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Plasmon excitations and one- to two-dimensional crossover in quantum crossbars
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The spectrum of boson fields and two-point correlators are analyzed in quantum crossbars~QCB, a super-
lattice formed bym crossed interacting arrays of quantum wires!, with short-range interarray capacitive inter-
action. Spectral and correlation properties of double (m52) and triple (m23) QCB are studied. It is shown
that the standard bosonization procedure is valid, and the system behaves as a sliding Luttinger liquid in the
infrared limit, but the high-frequency spectral and correlation characteristics have either one-dimensional~1D!
or 2D nature depending on the direction of the wave vector in the 2D elementary cell of the reciprocal lattice.
As a result, the crossover from the 1D to 2D regime may be experimentally observed. It manifests itself as the
appearance of additional peaks of optical absorption, nonzero transverse space correlators, and periodic energy
transfer between arrays~‘‘Rabi oscillations’’!.

DOI: 10.1103/PhysRevB.67.115331 PACS number~s!: 73.21.Cd, 73.21.Hb, 73.22.Lp, 72.15.Nj
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I. INTRODUCTION

The behavior of electrons in arrays of one-dimensio
~1D! quantum wires was recognized as a challenging pr
lem soon after the consistent theory of elementary exc
tions and correlations in a Luttinger liquid~LL ! of interact-
ing electrons in one dimension was formulated~see Ref. 1
for a review!. One of the fascinating targets is a search
LL features in higher dimensions.2 Although the Fermi liquid
state seems to be rather robust forD.1, a possible way to
retain some 1D excitation modes in 2D and even 3D syst
is to consider highly anisotropic objects, in which the ele
tron motion is spatially confined in a major part of real spa
~e.g., it is confined to separate linear regions by the poten
relief!. One may hope that in this case a weak enough in
action does not violate the generic long-wave properties
the LL state. Arrays of interacting quantum wires may
formed in organic materials and in striped phases of do
transition-metal oxides. Artificially fabricated structures wi
controllable configurations of arrays and variable inter
tions are available now due to recent achievements in na
technology~see, e.g., Refs. 3 and 4!.

The simplest 2D ensemble of 1D nanoobjects is an a
of parallel quantum wires or nanotubes. The conventional
regime in a single 1D quantum wire is characterized
bosonic fields describing charge and spin modes. We con
our discussion to the charge sector~LL in the spin-gapped
phase!. The Hamiltonian of an isolated quantum wire m
then be represented in a canonical form

H5
\v
2 E

2L/2

L/2

dxH gp2~x!1
1

g
„]xu~x!…2J , ~1!

whereL is the wire length,v is the Fermi velocity,u,p are
the conventional canonically conjugate boson fields, andg is
the dimensionless parameter which describes the streng
the interaction within the chain~see, e.g., Refs. 1 and 5!.
Here we follow the common LL description of a single wi
based on the assumption that the Coulomb interaction
screened in the long-wave limit (g5const).6 Indeed, quan-
tum wires and nanotubes are not pure 1D objects and scr
0163-1829/2003/67~11!/115331~19!/$20.00 67 1153
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ing arises due to their finite transverse size, the latter be
the characteristic screening length.7

The interwire interaction may transform the LL state e
isting in isolated quantum wires into various phases of a
quantum liquid. The most drastic transformation is caused
the interwire tunneling t' in arrays of quantum wires with
intrawire Coulomb repulsion. This coupling constant re
cales towards higher values for strong interactionsg
,1/2), and the electrons in the array transform into a
Fermi liquid.8 The reason for this instability is the orthogo
nality catastrophe, i.e., the infrared divergence in the lo
energy excitation spectrum that accompanies the interw
hopping processes.

Unlike interwire tunneling, the density-density or curren
current interwire interactions do not modify the low-ener
behavior of quantum arrays under certain conditions. In p
ticular, it was shown recently9–11 that a ‘‘vertical’’ interaction
of the typeW(n2n8)d(x2x8), which depends only on the
distance between the wiresn andn8, imparts the properties
of a sliding phaseto a 2D array of 1D quantum wires. In thi
state an additional interwire coupling leaves the fixed-po
action invariant under the ‘‘sliding’’ transformationsun

→un1an and pn→pn1an8 . The contribution of interwire
coupling reduces to a renormalization of the parameterv
→v(q'), g→g(q') in the LL Hamiltonian~1!, whereq' is
the momentum perpendicular to the chain orientation. S
LL structure can be interpreted as a quantum analog of c
sical sliding phases of coupledXY chains.12 Recently, it was
found13 that a hierarchy of quantum Hall states emerges
sliding phases when a quantizing magnetic field is applied
an array.

In the present paper we concentrate on another aspe
the problem of capacitively interacting arrays of quantu
wires. Instead of studying the conditions under which the
behavior is preserved in spite of the interwire interaction,
consider situations where thedimensional crossoverfrom 1D
to 2D occurs. Dimensional crossover is quite well studi
e.g., in thin semiconducting or superconducting films wh
the film thickness is the control parameter that rules
crossover~see, e.g., Ref. 14. It occurs in strongly anisotrop
systems like quasi-one-dimensional organic conductors15 or
©2003 The American Physical Society31-1
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layered metals.16 In the latter cases temperature serves a
control parameter and crossover manifests itself in interla
transport. In metals the layers appear ‘‘isolated’’ at high te
perature, but become connected at low temperatures to m
fest 3D conducting properties. Here we intend to study
other type of dimensional crossover, i.e., ageometrical
crossover. It will be shown below that in this case the ph
variable~quasimomentum! serves as a control parameter, a
the excitations in a system of quantum arrays demonst
either 1D or 2D behavior in different parts of reciproc
space.

The most promising type of artificial structures where t
effect is expected is a periodic 2D system ofm crossing
arrays of parallel quantum wires. We call it ‘‘quantum cros
bars’’ ~QCB!. Square grids of this type consisting of tw
arrays were considered in various physical contexts in e
papers.17–21 In Refs. 19 and 20 the fragility of the LL stat
against interwire tunneling in the crossing areas of QCB w
studied. It was found that a new periodicity imposed by
interwire hopping term results in the appearance of a lo
energy cutoffD l;\v/a wherea is the period of the quantum
grid. Below this energy, the system is ‘‘frozen’’ in its lowe
one-electron state. As a result, the LL state remains ro
against orthogonality catastrophe, and the Fermi surface
serves its 1D character in the corresponding parts of the
Brilllouin zone ~BZ!. This cutoff energy tends to zero at th
points where the one-electron energies for two perpendic
arraysek1

andek2
become degenerate. As a result, a dim

sional crossover from 1D to 2D Fermi surface~or from LL to
FL behavior! arises around the pointseF1

5eF2
.

We study this dimensional crossover for Bose excitatio
~plasmons! described by canonical variablesu,p in QCB. In
order to unravel the pertinent physics we consider a grid w
a short-range capacitive interarray interaction. This ap-
proximation seems natural for 2D grids of carb
nanotubes,3 or artificially fabricated bars of quantum wire
with grid periods which exceed the lattice spacing of a sin
wire or the diameter of a nanotube. It will be shown belo
that this interaction can be made effectively weak. Therefo
the QCB retains the 1D LL character for motion along t
wires similarly to the case considered in Ref. 11. At the sa
time, e boson mode propagation along some resonant d
tions is also feasible. This is essentially a 2D process in
2D BZ ~or in the elementary cell of the reciprocal lattice!.

We start the studies of QCB with a double QCBm52
~Sec. II!. In the first two subsections, Secs. II A and II B, w
introduce basic notions and construct the Hamiltonian of
QCB. The main approximations are discussed in Sec. I
Here we substantiate the used method~separable interaction
approximation! and show that interaction between arrays
QCB is weak. The energy spectra for square QCB and ti
QCB are described in detail in two parts, Secs. II D 1 a
II D 2 of Sec. II D. Various correlation functions and relate
experimentally observable quantities~optical absorption,
space correlators! are discussed in the last subsection, S
II E. We predict here effect of peculiar ‘‘Rabi oscillations’’—
periodic energy transfer from one of the QCB arrays to
other.
11533
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Triple QCB (m53) formed by three arrays lying in par
allel planes are studied in Sec. III. Such hexagonal grids m
be useful for three–terminal nanoelectronic devices.22 The
plasmon spectra of triple QCB possess some specific feat
in comparison with double QCB. We introduce the main n
tions and construct the Hamiltonian of symmetric triple QC
~Sec. III A!, analyze the peculiarities of the frequency spe
trum ~Sec. III B!, and illustrate them by a description o
triple Rabi oscillations—periodic energy transfer between
three arrays~Sec. III C!. The results are summarized in th
Conclusion. All technical details are placed in Appendix
A–E.

II. DOUBLE QCB

A. Basic notions

The double QCB is a 2D periodic grid which is formed b
two periodically crossed arrays of 1D quantum wires. In e
perimentally realizable setups3 these are cross structures
suspended single-wall carbon nanotubes placed in two pa
lel planes separated by an interplane distanced. However,
some generic properties of QCB may be described with
assumption that the QCB is a genuine 2D system. We ass
that all wires of thej th array, j 51,2, are identical. They
have the same lengthL j , Fermi velocityv j , and Luttinger
parametergj . The arrays are oriented along the unit vecto
e1,2 with an anglew between them. The periods of a cros
bars along these directions area1 and a2, and the corre-
sponding basic vectors areaj5ajej ~Fig. 1!.

The interaction between the excitations in different wir
is assumed to be concentrated around the crossing p
with coordinatesn1a11n2a2[(n1a1 ,n2a2). The integersnj
enumerate the wires within thej th array. Such an interaction
imposes a superperiodicity on the energy spectrum of
tially one-dimensional quantum wires, and the eigenstate
this superlattice are characterized by a 2D quasimomen
q5q1g11q2g2[(q1 ,q2). Here g1,2 are the vectors of the
reciprocal superlattice satisfying the standard orthogona
relations (ei•gj )5d i j . The corresponding basic vectors
the reciprocal superlattice have the formm1Q1g1
1m2Q2g2, whereQj52p/aj andm1,2 are integers.

However, the crossbar kinematics differs from that o
standard 2D periodic system. In conventional 2D syste
forbidden states in inverse space arise due to Bragg diff

FIG. 1. Two-dimensional crossbars formed by two interact
arrays of parallel quantum wires. Heree1 ,e2 are the unit vectors of
the superlattice,a1 ,a2 are the superlattice periods, andd is the
vertical interarray distance.
1-2
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PLASMON EXCITATIONS AND ONE- TO TWO- . . . PHYSICAL REVIEW B 67, 115331 ~2003!
tion in a 2D periodic potential, whereas the whole plane
allowed for wave propagation in real space, at least until
periodic potential is weak enough. A Brillouin zone
bounded by the Bragg lines. It coincides with a Wigner-Se
cell of the reciprocal lattice. In sharply anisotropic QC
most of the real space is forbidden for electron and plasm
propagation. The Bragg conditions for the wave vectors
modulated by a periodic potential unlike those in the conv
tional 2D plane. These conditions are essentially one dim
sional. The corresponding BZ is not a Wigner-Seitz cell o
reciprocal lattice but an elementary cell containing a site
its center.

Indeed, the excitation motion in QCB is one dimension
in a major part of the 2D plane. The anisotropy in real sp
imposes restrictions on the possible values of the 2D coo
natesx1 ,x2 (r5x1e11x2e2). At least one of them, e.g.,x2

@x1#, should be an integer multiple of the corresponding
ray period a2 @a1#, so that the vectorr5(x1 ,n2a2) @r
5(n1a1 ,x2)# characterizes the point with the 1D coordina
x1 @x2# lying at the n2th @n1th# wire of the first ~second!
array. As a result, one cannot resort to the standard bas
2D plane waves when constructing the eigenstate wit
given wave vectork. Even in thenoninteractingarrays of
quantum wires~empty superlattice! the 2D basis is formed a
a superposition of two sets of 1D waves. The first of them
a set of 1D excitations propagating alongeachwire of the
first array characterized by a unit vectork1g1 with a phase
shift a2k2 between adjacent wires. The second set is a sim
manifold of excitations propagating along the wires of t
second array with the wave vectork2g2 and the phase shif
a1k1. The dispersion law of these excitations has the for

v0~k!5v1~k1!1v2~k2!. ~2!

The states of equal energy obtained by means of this pr
dure form straight lines in 2D reciprocal space. For exam
the Fermi surface of QCB developed from the points6kF1,2
for individual quantum wires consists of two sets of lin
uk1,2u5kF1,2. Respectively, the Fermi sea is not a circle w
radiuskF as in the case of a free 2D gas, but a cross in thk
plane bounded by these four lines19 ~see Fig. 2!. Finally, the
Bragg conditions read

v1~k1!2v1~k11m1Q1!1v2~k2!2v2~k21m2Q2!50

and the linesk150, uk2u5Q2/2, anduk1u5Q1/2, k250, sat-
isfying these conditions, form a 2D BZ of a double QCB.

Due to the interarray interaction, the excitations of QC
~see Figs. 3 and 6 below! acquire genuine two dimensiona
ity characterized by the quasimomentumq5(q1 ,q2). How-
ever, in case of a weak interaction the 2D waves constru
from the 1D plane waves in accordance with the above p
cedure form an appropriate basis for the description of
ementary excitations in QCB in close analogy with t
nearly free electron approximation in conventional cryst
line lattices. It is easily foreknown that a weak interarr
interaction does not completely destroy the above quasi
mentum classification of eigenstates, and the 2D reconst
tion of the spectrum may be described in terms of wa
mixing similarly to standard Bragg diffraction in a weak p
11533
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riodic potential. Moreover, the classification of eigenstates
an empty superlattice may be effectively used for the cla
fication of energy bands in a real QCB superlattice where
superperiodicity is imposed by the interaction.

The complete kinematics of an empty superchain~wave
functions, dispersion laws, relations between quasipart
second-quantization operators! is developed in Appendix A.
In terms of these 1D Bloch functions@see Eqs.~A2! and~A3!
of Appendix A# we construct the 2D basis of Bloch function
for an empty superlattice:

Cs,s8,q~r !5c1,s,q1
~x1!c2,s8,q2

~x2!. ~3!

Heres,s851,2, . . . are theband numbers, and the 2D qua
simomentum q5(q1 ,q2) belongs to the first BZ,uqj u
<Qj /2. The corresponding eigenfrequencies are

vss8~q!5v1,s~q!1v2,s8~q!. ~4!

Here

v j ,s~q![v j ,s~qj !,

and v j ,s(qj ) is dispersion law of the empty superlattic
mode propagating along thej th array and belonging to the
bands. Its explicit form is defined in Appendix A@Eq. ~A4!#.
We will use this basis in the next subsection when constru
ing the excitation spectrum of QCB within the reduced ba
scheme.

B. Hamiltonian

When turning to a description of the interaction in a QC
one should refer to a real geometry of crossbars and reco
the important fact that the equilibrium distance between t

FIG. 2. Fermi surface of 2D metallic quantum bars in the a
sence of charge transfer between wires.g1 ,g2 are the unit vectors of
the reciprocal superlattice.
1-3
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arrays is finite and large enough to suppress direct elec
tunneling.3 We neglect also the elastic and van der Wa
components of the intertactions between real nanotubes
cause these interactions are not involved in the formation
collective excitations in QCB. Then the full Hamiltonian o
the QCB is

H5H11H21Hint , ~5!

whereH j describes the 1D boson field in thej th array,

H15
\v1

2 (
n2

E
2L1/2

L1/2

dx1H g1p1
2~x1 ,n2a2!

1
1

g1
@]x1

u1~x1 ,n2a2!#2J ,

H25
\v2

2 (
n1

E
2L2/2

L2/2

dx2H g2p2
2~n1a1 ,x2!

1
1

g2
@]x2

u2~n1a1 ,x2!#2J ,

andu j ,p j are the conventional canonically conjugated bos
fields ~see, e.g., Ref. 5!.

The interwire interaction includes both interactions b
tween wires from the same array~intra-array interaction! and
wires from different arrays~interarray interaction!. The latter
results from a contact capacitive coupling in the crosses
the bars,

Hint5 (
n1 ,n2

E dx1dx2V~x12n1a1 ,n2a22x2!

3r1~x1 ,n2a2!r2~n1a1 ,x2!,

where the integration is restricted by the area2L j /2<xj
<L j /2. Here r j (r ) are density operators andV(x1
2n1a1 ,n2a22x2) is a short-range interarray interactio
Physically, it represents the screened Coulomb interac
between charge fluctuations around the crossing p
(n1a1 ,n2a2). We assume that the crossed nanotubes are
pended in an unpolarized medium, and screening arises
to intrawire interactions. The nanotube diameter is the o
physical parameter which determines the screening lengr j
in a tube from thej th array~see, e.g., Ref. 7!. We describe
the redistribution of a charge in tubej induced by the inter-
action with tubei by the envelope function~introduced phe-
nomenologically!

z~j j !, j j5
xj2njaj

r j
, z~j!5z~2j!, z~0!;1. ~6!

This function is of order of unity foruju;1 and vanishes
outside this region. Thus the on-cross interaction is int
duced as

V~x12n1a1 ,n2a22x2!5
e2z~x12n1a1!z~x22n2a2!

Ad21r12
2

.

~7!
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It can be written in the form

V~r !5
V0

2
FS x1

r 1
,
x2

r 2
D ,

where the functionF(j1 ,j2) is

F~j1 ,j2!5
z1~j1!z2~j2!

A11
ur12u2

d2

~8!

and

r125r 1j1e12r 2j2e2 .

It is seen from these equations thatF(j1 ,j2) vanishes for
uj1,2u>1 and satisfies the conditionF(0,0);1. The effec-
tive coupling strength is

V05
2e2

d
. ~9!

In terms of the boson field operatorsu i , the interarray inter-
action is written as

Hint5V0 (
n1 ,n2

E dx1dx2FS x12n1a1

r 1
,
n2a22x2

r 2
D

3]x1
u1~x1 ,n2a2!]x2

u2~n1a1 ,x2!. ~10!

As for the interaction within each array, one can neglec
for a couple of reasons. First, the interwire distance wit
the same array is much larger than the interarray dista
Second, this interaction is irrelevant in the long-wave limit11

Thus Eq.~10! is the full interaction Hamiltonian.
In the quasimomentum representation~3! the full Hamil-

tonian ~5! acquires the form

H5
\vg

2 (
j 51

2

(
s,q

p jsq
† p jsq

1
\

2vg (
j j 851

2

(
s,s8,q

Wjs j8s8qu jsq
† u j 8s8q , ~11!

whereAvg/v jgju jsq andAv jgj /vgp jsq are the Fourier com-
ponents of the boson fieldsu j andp j , and effective velocity
and coupling arev5Av1v2, g5Ag1g2, respectively.

The matrix elements for interarray coupling are given

Wjs j8s8q5v js~qj !v j 8s8~qj 8!@d j j 8dss81f js j8s8q~12d j j 8!#.

Here

v js~qj !5v j S F s

2GQj1~21!s21uqj u D ~12!

are eigenfrequencies of the ‘‘unperturbed’’ 1D mode@see Eq.
~A4! of Appendix A#, pertaining to an arrayj, bands, and
quasimomentumq5qjgj . The coefficients

f1s2s8q5f~21!s1s8 sgn~q1q2!F1s2s8q ,
1-4
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f5
gV0r 0

2

\va
, r 05Ar 1r 2, a5Aa1a2

are proportional to the dimensionless Fourier componen
the interaction strengths:

F1s2s8q5E dj1dj2F~j1 ,j2!e2 i (r 1q1j11r 2q2j2)

3u1,s,q1
* ~r 1j1!u2,s8,q2

* ~r 2j2!5F2s81sq
* .

The Hamiltonian~11! describes a system of coupled ha
monic oscillators, which can beexactlydiagonalized with the
help of a certain canonical linear transformation~note that it
is already diagonal with respect to the quasimomentumq).
The diagonalization procedure is, nevertheless, rather c
bersome due to the mixing of states belonging to differ
bands and arrays. However, it will be shown below that p
vided d@r 1,2, a separable potential approximation is app
cable that shortens calculations noticeably.

C. Approximations

As was already mentioned, we consider the rarefied Q
with a short-range capacitive interaction. In the case of Q
formed by nanotubes, this is a Coulomb interaction scree
at a distance of the order of the nanotube radius7 R0, and
thereforer 0;R0. The minimal radius of a single-wall carbo
nanotube is aboutR050.35–0.4 nm~see Ref. 23!. The inter-
tube vertical distanced in artificially produced nanotube ne
works is estimated asd'2 nm ~see Ref. 3!. Therefore the
ratio r 0

2/d2'0.04 is really small andthe dimensionless inter
actionF(j1 ,j2), Eq.~8!, in the main approximation is sepa
rable:

F~j1 ,j2!'F0~j1 ,j2!5z1~j1!z2~j2!. ~13!

It should be noted that the interaction in this form is an ev
function of its arguments, and the odd correction to theF0 is
of order r 0

2/d2, whereasF0 is of order of 1.
To diagonalize the Hamiltonian~11!, one should solve the

system of equations of motion for the field operators. G
eralized coordinatesu satisfy the equations

@v1s
2 ~q1!2v2#u1sq1A«f1s~q1!v1s~q1!

3
r 0

a (
s8

f2s8~q2!v2s8~q2!u2s8q50,

s51,2, . . . , ~14!

and similar equations obtained by permutation 1↔2. Here

f js~q!5~21!s sgn~q!E djz j~j!eir 0qjujsq~r 0j!, ~15!

Bloch amplitudesujsq(r 0j) are defined by Eq.~A3! of Ap-
pendix A, and

«5S f
a

r 0
D 2

5S gV0r 0

\v D 2

. ~16!
11533
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Due to separability of the interaction, the equations of m
tion ~14! can be solved exactly. Corresponding square eig
frequencies are determined by the characteristic equatio

F1q1
~v2!F2q2

~v2!5
1

«
, ~17!

where

F jq~v2!5
r j

aj
(

s

f js
2 ~q!v js

2 ~q!

v js
2 ~q!2v2

. ~18!

The functionF jq(v2) has a set of poles atv25v js
2 (q), s

51,2,3, . . . . For a squared frequency smaller than a
squared initial eigenfrequenciesv js

2 (q), i.e., within the inter-
val @0,v j 1

2 #, this is a positive and growing function. Its min
mal valueF j on the interval is reached atv250, and it does
not depend on the quasimomentumq:

F jq~0!5
r j

aj
(

s
f js

2 ~q!5E djz j
2~j![F j ~19!

@here Eqs.~18! and~15! are used#. If parameter« is smaller
than its critical value

«c5
1

F1F2
, ~20!

then all solutionsv2 of the characteristic equation are pos
tive. When« increases, the lowest QCB mode softens and
square frequency vanishesin a whole BZat «5«c . For ex-
ponential charge density distributionz(j)5exp(2uju), one
obtains«c'1.

In our model the dimensionless interaction« in Eq. ~16!
can be written as

«5S 2R0

d

ge2

\v D 2

. ~21!

For nanotube QCB, the first factor within parentheses
about 0.35. The second one, which is nothing but the co
sponding QCB ‘‘fine structure’’ constant, can be estimated
0.9 ~we used the values ofg51/3 andv583107 cm/sec;
see Ref. 24!. Therefore« approximately equals 0.1, so th
parameter is really small. Thus the considered system
stable; its spectrum is described by Eqs.~17! and~18! with a
small parameter«.

The general equation~17! reduces in the infrared limit
q,v→0 to an equation describing the spectrum of tw
coupled sliding phases, i.e., 1:1 arrays in accordance w
the classification offered in Ref. 11. Equation~3.13! of this
paper is a long-wave limit of our equation~B2! derived in
Appendix B. Therefore the general analysis of stability of t
LL fixed point is applicable in our approach.

D. Spectrum

Due to the smallness of interaction, the systematics
unperturbed levels and states is grossly conserved, at lea
the low-energy region corresponding to the first few ene
bands. This means that perturbed eigenstates could be
1-5
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scribed by the same quantum numbers~array number, band
number, and quasimomentum! as the unperturbed ones. Su
a description fails in two specific regions of reciprocal spa
The first of them is the vicinity of linesqj5nQj /2 with n
integer. Indeed, as follows from the equations of mot
~14!, around these lines the interband mixing is significa
These lines withn561 include boundaries of elementa
cell of reciprocal lattice which we choose as BZ for doub
QCB. Because of this BZ, which is, generally speaking, n
relevant, and in this subsection we refer mostly to the BZ

The second region is the vicinity of the lines where t
resonance conditions are fulfilled:

v1s
2 ~q1!5v2s8

2
~q2!. ~22!

Here interarray mixing within the same energy bands
5s8) or between neighboring bands (sÞs8) is significant. In
what follows we will pay attention first of all to these tw
regions because in the rest of the BZ the initial systema
of the energy spectrum can be successfully used.

Equations~14! and ~17! describing the wave function
and the dispersion laws are analyzed in Appendix B.
describe below some of these dispersion qurves for two ty
of QCB based on this analysis.

1. Square QCB

We start with the simplest case of a square QCB form
by identical wires. This means that all parameters~wire
length, space period, Fermi velocity, LL parameter, screen
radius! are the same for both arrays. The corresponding
is also a square~see Fig. 3!. Resonant lines are the diagona
of the BZ.

In the major part of the BZ, for quasimomentaq lying far
from the diagonals, each eigenstate mostly conserves its
tial systematics, i.e., belongs to a given array, and mo
depends on a given quasimomentum component. Co
sponding dispersion laws remain linear, being slightly mo
fied near the BZ boundaries only. The main change is th
fore the renormalization of the plasmon velocity.

In the left part of Fig. 4 we display dispersion curv
corresponding to quasimomenta belonging to a genericOA
line in the BZ. In what follows we use (j ,s) notation for the

FIG. 3. Two-dimensional BZ of a square QCB.
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unperturbed boson propagating along thej th array in thesth
band. Then the lowest curve in this part of Fig. 4 is in fa
the slightly renormalized dispersion of a (2,1) boson. T
middle curve describes a (1,1) boson, and the upper curv
the dispersion of a (1,2) boson. The fourth frequency, co
sponding to a (2,2) boson, is far above and is not displa
in the figure. It is seen that the dispersion remains lin
along the whole lineOA except a nearest vicinity of the BZ
boundary~point A in Fig. 3!.

Dispersion curves corresponding to quasimomenta ly
at the BZ boundaryq15Q/2, 0<q2<Q/2 ~line FC in Fig.
3! are displayed in the central part in Fig. 4. The charac
istic feature of this boundary is the intraband degenerac
one of two arrays. Indeed, in zero approximation, two mod
(1,s), s51,2, propagating along the first array are degen
ate with unperturbed frequencyv50.5. The interaction lifts
the degeneracy. This interaction occurs to be repulsive at
BZ boundaries. As a result the lowest of the two midd
curves in Fig. 4 corresponds to a (1,u) boson, and upper o
them describes a (1,g) boson. Here the indicesg,u denote a
boson parity with respect to the transposition of the ba
numbers. Note that the (1,g) boson exactly conserves it
unperturbed frequencyv50.5. The latter fact is related to
the square symmetry of the QCB.

Two other curves correspond to almost nonpertub
bosons of the second array. The lowest curve describes
dispersion of the (2,1) wave. Its counterpart in the seco
band, (2,2), is described by the highest curve in the figu
Their dispersion laws are nearly linear, and deviations fr
linearity are observed only near the corner of the BZ~point C
in Fig. 3!.

Consider now the dispersion relations of modes w
quasimomenta on the diagonalOC of the BZ and start with
q not too close to the BZ cornerC (q15q25Q/2). This

FIG. 4. The energy spectrum of QCB~solid lines! and noninter-
acting arrays~dashed lines! for quasimomenta at the linesOA, FC,
andOC of the BZ.
1-6
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PLASMON EXCITATIONS AND ONE- TO TWO- . . . PHYSICAL REVIEW B 67, 115331 ~2003!
diagonal is actually one of the resonance lines. Two mode
the first band coressponding to different arrays are stron
mixed. They mostly have a definitej parity with respect to
the transposition of array numbersj 51,2. The interaction
between these modes results in being repulsive~attractive!
for q1q2.0 (q1q2,0). Therefore the odd modes (u,s), at
the BZ diagonalOC s51,2, correspond to lower frequencie
and the even modes (g,s) correspond to higher ones. Th
corresponding dispersion curves are displayed in the r
part of Fig. 4.

At the BZ cornerq15q25Q/2 ~point C in Fig. 3! all four
initial modesj ,s51,2 are degenerate in the lowest appro
mation. This fourfold degeneracy results from the squ
symmetry of the BZ~the resonant lines are diagonals of t
Z). A weak interarray interaction partially lifts the dege
eracy; however, the split modes have a definites parity with
respect to the transposition of band numberss51,2. The
lowest frequency corresponds mostly to the (g,u) boson,
symmetric with respect to the transposition of array numb
but antisymmetric with respect to the transposition of ba
numbers. The upper curve describes a (u,u) boson with odd
both j parity ands parity. The two middle modes with eve
band parity, (g,g) and (u,g) bosons, remain degenerate a
their frequencies conserve the unperturbed valuev50.5.
This also results from the square symmetry of the QCB~8!.

All these results show that the quantum states of the
QCB conserve the quasi-1D character of the Luttinger-l
liquid in the major part of momentum space and that
effects can be successfully calculated within the framew
of perturbation theory. However, bosons with quasimome
close to the resonant line~diagonal OC) of the BZ are
strongly mixed bare 1D bosons. These excitations are es
tially two dimensional, and therefore the lines of equal e
ergy in this part of the BZ are modified by the 2D interacti
~see Fig. 5!. It is clearly seen that deviations from lineari
occur only in a small part of the BZ. The crossover from L
to FL behavior around isolated points of the BZ due to

FIG. 5. Lines of equal frequency of the lowest mode for QC
~solid lines! and for noninteracting arrays~dashed lines!. The lines
1,2,3 correspond to the frequenciesv150.1, v250.25, v350.4.
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single-particle hybridization~tunneling! for Fermi excita-
tions was noticed in Refs. 19 and 20, where a mesh of h
zontal and vertical stripes in superconducting cuprates
studied.

2. Tilted QCB

Now we consider the spectrum of a generic double QC
In this case all parameters~wire length, space period, Ferm
velocity, LL parameter, screening radius! depend, generally
speaking, on the array indexj. In what follows we refer to
such a QCB as a tilted QCB. Now the resonance condit
~22! is fulfilled not at the BZ diagonal but at the resona
polygonal line. Its partODE, lying in the first quarter of the
BZ, is displayed in Fig. 6~all figures of this subsection cor
respond to specific valuesv2Q251, v1Q151.4). This re-
sults in qualitative changes of the spectrum that are rela
first of all to the appearance of two pointsD and E of the
threefold degeneracy for a titled QCB~Fig. 6! instead of a
single point C of fourfold degeneracy for a square QC
~Fig. 3!.

FIG. 6. BZ of a titled QCB.

FIG. 7. The energy spectrum of a tilted QCB~solid lines! and
noninteracting arrays~dashed lines! for quasimomenta on the reso
nant line of the BZ~line ODE in Fig. 6!.
1-7
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We start with the resonant lineODE ~Fig. 7!. The disper-
sion curves at itsOD part and the symmetry properties of th
corresponding eigenstates are similar to those at theOC
resonant line for the square QCB~Fig. 3!. The only differ-
ence is that instead of the fourfold degeneracy at the
cornerC of the square QCB, there is a threefold degener
at the pointD lying at the BZ boundary. A completely new
situation takes place at theDE line, where two other mode
(1,1) and (2,2), corresponding to different arrays and diff
ent bands, are degenerate. The interaction lifts this de
eracy, and the two middle lines in Fig. 7 describe even~g!
and odd~u! combinations of these modes. The even mo
corresponds to the lowest frequency, and the odd mode
responds to the higher one. At the pointE one meets anothe
type of a threefold degeneracy described in more detail in
next paragraph.

Dispersion curves corresponding to quasimomenta ly
at the BZ boundaryq15Q1/2, 0<q2<Q2/2 (FC line in Fig.
6! andq25Q2/2, 0<q1<Q1/2 (CF8 line in Fig. 6! are dis-
played in Fig. 8. The lowest and highest curves in theFE
part of the latter figure describe two waves propagating al
the second array. They are nearly linear, and deviations f
linearity are observed only near the pointE where the inter-
action has a resonant character. Two modes propaga
along the first array, in zero approximation, are degene
with an unperturbed frequencyv50.7. The interaction lifts
the degeneracy. The lowest of the two middle curves co
sponds to a (1,u) boson, and the upper of one describes
(1,g) boson. Note that (1,g) boson conserves its unperturbe
frequencyv50.7. The latter fact is related to the symmet
z j (j)5z j (2j) of the separable interaction~6!. At point E,
the two modes propagating along the first array and the m
propagating along the second array in the second band
degenerate. Interactions lift the degeneracy, and, as a re
the (1,u) and (2,2) waves are strongly mixed and the eig
modes are their even~highest-frequency! and odd~lowest-

FIG. 8. Energy spectrum of a tilted QCB~solid lines! and non-
interacting arrays~dashed lines! for quasimomenta at the BZ
boundary~line FCF8 in the Fig. 6!.
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frequency! combinations, and the (1,g) mode~middle level!.
There are two separate degeneracies within each arra

the cornerC of a titled QCB BZ. Both of them are related t
the interband mixing conserving array index. The spec
behavior along theCF8 boundary of the BZ is similar to tha
considered above but in the vicinity of the pointD of three-
fold degeneracy. Here, the two modes propagating along
second array in the ’separable potential approximation~13!
remain degenerate. This degeneracy is lifted only if the
viation from separability is accounted for.

The diagonalOC of a tilted QCB BZ represents a new
type of generic line, which crosses a resonant line~Fig. 9!.
Here the spectrum mostly conserves its initial systemat
i.e., belongs to a given array, and mostly depends on a g
quasimomentum component. However, at the crossing p
B, the modes (1,1) and (2,2), corresponding to both differ
arrays and bands, become degenerate~two middle dashed
lines in Fig. 9!. The interaction between the wires lifts th
degeneracy. The eigenstates of QCB have a definite pa
with respect to transposition of these two modes. The low
and upper of the two middle lines correspond to the even~g!
and odd~u! modes, respectively.

As in square QCB, bosons with quasimomenta close
the resonant lines are strongly mixed bare 1D bosons. Th
excitations are essentially two dimensional, and theref
lines of equal energy in the vicinity of the resonant lines a
modified by the 2D interaction~see Figs. 10 and 11!. Devia-
tions from 1D behavior occur only in this small part of th
BZ. Forv,0.5v2Q2 the lines of equal energy within the BZ
consist of a closed line around the BZ center and four o
lines ~within the extended band scheme these lines are
tainly closed! around the BZ corners~lines 1, 2, 3 in Fig. 10!.
At the lineOD in the BZ, the modes of the QCB are strong
coupled bare bosons propagating along both arrays in
first band.

For 0.5v2Q2,v,0.5v1Q1 ~lines 4 and 5 in Fig. 11! the
topology of lines of equal energy is modified. In this ca

FIG. 9. The energy spectrum of a titled QCB~solid lines! and
noninteracting arrays~dashed lines! for quasimomenta on the BZ
diagonal~line OC in Fig. 6!.
1-8
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lines of equal energy within the BZ consist of four op
lines. The splitting of lines at the directionDE corresponds
to a strong coupling of modes propagating along the fi
array in the first band with those propagating along the s
ond array in the second band.

E. Correlations and observables

The structure of the energy spectrum analyzed above
determines the optical and transport properties of QCB.
consider here three types of correlation functions manifes
dimensional crossover in QCB.

1. Optical absorption

We start with ac conductivity

s j j 8~q,v!5s j j 8
8 ~q,v!1 is j j 8

9 ~q,v!. ~23!

FIG. 10. Lines of equal frequency for a tilted QCB~solid lines!
and noninteracting arrays~dashed lines!. Lines 1,2,3 correspond to
frequenciesv150.1, v250.25, v350.45.

FIG. 11. Lines of equal frequency for a tilted QCB~solid lines!
and noninteracting arrays~dashed lines!. Lines 4,5 in the lower
panel correspond to frequenciesv450.55, v550.65.
11533
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The real parts j j 8
8 (q,v) determines an optical absorption

The spectral properties of ac conductivity are given by
current-current correlator

s j j 8~q,v!5
1

vE0

`

dteivt^@Jj 1q~ t !,Jj 81q
†

~0!#&. ~24!

HereJjsq5A2vgp jsq is a current operator for thej th array
~we restrict ourselves to the first band, for the sake of s
plicity!.

The current-current correlator for noninteracting wires
reduced to the conventional LL expression1

^@Jj 1q~ t !,Jj 81q
†

~0!#&0522ivgv j 1q sin~v j 1qt !d j j 8 ,

with metalliclike peak

s j j 8
8 ~q,v.0!5pvgd~v2v j 1q!d j j 8 . ~25!

For QCB this correlator is calculated in Appendix C. I
analysis leads to the following results.

The longitudinal absorption

s118 ~q,v!}~12f1q
2 !d~v2ṽ1q!1f1q

2 d~v2ṽ2q! ~26!

contains a well-pronounced peak on the modified first ar
frequency and a weak peak at the second array freque
@the parameterf1q , defined by Eq.~B13! of Appendix B, is
small#. The modified frequenciesṽ1q andṽ2q coincide with
the eigenfrequenciesv11q and v22q , respectively, ifv1q
.v2q . In the opposite case the signs1,2 should be
changed to the opposite ones.

The transverse absorption component contains two w
peaks

s128 ~q,v!}f1q@d~v2ṽ1q!1d~v2ṽ2q!#. ~27!

At the resonant line, the results change drastically. B
longitudinal and transverse components of the optical
sorption contain two well-pronounced peaks correspond
to slightly split modified frequencies:

s118 ~q,v!}
1

2
@d~v2ṽ1q!1d~v2ṽ2q!#. ~28!

2. Space perturbation

One of the main effects specific for QCB is the appe
ance of a nonzero transverse momentum-momentum cor
tion function. In space-time coordinates (x,t) its representa-
tion reads

G12~x,t !5 i ^@p1~x1,0;t !,p2~0,x2 ;0!#&. ~29!

This function describes the momentum response at
point (0,x2) of the second array for timet caused by an
initial ( t50) perturbation localized in coordinate space
the point (x1,0) of the first array. Standard calculations sim
lar to those described above lead to the expression
1-9
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FIG. 12. The transverse corre
lation function G12(x1 ,x2 ;t) for
r 051 andvt510.
d
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G12~x;t !5
V0r 0

2

4p2\
E

2`

`

dk1dk2f1~k1!f2~k2!k1k2

3sin~k1x1!sin~k2x2!

3
v2k2 sin~v2k2t !2v1k1 sin~v1k1t !

v2
2k2

22v1
2k1

2
,

wheref j (k) is the form factor~15! written in the extended
BZ. This correlator is shown in Fig. 12. It is mostly localize
at the line determined by the obvious kinematic condition

ux1u
v1

1
ux2u
v2

5t.

The timet on the right-hand side~RHS! is the total time of
plasmon propagation from the starting point (x1,0) to the
final point (0,x2) or vice versa, along any of the shorte
ways compatible with a restricted geometry of the 2D gr
The finiteness of the interaction radius slightly spreads
peak and modifies its profile.

3. Rabi oscillations

A further manifestation of the 2D character of the QC
system is related to the possibility of periodic energy trans
between the two arrays. Consider an initial perturbat
which excites a plane wave with amplitudeu0 within the first
array in the system ofnoninteractingarrays:

u1~x1 ,n2a2 ;t !5u0 sin~q1x11q2n2a22v1uq1ut !.

If the wave vectorq, satisfying the conditionuqu!Q1,2/2, is
not close to the resonant line of the BZ, the weak interar
interactionf5«r 0 /a slightly changes theu1 component and
leads to the appearance of a smallu2;f component. But for
11533
.
is

r
n

y

q lying on the resonant line (v1uq1u5v2uq2u[vq), both
components within the main approximation have the sa
order of magnitude:

u1~x1 ,n2a2 ;t !5u0 cosS 1

2
f1qvqt D

3sin~q1x11q2n2a22vqt !,

u2~n1a1 ,x2 ;t !5u0 sinS 1

2
f1qvqt D

3cos~q1n1a11q2x22vqt !.

This corresponds to 2D propagation of a plane wave w
wave vectorq, modulatedby a ‘‘slow’’ frequency;fv. As
a result, beating arises due to periodic energy transfer f
one array to another during a long periodT;(fv)21 ~see
Fig. 13!. These peculiar ‘‘Rabi oscillations’’ may be consid
ered as one of the fingerprints of the physics exposed in Q
systems.

III. TRIPLE QCB

A. Notions and Hamiltonian

Triple quantum bars are a 2D periodic grid withm53,
formed by three periodically crossed arraysj 51,2,3 of 1D
quantum wires. In fact these arrays are placed on th
planes parallel to theXY plane and separated by an inte
plane distanced. The upper and lower arrays correspond
j 51,2, while the middle array has numberj 53. All wires in
all arrays are identical. They have the same lengthL, Fermi
velocity v, and Luttinger parameterg. The arrays are ori-
ented along the 2D unit vectors
1-10
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e15S 1

2
,
A3

2 D , e25~1,0!, e35e22e1 . ~30!

The periods of QCB along these directions are equal,aj
5a, so we deal with a regular triangular lattice. In wh
follows we choosea1,25ae1,2 as the basic vectors of a supe
lattice ~see Fig. 14!.

The wires within thej th array are enumerated with th
integersnj . Define 2D coordinates along thenj th wire r j as
r j5xjej1njae3 for upper and lower arrays (j 51,2) andr3
5x3e31n3ae1 for the middle array. Herexj are 1D continu-
ous coordinates along the wire. The system of three no
teracting arrays is described by the Hamiltonian

H05H11H21H3 , ~31!

where

FIG. 13. Periodic energy exchange between arrays~Rabi oscil-
lations!.

FIG. 14. Triple QCB.
11533
n-

H15
\v
2 (

n1

E dx1Fgp1
2~x1e11n1ae3!

1
1

g
@]x1

u1~x1e11n1ae3!#2G , ~32!

H25
\v
2 (

n2

E dx2Fgp2
2~x2e21n2ae3!

1
1

g
@]x2

u2~x2e21n2ae3!#2G , ~33!

H35
\v
2 (

n3

E dx3Fgp3
2~x3e31n3ae1!

1
1

g
@]x3

u3~x3e31n3ae1!#2G , ~34!

andp j and]xj
u j are canonically conjugated fields describin

a LL within the j th array.
The interaction between the excitations in different wir

of adjacent arraysj , j 8 is concentrated near the crossin
points with coordinatesnjaj1nj 8aj 8 . It is actually Coulomb
interaction screened on a distancer 0 along each wire which
is described by the Hamiltonian

Hint5H131H23, ~35!

where

H13

V0
5 (

n1 ,n3

E dx1dx3FS x12n3a

r 0
e12

x32n1a

r 0
e3D

3]x1
u1~x1e11n1ae3!]x3

u3~n3ae11x3e3!, ~36!

H23

V0
5 (

n2 ,n3

E dx2dx3FS x22n3a

r 0
e22

x32n2a

r 0
e3D

3]x2
u2~x2e21n2ae3!]x3

u3~n3ae21x3e3!. ~37!

Here the effective coupling strengthV0 is defined by Eq.~9!;
the dimensionless interactionF is separable,

F~j jej1j3e3!5z~j j !z~j3!, j 51,2; ~38!

andz(j) is dimensionless charge fluctuation in thej th wire
@see Eq.~6!#.

Such an interaction imposes a superperiodicity on the
ergy spectrum of initially one-dimensional quantum wire
and the eigenstates of this superlattice are characterized
2D quasimomentumq5q1g11q2g2[(q1 ,q2). Hereg1,2 are
the unit vectors of the reciprocal superlattice satisfying
standard orthogonality relations (ei•gj )5d i j , j 51,2. The
corresponding basic vectors of the reciprocal superlat
have the formQ(m1g11m2g2), whereQ52p/a and m1,2
are integers. In Fig. 15 elementary cellBIJL of the recipro-
cal lattice is displayed together with the hexagon of t
Wigner-Seitz cell that we choose as the BZ of the trip
QCB.
1-11
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To study the energy spectrum and the eigenstates of
total Hamiltonian

H5H01Hint , ~39!

we define the Fourier components of the field operators

u1~x1e11n1ae3!5~NL!21/2(
s,q

u1sqe
i (q1x11q3n1a)us,q1

~x1!,

~40!

u2~x2e21n2ae3!5~NL!21/2(
s,q

u2sqe
i (q2x21q3n2a)us,q2

~x2!,

~41!

u3~x3e31n3ae1!5~NL!21/2(
s,q

u3sqe
i (q3x31q1n3a)us,q3

~x3!.

~42!

Here

q5q1e11q2e2 , q35q22q1 ,

andN5L/a is the dimensionless length of a wire. In theq
representation, the HamiltoniansH j @Eqs. ~32!–~34!# and
H j 3 @Eqs.~36! and ~37!# can be written as

H j5
\vg

2 (
s,q

p jsq
† p jsq1

\

2vg (
s,q

vs
2~qj !u jsq

† u jsq ,

j 51,2,3,

H j 35
V0r 0

2

2vg (
s,s8,q

fs~q3!fs8~qj !vs~q3!vs8~qj !

3@u3sq
† u js8q1H.c.#, j 51,2,

where

vs~q!5vS F s

2GQ1~21!s21uqu D , Q5
2p

a
.

FIG. 15. Elementary cellBIJL of the reciprocal lattice and the
BZ hexagon of the triple QCB.
11533
he

Thus the total Hamiltonian~39! describes a system o
coupled harmonic oscillators and can be diagonalized exa
like in the case of a double QCB.

B. Spectrum

Separability of the interaction~38! allows one to derive
analytical equations for the spectrum of the total Ham
tonian~39! ~see Appendix D!. Here we describe the behavio
of the spectrum and the states along some specific line
reciprocal space.

The high symmetry of the triple QCB leads to a numb
of lines where an interarray or interband resonant interac
occurs:all lines in Fig. 15 possess some resonant propert
These lines may be classified as follows.

On the Bragg lines where one of three array wave nu
bersqj is a multiple integer ofQ/2, there is a strong intra
band mixing of modes of thej th array. In Fig. 15, these line
are the boundaries of the elementary cell of the recipro
lattice IJLB, axesq1 and q2, and linesOB and EH. In
particular, along the linesOA (q250) andOB (q350) two
modes corresponding to 2D and 3D bands and to the sec
(OA) or third (OB) array are mixed. Along the lineAB
(q15Q/2) the same mixing happens between (1,1) a
(1,2) modes. Moreover, the resonant mixing of different
rays within the same band occurs along the mediansOA,
OB, etc. There are two types of such a resonance. The
of one~e.g.,OA line! is the resonance between neighbori
arrays (q152q3) and therefore it is of the main order wit
respect to interaction. The second one~e.g.,OB line! is the
resonance between remote arrays (q15q2) and is one order
smaller.

The second family consists of resonant lines formed
the BZ hexagon boundaries and diagonals. Thus, the dia
nal OC realizes a first-order resonance between the first
third arraysq15q3, and the BZ boundariesHD and AN
correspond to the same resonance up to an umklapp pro
(q15q32Q andq15q31Q, respectively!. Along the diag-
onalOD and the BZ boundaryNC a second-order resonanc
takes place with resonance conditionsq252q1 and q2
52q11Q, respectively.

In the reciprocal space of the triple QCB there are fo
different types of crossing points. Two of them include t
bases of BZ medians~e.g., pointsA, B, E, and so on!. Here
one deals with the fourfold degeneracy of the modes co
sponding to the first-order resonance between the neigh
ing arrays~e.g., pointA, v1,s5v3,s8 , s,s851,2) or to the
second-order resonance between remote arrays~like point B,
v1,s5v2,s8 , s,s851,2). One more family consists of cros
ing points of the BZ diagonals and the lines connecting
bases of its medians~pointsM, F, G, and so on!. Here one
deals with three types of twofold degeneracy simultaneou
For example, at the pointM two separate pairs of mode
corresponding to neighboring arrays~2,1!, ~3,1!, and ~2,2!,
~3,2! are degenerate, as well as two modes correspondin
the first array~1,1!, ~1,2!. Finally the BZ hexagon vertices
form the most interesting group of points where the threef
degeneracy between modes corresponding to all three a
1-12
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takes place. The typical example of such a point is the ve
C where the resonance conditionq152q21Q5q35Q/3 is
satisfied.

Almost all these peculiarities of the triple QCB spectru
are illustrated in Fig. 16 where the dispersion curves alo
the closed lineOABO are displayed. We emphasize on
more that in the infrared limitv,q→0 the triple QCB like
the double QCB preserves the characteristic LL propertie
the initial arrays.

C. Observables

The structure of the energy spectrum analyzed ab
strongly influences the optical and transport properties of
triple QCB. As in the case of the double QCB~Sec. II E!,
one expects to observe four peaks of the optical absorp
near the pointsA,B,E,H of the fourfold degeneracy. Then
specific features of space correlators like those considere
Sec. II E 2 can be observed. But the most pronounced m
festation of a triangular symmetry of the triple QCB are
Rabi oscillations.

Consider the vicinity of the pointC of threefold degen-
eracy mixing all three arrays. Appropriate initial conditio
lead ~see Appendix E for details! to the following time de-
pendence of the field operators in the coordinate origin
real space:

u1~0,0;t !5u0 sin~v0t !cos2SA2«f2

4
v0t D ,

u2~0,0;t !5u0 cos~v0t !sin2SA2«f2

4
v0t D ,

u3~0,0;t !5u0 sin~v0t !cosSA2«f2

2
v0t D . ~43!

FIG. 16. Dispersion curves at theOAMBO polygon of the BZ.
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The field operators of all three arrays demonstrate fast os
lations with the resonant frequencyv0 modulated by a slow
frequency. It is the same for the two remote arrays a
doubled for the intermediate array. These beatings are
chronized in a sense that zero intensity on the intermed
array always coincides with the same intensity on one of
remote arrays. At these moments all the energy is conc
trated solely within one of the remote arrays. These pecu
Rabi oscillations are displayed in Fig. 17.

IV. CONCLUSION

We discussed in this paper the kinematics and dynam
of the plasmon spectrum in QCB. These nanostructures
be fabricated from single-wall carbon nanotubes.3,25 On the
one hand, the QCB is promised to become an important c
ponent of future molecular electronics.3,26 On the other hand,
the spectrum of elementary excitations~plasmons! in these
grids possesses the features of both 1D and 2D electron
uids. As is shown in Refs. 9 and 11 and confirmed in
present study, the energy spectrum of the QCB preserves
characteristic properties of LL atuqu,v→0. At finite q,v the

FIG. 17. Periodic energy transfer between three arrays at
triple resonant pointC of the BZ.
1-13
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density and momentum waves in double and triple QCB m
have either 1D or 2D character depending on the directio
the wave vector. Due to the interarray interaction, unp
turbed states, propagating along arrays, are always mi
and transverse components of correlation functions do
vanish. For a quasimomentum lying on the resonant line
the BZ, such mixing is strong and transverse correlators h
the same order of magnitude as the longitudinal ones. P
odic energy transfer betweem arrays~‘‘Rabi oscillations’’! is
predicted.

The crossover from the 1D to the 2D regime may
experimentally observed. One of the experimental mani
tations, i.e., the crossover from isotropic to anisotropic~spa-
tially nonuniform! conductivity, was pointed out in Ref. 11
The current may be inserted in the QCB at a point on
array j and extracted from another arrayi at a distancer.
Then a temperature-dependent length scalel (T) arises, so
that for r @ l the resistance is dominated by smallq and,
therefore, the current is isotropic. In the opposite limitr , l
the dependence of the current on the points of injection
extraction may be detected. AtT50 the lengthl becomes
infinite, and current can only be carried along the wir
These effects are in fact manifestations of the LL behavio
the QCB in the infrared limit.

To observe the crossover at finite$v,q%, one should find
a way of exciting the corresponding plasmon modes. Th
scanning thev(q1 ,q2) surfaces, one may in principle dete
the crossover from quasi-1D to -2D behavior in accorda
with the properties of the energy spectra presented in Sec
and III. Plasmons in QCB may be excited either by means
an microwave resonators or by means of interaction w
surface plasmons. In the latter case one should prepare
grid on a corresponding semiconductor substrate and m
sure, e.g., the plasmon loss spectra. The theory of these
mon losses will be presented in a forthcoming publicatio
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APPENDIX A: EMPTY SUPERCHAIN

Here we construct eigenfunctions, spectrum, and qu
particle operators for an ‘‘empty superchain’’—a quantu
wire in an infinitely weak periodic potential with perioda.
Excitations in an initial wire are described as plane wa
L21/2exp(ikx) with wave numberk52pn/L, with integern,
and dispersion lawv(k)5vuku ~the array number is tempo
rarily omitted!. The following orthogonality relations ar
valid:

E
2L/2

L/2

ck* ~x!ck8~x!dx5dk,k8 ,

(
k

ck* ~x!ck~x8!5dL~x2x8!,
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wheredL stands for the periodic delta function,

dL~x2x8![(
n

d~x2x82nL!.

The ‘‘empty superchain’’ is characterized by a space
riod a and corresponding reciprocal lattice wave numberQ
52p/a. Each excitation in such a superchain is described
its quasi wave numberq and a band numbers (s
51,2, . . . ) that are related to the corresponding wave nu
ber k by the relation

k5q1Q~21!s21F s

2Gsgn q. ~A1!

Here square brackets denote an integral part of a num
The corresponding wave functioncs,q(x) has the Bloch-type
structure,

cs,q~x!5
1

AL
eiqxus,q~x!, ~A2!

and satisfies the orthogonality relations

E
2L/2

L/2

cs,q* ~x!cs8,q8~x!dx5ds,s8dQ;q,q8 ,

(
s,q

cs,q* ~x!cs,q~x8!5dL~x2x8!,

where

dQ;q,q85(
n

dq1nQ,q8 .

Within the first BZ, 2Q/2<q,Q/2, the Bloch amplitude
and dispersion lawvs have the form

us,q~x!5expH iQx~21!s21F s

2Gsgn qJ , ~A3!

vs~q!5vQS F s

2G1~21!s21
uqu
Q D . ~A4!

Taking into account that both the Bloch amplitudeus,q(x)
and dispersion lawvs(q) are periodic functions ofq with
periodQ, one obtains general equations for the Bloch amp
tude,

us,q~x!5 (
n52`

`
sinjn

jn
cos@~2s21!jn#expS 24i jn

q

QD ,

4jn5Q~x2na!,

and dispersion lawvs(q),
1-14
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~vQ!21vs~q!5
2s21

4

1 (
n51

`
2~21!s

p2~2n11!2
cos

2p~2n11!q

Q
.

The relations between quasiparticle operators for a free w
ck , for momentumkÞnQ/2 with n integer, and those for an
empty superchain,Cs,q , for quasimomentumq from the first
BZ, 2Q/2,q,Q/2, look as

ck5Cs,q sgnk,

s511F2uku
Q G , q5QS H k

Q
1

1

2J 2
1

2D
Cs,q5~21!nck ,

k5q1~21!nQF s

2G , n5s111F2q

Q G ,
where curly brackets denote a fractional part of a numb
For obtaining these relations we used the expression

E
2L/2

L/2

ck* ~x!cs,q~x!dx5ds,s(q)dQ;q,k sgnk,

s~q!511F2uqu
Q G ,

for the transition amplitudêkus,q&. In case whenk5nQ/2
with n integer, hybridization of the neighboring bands shou
be taken into account. This modifies the above relations
the following way:

cnQ/25u~n!@anCn,qn
1bnCn11,qn

#

1u~2n!@b2n* C2n,qn
2a2n* C2n11,qn

#,

qn5QS H n11

2 J 2
1

2D ;

Cs,qs
5as* csQ/21bsc2sQ/2 ,

Cs11,qs
5bs* csQ/22asc2sQ/2 ,

wherea, b are hybridization coefficients. Corresponding r
lations between wave functions follow immediately fro
these formulas.

To write down any of these formulas for a specific arra
one should add the array indexj to the wave functionc,
Bloch amplitudeu, coordinatex, quasimomentumq, and to
the periodsa andQ of the superchain in real and reciproc
space.

APPENDIX B: DOUBLE QCB SPECTRUM

Here we obtain analytical expressions for dispersion la
and wave functions of QCB. For quasimomenta far from
11533
e,
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BZ boundaries, the energy spectrum of the first band can
calculated explicitly. Assuming thatv2!v js

2 (qj ), s
52,3,4, . . . , weomit v2 in all terms on the RHS of Eq.~18!
except the first one,s51. As a result the secular equatio
~17! reads

)
j 51

2 S w j
2~qj !v

2

v j
2~qj !2v2

1F j D 5
1

«
, ~B1!

where

w j
2~q!5

r j

aj
f j 1

2 ~q!, v j
2~q!5v j 1

2 ~qj !.

The solutions of this equation have the form

vn1q
2 5ṽ1

2~q!1ṽ2
2~q!

6A@ṽ1
2~q!2ṽ2

2~q!#214«wq
2v1

2~q1!v2
2~q2!.

~B2!

Here

wq5w1~q1!w2~q2!,

n51,2 is the branch number, andṽ j (q) is determined as

ṽ1
2~q!5v1

2~q1!
12«F1@F22w2

2~q2!#

12«@F12w1
2~q1!#@F22w2

2~q2!#
~B3!

for j 51. The expression forṽ2
2(q) can be obtained by per

mutation 1↔2. Parentheses on the RHS of Eq.~B3! de-
scribe the contributions toF j from higher bands. Therefore
ṽ j

2(q) is the jth array frequency renormalized by the inte
action with higher bands. In principle, the contribution
higher bands may turn the interaction to be strong. Howe
for the specific case of carbon nanotubes, one stays far f
the critical value«c ~see the estimates at the end of Se
II C!. Therefore the interaction with higher bands is we
almost in all the BZ except its boundaries.

The resonance line equation modified by interaction w
higher bands is

ṽ1
2~q!5ṽ2

2~q!. ~B4!

Out of this line the branch number is in fact the array num
and the renormalized frequencies are frequencies of a bo
propagating along one of the arrays slightly modified by
teractions with the complementary array. In the case w
v1(q1).v2(q2), one obtains

v1,1q
2 'v1

2~q1!@12«F2w1
2~q1!#. ~B5!

In the opposite case one should replace the indices 1↔2,
2↔1.

Consider the frequency correction in the latter equation
more detail. The correction term can be approximately e
mated asv1

2(q1)S(q1) with
1-15
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S~q1!5«F2w1
2~q1!5«

R0

a
f11

2 ~q1!E djz2
2~j!. ~B6!

Due to the short-range character of the interaction, the ma
elementsf11(q1);1 vary slowly with the quasimomentum
q1<Q1. Therefore, the RHS in Eq.~B6! can be roughly
estimated as

S~q1!;«
R0

a
50.1

R0

a
!1. ~B7!

One should also remember that the energy spectrum of n
tube remains one dimensional only for frequencies sma
than somevm . Therefore, an external cutoff arises ats
5akm wherekm;vm /v. As a results one gets an estimat

S~q1!;«
R0

a
kmR0 . ~B8!

Hence, one could hope to gain additional power of the sm
interaction radius. However, for nanotubes,km is of the order
of 1/R0 ~see Refs. 27 and 24! and both estimates coincide
For quasimomenta close to the BZ center, the coeffic
S(q1) can be calculated exactly. For exponential form
z(j)}exp(2uju), one obtains, instead of the preliminary e
timate ~B7!,

S~0!50.14
R0

a
.

Thus, the correction term in Eq.~B5! is really small.
The eigenstates of the system are described by renor

ized field operators. Within the first band they have the fo

ũ11q5S 12
1

2
b1qD ~uqu11q2vqu21q!

2(
s52

`

~f1sququ2sq1f2sqvqu1sq!, ~B9!

ũ21q5S 12
1

2
b2qD ~vqu11q1uqu21q!

2(
s52

`

~f1sqvqu2sq1f2sququ1sq!. ~B10!

Here the coefficientsuq andvq describe mixing between th
modes with different array indices, within the first band,

uq5AADq
21f1q

2 1Dq

2ADq
21f1q

2
, ~B11!

vq5AADq
21f1q

2 2Dq

2ADq
21f1q

2
~B12!

and

Dq5
v21

2 ~q2!2v11
2 ~q1!

2
,

11533
ix

o-
r

ll

nt
f

al-

f1q5A«wqv11~q1!v21~q2!. ~B13!

The parametersf1sq , f2sq , s52,3, . . . , inEqs. ~B9! and
~B10! correspond to interband mixing,

f1sq5A«
r 0

a
f11~q1!f2s~q2!

v11~q1!

v2s~q2!
, ~B14!

and the coefficientsb1q , b2q , take into account correction
from the higher bands:

b1q5(
s52

`

~f1sq
2 uq

21f2sq
2 vq

2!. ~B15!

Expressions forf2sq andb2q can be obtained by the permu
tation 1↔2.

Equations~B2!, ~B9!, and ~B10! solve the problem of
QCB energy spectrum away from the BZ boundaries. Ho
ever, due to smallness of the interaction, the general exp
sions ~B9! and ~B10! can be simplified. For quasimomen
far from the resonant coupling line, the expressions for
renormalized field operators of the first array look like

ũ11q5S 12
1

2
b̃1qD u11q1(

s51

`

f1squ2sq , ~B16!

where

f11q5A«
r 0

a
f11~q1!f21~q2!

v11~q1!v21~q2!

v21
2 ~q2!2v11

2 ~q1!

and

b̃1q5(
s51

`

f1sq
2 . ~B17!

The corresponding formulas for the second array are
tained by replacing 1s→2s.

Another simplification is made for modes with quasim
menta on the resonance line. Consider for simplicity a squ
QCB ~in this case the BZ coincides with the elementary c
of the reciprocal lattice, and the resonance line coinci
with the BZ diagonalOC in Fig. 3! and assume thatq is not
too close to the BZ cornerC. The initial frequencies of
modes belonging to the same band coincide:

v1sq5v2sq[vsq . ~B18!

Therefore renormalization strongly mixes the initial va
ables,

ũgsq5
1

A2
S 12

1

2
bsqD ~u2sq1u1sq!

2
1

A2
(

s8Þs
~fs8squ1s8q2fss8qu2s8q!,
1-16
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ũusq5
1

A2
S 12

1

2
bsqD ~u2sq2u1sq!

2
1

A2
(

s8Þs
~fs8squ1s8q1fss8qu2s8q!,

and the corresponding eigenfrequencies are shifted f
their bare values:

vgsq
2 'vsq

2 ~11f1s2sq!,

vusq
2 'vsq

2 ~12f1s2sq!.

For the first bands51 these formulas look like

v6,1q
2 'v1

2~q1!~16A«wq!. ~B19!

Note that in the resonance case the splitting of the degene
modes is of the order ofA«, which essentially exceeds th
shift of eigenfrequencies in the nonresonant case~B5!.

The interband mixing becomes significant near the
boundaries. Not very close to the crossing points of th
boundaries with the resonant lines, this mixing is accoun
for by a standard way. As a result we find that the interba
hybridization gap for the bosons propagating along the fi
array can be estimated as

Dv12;vQ«
r 0

a
.

Similar gaps exist near the boundary of the BZ for ea
pair of odd and next even energy bands, as well as for e
even and next odd band near the linesq150 or q250.
The energy gap between thesth and (s11)th bands is esti-
mated as

Dvs,s11;vQ«
r 0

a
o~s21!.

For large enough band numbers, the interaction is effec-
tively suppressed,f1s2s8→0, and the gaps vanish.

The spectral behavior in the vicinity of the crossing poin
of a resonance line and the BZ boundary needs more det
calculations. Nevertheless, it can also be analyzed in a s
lar way. The results of such an analysis are discussed in
II D 1.

APPENDIX C: ac CONDUCTIVITY

For interacting wires, wheref js(qj )Þ0, the correlator
~24! may be easily calculated after diagonalization of t
Hamiltonian~11! by means of the transformations~B9! and
~B10!. As a result, one has

^@J11q~ t !,J11q
† ~0!#&522ivg@uq

2v1,1q sin~v1,1qt !

1vq
2v2,1q sin~v2,1qt !#,

^@J11q~ t !,J21q
† ~0!#&522ivguqvq@v2,1q sin~v2,1qt !

2v1,1q sin~v1,1qt !#,
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whereuq andvq are defined in Eqs.~B11! and~B12!. Then,
for the optical absorptions8 one obtains

s118 ~q,v!5pvg@uq
2d~v2ṽ1,1q!1vq

2d~v2ṽ2,1q!#,
~C1!

s128 ~q,v!5pvguqvq@d~v2ṽ2,1q!2d~v2ṽ1,1q!#.
~C2!

For quasimomentumq away from the resonant coupling line
uq

2'1 and vq
2;fq

2 for Dq.0 (vq
2'1 and uq

2;fq
2 for Dq

,0). Then the longitudinal optical absorption~C1! ~i.e., the
absorption within a given set of wires! has its main peak a
the frequencyv1,1q'vuq1u for Dq.0 ~or v2,1q'vuq1u for
Dq,0), corresponding to the first band of the pertinent
ray, and an additional weak peak at the frequencyv2,1q
'vuq2u, corresponding to the first band of a complementa
array. It contains also a set of weak peaks at frequen
v2,sq'@s/2#vQ (s52,3, . . . )corresponding to the contribu
tion from higher bands of the complementary array@in Eq.
~C1! these peaks are omitted#. At the same time, a secon
observable becomes relevant, namely, the transverse op
absorption~C2!. It is proportional to the~small! interaction
strength and has two peaks at frequenciesv1,1q andv2,1q in
the first bands of both sets of wires.

If the quasimomentumq belongs to the resonant couplin
line Dq50, thenuq

25vq
251/2. In this case the longitudina

optical absorption~C1! has a split double peak at frequenci
v1,1q andv2,1q , instead of a single main peak. The tran
verse optical absorption similarly to the nonresonant c
~C2!, has a split double peak at frequenciesv1,1q andv2,1q ,
but its amlitude is now of the order of unity. Foruqu→0, Eq.
~C1! reduces to that for an array of noninteracting wires~25!,
and the transverse optical conductivity~C2! vanishes.

The imaginary part of the ac conductivitys j j 8
9 (q,v) is

calculated within the same approach. Its longitudinal com
nent equals

s119 ~q,v!5
2vg

v F uq
2v1,1q

2

v1,1q
2 2v2

1
vq

2v2,1q
2

v2,1q
2 2v2G .

Beside the standard pole at zero frequency, the imagin
part has poles at the resonance frequenciesv1,1q , v2,1q and
an additional series of high band satellites~omitted here!.
For quasimomenta far from the resonant lines, only the fi
pole is well pronounced while amplitude of the second o
as well as amplitudes of all other sattelites is small. At t
resonant lines, amplitudes of both poles mentioned above
equal. The corresponding expression fors228 (q,v) can be
obtained by replacement 1↔2.

The transverse component of the imaginary part of the
conductivity has the form

s128 ~q,v!5
2vg

v
uqvqF v2,1q

2

v22v2,1q
2

2
v1,1q

2

v22v1,1q
2 G .
1-17
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It always contains two poles and vanishes for noninterac
wires. For quasimomenta far from the resonance lines
transverse component is small while at these lines its am
tude is of the order of unity.

APPENDIX D: TRIPLE QCB SPECTRUM

To diagonalize the Hamiltonian~39!, we write down the
equations of motion

@vs
2~qj !2v2#u jsq

1A«fs~qj !vs~qj !
r 0

a (
s8

fs8~q3!vs8~q3!u3s8q50,

~D1!

@vs
2~q3!2v2#u3sq

1A«fs~q3!vs~q3!
r 0

a (
j ,s8

fs8~qj !vs8~qj !u js8q50.

~D2!

Here j 51,2, and« is defined by Eq.~21!. The solutions of
the set of equations~D1! and ~D2! have the form

u jsq5Aj

fs~qj !vs~qj !

vs
2~qj !2v2

, j 51,2,3.

Substituting this equation into Eqs.~D1! and ~D2!, we have
three equations for the constantsAj :

A11A3A«Fq3
~v2!50,

A21A3A«Fq3
~v2!50,

A31 (
j 51,2

AjA«Fqj
~v2!50,

where

Fq~v2!5
r 0

a (
s

fs
2~q!vs

2~q!

vs
2~q!2v2

. ~D3!

Dispersion relations can be obtained from the solvabi
condition for this set of equations:

«Fq3
~v2!@Fq1

~v2!1Fq2
~v2!#51. ~D4!

The functionFqs
(v2) has a set of poles atv25vs

2(q), s

51,2,3, . . . . For v2,vs
2(q), i.e., within the interval

@0,v1
2(q)#, Fqs

(v2) is a positive increasing function. It

minimal valueF on the interval is reached atv250 and does
not depend on the quasimomentumq:

Fq~0!5
r 0

a (
s

fs
2~q!5E djz j

2~j![F. ~D5!

If the parameter«[h2 is smaller than the critical value
11533
g
e

li-

y

«c5
1

2F2
, ~D6!

then all solutionsv2 of the characteristic equation ar
positive. When« increases, the lowest QCB mode softe
and its square frequency vanishesin the whole BZ at
«5«c . For the exponential modelz(j)5exp(2uju), one
obtains«c'1.

APPENDIX E: TRIPLE RABI OSCILLATIONS

The pointC(Q/3,2Q/3) of the BZ is the point of threefold
degeneracy

q15q352q21Q5
Q

3
,

v11~Q/3!5v21~2Q/3!5v31~Q/3![v0 .

Equations of motion at this point in the resonance appro
mation read

F d2

dt2
1v0

2Gu11A«f2v0
2u350,

F d2

dt2
1v0

2Gu21A«f2v0
2u350,

F d2

dt2
1v0

2Gu31A«f2v0
2~u11u2!50,

where u j[u j q . The general solution of this system look
as

S u1~ t !

u2~ t !

u3~ t !
D 5u0S 1

21

0
D eiv0t1u1S 1

1

A2
D eiv1t

1u2S 1

1

2A2
D eiv2t,

where one of the eigenfrequencies coincides withv0, while
the two others are

v65A16A2f2, ~E1!

andu0,6 are the corresponding amplitudes.
Choosing the initial conditions

u1~0!5 iu0 , u̇1~0!5v0u0 ,

u2~0!50, u̇2~0!50,

u3~0!50, u̇3~0!50,

we obtain for the field amplitudes at the coordinate origin
1-18
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u1~0,0;t !5
u0

4 F v0

v1
sin~v1t !1

v0

v2
sin~v2t !G1

u0

2
sin~v0t !,

u2~0,0;t !5
u0

4 F v0

v1
sin~v1t !1

v0

v2
sin~v2t !G2

u0

2
sin~v0t !,
ng

y,

.

et

w
.
v.

11533
u3~0,0;t !5
u0

2A2
F v0

v1
sin~v1t !2

v0

v2
sin~v2t !G .

In the limiting case«!1 these formulas coincide with Eqs
~43! in Sec. III C.
ev.
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