n2 . Q (17) reads
The relations between quasiparticle operators for a free wire, 2 (sz(qj)wz 1
Cx, for momentunk+# nQ/2 with n integer, and those for an 11:[1 W2(q) — @ +F;|= 5 (B1)
empty superchairCs 4, for quasimomentung from the first A
BZ, —Q/2<q<Q/2, look as where
Cx=Cs qSOnk, r.
ef@)=¢h@),  of(@)=wfi(q).
2|k| k 1] 1 J
s=1+ Q/ 9=Q 0272 The solutions of this equation have the form
Coq=(—1)"cx, wi1q= 01(0) + w3(q)
s 2 = V[03a) — 03(a) 2+ 4 g203(a) 03(ay).
k=g+(—1)"Q| 2|, V=S+1+—q, 1(q 2(q q@1(d1) w202
2 Q (B2)

where curly brackets denote a fractional part of a numbergre
For obtaining these relations we used the expression

L2 ®q= ¢1(d1) ¢2(d2),

* — ~
ok (X Ps,q(X)AX= 85 5(q) Ogiq,k SOTK, v=+,— is the branch number, and;(q) is determined as

2|q| ) 1—eF3[Fo— ¢3(qy)]

. wi(@)=wi(gy)
Q } 1_8[F1_<Pi(Q1)][F2_@%(Q2)]

for the transition amplitudgk|s,q). In case wherk=nQ/2 (B3)
with ninteger, hybridization of the neighboring bands should,, j=1. The expression fow3(q) can be obtained by per-
be taken into account. This modifies the above relations g, tation %»2. Parentheses on the RHS of H&3) de-
the following way: scribe the contributions t&; from higher bands. Therefore

s(q)=1+

Crop=0(M[a@,Cp 4 +B.C wj(q) is thejth array frequency renormalized by the inter-

oz Bmlan " P n+1’q”] action with higher bands. In principle, the contribution of
+6(—n)[B* nC—n,qn_ afnC—nu,qn], higher band_s.may turn the interaction to be strong. However,
for the specific case of carbon nanotubes, one stays far from

n+1l 1 the critical valuee. (see the estimates at the end of Sec.

0,=0Q|{— ——), Il C). Therefore the interaction with higher bands is weak

2 2 almost in all the BZ except its boundaries.
. The resonance line equation modified by interaction with
Cs.q,= s Csqizt BsC-squ2 higher bands is
Cs+l,qS: E:CSQIZ_ asCsq2; Z)i(q)=z)§(q) (B4)

wherea, B are hybridization coefficients. Corresponding re- Out of this line the branch number is in fact the array number

lations between wave functions follow immediately from and the renormalized frequencies are frequencies of a boson

these formulas. propagating along one of the arrays slightly modified by in-
To write down any of these formulas for a specific array,teractions with the complementary array. In the case when

one should add the array ind¢xo the wave functiony, 01(q1)>w»(0,), one obtains

Bloch amplitudeu, coordinatex, quasimomentung, and to

the periodsa andQ of the superchain in real and reciprocal 0} 1~ 0i(q)[1-eFei(a)]. (B5)

space. . o
In the opposite case one should replace the indice21

— <+,
Consider the frequency correction in the latter equation in
Here we obtain analytical expressions for dispersion lawsnore detail. The correction term can be approximately esti-
and wave functions of QCB. For quasimomenta far from themated a&uf(ql)S(ql) with

APPENDIX B: DOUBLE QCB SPECTRUM
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h1q= \/gﬁqull(%)wzl(%)- (B13)

The parametergh sy, ¢2sq, S=2,3, ..., iNEQs.(BY) and
Due to the short-range character of the interaction, the matrig10) correspond to interband mixing,
elements$q4(g,) ~1 vary slowly with the quasimomentum

R
S(ay)=sF¢i(d) =e— 7x(a) f deg5(6).  (B6)

0:=<Q;. Therefore, the RHS in EqB6) can be roughly ro w11(97)
estimated as b1sq= Ve §¢11(Q1)¢2S(Qz)w2 @)’ (B14)
S
R R . . .
S(q1)~s—0=0.1—0<1. (B7) and the co_efﬂmentﬁlqZ Baoq, take into account corrections
a a from the higher bands:
One should also remember that the energy spectrum of nano- .
tube remains one dimensional only for frequencies smaller _ 2 2 2 o
than somew,,. Therefore, an external cutoff arises st qu—s; (bisqUaT basqV): (B15)

=ak,, wherek,,~w,/v. As a results one gets an estimate

Expressions fokp,s, and B, can be obtained by the permu-

S(qu)~ Roy r (Bg  tAtion -2,
du) &3 Kmo- Equations(B2), (B9), and (B10) solve the problem of

. - CB energy spectrum away from the BZ boundaries. How-
Hence, one could hope to gain additional power of the smalf e que to smallness of the interaction, the general expres-
interaction radius. However, for nanotubk§,|s of the qrdgr sions (B9) and (B10) can be simplified. For quasimomenta
of 1/R, (see Refs. 27 and 24ind both estimates coincide. (5 from the resonant coupling line, the expressions for the

For quasimomenta close to the BZ center, the coefficienformalized field operators of the first array look like
S(q;) can be calculated exactly. For exponential form of

L(&)xexp(—|4), one obtains, instead of the preliminary es- 1 o
t|mate(B7)1 01]11: ( 1_ 5181(1) 011q+ SZ]_ ¢1Sq025q ) (Blﬁ)

Ro
S(0)= 0-14g- where

Thus, the correction term in E¢B5) is really small. ;
The eigenstates of the system are described by renormal- b119= Je —0¢11(CI1)¢21(Q2)
ized field operators. Within the first band they have the form a

011(01) @21(0>)

“’31(%) - w%l(%)

~ and
Hlqu

1
1- Eﬁlq) (uqallq_ Uq021q)

Big= 2, disg- (B17)
_522 (¢lsquq025q+ ¢2quq015q), (B9) 1q & P1sq

The corresponding formulas for the second array are ob-
~ tained by replacing 4—2s.
0219= ( 1- 5'82(1) (Vg1 UgBa1q) Another simplification is made for modes with quasimo-
menta on the resonance line. Consider for simplicity a square
QCB (in this case the BZ coincides with the elementary cell
_322 (1590 q02sq T P2sqUqb1sq)- (B10) of the reciprocal lattice, and the resonance line coincides
with the BZ diagonaDC in Fig. 3) and assume that is not
Here the coefficients, andv, describe mixing between the too close to the BZ corne€. The initial frequencies of
modes with different array indices, within the first band,  modes belonging to the same band coincide:

VAG+ b1 A

Ug= |/ e (B11)

0

W15q= W25q= Wgq - (B19)

2VAGT i Therefore renormalization strongly mixes the initial vari-
ables,

pem A/ 2a* P10 A (B12)

q 2\AZ+ #3, 5 1 (1 1ﬂ )(0 Lo
and gsq 2 2 Psq |\ V2sq™ Yisq

2 _ 2 1
w w
Ag= 21(q2)2 11(Q1), ——2 E (hssqb1sq— Pssqfas'q)
s'#s
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~ 1 1 whereu, andv, are defined in EqgB11) and(B12). Then,
Ousq= ﬁ( 1- Eﬂsq>(023q_ 01sq) for the optical absorptior’ one obtains

1 Uil(q,w)=Wvg[ugﬁ(w—z:urvlq)+v§5(w—;;)_’1q)],
T = 2 (d’s'sqels’q"_ d’ss’qezyq):

s’ #s

and the corresponding eigenfrequencies are shifted from oAq w)=7rvguqvq[5(a)—c~u, 1q)—5(w—z>+ 0]

their bare values: (C2)
2
Dgsq™~ Vsq( 1T busasq), For quasimomenturg away from the resonant coupling line,
01 ) Ui=1 andv?- g for A>0 (vE~1 andui— g3 for A,
usq - sa sesq <0). Then the longitudinal optical absorptié@l) (i.e., the

absorption within a given set of wirebas its main peak at
the frequencyw ;. 1q~v|q| for A;>0 (or w_ 14~v|q,| for
wiqu% w3(qy)(1+ @%)_ (819  A44<0), corresponding to the first band of the pertinent ar-
_ . ray, and an additional weak peak at the frequeacyq
Note that in the resonance case the splitting of the degenera&av|qz|, corresponding to the first band of a complementary
modes is of the order of’e, which essentially exceeds the array. It contains also a set of weak peaks at frequencies
shift of eigenfrequencies in the nonresonant a&s. w5q~[S2]vQ (s=2,3, . .. ) corresponding to the contribu-
The interband mixing becomes significant near the BZtjon from higher bands of the complementary arfay Eq.
boundaries. Not very close to the crossing points of theseC1) these peaks are omittedAt the same time, a second
boundaries with the resonant lines, this mixing is accounteépservable becomes relevant, namely, the transverse optical
for by a standard way. As a result we find that the interbancbsorption(C2). It is proportional to thesmall) interaction
hybridization gap for the bosons propagating along the firsktrength and has two peaks at frequenaies,, andw_ 14 in

For the first band=1 these formulas look like

array can be estimated as the first bands of both sets of wires.
If the quasimomenturng belongs to the resonant coupling
Aw12~st%O. line Aq=0, thenuj=v;=1/2. In this case the longitudinal

optical absorptiofC1) has a split double peak at frequencies

Similar gaps exist near the boundary of the BZ for each®+1q @d @_ 14, instead of a single main peak. The trans-
pair of odd and next even energy bands, as well as for eacgrse optical gbsorptlon similarly to thg nonresonant case
even and next odd band near the lings=0 or q,=0. (C2), hasasplitdouble peak at frequencies ;g andw -y,

The energy gap between tsth and 6+ 1)th bands is esti- but its amlitude is now of the order of unity. th|—>0', Eq.
mated as (C1) reduces to that for an array of noninteracting wi2s),

and the transverse optical conductiviy2) vanishes.
The imaginary part of the ac conductivity;, (g, ) is

o,
Awgsy lNUQSEO(S ). calculated within the same approach. Its longitudinal compo-

) o nent equals
For large enough band numbsy the interaction is effec-
tively suppressed¢>1325_,—>_0, and_the_ gaps vanish._ _ > 2 > 2
The spectral behavior in the vicinity of the crossing points " )=2U_9 Ug@+ 19 n Yq®- 19
of a resonance line and the BZ boundary needs more detailed REES B ® | w2, —w? 0w, —w?l
calculations. Nevertheless, it can also be analyzed in a simi- i e
lar way. The results of such an analysis are discussed in Sec.
1D 1. Beside the standard pole at zero frequency, the imaginary
part has poles at the resonance frequeneieg,, w4 and
APPENDIX C: ac CONDUCTIVITY an additional series of high band satellit@snitted herg

For quasimomenta far from the resonant lines, only the first

For interacting wires, where;s(q;) #0, the correlator pole is well pronounced while amplitude of the second one

(24) may be easily calculated after diagonalization of theas well as amplitudes of all other sattelites is small. At the
Hamiltonian(11) by means of the transformatioiB9) and  resonant lines, amplitudes of both poles mentioned above are

(B10). As a result, one has equal. The corresponding expression f9),(q,w) can be
T )3t (O = — 2i 2 _ ¢ obtained by replacement22.
([F11q(1),3134(0) 1) = — 2ivg[Ugw ;1 SN+ 3t) The transverse component of the imaginary part of the ac

n Uéwf,lq sin(w_ 1401, conductivity has the form

<[J11q(t)yJJ2rlq(0)]>:_ZiUgquq[w—,lq Sin(w—,lqt) , _ng wz—,lq _ wi,lq
X UlZ(qaw) - ® uqvq 2 2 2 2
—wy 1gSif(w gt ], W TwW_ g W Wy g
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It always contains two poles and vanishes for noninteracting 1
wires. For quasimomenta far from the resonance lines the gc= 5 (D6)
transverse component is small while at these lines its ampli- 2F

tude is of the order of unity. 2

then all solutionsw® of the characteristic equation are
positive. Whene increases, the lowest QCB mode softens

APPENDIX D: TRIPLE QCB SPECTRUM and its square frequency vanish@s the whole BZat
To diagonalize the Hamiltonia(89), we write down the &=#&c- For the exponential mode{(¢) =exp(-|¢), one
equations of motion obtainse~1.
[wg(Qj)_wz] gjsq APPENDIX E: TRIPLE RABI OSCILLATIONS

ro The pointC(Q/3,2Q/3) of the BZ is the point of threefold
+ \/gd)s(qj)ws(qj)g E ¢3'(Q3) ws/(Q3) 03S’q: 0, degeneracy
S!

(D1) Q
, Q1ZQ3:_Q2+Q:§:
[03(03) — ®?] O3
\/_ 2 11(Q/3) = w,1(2Q/3) = w31 (Q/3) = wg..
+ . . . - .
¢S(q3)w5(q3) s (0)) 05/(G) bjs7q= Equations of motion at this point in the resonance approxi-
(D2) mation read
Herej=1,2, ande is defined by Eq(21). The solutions of [ g2 5 2
the set of equationéD1) and (D2) have the form e +wo 01+ Ve p?wh 3=
Vol d: i ;
jsa= i—d)squ) S(qu) , 1=123. e, 2 2
a)s(qj)—a) E-ﬁ-wo 6,+ \/E(ﬁ wyl3=
Substituting this equation into EqéD1) and(D2), we have ) ’
three equations for the constamts: , ,
o —2+w0 03+ \/;¢2w0(61+ 02):0,
ArtAg\eF g (0?)=0, dt
) where 6;=0;,. The general solution of this system looks
AptAg\eF g (0?)=0, as
6,(t) 1 1
As+ D, AeFy (0?)=0, i i
3 j:21’2 ]\/g q](w ) 02(t) — 60 _1 e|w0t+ 6+ 1 elw+t
where 05(t) 0 V2
b To BHDAQ) Ly
Fo(0?)=— > S5 (D3) o | 1 |eet
s wi(q)- 2
Dispersion relations can be obtained from the solvability
condition for this set of equations: where one of the eigenfrequencies coincides wigh while
the two others are
eFq.(w)[Fq (0?)+Fq(0)]=1. (D4)
R * .= V1= 242 (E)
The functionF, (w?) has a set of poles ab’=w3(q), S andd,. are the corresponding amplitudes.
=1,23... . For w’<w?(q), i.e., within the interval Choosing the initial conditions
[O,w'f(q)], Fqs(wz) is a positive increasing function. Its ) )
minimal valueF on the interval is reached af=0 and does 01(0)=i6,  6:1(0)=wobp,
not depend on the quasimomentgm )
#,(0)=0, 6,(0)=0,
_To 20\ _ j 20
Fa(0=7 2 ¢3(@)= | deff(§)=F. (DY) 64(0)=0, 85(0)=0,
If the parametee= »* is smaller than the critical value we obtain for the field amplitudes at the coordinate origin:
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0| wo . wWo . O . 0 1) w
01(0,0;t)=Z[ZSIr\(wJHw—SIH(wt) + sin(wot), eg(o,o;t)zﬁ w—isin(mt)—w—fsin(w,t) .

Oyl @ w ) — . L .
6,(0,01)= Zo[w—ism(wﬂ”w—?sm(wt) —7osin(wot), I(z;)hﬁllsn:g.nﬁl%éses<l these formulas coincide with Egs.
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