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Mean-field theory predicts that bilayer quantum Hall systems at odd integer total filling factors can have
stripe ground states, in which the top Landau level is occupied alternately by electrons in one of the two layers.
We report on an analysis of the properties of these states based on a coupled-Luttinger-liquid description that
is able to account for quantum fluctuations of charge-density and position along each stripe edge. The soft
modes associated with the broken symmetries of the stripe state lead to an unusual coupled-Luttinger-liquid
system with strongly enhanced low-temperature heat capacity and strongly suppressed low-energy tunneling
density of states. We assess the importance of the intralayer and interlayer backscattering terms in the micro-
scopic Hamiltonian, which are absent in the Luttinger liquid description, by employing a perturbative renor-
malization group approach which rescales time and length along but not transverse to the stripes. With inter-
layer backscattering interactions present the Luttinger-liquid states are unstable either to an incompressible
striped state that has spontaneous interlayer phase coherence and a sizable charge gap even at relatively large
layer separations, or to Wigner crystal states. Our quantitative estimates of the gaps produced by backscattering
interactions are summarized in Fig. 11 by a schematic phase diagram intended to represent predicted experi-
mental findings in very high mobility bilayer systems at dilution refrigerator temperatures as a function of layer
separation and bilayer density balance. We predict that the bilayer will form incompressible isotropic interlayer
phase-coherent states for small layer separationsdsay.5¢(. At larger interlayer spacings, however, the
bilayer will tend to form one of several different anisotropic states depending on the layer charge balance,
which we parametrize by the fractional filling factercontributed by one of the two layers. For large charge
imbalances ¢ far from 1/2), we predict states in which anisotropic Wigner crystals form in each of the layers.
For v closer to 1/2, we predict stripe states that have spontaneous interlayer phase-coherence and a gap for
charged excitations. These states should exhibit the quantum Hall effect for current flowing within the layers
and also the giant interlayer tunneling conductance anomalies at low bias voltages that have been observed in
bilayers when th&l=0 Landau level is partially filled. When the gaps produced by backscattering interactions
are sufficiently small, the phenomenology observed at typical dilution fridge temperatures will be that of a
smectic metal, anisotropic transport without a quantum Hall effect. For stripe statesNi-tRd_andau level,
this behavior is expected over a range of bilayer charge imbalances on both sides/af
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. INTRODUCTION systems- in which two 2D electron layers have a separation
d small enough that their interactions have consequences.
The recent discovery of strongly anisotropic transport inFor total filling factorv+=1 and other odd integer total fill-
single-layer quantum Hall systems near half-odd integer filling factors, interlayer interactions can lead to a state with
ing factors™® has attracted much experimefitabnd  spontaneous phase coheréficketween the layers and a
theoretical interest. Transport anisotropies have been obcharge gap that is revealed experimentllyy the quantum
served in single two-dimensioné2D) electron gas layers at Hall effect. Further spectacular experimental manifestations
half filling of Landau levels with indeXN=2, i.e., at filing  of spontaneous phase coherence were revealed very recently
factors v=9/2,11/2 . ... This effect is commonly ascribed in 2D to 2D tunneling and Hall drag experiments by Eisen-
to the formation of striped charge-density-wave phases, prestein and collaboratorS. In tunneling studies spontaneous
dicted on the basis of the Hartree-Fock calculations by Kou€oherence is signaled by a sharp zero bias peak in the differ-
lakov et al® and by Moessner and Chalkerith additional  ential conductance between the layers. As the ratid tf
theoretical support from subsequent exact diagonaliZatiorthe magnetic lengtli is reduced experimentally, the conduc-
and DMRG numerical studies. The stripe state is a consetance peak appears to develop continuously starting at a criti-
guence of the form factors that arise in describing interaceal value ofd/¢ that is consistent with earlier experimental
tions between electrons in higher kinetic-energy Landauanomalie¥’ attributed to spontaneous coherence and with
level orbitals and allow density waves to form in cyclotron- mean-field-theory estimates of the critical layer separ&tion
orbit-center coordinates that have a very small electronat which coherence is expected to develop. These experi-
density-wave amplitude, and therefore little electrostationents are still not understood quantitatively and raise a
energy penalty. number of interesting issues in nonequilibrium collective
The physics of quantum Hall systems is enriched by thdransport theory that have stimulated a growing body of
additional degrees of freedom that appear in bilayertheoretical* work.
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Since balanced bilayer systems at large odd integer totatates and discuss its application to the bilayer case. The
filing factor (v;=9) are composed of 2D layers that, if model rests fundamentally on the assumption that the exci-
isolated, would show stripe-state behavior, it is natural tgation spectrum of bilayer stripe states may be placed in one-
consider the possible interplay and competition between thfo-one correspondence with that of the Hartree-Fock picture;
formation of striped phases in each 2D layer and the deveffr bilayers, this assumption implies that the degrees of free-
opment of spontaneous interlayer phase coherence. These §2M at each stripe Ied'ge e]}rehthcise ofa one—|d|men3|or:al elic-
sues have been investigated in several recent theoretic’:’iﬁn gas. Our analysis of the low-energy long-wavelengt
papersS-7 and it has been argu¥dthat they may be rel- physics examines this subspace of the microscopic many-

. . : article Hilbert space and includésrward-scatteringterms
ae\\r:iasr:)ttrg:yug?ei:]stte%ldrlr:‘ﬁlir?grefgitr:} ; Oé’;e;\;ﬁ'%?lg flnretsrlztanc% the Hamiltonian that create and destroy particle-hole ex-

{ tend i K by two of the prese itations at the stripe edges, abdckscatteringterms that
presen gpaper we extend earlier work by tw P catter electrons between chiral one-dimensional electron-
authors® on smectic states in single layers to the case o

. . c s branches. Since the microscopic amplitude of back-
bilayer systems. The approach we take is one that is intend attering processes is weak, they can often be neglected at

to be valid when quantum fluctuation corrections to the stripgyperimentally accessible temperatures. When only forward-
states predicted by the Hartree-Fock theory are weak on Micattering terms are included, the Hamiltonian can be solved
croscopic length scales, although as we discuss at length th@yactly using bosonization and is formally equivalent to that
temperatures and the behavior of correlation functions 8§uantum smectic broken symmetry character of the elec-
long distances. Since stripe states occur as extrema of theynic state is reflected, however, in the coupled-Luttinger-
Hartree-Fock energy functional for any orbital Landau-leveljiquid interaction parameters and results in enhanced fluctua-
index, not only forN=2 where the states are seen experi-tions, The properties of this bilayer smectic state are
mentally, and are in fadlwaysunstable to the formation of discussed in Sec. Ill. The behavior of the one-particle
the Wigner crystal states in mean-field theory, it is evidenigreen's functions at the smectic fixed point, carefully ad-
that we must appeal in part to experiment to judge when oUgressed by Lopatnikovat al?® for the single-layer case, is
starting assumption is valftf:*° discussed for the bilayer. We find that, as in the single-layer
In describing stripe states it is convenient to use a Landagase, the one-particle Green’s function does not exhibit the
gauge basis with single-particle states extendAed in the dire(bower-law behavior that is generic for weakly-coupled
tion along the stripes, which we choose to besthdirection,  Luttinger-liquids and instead vanishes faster than any power
and labeled by a one-dimensional wave veéttnat is pro- law at large distances, implying strongly suppressed tunnel-
portional to the guiding center, along which the wavefunc-ing at low energies. The enhanced importance of quantum
tion’s y coordinate is localizedy =k¢2. For balanced bilay- fluctuations is a consequence of the invariance of the model’s
ers, the stripe states that occur in the Hartree-Fock theory atauttinger-liquid Hamiltonian under a simultaneous transla-
occupation number eigenstates in this representation, wittion of all stripes. Backscattering interactions are addressed
the valence Landau-level Landau gauge states occupied iy Sec. IV, using a perturbative renormalization grdiR%)
top and bottom layer electrons in alternating stripes. In thepproach. As in the single-layer case we find that back-
Hartree-Fock approximation, the low-energy excitations ofscattering interactions are always relevafte gapless
the stripe states consist of coupled particle-hole excitationslartree-Fock smectic state cannot be the true ground state
along each edge of top and bottom layer stripes. These déa either single-layer or bilayer quantum Hall systenhs-
grees of freedom are conveniently described using thstead, we conclude that except at relatively large layer sepa-
bosonization techniques familiar from the theory of one-rations, interlayer interactions induce a ground state that has
dimensional electron systerA5sOur approach is partly in the spontaneous interlayer phase coherence. This state would be
spirit of Fermi-liquid theory in that we assume that the Hil- signaled experimentally by the simultaneous occurrence of
bert space of low-energy excitations can be placed in one-taan integer quantum Hall effect and anisotropic finite-
one correspondence with those that occur in the Hartregemperature transport, something that has not been seen in
Fock theory. When quantum fluctuations are too strong ousingle-layer systems. Where intralayer interactions are more
approach will not be useful; for example, it cannot predictimportant, they drive the system to a state with an aniso-
either the fact that the lowest Landau-level isolated layersropic Wigner crystal in each layer. We argue that both types
have composite-fermion liquid rather than stripe groundof interactions lead to charge gaps and to integer quantum
states, or the likelihood dfubblé rather than stripe states far Hall effects and estimate the size of the resulting energy
away from half filling. Our approach to stripe-state physics isgaps. According to our estimates, the gap created by inter-
similar to that taken first by Fradkin and KivelséhFor the  layer backscattering will be large enough to be observable
case of monolayers, the microscopic basis of the coupledsut to surprisingly large layer separations. The effect of finite
Luttinger-liquid model for quantum Hall stripe states wastunneling between the layers is also addressed in Sec. IV.
carefully examined by Lopatnikovet al>® and other prop- Finally in Sec. V we discuss several interesting theoretical
erties of quantum Hall stripe states have been addressed Igsues that arise from this work. We comment explicitly on
Barci et al,?* Wexler and Dorse§? and Radzihovsky and inconsistencies between the conclusions that have been
Dorsey?® reached by different researchers on the question of smectic
Our paper is organized as follows. In Sec. Il we reviewstate stability in the single-layer case. We also address the
the coupled-Luttinger-liquid model for quantum Hall stripe suggestioff that the enhanced quantum fluctuations that fol-
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~intralayer "~ top layer tions near the stripe edges. The residual interactions, ignored
> backscattering =~/ in the Hartree-Fock theory, which act on energy states fall
n— into two classesforward-scattering interactions which con-
serve the number of electrons on each edge of every stripe,
and backwardscattering processes which do not. The quan-
tum smectic model includes forward-scattering processes
only. Backscattering processes involve large momentum
______________ A transfer and their bare matrix elements will be smaller in
magnitude(see beloyw We treat their effects perturbatively,
using a renormalization group approach to account for the
infrared divergences ubiquitous in quasi-one-dimensional

© " bottom layer electron systems. The smectic state is stable only if the back-
: il e e ' scattering interactions are irrelevant.
1 e , . . ) . . .
g:celis?;%reﬁng ) &y The classicalquadratic Hamiltonian which describes the

energetics of small stripe edge fluctuations has the following

FIG. 1. Schematic illustration of the Hartree-Fock bilayer smec-general formt®
tic state. The shaded areas are electron stripes whose edges are
chiral Luttinger-liquids as denoted by the solid arrows. Each elec- 1
tron (hole) stripe in one layer faces a holelectron stripe in the H0=—2f dxf dx’" Z, 2 Z [U?Q(X)Kgl/;
other. The average filling factor of the highest occupied Landau- 2¢ Jk==e Ausl2af=RL
level is v while that in the top layer is tv, giving a total fillin IRV U [y
factor v;=1. In the conventign uysed here,ga ru?]g pair consigts of XXX k)ukﬁ(x i @
the edges of an electron stripe in the top layer and an hole stripe iwhere the indice$ andk label rung pairsh andu are the
the bottom layer. The right-moving and left-moving chiral quasipar-two different rungs within a rung pai; andg are the right-
ticle branches of each element of a rung pair are localized in oppoor left-moving chiral edges within a single rung, ardx’
site layers and denoted hy=1,2. The momentum-conserving back- gre positions along the stripes. In this equatiuh, is the

scattering interactions not present in the Luttinger-liquid mOdeI’transverse displacement of the edge\(«) from its classi-
discussed in this section, include both interlayer and intralayer Proga| ground-state location

cesses which have different behavior. The figure illustrates inter- In Eq. (1), the linear charge-density associated with an

layer and intralayer backscattering processes with the smallest pos- . . _ N .
sible momentum transfer. edge displacement p{‘a(x) = anuj,(X), wheren is the two-

dimensional electron density inside the stripes 1/2l?
low from the broken translational symmetry of the starting@nd a=—,+, or L,R, for the left, right, moving fermions,
Hartree-Fock state may invalidate our perturbative renormaltespectively. It follows from symmetry considerations that
ization group analysis for backscattering interactions. the elastic kernel satisfies the following equalities,

©

AU /iy AU/ AU Py — AU
Il. THE MODEL Kaﬁ(])_Kﬁa(J)_K(—a)(—ﬁ)(l)_Kaﬁ( J)) (2)
which allow the Hamiltonian to be rewritten into sums and

differences of the positions of left- and right-going branch
In Hartree-Fock theory the smectic bilayer state at totakdges,

filling factor vr=1 is a single Slater determinant where the

occupation of guiding-center modes in a Landau-level of in- 1
dexNe{0,1,2 ...} alternates between the layers with pe- Hozwf dxf dx’
riod a, as depicted schematically in Fig. 1. The lower index

A. Coupled-Luttinger-liquid model energy functional

> MEZLZ[[u?,R<x)+u?,L<x>]

j’k:—oc

Landau levels are assumed to be frozen in filled states and XKM(x=X",] = K)[UY n(X")+F Ul (X)) ]+[ud(X)

. . . . p ’ k,R k,L J,R
higher index in empty states, allowing them to be neglected
in the following. Each stripe has chiral left-moving and —uj”yL(x)]Ké”(x—x’,j—k)[uEVR(x’)—uE’L(x’)]],
right-moving branches of quasiparticle edge states, localized 3)
in opposite layers, allowing the low-energy degrees of free-

dom of each electron stripe to be mapped to those of a onevhere
dimensional electron gas. We consider the general case of a

biaseddouble-layer system where the width of the stripes in Nafo iy p2 N :

one layer isav while that in the other layer ia(1—v), v Kp“(x,1)=¢ aEB KagX1), @
e[0,1]. As indicated in the figure, for+ 0.5 the system has

two types of stripe edges, distinguished by the direction of \ . 5 \ .

their closest neighbor. In the following we refer to a pair of KeH(x,j)=¢ aEB aBKap(X.]). ®)
chiral stripe edges one above the other in each layer as a

rung, and the two closest such rungs asuag pair. We regard the first term in this Hamiltonian as the contribu-

Small fluctuations in the positions and charge densities ofion from fluctuations in theosition of the rungs while the
the stripes can be described in terms of particle-hole excitasecond term is the contribution from fluctuations of their
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charge densitiegThe total filling factor varies locally when  Introducing the dual fiel®}(x) =[ ¢} () — ¢} (X)1/2 the
left- and right-going branch edges do not move together.position and charge variablés), U’} , of the two-edge sys-
These two terms are analogous, respectively, to current andm can be expressed a®’=—125,®* and U’}
charge terms in the effective Hamiltonian of a conventional— _ |25 @ This shows that thia field is Jrelated to the
one-dimensional electron gas. The calculations we perfo”Bosition fI]uctuations of the two-edge system wher@ass
here will require only the long-wavelength limits of the o |ated with their charge-density fluctuations.

—x" dependence of elastic kernel in this Hamiltonian, which The field ® and the dual field® satisfy the following
we estimate using a weak-coupling approximation that We.,mmutation relation

discuss below.
[ON(X), 0w PU(X" )= =178 Oy yO(x—X) (13

. o . L (The fields®/+/7 and — ¢, P/+/7r are canonical conjugates
This I_—|_amllton|an 1S quantized by recognizing that _chgrgeln terms of these new fi):elds the Hamiltonian takes the fol-
and position fluctuations result from particle-hole excﬂaﬂonslowing form

at the edges of chiral quasiparticle branches, just as in an

ordinary one-dimensional electron system. The real spin is 1

frozen due to the presence of strong perpendicular magneticH():Ef dxdx 2, [aPI K (x—X',j —K) o PR(X')
field and as a result we bosonize according to spinless Ik

?hoz;onlzanon schenté. It follows from standard arguments +&x®}‘(x)Kg“(x—x’,j —K) 3, ®Y(x')], (14)

B. Bosonization

whereas the Fourier transform of the corresponding action

i
[P} a(X).pk (X )]= 5= 8\ u8a g kxS(X—X). () i
2m soz—f dxdrY, > (axcp?)a,juf drH, (15
In terms of Fermion creation and annihilation operators & oA

reads
p?R<x>=:R?*(x)R?(x):=R,-“(x)R?(x)—<R?*<x>R?(x)>(,
/ i
So=f [2 (—qx@*(q,w)wx(q,w))
L0 =L} TOOL}(0: =L} 0L} 00 = (LT OOL} (), qol X AT
® 1o,
N
with X\ €{1,2 denoting the rung in rung pajrand R, L, T (0P (,0)Kg/(q) DY (g, w)
labeling right and left movers at the stripe edges. ’
The low-energy Hamiltonian is more conveniently de- - \ "

scribed in terms of boson fields. The right- and left-moving T 00" (0, 0)Kg“ () 0%(q,0)) | (16)
fermionic fields on the left stripe edge of rung paiare
given by Here we have employed the shorthand notation

lﬂf‘R(X)=ei[b(j_1/2)_kF]XRJ;L(X), (9) f jA quJW/a dqyaJ'oo do a7
while those on the right are given by qo J-A2T)-ga 27 )2

P2a(x) = el [P0 V2 FKeXR2 ) (10) with A ~1/¢ a high-momentum cutoff, and have adopted the

! ! following Fourier-transform conventions:
The above equations hold similarly for the left movers with
the only chang&R— L. Hereb=a/l? is the width ink space _ (Gt Gyai— w7)
of a rung andkg=awv/2|? is the Fermi wave vector for the Fi(x,7)= q’we g F(g,0), (18)
bottom layer stripes. The right and left slow fields can be
expressed in terms of boson fields as in conventional one- ‘ .
dimensional electron systems: F(q,w)=f dxdr, e (@ aRi=enE (x 7). (19)
J

R\ = 1 G0 Lr )= 1 ¥ ® (17  The Quantum Field Theory applies for distances larger than
y - ! T and as a result thg, integration has to be cut off by 27/1.

\ \ ) In Eq. (16) the kernel matriceXq(q) and Kg(q) are the
where ¢;j g(X) and ¢; | (x) are the chiral components of the Foyrier transforms of

bosonic field®}(x) =[ ¢} g(X) + ¢} (X)]/2.
In terms of the bosonic fields the chiral currents take the — Kiy/“(x,j)=K}*(x,j) =202 [KKAX,}) + KR (X)),
following form, (20

Pa(X) == 5 o) ofX). (12 K& (1) = Kg#(x,]) = 20 KRe(x,}) — KR (x.])]. o
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Integration over theb fields in Eq.(16) yields an effective butions are proportional to two-particle intralayer and inter-

action in terms of the® fields alone, layer interaction matrix elements, respectively, and are given
by

S —E E OM(q,w) dq —1/292¢2\ N —iqY
0~5 ol q V(Y)= Ze “Vg(qg)e

2 _ dg _

x w—2<K¢1<q>>W+q§Ka*‘<q>)@”(q,w> (22 —e it [ ety W),
7T
(24)

The corresponding, action, obtained by integrating out the
fields, differs only through the interchange &f and ©

dq .
andKg, K . W(Y)= f Eefl’mzfzvg(q)ef'q? (25)
C. Microscopic theory of long-wavelength Note that the intralayer interaction contributions have com-
interaction parameters peting direct and exchange contributions that cancelYfor

The objective of this coupled-Luttinger-liquid model for =.0, yvhereas the interlayer interaction has .onlly'a direct con-
stripe states in quantum Hall bilayers is to address the Cont_r|but|on. In the. following we shall assume |nf|n|'tely narrow
sequences of weak quantum fluctuations when the grounﬂluam'i'm vyells in both layers SO that the interaction potentials
state is similar to the mean-field-theory stripe state. In thiCcurTing in the above equations read
spirit, we use weak-coupling expressions for the interaction
parameters of the model, replacing scattering amplitudes by N 1.,
the bare values for the scattering of the Hartree-Fock theory Vsp(a)=|Ln| 507
guasiparticles. If the true ground state were a smectic, the
values of these parameters would be renormalized somewhatere Ly(x) is the Laguerre polynomial form factor for
by higher-order scattering processes. We expect that it wilelectrons in theNth excited Landau-level, an&/2 is
prove difficult to systematically improve on the estimatesthe Fourier transform of the Coulomb interaction within
given here for the quantum Hall bilayer case because of thand between the layers,V(q)=e?2#/|q|, V3(q)
absence of a one-body kinetic-energy term in the relevant e?(27/|q|)exp(—|qd) with d being the layer separation.
microscopic Hamiltonian that would enable a systematic perThe long-ranged nature of the Coulomb interaction leads to
turbative expansion. We emphasize that a quantitative theonggarithmic divergences i and W which we regularize by
of the forward-scattering amplitudes that has a sound microadding a term—(e2277/|q|)exp(—2|q|dgatg to VY, with
scopic foundation imecessaryn order to decide on the rel- g >.d. This regularization can be roughly thought of as
evance of the backscattering interactions we have neglectggiyoducing a metallic screening plane at distadgg, lead-
so far and the character of the true ground state. As eémphgsg o image charges that screen interactions between elec-
sized by the work of Fradkin, Kivelson, and co-workéfs, trons in the bilayer system. Althougt and W diverge for
any conclusion is possible if the forward-scattering interacy ae—, it is possible to shoff that Kq and Ke remain
tions are allowed to vary arbitrarily. The perturbative renor-finite. I the following we choose a large but finite value for
malization group scaling dimensions that we evaluate belovy o for numerical convenience.
are dependent only on the elastic constantg at0, i.e., for gThe above form of the smectic energy keri@e(])
straight stripe_ edg_es_. T_he weak-flugtuation Hamilto_nian Manplies for j#0. For j=0 the components 0K (0)
be evalugted in th|s limit py c_alcu_latmg the expectation value_ K_r(0) and ofK’F}“R(O):Kﬁ’,_‘(O) for N+ are given by
of the microscopic Hamiltonian in the Hartree-Fock theory
ground state, which in this limit is a single Slater determinan
with straight stripe edges displaced from those in th
Hartree-Fock theory stripe ground state. By evaluating th
expectation value of the microscopic Hamiltonian in a stat
with arbitrary stripe edge locations we find that jot 0,

2
V(@) (26)

the same expressions. The quantitis(0)=K;1(0)
=K22(0)=K?(0)] have additional contributions that
riginate from the wave-vector dependence of the Hartree-
ock self-energy at a given stripe edge, and capture the key

property that the energy of the smectic must be invariant

under rigid translations of all stripesy;,(x)—,(x)

+ constantt®?°We find that

f dxKaye(x.]) 11 12 12 11

Krr(0) = —[KgrR(Ay) + Kri(ay) +Kgi(Ay)]q =0
1 ( V(ja)F(ja) W=xV(ja—av)
27202\ W V(jatar) V(ja)¥W(ja)

' -2 Kiri). (27)
J#0
(23 L
Note that these properties imply that [d€§(q,=0)]=0.
In the off-diagonal elements the argument\Wifis the same When these long-wavelength approximations are employed,

as that ofV, (ja*xav), respectively. TheV and W contri-  the Fourier transforms d{g‘}@) in Eq. (23) depend only on
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dy but not on gy,. From the relation Kge(X,—]) A. Collective modes and thermodynamic properties

T o - o . o :

=Kgo(x,]), it follows thatKg,e(qy) is Hermitian. Under The coupled-Luttinger-liquid model for bilayer quantum
particle-hole transformationy—1—wv, the diagonal ele- Hgajl stripe states gives rise to two collective modes with
ments of these matrices remain unchanged while the offgispersions that can be determined by evaluating zeros of the

diagonal elements transform as determinant of the 2 matrix that defines the real-time

» iqua 21 guadratic action at eaalp and w. Writing this matrix (with

Kgie(ay)—e ™ Kge(ay), (28) indices suppressedsK ;[ w?+ 7202K oK 1/ 72, it follows
) ' " that the squares of the quadratic boson collective mode en-

Kgie(ay)—>e" 'YK gie(ay). (29  ergies are

D. The balanced bilayer limit ) ) > , K () Ke(a)]

The s . TR . 0% (q)=v5(q)q5= 7705
pecial case of half filling in each layer has additional 2

symmetry that is most conveniently exploited by taking a
slightly different approach. In this case, the electron stripes
in both layers have the same width and the system therefore
has effective periodicity ofa/2. To be more precise, the
problem can be formulated as a one-dimensional lattice of . ]
equidistant double edges placed a distaat@apart, noting 5°th modes have energies that are proportional,to The
carefully that right and left goers interchange their layer la-Velocity of the »_(q) mode vanishes fog,—0. In fact,
bels on alternate edges. To describe this system instead Wen thea, dependence oKy andKg is dropped, as in
using coupling matrice&}%(x,j) and Kg”(x,j), as in the Most of our calculations _(dy,qy=0) vanishes identically;

D

202 4
unbiased case, one can simply use the coupling constanfd'en thed, dependences are restored(q)qu(qyﬁth)
Ka(x,j) andKg(x,)) at small wave vectors ane_(dy,q,=0)>qs. For gate-

screened Coulomb interactions, the x-direction mode ve-
locity is proportional tdq,| in the smallg, andg, limit. In

X

e \/1— 4defKo(@Ko(@1| )

T Ke(D)Ke(a)] |

Kopro(X,]) =21 TKgr(X,j) = Kgr(X,])] B0 the independent layer limit, the two modes become degener-
with the value forkKg(0) reflecting translation invariance zivi?)ﬂgl yl"ge recover the isolated layer results obtained
+oo In the case of balanced bilayers the alternate formulation
Krp(0)=— — E (—DIV()-W())]. (3D menn_ongd_above is more convenient. The collective modes
Aqel j== for this limit may be expressed as
In momentum spack 4 andKg have the following form, —
w1A0) =70 VK () Ke(a), (35
~ _ 1 2 2
K‘D(qy)_ﬁ v S A whereK4(q) andKg(q) are given by Egs(32) and (33).
The two collective modes of the general formulation applied
2 to the v=1/2 case correspond to two different wave vectors
—Wjay- a +W all (32 of this dispersion relation.

The collective modes of the bilayer Quantum Hall smectic
phase are shown in Fig. 2. The right panel shawgaq, ,qy)
2 : . ; :

+W(q )+W( _” that disperses linearly in smaij for arbitraryq, . In con-

Y a trast, o _(qy,qy) disperses linearly at smat], for q,#0,

(33 but for g,=0 it is sublinear.w_(qy,q,= O)~q;°; .

The thermodynamic properties of the smectic phase of the
ayer system are those of a noninteracting boson system
and are readily evaluated given the collective mode energies.
For example, forv=1/2 in each layer, using the simpler
alternative formulation, we have one collective mode at each
[ll. SMECTIC STATE PROPERTIES wave vector. The internal energy density is

~ 1 21
K@(Qy)zﬁ[V(qy)—V(?

We have used this simpler and partially independent formub“
lation of thev=1/2 limit, to test our results for the general
case.

A peculiar property of quantum Hall stripe states is that
the microscopic scale of backscattering interactions is weak. d?q w(q)
For this reason observable properties may be those of smec- U =f 2 (T 1
tic states over a wide interval of temperature, even when (2m)%/a e”W —1
backscattering interactions are relevant at the smectic fixed
point. In this section we discuss some characteristic propemhere w(q) is given by Eq.(35). At low temperatures only
ties of quantum Hall bilayer stripe states. the long-wavelength behavior matters and we obtain

(36)
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m_(qx:q)’) dQU“ZSO’ d=10 w+(Qqu)’) d!“!:50 d 7

FIG. 2. Collective modes of the bilayer QH smectic phase. These results shown here were evaluatiég, g$ig) values from Egs.
(23)—(25) with N=2, v~1/2, anda=5.8. Notice thatw(d,d,) always disperses linearly for smaj}, whereasw_(qy,d,) disperses
sublinearly (as qx) whenq,=0. Theq,=0 behavior of the lower collective mode is sensitive to thedependence of the interaction
coefficients which we do not evaluate microscopically. This illustration was constructed by adding a5omaitribution to the interaction
coefficients.

VK (0)K” 1 1
U%f da,day 77|Qx||Qy|~K(~)EO) »(0) RM(x,7)= \/2_e|¢ij(x,T):\/Z_e.[<p?(x,r)+(~)j”(x,7)]’
(2m)%a gmladiayl VKe (K0T _ 1 7 & 40
2a To 1 1
= — T?4(2)In| —|, (37) LMNX, 1) = ———ei 4L = ——_ [ ®](x7)~ 0] (x.7)],
73K o(0)K2(0) T ‘ 27 J2m
(42)

where kgTo= VK (0)K(0)/al. The specific heat of this
system varies agIn(Ty/T) at smallT, vanishing less quickly
than that of a noninteracting Fermion system because of th
soft collective modes that result from the translational invari-
ance of the stripe state. This low temperature behavior re=
flects the form of the dispersion relation at sm@llw_(q)

~0ydy; only the prefactor of this enhanced specific heat
changes in the unbalanced bilayer case. These results for t
specific heat are similar to that obtained in previous works

where thed field is related to position fluctuations of the

0-edge system, while th® field is related to its charge-
ensity fluctuations. We observe in the following that the
charge and position fluctuations of the edges have a dramati-
cally different effect on the correlation functions of the right
and left movers. The single-particle Green'’s function for the
tht movers is given by

1
by Barci et al,?* and Lopatnikovaet al?® for the case of a (Rl”(x,T)R?(0,0)>=2—e‘1’2<[q’?(x'7)“D?(O'O)]z>
single layer. There is no qualitative difference between the m
thermodynamic properties of single-layer and bilayer stripe ><e*1’2“(“)?("")*@?(0'0)12). 42)

states. For unbalanced bilayers the specific heat at low tem-

peratures is dominated by the softer of the two collectiveye first evaluate thé and® field correlation function€}*
modes, whose long-wavelength dispersion is given by and G where

w_<q>~qqu\/ TEOKO) . (a9 TR 0.0 =D} N-D}00), 43
de{Ko(0)][de(Kq)]"(0)

and similarly forC}'. In Eq. (43) and in the following the
It follows that the internal energy is given by

arguments o)) are x—x',j—j’,7—7'). From Eq.(22)
a TKa(0)Ka(0)] T, we have for theb; field
72V defKg(0)][detK )]”(O)ng(z)m(?), d%qd
e q ~ w
° v 39  CR(x00=2 f —(2:)3/a[1—cos(qxxn[Mcpl(q,w)]“,

and the specific heat will vary again @$n(Ty/T). TheTg in (44
Egs.(39) and(37) are given by corresponding expressions.

2

where

B. Boson and fermion correlation functions w2
at the smectic fixed point Mé},“(q,w)z—z[K1(qy)])‘“+q)2([K¢(qy)]"“. (45)
w

In this section we discuss the static and dynamic correla-
tion functions of the right- and left-moving fermions of the Me(d,®) can be obtained by interchangifg, , Kg . The
stripe edges and the boson correlation functions in terms dfitegral overw is readily valued by decomposig ;! as a
which they are evaluated. The right- and left-moving fermionsum over eigenmode contributions, writing it in the form
fields are expressed in terms of lkeand® boson fields as = . CA/[ w?+ wzi(q)]. It follows after some algebra that
follows: correlation function can be expressed in the form
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’CZ\DX(X,O,O) whereC is a finite constant that can be found numerically. It
follows that the corresponding factor in the one-particle
A [1-cogax)] (a dq, Green’s function has a faster than algebraic decay in the
:f dax a __a27la thermodynamic limit. The factor associated with charge fluc-
N tuations has a similar dependence and is given by
de(K®) —1yAr @ A wla
K,+K_ (Ko +K+K_ CHM0y,00~ dax g%cos{qyy)
] da, [ de(Ke) K 1 Qx J—mlac™
ol a
I 2mla| K, +K_ o K K_/] N
(46) delie) (KghM+—2 )
K,+K_|® K, K_

for large x, whereK.=v.(q)/7. In the limit of balanced
filling fraction for which K4, andKg are scalars, the inte- ~In(L)C ( a
~In| 7] Col 1y

grand which is averaged ovey above reduces tgKg /Kq,

the familiar result for®d-field correlation functions in a stan- . . . o
dard one-dimensional electron system. This result is generaifyherec@ is a function of the ratiod/|y|) and is finite as
ized here by the average owgy and by the particular way, in y|—+ee.

which the matrix nature of thK g andKg4, expressions enter

the matrix elements above. The result for Beield corre- C. Tunneling density of states

lation functions differs only by the interchange of #ig and These results for boson correlation functions may be as-

Kq matrices. At first sight it appears that the position fluc-gempleq 1o evaluate the imaginary time dependence of the
tuation factor in the right-mover correlation function decaysbcal fermion Matsubara Green's function and, by Laplace

ngae}g::?ecr?zlgsﬁE)igg dg::e strlpei:. ';\'/%Vxel;’ ert’h;h?ntzo‘psro\\’/vgr'd}ransforming this, the density of states for tunneling into the
Wp,x 1S G y 9 bilayer system, a quantity that is in principle measurable.

q, of Eq (46), which diverges logarithmically, because X I , N
«p_ vanishes as}fqyl as |qy|4’0; the same soft position The single-particle Matsubara Green'’s function is given by

fluctuations that led above to an enhanced specific heat, lead ot N _ ~
here to fermion correlation functions that decay faster than G(0,0m) =(RY (x, )R} (x,0)) ~exp{ — (1/2C(7)},
any power low but slower than an exponential. This obser- (50)

vation generalizes to bilayers, a property of single-layer, hare©(0.07)=C.(0.07) + Cu(0.0.7) and
stripe states noted by Lopatnikoeaal ?® and Barciet al?* (0.0m)=C4(0,07) +Co(0.01)

: (49)

Co(x,0,0), which specifies the charge fluctuation factor _ d%qd
in the fermion correlation functions, is given by cq,,@(o,o,r):zf (23] (1—cosw¢)[M(;/1®(q,w)]M_
7)°la
~ X[\ (=a d 51
C%A(X,O,O)%In(“i)f 2& ®D
—mas® We first discuss the balanced bilayer case for whichitjjé
a and Kg“ matrices become simple numbers and the integral is

detKo) [, KA simpler to treat analytically. In this cadés(q,), Ke(ay),

T (Kg )“+W . (47 are given by Eqs(32)—(33) and

+ - + -

d’qdw (1—coswT)

(2m)%la w?

The charge fluctuation factor in the fermion correlation func- _
tions has a conventional algebraic decay with finite power C@(O.O,T)ZZJ

dg x. The faster than algebraic decay of the fermion one- _ +Ko(0y) 02
particle Green’s function implies that the singularity in the m°Ke(ay) Yo
Landau gauge occupation numbers, a step function of unit —
magnitude in the Hartree-Fock theory, is exceedingly weak. d’g 1 Ke(dy)
The correlation function of the field along directions :f 4mlala] VK ()
perpendicular to the stripes is given by My
~ Adqgy (#/a dqg X(l_e_wqu‘ Ka(ay)Ke(ay) 7). (52
Cy'(0y,0~ S—11-cogq,y)] o
W Ox J—mra2m We can understand the content of this integral by means of
a the following analysis. The integral can be separated into the

N sum of two terms, contributions from the region whege

detKg)

K=1)A ) andqy are small and the exponential can be approximated by
K, +K_ (Ko™ +W the first few terms of the Taylor expansion, and contributions
from largerq, and g, where the exponential can be disre-
~C In(E In(m) 49) garded. The leading contribution to the integral comes form
I ' the lower boundary of the second region, whege
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~1/(q,7). We focus on the case of largefor which our  wherea and(), can be identified from Ed54) for balanced
low-energy theory applies. In this limit we can approximatebilayers and from Eq(56) in the unbalanced case. The in-
R@)(qy)%i{@(o) and R¢(qy)~R§,(0)q§. In this limit Eq.  verse Laplace transform of such a function is

(52) becomes :
e (@I (Qo/E) = T, (1)

Co(0,07) = \/R ququ prund B)=""F7q kzo ki
¢ Ki( Iqxllqyl

\/E k+1 \/E E
X(1_e—wquuqy\n/'k@<0)'k:;,<0>) x 2 K+l E'”Q_O L
K@(O) m? \/7,, wherel' (1) is thekth derivative of 1F(r) atr=1 andH,
~on KZ;(O) al Ke(0)K(0) 7. are the Hermite polynomials. In the asymptotic case of small
E (low energiey we have
(53
) : . —(al2)In(Qq /E)
The Matsubara Green’s function factor contributed by e aIn(Qo/E)
©-field correlations has a weakerdependence which we Prund B)~ E/Qq F(1+aIn(Qy/E))
can neglect for the present qualitative analysis.
Similar steps can be taken for the general case of unbal- ~exp{ B zln %_(a o _ E)I ino
anced bilayers. After the integration, for Eq(51) we ob- E E E
tain
Qo
dq K(l,)l K2 g +1In £ ] (58)
Ca(0,07)= perea | L et
|q><| K% (Ko Y This shows that the density of states vanishes at the Fermi
K22 1 energy stronger than any power Bfand that in this sense
—(K ) the stripe edge physics in bilayer quantum Hall systems is
(Kg )ZZK not that of a usual system of weakly-coupled Luttinger-
liquids. The above result generalizes to the case of bilayer
K?I,Z 1) (a7 systems, points that have been made about single-layer
Ki—KZ_ Ky (Kél)zz K. M quantum IZ-!laII stripe states by Lopatnikowt af® and
Barci et al.
| K_- K—i —w_(qy)7 (54)
- (Kél)zz K_ e ’ IV. STABILITY OF THE QUANTUM HALL

SMECTIC PHASE
Since at smalby,, K_~|qy|, the most important contribu-
tions to the integral will come from the terms containing
1/K_ and from the exponential factors containing the argu
mentw _(q,). Keeping only these terms we obtain

We now consider “backward’(interchannel scattering
interactions that do not conserve the number of electrons in
‘each stripe edge. The most important conclusion of the fol-
lowing analysis is that backscattering interactions are much

K11 K22 more important for bilayer stripe states than for single-layer
a Ke(0) Kg(0) da.day stripe states. We can classify the backscattering interactions
47 K2 (0)K" (0) (KgH)?X0)) laxlay] as either intralayer interactions that involve electrons only in
one layer or interlayer interactions that involve electrons in
both layers. Nonzero backscattering two-particle matrix ele-
ments conserve total momentum along the stripes, which
means that the two Landau gauge guiding center jumps must
sum to zero. In the case of quantum Hall stripe states, the
K” (0) r) microcopic matrix elements associated with these back-
scattering processes tend to be small and these interactions
(55) will be important only if they produce strong infrared diver-
gences in perturbation theory. The strength of these diver-
demonstrating that the form of the Matsubara Green’s funcgences is characterized here by evaluating lowest-order per-
tion does not change qualitatively at unbalanced filling facturbative renormalization group scaling dimensions for these
tors. The tunneling density of states is the inverse Laplacgperators. As in Ref. 19 our renormalization gro(RG)
transform ofG(0,0,7), scheme involves only and ~ dimensions and treats the rung
.. label as an internal index of the fields' , ©} . The philoso-
G(O’O’T)%e—(a/Z)lnz(QoT):f dEpTunn(E)e—E\T\' (56) phyt_underlylng this procedure is discussed in the following
0 section.

(I)(o O )

1
K2(0)

_a de(K@)(O)
2@ Ki(O)K’L(O)

e~ WKZ (O)quX‘ ‘qy‘ )

()l2
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where the microscopic amplitudeis discussed below. We
integrate out “fast” boson moded*, ®* in a shell, with
Alb<|g|<A and w,q, unrestricted, and then rescaig
=bg, andw’ =bw leavingg, unchanged. With an appropri-
ate rescaling ofb, this RG transformation leaves the har-
monic smectic actiors, [and dispersion relatiori34) for 0
Kgse (23)], invariant. Stability of the smectic fixed point in

the presence of backscattering can be tested by considering

A. Interlayer tunneling 5 -
We first address the tunneling of an electron from one ! N=2 a=5.|

stripe edge to the other in the same rung. The action contri- 4|
bution from this process has the following bosonized form: c
S

23|
STunn=—uf dxdr>, X [expi20M)+H.c], (59 g
S

i=-N
T
?

layer separation d/l

the lowest-order RG flow equation, FIG. 3. Scaling dimensions for tunneling and backscattering in-
P teractions as a function of layer separatidh in a balanced bilayer
u . oy _ . . _
M, system at bilayer total filling factory=9, i.e., with aN=2 va-
a2 AtunnU, (60 \ence Landau-level.

with t=Inb. As can be seen from this equation the tunne“n.gbottom layer an electron is transferred in the opposite direc-

operator will become re_Ievant vyhen its sca_lling_dimension 'Sion, as depicted in Fig. 1. The interlayer backscattering op-

![ESS tha;n tvyo.dWhe_nbtrgs 'ielrm n the_Hart;uItonla? '? Strontg’erators for processes involving neighboring rungs have large
e Sés e(;n IS eg,cln € al ?jwbenergégs tB{ a Sge cl) ?ﬁan u'glcaling dimensions and tend to be irrelevant. In addition, the

zme- .orogri mo<e23tﬁoup € " y gracien e{(rﬁ ). In e'; . bare matrix elements for such a process will fall off rapidly
omain unn € continuous symmetry, Present N j, magnitude with increasing distance between the rungs in-

Eq. (22)', and proken k_)y tunneling, is IO,St in the low-energy volved. The action for interlayer backscattering interactions
fixed point action. This model has a discrete symmé)r}y for electrons within the same rung pair reads

_>®j*+ 7n for any integern and the QFT becomes
massive’® The gap due to tunneling will lead to an integer VI

quantum Hall effect at total filling factosr=1. Using Egs. Sinter= —Uf dxdr> [expi2(0}+0%)+H.cl.

(22), and(59), we find the following expression for the scal- ) 62)

ing dimension

[The other kind of process involving two neighboring rung

- f”’a dgy| detKq K=1y11y Ke pairs is related to the above one by a particle-hole transfor-
funn™ a2 | Ky +K_ (Ko™ K K_|| mation v—1-—v].
a After an elementary calculation we obtain the following
(61) scaling dimension expression:
The integrand in the integral ovey, is similar to that in- la dqy[ 2 detk,
volved in the® boson correlation field and, ignoring the Aimer=f K K
matrix character of the coefficients that appear in the smectic —afal® [ B+ TR~
fixed point Hamiltonian, is~ K4 /Kg. SinceKy vanishes a
for gq,—0, we can expect this quantity to be small. Indeed KL K12
we find by evaluating this integral numerically that interlayer X (K;l)”—(K;l)lz+ u” (63
tunneling is always relevant. KK

o _ This expression is similar to that which would be obtained
B. Coulomb backscattering interactions for interwire backscattering interactions in a systems of two

The tunneling amplitude in bilayer quantum Hall systemscoupled quantum wires. This integral is similar to the one
can be made extremely small by making the barrier betweefat appears in the tunneling operator scaling dimension cal-
quantum wells higher or wider and is often completely neg-culation, although it is easy to verify that forward-scattering
ligible in practice. Coulomb interactions, on the other hand interactions between different stripes play an essential role.
are always present and must always be considered. We cofis We discuss below, this operator is usually strongly rel-
siderinterlayer andintralayer Coulomb backscattering pro- €vant QAjye—0), so that at low temperatures the pha®gs
cesses separately. In the strongest interlayer backscatteriagdG)J—Z of neighboring two-edge system are strongly anticor-
process an electron is transferred from, say, a left-moving topelated. The low-energy nontopologic@hargelessexcita-
layer stripe edge to a right-moving edge in the same rungions in this limit can be understood by approximating
pair of the same layer, while in the same rung pair of thecog (0] +0?)]~1—(0;+©7)%2. When a term of this form is
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Bire g .=50.0 N= 2.0 a/l= 58 Brumn 4

gate’

e
< Lol

added to the quadratic Hamiltonian, the low-energy collec-

=500 N= 2.0 g/

PHYSICAL REVIEW B67, 115330 (2003

5.8

FIG. 4. The left panel shows thd=2, d/¢
=5.8, intralayer backscattering interaction scal-
ing dimension. The right panel shows the scaling
dimension of the tunneling operator.

We now discuss our numerical results for scaling dimen-

tive mode dispersion at long wave lengths takes the form o$ions of the operators that are not described by the quadratic

a spatially anisotropic two-dimensionaY ferromagnet,

boson theory. Figure 3 shows the scaling dimensions of the

w?~Kg2+ uqf,. We discuss the significance of this result atbackscattering interactions in a balanced system 1/2) in

greater length below.

the second-excited Landau-lev® € 2) as a function of the

Finally, in an intralayer backscattering process two eleciayer separation/¢. The stripe period chosen for these cal-
trons move in opposite directions between pairs of stripgy|ations,a=5.8¢, corresponds to the period at which the

edges in the same layer with the same separdtibriFig 1).

Hartree-Fock energy of the stripe state in a isolated layer is

Here we also concentrate on processes involving neighboringinimized>3! Interestingly, single-electron tunneling is irrel-

rungs only. Processes involving two rung pairs are again r
lated to those involving three pairs by a particle-hole trans

formation. For the first case the action reads

Sowa=—u | dxdrS fexi(@F -0}k =07 )

xexfi(—07-0;+0,,+07,)]+H.c}, (64

which leads to a scaling dimensi@\),,;=As+Ag With

wla dq, detK
¢=_f 4 2 [1-codqy,a)]

77/a§ Ki+K-

a
2K
X[ (Ko HM+ (Ko )M ) (65)
K

mla dq, detKg
=J d [1-cogqya)]

_malm KoK
a
g 112, Ko —KG
x| (Kgh™=(Kg '+ (66)
K,K_

Note that the imaginary part of the integrand in E3),

EB_

évant Ar,,>2) for d/€>1.5, but is strongly relevant at
smaller layer separations. Interlayer backscattering is rel-
evant A <2) at all layer separations, more strongly so at
smaller layer separations, while the scaling dimension of the
intralayer backscattering is smaller than two only K

=2 and approaches a value &f,,,~1.84 ford/€>1. This
value for the limit of weak interactions between the layers
recovers the single-layer result obtained eatfidte contri-
butionsAg and Ag to Ajwa, NOt shown in the figure, be-
come equal in this case.

The dependence of scaling dimensions on the bilayer bal-
ance is illustrated in Figs. 4 and 5. We see that intralayer
interactions become more relevant when their individual fill-
ing factors move away froov=0.5, as in the single-layer
case, while the tunneling operator becomes less relevant. In-
terestingly, the interlayer backscattering interactions show
different results depending on the distance between the edges
involved in the transition. For+ 0.5 we have to distinguish
between nearest-neighbor interlayer and intralayer back-
scattering processes that involve, according to the definition
given in Fig. 1, only the smallest number of neighboring
rung pairs(one and two, respectivelyand those processes
that involve formally two and three rung pairs, respectively.
These two kinds of processes are related by particle-hole
transformation, and therefore shown in different panels. Gen-

(65 and (66) does not contribute to the integrals. Back- erally the scaling dimension increases with the distance be-
scattering processes other than those discussed above haween the edges. The data shows that one of these two back-
larger scaling dimensions and also involve larger momentunscattering  processes, related by a particle-hole
transfer, and have therefore exponentially smaller bare maransformation, is always relevant and that the minimum
trix elements. We therefore shall concentrate on the proscaling dimension decreases with increasing bias between
cesses discussed above. the layers. In summary, the most relevant residual interac-

Biwer 3 =500 N= 20 /1= 538

Biwter §.=50.0 N= 20 a/l= 58

FIG. 5. The left panel shows the scaling di-
mensions for interlayer backscattering across nar-
row and the right panel for interlayer backscatter-
ing across wide rungs in unbalanced bilayers.
Note the difference in scale between left and right
panels. The most relevant interlayer backscatter-
ing interactions are those of narrow rungs.

115330-11



PAPA, SCHLIEMANN, MacDONALD, AND FISHER PHYSICAL REVIEW B67, 115330(2003

5 - C. Smectic interlayer phase coherent and the Wigner
4 / N=0a=33l crystal states
3l v=0.5 1. Smectic interlayer phase-coherent state
In this section we examine the effect of the interlayer
s I B — backscattering interactionwhen they are strongly relevant
@y - on the low-energy physics of the system and show that the
2 ‘ ‘ ‘ ‘ phase coherence is marked by a nonvanishing value of an
‘g 0 S ‘ ‘ interlayer phase order parameter. In this phase electrons at
% 4 ! N2 a-5.8l i S A, 1 each stripe edge are coherent superpositions of the upper and
3 ) I ———— A lower layer states.
3 ] 4 ’ inter 4 . .
; / A The most relevant interlayer backscattering operators are
ol 4 % ntra | related by particle-hole symmetry and describe backscatter-
F L] ing across an electron stripe in the top layer and the corre-
T ’/// 1 i/’/’?\l=3 a=6.9I sponding hole stripe in the bottom layer or across a hole
0 ‘ ‘ ‘ ‘ stripe in the top layer and the corresponding electron stripe

0 2 4 6 & é?r s gratio% di 4 6 8 10 in the bottom layer. In terms of the Luttinger-liquid fields we
y P have defined, the sum of these two interactions takes the

FIG. 6. The scaling dimension of the backscattering interactiondOrm
in the various Landau-leveN=0,1,2,3) in a balanced system as a .
function of the layer separatiotl/ . The stripe periods: are ob- Ointer=— uimer’,,cos{2(®jl+ ]-2)]
tained from the Hartree-Fock monolayer results given in Ref. 31.
~Uner(1 CO$2(02+ 0% )] (67)

tions is interlayer backscattering and they are increasingly
important as the bilayer is unbalanced. Expressions for the bare values of these coupling constants

We note that the scaling dimensiofs,,,, of the single- are given below. As shown on Figdaband 3b), (left, right
electron tunneling and ., Of the interlayer backscattering panel, respective)y at small layer separations these opera-
approach zero ford/¢—0, i.e., these processes becometors are strongly relevant. At low temperatures the phéses
strongly relevant. This is a natural result since in this Iimitand@]?, @JZ and®j1+1 of neighboring two edges tend to be
we recover the monolayer electron-spin quantum Hall ferroongly anticorrelated. The low-energy excitations in this
magnet. This system is perfectly isotropic in pseudosplr]imit can be understood by approximating E(@l+®_z)]~1
space, and therefore processes like tunneling which acts e§-(®;+®2)2/2 When terms of this form are adde;d to the
sentially like a(pseudoymagnetic field are obviously very g S S . }
relevant. This increased relevance arises formally in our caI@Ctlon’ it takes the following form:
culations through the property that the matriggs(q,) van- 1
ish in the limitd—0, so that the integrands in Eq§1) and ge)z_f > [0 (q,0) M 3'0Y(q,w)]. (68)
(63) are identically zeroKg, vanishes, because it is a mea- 2)q.0iu
sure of energy changes associated with charge transfer bsla— . o
tween layers at a particular stripe edge; widen0 only the he new matrixMe is given by
total charge near each stripe edge influences the energy func-
tional. In Fig. 6 we show the dependence of these scaling
dimensions on the Landau-level indék=0,1,2,3 with the Me=Mg+2
stripe periods taken from Ref. 31 in each case. As this figure
shows, our results for the Scaling dimensions of baCkscattGWhereM is the matrix of the system at the smectic fixed
ing processes around the assumed stripe state depend oplyint and is given by Eq22) or by Eq.(45) (interchanging
weakly on the Landau-level index. We note that in the lowesk ;| Ky) and uj;, U, is the short notation fole,,,
and first-excited Landau-levelN(: 0,1) no conductance Uinter (1-v) respective'y_ The effects of the inter'ayer’back_
anisotropies are found experimentally in single layers, eveRcattering interactions, included on the new matrix of Eq.
though there is a stripe state in each of these Landau leve{gg) (which we denote byNe), shift the poles of the boson
which is a local minimum of the Hartree-Fock energy func-propagators. The low-energy collective modes now are given
tional. The true ground state in these instances is far from thgy,
stripe state, differencing in character even at microscopic
length scales. The fact that our calculation does not obtain
anomalous results in cases where we do not believe stripe
states occur, emphasizes again that our approach can only
address the properties of systems in which fluctuations
around the Hartree-Fock stripe states are weak. It cann@yhere
predict when stripe states occur. Future experimental activity
will be necessary to identify with confidence when stripe
states occur in bilayers.

Ug+tUp U +upe '
, (69

iqya
Ui1+Uizeqy Ui1+ui2

4D

i(q)=m’ 5|1 \/1- —|, (70)

2

A= Tr(KoKg) + 2NEK 22+ 2R KENZY,  (72)
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0.(000y  deu=50, d=15 0.(Qpdy  duu=50, d=15

FIG. 7. The collective modes of the bilayer QH smectic interlayer coherent phase, for the ¢agg ©f,j) of Egs.(23) and(25) and
N=2, v~1/2 anda=5.8, are shownw, (qy,qy), the right panel, is of the form of a spatially anisotropic two-dimensional ferromagnet,
wi(q)~Kq§+ uqi. The w_(dx,qy) collective mode vanishes only far,—0 and g—0 when nonlocal contributions to the interaction
coefficients are accounted for.

D=detlKy){gidetKg)+2NZK L+ det Ng) 0 a2q d

02— f _dq_de

— 2GR KNG T (72) J (2m)? 2m
al2

These low-energy collective modes are shown in Fig. 7.

As before, the case of balanced filling fraction can be Ko(Q)
described in a more transparent way using the scalar cou- sz qa
plingsKg4 , Ke of Egs.(32) and(33). For this case the low- —2+K<1>(Q)[q)2(K@(q)+2uil 1+ cos(%
energy collective modes have the form ™
~ ~ a 2mla d R@(qy)
wi<q>=w2K¢<q>{q§K@<q>+2ui1[1+cos<qya/2>]}.( ) T167) 2 VRo(ay)
73
2Ke(ay) (1)

In this formulation one of the gapless modes is located at the
edge of the Brillouin zone, which is now doubled,
=2m/a. In the extended Brillouin zone we use for balanced
bilayers thew _(q) softmode appears fay,— 0, whereas the In Eq.(77) we have introduced an upper short distance cutoff
. (q) softmode appears ag— 2m/a. The two modes have 1/¢ for the g, integration. Interlayer backscattering interac-
the following behaviors: tions have cutoff the infrared divergence of tgg integra-
tion, making the integral finite and establishing particle-hole
) . o ) pair condensation. In this state th{1) symmetry associ-

w=(q)~ 7Kg (0)ay[Ke(0) a5+ 4ui ], (74 ated with conservation of total charge differerig—Ng
between top and bottom layers is broken.

We conclude on the basis of this analysis that interlayer
backscattering will drive the Hartree-Fock bilayer smectic
state to a state which has both broken translational and ori-
(79) entational symmetrgnd spontaneous interlayer phase coher-

Similar results can be obtained using the matrix formulatiort°€ along the edges. We expect this state to exhibit giant

for generaly and become equivalent for=1/2. There is no interlayer tunneling conductance anomalies at low-bias volt-
' ges, similar to those that have been seen in Nke0

V£1/2. andau-level in bilayers. Although these states have a charge
cJap that we discuss below and should exhibit the quantum
Hall effect, we expect that they will exhibit strongly aniso-
tropic dissipative transport at finite temperatures. Their two
gapless collective modes arise, because they have broken
- B 2 translational and orientational symmetry and spontaneous in-
q’(f)=<¢$(f)¢5(r)>zﬁ<e 2'“»”59 HASOTO), terlayer phase coherence. Weyalso n);te th:§ the quantum
(76)  character of these bilayer smectic states is quite distinct from
the quantum smectics discussed previously for the single-
where lﬂ, g are fermion creation and annihilation for the layer case. For instance, the long-wavelength behavior of the
top and bottom layers, respectively. We now show thagjuantized collective mode _(qy,q,) changes from being
(®2(r)) is finite. We discuss only the case of balanced bi-proportional t0|qqu| to being proportional to|qy| only
layers, using the alternative formulation which is more transwhen spontaneous interlayer phase coherence is present;
parent. We find that locking the phase difference between different layers quali-

. (77)

: ui1(1+cogq,al2))

27\ ?

Y a

2

a

2

Uja
2 i1
Ot —

Ko

2
a

0’ ()~ 7Kg

The interlayer phase-coherent smectic state is charact
ized by a finite value of the following order parameter,
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tatively increases the cost of independent position fluctua- £ (;nter)
tions. The long-wavelength behavior of tag (q,,q,) col- g dgute=50, N=2, a/1=538
lective mode is that of an anisotropic superfluid. As in the A““““m‘ 3
case of uniform states, spontaneous interlayer phase coher- 2)(10:: W
ence is equivalent to electron-hole pair superfluidity, but the 110717 R
broken orientational symmetry of the smectic state causes ==
this superfluid to have orientation dependent stiffness. v =
It seems quite possible that the order parameter that char- RO
acterizes the broken orientational and translational symmetry e MQ
of these states will be driven to zero when interlayer inter- ' N -

actions are sufﬂmently strong. Indeed this is sgggééﬁéd FIG. 8. Estimated charge gap due to interlayer backscattering
by mean-field calculations. We are unable to estimate Whergyeractions. These interactions are always relevant and lead, in the
this transition takes place using the methods of this paper. ghsence of interlayer tunneling, to states with spontaneous inter-
] N layer phase coherence.The energy scale in this figureed e¢
2. Coherent smectic state specific heat which is ~kg50 K for a typical higher Landau-level experiment.

The internal energy of the bilayer smectic phase-coherenthe energies should be reduced to account for screening from inter-
(SPQ state will be dominated at low energies by the Con»[ri_l__andau-level transitions that we have not included in our calcula-
bution from thew _(q) mode. The leading contribution to the 1ons-:

integral for the internal energy comes from the region of , . . . .
small . The g, integral now has a natural infrared cutoff, the bare matrix elements associated with these interactions

. . are often quite small, however, they will often be important
however, atvuiy /K (0). It follows that the internal energy only at low temperatures. As we explain below, we believe
is given for smallu by that Coulomb interactions will most often drive the system
either to an isotropic coherent state or to a smectic coherent

U 2a )i Ke(0) i 78) state. Both states will have a charge gap and an integer quan-
3 /R 0K (0) 4u;; al)’ tum Hall effect. In this section we estimate the size of this
& 0(0)Ka( gap, and hence the temperature above which we expect the

and the specific heat will now be linearly dependentTon Phenomenology of these states to crossover from guantum
The specific heat anomaly noted previously for the bilayeftiall behavior to stripe-state behavior.

smectic is suppressed when interlayer coherence is estab- OUr estimates are built on bare matrix elements whose
lished, even though broken translational and orientationafvaluation we discuss below and on the scaling dimension

symmetry are still present. calculations discussed above. Given dimensionless inter-
layer and intralayer backscattering interactiomg,e, and
3. The Wigner crystal state Uinra, W€ can estimate the gap by integrating the RG flow

Intralayer backscattering interactions take the form equations to obtain
R Ee/a u :b—lEe/a bZ—Ae/au ' 80
Oimya= — U{exiLi (2kex+ DF = D1+ b = B2, )] o (How=b77Eg o o
where the superscripts and subscripta are used for in-
xexdi(—07-0;+0;,,+07, )]+H.c}, ter-layer and in@mlayer interactions, respectively. When
(79) the interactions become of order 1 on the renormalized en-
ergy scale b2 2u=1), the energy gap should be roughly
where the oscillatory dependence on coordinate along thequal to the renormalized characteristic Coulomb en&rgy
edge which we have exhibited explicitly follows from our giving
earlier field operator definitions. This interaction dominates
only at quite large layer separations. When it does it drives Eg(u)=(U/E) Y E,, (81)
the system to a state which has periodicity along the stripe
edges as well as across the stripes. Since, the wavelen
along the stripe is #1%/a, and since the periodicity along
the direction perpendicular to the stripesaisthis state will

ereU=uE_. is the microscopic high-energy-scale back-
scattering interaction strength. Thredependence of the gap
enters throughJ, and through the scaling dimensions. Both

contain one electron per layer per two-dimensional unit cell €TECtS conspire to strongly reduce the gap magnitude near

. . . _ 2 . .
We therefore identify this state as a bilayer Wigner crystalhalf filling. Taking E.=0.3e/l, approximately the maxi-
(WC) state. mum correlation energy per electron in a partially filled Lan-

dau level, the resulting gaps foi=2 anddye=50, are
shown as a function of filling fraction and distance between
layers in Figs. 8—10. We notice that the gap resulting from
The most important conclusion from the above calculathe intralayer backscattering interaction is very small near
tions is that interlayer Coulomb backscattering interactionsalf filling, dropping below the range accessible to dilution
are always relevant in bilayer stripe stat&be gapless bi- fridges over most of the filling factor shown in this figure.
layer stripe state can never be the true ground st&iece  On the other hand the gap resulting from the interlayer back-

D. Gap estimates for bilayer stripe states
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FIG. 9. Estimated charge gap due to interlayer backscatterin
interactions, for balanced bilayefg=1/2 in each layer as a func-
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=50, N=2, a/1=b.8
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FIG. 10. Estimated charge gap that would result from intralayer
backscattering interactions in the bilayer case. When the scaling
dimension is larger than two, the gap vanishes. Intralayer interac-
gons are more important than interlayer interactions only at very
arge layer separations. The energy scale in this figues/ist.

tion of layer separation. This dependence is extracted from Fig. 8

and shown here for clarity.

scattering interactions is not as small and remains reasonably

large out to large values of the interlayer separatioiRe-
calling that this interaction is proportional R{L;LIR,, we

see that when this interaction is strong it favors interlayer

phase coherence along each stripe edge and that when it
very strong it leads to condensation of the fié]¢i+ ®j2 toa

same-layer exchange

K1?=Y;+QI%2 Kk?=Y,—Ql? (85)

Ksl?=Y;, kgl?=Y,, (86)

is (Y2=QIZ Y+ QI%|V|Y,,Y,)

1 22 — 212124~ igyam /N 2
value independent gt Since®] is by definition the phase e dace™ % eV (ay,all),

difference between left- and right-going fermion fields at the

2

(j,\) stripe edge, and since the layer indices of right- and (87)
left-going fermions is opposite at=1 and\=2 stripe edges, (jfferent-layer direct

what is condensing when this interaction is strong is the

phase difference between fermions in opposite layers. In kil?=Y;+QI%, kyl?=Y,, (88)
other words,the state that occurs in the strong interedge

backscattering limit has spontaneous interlayer phase coher- Ksl?=Y;, Kkg2=Y;+QI? (89)

ence States with interlayer phase coherence and stripe order

can occur as local and even global minima of Hartree-Fock 1
energy functionals. Coupled with the irrelevance of intra- (Y2,Y1|V[Y1,Y2)=5—e"®
layer backscattering interactions at small layer separations in

the bilayer case, our analysis suggests that they can be the

e f da,e %2V} (., Q),
(90)

ground states of bilayer quantum Hall systems in highwhere the subscriptSandD refer to two-dimensional Fou-

Landau-levels.

rier transforms of the Coulomb interactions between elec-

For intralayer backscattering, the bare backscattering introns in same and different layers. We see in Figs. 8-10 that
teraction matrix element has both direct and exchange corthe importance of interlayer interactions diminishes rather
tributions, while interlayer backscattering has only a directslowly with layer separation, leading to sizable integer quan-
contribution. An elementary calculation using the Landautum Hall gaps out to large layer separations.
gauge basis states leads to the following explicit expressions Our results for the energy gaps are summarized in Fig. 11

that were used to obtain gap estimates.
Same-layer direct

Kil2=Y,+ Q1% kyl?=Y,—Ql? (82
Ksl?=Yq, Kka4?=Y,, (83
and
(Y1+QI%Y,=QI%V|Yy,Y,)
=%e’32”2/2'2f dqxefqilzlzeﬂq*an(qx,Q),
(84)

by a schematic phase diagram intended to represent pre-
dicted experimental findings in very high mobility bilayer
systems at dilution refrigerator temperatures. This phase dia-
gram was constructed from a recipe specified below. Differ-
ent regions of the phase diagram as a function of layer sepa-
ration d/I and imbalance, characterized by are identified

as exhibiting the behavior of one of the following phases.
The bilayer smectic state is a state with no integer quantum
Hall effect, and anisotropic transport. The coherent bilayer
smectic state will have an integer quantum Hall effect but
will still have anisotropic transport at finite temperature. The
bilayer Wigner crystal state will have an integer quantum
Hall effect with an odd integer quantized Hall conductivity.
We predict bilayer smectic state behavior when neither inter-
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0.7 ‘ T : T ‘ . - pected out to very large layer separations, an unexpected

& result of our analysis. The interval of charge imbalance
I where stripe(smectic metal states are expected expands
061 SPC ] only modestly with layer separation, bigt sensitive to the
ol SS ] orbital indexN of the Landau-levels, since nodes in the or-
=05k SPC ] bital wave functions can cause the bare backscattering matrix
P element to vanish at particul&-dependent values of. The
I 58 ] details of boundaries separating stripe state and stripe-phase-
04F ¢ SPC - coherent regions of this phase diagram will be quite different
| for different values ofN. As we have emphasized, our ap-
/’/’_v;(—;,_ proach is reliable only when quantum fluctuations around the
I T R T Y mean-field stripe state of the Hartree-Fock theory are weak.
d/1 For small layer separations the charge gaps start to become

_ _ _ comparable to the underlying microscopic energy scales. In
FIG. 11. Apparent phase diagram predicted for experimentathis regime we expect that the ground state is actually an
studies of high mobility bilayer systems at dilution fridge tempera’isotropic coherent bilayer state, but are unable to provide a

tures. The various phases in this illustration have qualitatively dif-.g|iaple guantitative estimate of the layer separation at which
ferent transport properties. These calculations are for stripe states j[ﬂis transition occurs

the N=2 orbital Landau level §=5.8¢), with weak remote-gate

screening @gq=50¢). It is possible to explore the phase diagram

experimentally in a single sample, since both the top layer filling V. DISCUSSION AND CONCLUSIONS

factor v and the normalized interlayer separatidf?, are altered

when the charge imbalance and total electron density are changed In this paper, we have studied double-layer quantum Hall
by using front and back gates in combination. For interlayer spacingystems at odd integer total filling fractions. Mean-field
d less than approximately ¥5and any charge imbalance, we ex- theory predicts that these systems can form striped ground
pect the bilayer to be in an isotropic interlayer phase coherent statgtates. This observation serves as the starting point for our
which has a large gap, integer quantum Hall effect and isotropiavork. The Hilbert space in which the low-energy excited
transport properties. Anisotropic states are expected only for morgtates of mean-field bilayer stripe states reside may be
widely spaced layersj>1.5¢. For strongly unbalanced layers ( mapped to those of an infinite set of coupled-Luttinger-
far from 1/2 we expect anisotropic WC states to appear because dfquids, one for each stripe, allowing us to borrow bosoniza-
intralayer backscattering interactions, just as they do in the singlétion techniques from the literature on one-dimensional elec-
layer case. These states will exhibit a quantum Hall effect with anygn systems. Quantum fluctuations around the mean-field
odd integer quantized Hall conductivity. Strismectic metal  gyipe state are conveniently described in terms of the Bose
stategSS tend to occur when each layer has a filling factor close to uantum fields that can be interpreted as representing charge
v=1/2, but as in the single-layer case these states are never the tra%nsity and position fluctuations along each stripe edge. The
ground states. S.meCtiC metal states show anisotropic transport, bf'|’1tteractions that control quantum fluctuations in the electron
do not show an integer quantum Hall effect. Interlayer backscatter- round state include both forward-scattering terms which

ing interactions always induce charge gaps but these are sometimgs

too small to be observable at a typical dilution fridge temperatures?onmbme to quadratic interactions in the boson Hamiltonian

which we take to be 0.0@# €l. Regions with an estimated charge and weak, but more complicated backscattering terms. The

gap larger than this value are labeled as SPC state regions in ﬂ(r‘é)uple(_j-Lu_tt|nger-l_|qU|d model obtam_ed when the back-
phase diagram. Smectic phase-coherent states have an odd inte§EALrNNG interactions are neglected is not of the standard
quantum Hall effect, and are expected to have transport propertid®'M, because both charge and position terms in the effective
which are much more anisotropic than those of the anisotropidiamiltonian have a matrix character, and because the energy
Wigner crystal states. This state should also exhibit giant interlayeg0St of fluctuations in which stripes move collectively is
tunne|ing conductance anomalies at low-bias Vo|tages, small when the Stripes are not pinned. We find that the latter
property leads to fermion spatial correlations whose decay is
layer nor intralayer backscattering interactions produce a gafaster than any power law, to a specific heat that vanishes
larger than 0.004%/ €. We judge that a gap smaller than this less quickly tharT for T—0, and to a tunneling density of
size would not produce observable effects in a typical dilu-states that vanishes faster than any power lawHes0.
tion fridge experiments. Interlayer backscattering interac-These properties of bilayer stripe states are similar to prop-
tions are much more effective than intralayer interactions irerties established previously for single layers by Lopatnikova
producing gaps, because they are strongly relevant. We pret al.and Barciet al. There is no limit in which bilayer stripe
dict bilayer Wigner crystal behavior when the intralayer quantum Hall states can be treated as a system of weakly-
backscattering yields the largest gap and a gap that exceedsupled-Luttinger liquids.
our minimum value. These states are expected only when the We address the role played by intralayer and interlayer
charge imbalance is large or the layer separation is quitbackscattering interactions by evaluating their perturbative
large. We predict bilayer coherent smectic states when interenormalization group scaling dimensions, following an ap-
layer backscattering produces the largest gap, provided agapioach two of us have taken previously for the case of
that it exceeds our minimum value. Because the intralayesingle-layer stripe statéS. In the single-layer case we
interactions are strongly relevant, observable gaps are exeached the conclusion that these interactions are always rel-
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evant, and that they are likely to drive the system to a Wigneinteresting question. Could there be another class of as yet
crystal state with an energy gap. Estimates of the size of thisndetected phase transitions that occur in the quantum Hall
gap based on bare backscattering matrix elements and scatgime either in the higiN stripe-state regime, or perhaps
ing dimensions gave extremely small values, however, coneven for lowerN where stripe states do not occur? Broken
sistent with the observation of stripe-state phenomenology giarticle-hole symmetry atv=2 would imply a finite-
temperature scales that could be reached experimentallfemperature phase transition in the 2D Ising universality
Since other researchers have reached different conclusigiass, for which the deviation of the Hall conductivity &t
about the relevance of backscattering interactions in single=1/2 from e?/2h could be taken as the order parameter.
layer systems, it is worthwhile in stating the conclusions thatfhere is certainly no evidence for such a phase transition in
we have reached in the present work to emphasize onc@periment, although it might be washed out by disoftier
again the philosophy that underpins our calculations and exeven if it occurred. In any event, broken particle-hole sym-

plain why we have considerable confidence in the conclumetry in the ground state would require that a phase transi-
sions we reached previously. tion occur between the high-temperature stripe state of
Our identification of a low-energy Hilbert space in which Hartree-Fock theory that does not have broken particle-hole
it is possible to derive a simplified many-electron Hamil- Symmetry and a low-temperature stripe state, in which
tonian is based on the experimental discovery of stripe state@article-hole symmetry is broken and backscattering is irrel-
and on evidence from experiment that the true ground state gvant. In light of the evidence that fluctuation corrections to
energetically very close to the mean-field theory groundhe Hartree-Fock ground state are weak, we believe that the
state. In our view the most convincing evidence in this re-simpler conclusion of our earlier work is more likely to be
gard is the ability? of the Hartree-Fock theory to accurately correct, namely, that particle-hole symmetry is not broken
predict the dependence of the stripe state orientation on irand that the smectic state is not stable.
plane field strength, quantum well width, and other micro- As we have emphasized several times, the approach we
scopic parameters. In single-layer systems, quantum fluctu&®ave taken does not lead to completely standard coupled-
tions are important only at low-energies and long-lengthLuttinger-liquid properties, because some interaction param-
scales. When mean-field theory accurately describes the mgters vanish fog,—0. In particular, the decay properties of
croscopic length scale physics, we can use the elementafg¢rmion correlation functions at large distances, and of the
excitations of the Hartree-Fock stripe state to identify thetunneling density of states at small energies, are faster than
Hilbert space of low-energy excitations, and confidently usePower laws. This conclusion of our analysis follows from the
bare interaction matrix elements to estimate forward-broken translational symmetry in the stripe state which
scattering and backscattering interaction parameters. The i§2akes its energy functional invariant under a simultaneous
sue of quantum stability of smectic states in single-layer systranslation of all stripes. Barat al,** have argued that this
tems has received interest partly, because it is closely relatdéhusual property might signal a failure of the perturbative
to the possible existent&’*of freely sliding analogs of renormalization group transformation we have used, which
the Kosterlitz-Thouless phase in stacked two-dimensionalescales spatial coordinates along the stripe edges but not
XY models. Although it is certainly cleHrthat the interact- across them. Our approach is dictated, we believe, by the
ing Luttinger-liquid fixed-point actions exist for which back- nature of the mean-field state that is suggested by the
scattering interactions are irrelevant, this observation is notlartree-Fock theory and by experiment. When backscatter-
sufficient to decide on their relevance in the case of quanturing is neglected, the quadratic Hamiltonian of the system
Hall stripe states. Crudely speaking, irrelevance in the casecales asj; atall qy values. Because the chiral stripe edges
of repulsive interactions requires® that the forward- are discretelq,| is restricted to a Brillouin zone and there is
scattering interaction strength decay in a strongly nonmonoro simple power-law dependence fgrthat applies through-
tonic way with edge separation. For single-layer system®ut its range. The Luttinger-liquid action will therefore not
Fertig and collaborato?$ have estimated forward-scattering be invariant under any transformation that scalesytheor-
amplitudes using an approach that goes beyond the weaklinate. We do not see any alternative to our perturbative RG
coupling approximations we employ, doing so, however, in aapproach to account for the neglected backscattering terms.
partially ad hocmanner by fitting their model to collective In the present analysis of bilayer stripe states, we have found
modes evaluated in a time-dependent Hartree-Fock approxit convienent to group the stripe edges in pairs with opposite
mation. Their conclusion on the relevance of backscatteringhirality, and localized near the same planar position in op-
interactions is opposite to ours. The source of the discrepposite layers. In this language,the fluctuations of the pair can
ancy may be traced to the broken particle-hole symmetry ibe separated into fluctuations of the position and the charge
the half filled Landau-level Hartree-Fock approximationdensity of a stripe pair. We have found that the charge-
Wigner crystal state that they use to extract strong-couplinglensity fluctuations are more violent and they are responsible
interaction parameter&or a single-layer stripe state, back- for the unusual properties of these strongly coupled-
scattering interactions can be irrelevant at=1/2 only if the  Luttinger liquids: the rapid decay of the correlation func-
true ground state breaks particle-hole symmeS8ince stable tions, the strong suppression of the single-particle density of
stripe states are most likely to occurat 1/2 and Landau- states, and the enhancment of the specific heat at low tem-
level mixing (neglected in these theorjealso works against peratures. The special features of long-wavelength shear
stripe-state stability, we believe that stripe states are nevdluctuations in smectic systems, which lead to collective
stable in single-layer quantum Hall systems. This raises amodes with dispersiom2~q§[q§+ qi] for smallq, andq,
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and, in particular, Withu~q;°(’ atq,=0, do play a minor role  prisingly widely separated bilayer systems is an important
in the calculation of some correlation functions and the speresult of this paper. This conclusion about the properties of
cific heat. These features are not captured by our renormagpontaneously coherent stripe states in the absence of inter-
ization scheme. However, it is intended only to shed lightlayer tunneling differs from that reached by Fertig and col-
only on the stability of the smectic state. It obtains well- laborators who, incorrectly in our view, ignore interedge cou-
defined values for backscattering operator scaling dimenpling in considering the properties of coherent stripes.
sions without this higher order in wave vector information onInterestingly, intralayer backscattering interactions that drive
scattering amplitudes. the system toward a Wigner crystal state are irrelevant in this
Our conclusions concerning the nature of the true groundegime.We conclude that stripe states are stable in bilayer
state could, in principle, be altered if it were possible toquantum Hall systems, unlike the single-layer case, but have
extend the perturbative RG analysis to higher order. Indeedn excitation gap unlike smectic metalsseems likely that
this must happen when our analysis is applied to low indeXor very small layer separations, backscattering interactions
Landau levels, in which stripe states do not occur. We do nowill drive the system toward a uniform charge-density state
believe, however, that the unusual correlation functions sigwith interlayer coherence, although our perturbative ap-
nal a greater likelihood of this eventuality than normally ap-proach is not able to offer any substantial guidance in decid-
plies to lowest-order perturbative RG calculations. In prac4dng this question.
tice, the microscopic backscattering amplitudes treated The study of stripe-state physics in single-layer quantum
perturbatively are sufficiently weak in high Landau-levelsHall systems requires samples of exceptional quality, beyond
that our lowest-order calculations seem likely to describghat required for studies of fractional quantum Hall physics
what happens down to the lowest-temperatures available exvith the lower index partially filled Landau-levels which can
perimentally, at least when the Landau-levels are close tbe studied at higher magnetic fields. It is still not possible to
half-odd-integer filling factor per layer. Well away from  create bilayer quantum Hall systems with disorder that is as
=1/2, the Hartree-Fock theory suggests that the true groundgeak as that in single-layer quantum Hall systems. Never-
state is composed of bubbles rather than stripes, a transfaiheless, recent samples appear to be of a quality that opens
mation in the physics that our analysis does not recoginizehe physics of stripe states in bilayer systems up to experi-
In our view the approach we have taken should be trustethental study. We expect on the basis of this work, and of
when experimental evidence suggests that the physics at loprevious theoretical work, that the physics will be rich, with
energies is described by the stripe states of the Hartree-Fo¢Ruch potential for surprises beyond the properties antici-
theory. pated here.
We find here that the role of backscattering interactions is
quite different in the bilayer case compared to the single-
layer case. At very large layer separations, the single-layer
case in which stripe state physics occurs down to very low The authors are grateful for helpful and stimulating inter-
temperatures fow~1/2 is recovered. However, already for actions with Dave Allen, Alan Dorsey, Rene €oHerb Fer-
layer separations-10¢, we find that interlayer backscatter- tig, Eduardo Fradkin, Steve Kivelson, Tom Lubensky, Tilo
ing interactions which drive the system toward a state withStroh, Alexei Tsvelik, and Carlos Wexler. Work in Austin
spontaneous interlayer phase coherence along the edges be&s supported by the National Science Foundation under
come important and lead to a state with a substantial charg@rant No. NSF-DMR-0115947. Work in Santa Barbara
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