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Self-consistent local equilibrium model for density profile and distribution of dissipative currents
in a Hall bar under strong magnetic fields

Kaan Güven and Rolf R. Gerhardts
Max-Planck-Institut fu¨r Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

~Received 8 October 2002; published 24 March 2003!

Recent spatially resolved measurements of the electrostatic-potential variation across a Hall bar in strong
magnetic fields, which revealed a clear correlation between current-carrying strips and incompressible strips
expected near the edges of the Hall bar, cannot be understood on the basis of existing equilibrium theories. To
explain these experiments, we generalize the Thomas-Fermi-Poisson approach for the self-consistent calcula-
tion of electrostatic potential and electron density intotal thermal equilibrium to alocal equilibriumtheory that
allows us to treat finite gradients of the electrochemical potential as driving forces of currents in the presence
of dissipation. A conventional conductivity model with small values of the longitudinal conductivity for integer
values of the~local! Landau-level filling factor shows that, in apparent agreement with experiment, the current
density is localized near incompressible strips, whose location and width in turn depend on the applied current.

DOI: 10.1103/PhysRevB.67.115327 PACS number~s!: 73.40.2c,73.50.Jt
de
d
e
a
n

to
th
ur
an
ga
on

p
f

sit
-
in
it
e
tr

s

o

a
e
g
ith

lts

th

n-
he

e

ith

n-

ing

m-
bly
arly
,
dy-

ry,
the
n-
ical

tic
I. INTRODUCTION

The question, where the current flows in a Hall bar un
quantum-Hall-effect~QHE! conditions, has been investigate
by many authors, and many controversial answers have b
given. Part of this controversy arises from the fact that, ap
from the total electric current density, different partial curre
densities can be defined which integrate to the same
current.1 Even in the thermodynamic equilibrium state wi
vanishing total current, quantum calculations yield finite c
rent densities which are related to the density variation
the energy dispersion of the two-dimensional electron
~2DEG! near the sample edges. Such current distributi
have been calculated using different approaches, from sim
Hartree-type approximations2 to sophisticated treatments o
exchange and correlation effects within a current-den
functional theory.3,4 Unfortunately, there is little experimen
tal information about the current-density distribution
samples with zero or small total current. Experiments w
high currents, of the order of the critical current for th
breakdown of the QHE, have shown that the current dis
bution depends strongly on the mobility of the sample,5 but
also on screening effects caused by nearby metallic gate6 or
mesoscopic inhomogeneities like arrays of antidots.7,8

Our present work is motivated by a recent series
experiments,9–11 in which a scanning force microscope12 is
used to measure the Hall-potential distribution across a H
bar under QHE conditions. The characteristics of the pot
tial distribution are found to change drastically with the ma
netic field applied perpendicularly to the sample, i.e., w
the Landau-level filling factorn. Typical experimental re-
sults for n;2 are reproduced in Fig. 1, and similar resu
have been obtained aroundn54.10 While for n values far
away from integers the potential varies linearly across
sample~‘‘type I’’ behavior, seen in Fig. 1 forn51.67, 1.76,
and 2.73! and for integer and slightly lower values a nonli
ear potential drop in a broad region in the middle of t
sample is observed~‘‘type II,’’ seen for 1.96&n&2.09), for
slightly larger than integern values the potential is flat in th
0163-1829/2003/67~11!/115327~8!/$20.00 67 1153
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center region and drops across two strips that move w
increasingn towards the sample edges~‘‘type III,’’ seen at
2.14<n<2.50). The position and width of these strips coi
cide with those of the incompressible strips10 that are ex-
pected to form in the sample due to the nonlinear screen
properties of the 2DEG in strong magnetic fields.13–15

The fact that the Hall voltage drops across the inco
pressible strips indicates that the current flows prefera
along these strips. Such a conjecture can be found in an e
paper by Chang.16 Self-consistent equilibrium calculations
which imposed a dissipationless Hall current as a thermo
namic boundary condition on the 2DEG in a Hall bar,17,18

could, however, not confirm this conjecture. On the contra
the current-density profile was found to extend over
whole sample width and to follow closely the electro
density profile. On the other hand, there is a simple class

FIG. 1. Measured Hall-potential profile for different magne
fields around filling factorn52, after Ref. 10.
©2003 The American Physical Society27-1
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argument supporting Chang’s conjecture. If we describe
magnetotransport in the inhomogeneous Hall bar by a lo
Ohm’s law with a position-dependent resistivity tensorr̂, we
find that the current density is largest where the longitudi
resistivity is smallest, i.e., along the incompressible strips
we assume thatr̂(n) depends on the local filling factor in th
same manner as for a homogeneous sample. Such a cla
local magnetotransport model has previously been use
explain, for inhomogeneous samples, a finite width of qu
tum Hall plateaus without the assumption of localized sta
and to simulate the magnetic-field dependence of Hall-t
voltages in Hall bars with internal contacts.19,20 More re-
cently such a local model has also proved useful for
understanding of the current and electric-field distribution
antidot systems close to the breakdown of the QHE.8,21

Since the dissipative nonequilibrium current will lead to
position-dependent electrochemical potential, which chan
the equilibrium electron-density and electrostatic-poten
distribution, we have to generalize the Thomas-Fer
Poisson scheme for the self-consistent calculation of the
ter to include the current-induced changes. This will be do
in Sec. II. Typical results obtained from this approach
presented in Sec. III. In Sec. IV we will discuss the mo
relevant results in the light of the motivating experiments10

and we will comment on apparent limitations of our mod
Some preliminary results of this work have been presen
previously.22

II. MODEL

Following previous work14,18 we model the Hall bar as a
2DEG in the planez50, being restricted to the stripuxu
,d and translation invariant in they direction. Physically,
the confinement potential of the 2DEG is produced by
homogeneous background charge in the strip, so that the
sity of free charges has the formr(x)d(z) with

r~x!5e@n02n el~x!#u~d22x2!, ~1!

with n el(x) andn0 the surface densities of 2DEG and bac
ground, respectively. Electrostatic boundary conditions
fixed by the assumption of metallic half-planes of const
potentialsVL and VR in z50, x,2d, and inz50, x.d,
respectively, and by dielectric constantsk. and k, in the
half-spacesz.0 and z,0. With these assumptions, forz
Þ0 the electrostatic potentialV(x,z)5Im F(z) satisfies the
Laplace equation and can be written as the imaginary pa
an analytic functionF(z) of the complex variablez5x
1 iz, which is determined by its boundary conditions on t
real axis.23,13,14

We shall recall briefly the use of this electrostatic mod
for the description of the thermodynamic equilibriu
state15,18 and then propose an extension to current-carry
stationary nonequilibrium states.

A. Thermal equilibrium

To determinenel(x) we need the electrostatic potenti
V(x)5V(x,z50) in uxu<d. It can be written as the sum o
three terms,
11532
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V~x!5V0~x!1Vg~x!1VH~x!, ~2!

where

Vg~x!5
VL1VR

2
1

VR2VL

p
arcsinS x

dD ~3!

is determined by the potential values on the in-plane ga
and accompanied by compensating induced charges on
gates. The free charges determineV(x,z)5Im F(z) with18

~we write the potential as potential energy of an electron, i
including a factor2e)

dF

dz
5

i

pw~z!
E

2d

d

dx
Ad22x2

z2x

2pe

k̄
r~x!, ~4!

where w(z)5Ad22z2 is analytic except on cuts atz50,
uxu>d, andk̄5(k.1k,)/2. By integration one obtains th
~bare! confinement potential fornel(x)[0 as

V0~x!52E0A12S x

dD 2

, E05
2pe2

k̄
n0d. ~5!

The Hartree potential due to the 2DEG follows as

VH~x!5
E0

pn0
E

21

1

dj8KS x

d
,j8Dn el~j8d!, ~6!

with the kernel18

K~j,h!5 lnUA~12j2!~12h2!112jh

j2h U. ~7!

The electron density is, in turn, determined by the pot
tial V(x). We assume thatV(x) varies slowly on the scale o
typical quantum mechanical lengths, notably the magn
length l m5A\/mvc defined by the cyclotron frequencyvc
5eB/mc, and calculate the electron density in the Thom
Fermi approximation

n el~x!5E dED~E! f „E1V~x!2m* …, ~8!

where f (E)51/@11exp(E/kBT)# is the Fermi distribution
andD(E) the ~single particle! density of states~DOS! of the
2DEG. For the Hall bar in the absence of a magnetic fie
B50, we takeD(E)5D0u(E), with D05m/(p\2), while
for largeB we will use a~suitably broadened! Landau DOS.

Solving Eqs. ~2! and ~8! self-consistently forconstant
electrochemical potentialm* , we obtain the electron densit
and the electrostatic potential in the thermal equilibriu
state. The value ofm* determines the average electron de
sity and vice versa~for fixed T, B, etc.!.

B. Local equilibrium with imposed current

If a stationary net current is imposed on the Hall bar, t
leads to position-dependent current densities and ele
fields which, in the linear response regime, are interrela
by Ohm’s law. The relevant field driving the net current
the gradient of the electrochemical potential,“m* , which
7-2
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SELF-CONSISTENT LOCAL EQUILIBRIUM MODEL FOR . . . PHYSICAL REVIEW B67, 115327 ~2003!
vanishes in thermal equilibrium. In view of Eq.~8!, we
should expect that a position-dependentm* will lead to a
modified electron densitynel(x) and this, according to Pois
son’s equation, to a modified electrostatic potential. Our a
is to extend the self-consistent Thomas-Fermi-Poisson
proximation for the thermal equilibrium state to the statio
ary nonequilibrium situation defined by the imposed curre
To do so, we adopt the widely used assumption oflocal
equilibrium: thermodynamic variables are assumed to v
only slowly in space and to satisfy locally the same relatio
as they would do in a homogeneous thermodynamic equ
rium state. Then, for a given position-dependentm* (x), we
can use again Eqs.~2! and ~8! to calculateV(x) andnel(x).

We will now formulate a model that allows us to calcula
“m* , and thus the position-dependent electrochemical
tential up to a constant, provided the electron densitynel(x)
and the total current

I 5E
2d

d

dx jy~x,y! ~9!

are given. In the spirit of the Thomas-Fermi and the lo
equilibrium approximation, which assume that electrosta
potentials and thermodynamic variables vary on a sc
much larger than quantum lengths, we also assume tha
current densityj (r )5„j x(x,y), j y(x,y)… and the electric field
satisfy the local version of Ohm’s law,

r̂~r !j ~r !5E~r ![“m* ~r !/e, ~10!

where the resistance tensorr̂(r )5@ŝ„nel(r )…#21 is assumed
to depend on position only via the electron densitynel(r ).

Assuming a stationary situation with translation inva
ance iny direction ~i.e., r̂, j , andE are independent ofy),
we obtain from the Maxwell equations“• j (r )50 and“

3E(r )50 that the current densityj x across and the fieldEy
along the bar are independent ofx,

j x[0, Ey~x![Ey
0 . ~11!

With ryy5rxx5r l(x) the longitudinal and rxy52ryx
5rH(x) the Hall resistivity, we further get

j y~x!5
1

r l~x!
Ey

0 , Ex~x!5
rH~x!

r l~x!
Ey

0 . ~12!

From these results we obtain

m* ~x,y!5m0* 1eEy
0H y1E

0

x

dx8
rH~x8!

r l~x8!
J , ~13!

wherem0* occurs as an undefined constant, and from Eq.~9!
we get the normalization

Ey
05

I

E
2d

d

dx@1/r l~x!#

. ~14!

The new self-consistency problem for the stationary s
is completely defined, if we choose a model for the dep
11532
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dence of the conductivity tensor on the electron density.
solve it iteratively, we start with zero currentI 50 and solve
the old equilibrium problem. Then we take a fixed valueI
Þ0 and proceed as follows.

In the next step of the new iteration, we usenel(x) from
the previous step and calculate for the givenI the electro-
chemical potential~13!. Then we put this into Eq.~8!. To
compensate they-linear term, we add an identical term to th
electrostatic potential. This guarantees that the electron d
sity remains independent ofy. Then we solve the ‘‘old’’
problem, Eqs.~2! and ~8! with the modifiedx-dependent
electrochemical potential, self-consistently to determ
V(x) and nel(x), choosingm0* so that the average electro
density remains the same as without current. Convergenc
the ‘‘old’’ problem completes this step of the new iteratio
The steps of the new iteration are repeated until there
practically no further change ofnel(x).

We have performed these self-consistent calculations
two types of electrostatic boundary conditions. First w
started with a symmetric electron profile andVG5VR2VL
50, and assumed that an applied current does not chang
potentials of the in-plane gates. Then, in a strong magn
field and under an imposed current, we obtain an asymme
electron profile that is shifted towards one of the sam
edges. This is an obvious consequence of the Lorentz fo
on the drifting electrons. In this situation, the applied curre
leads to a change of the induced charges in the in-pl
gates.

Since ]V(x,z)/]z5Re@dF/dz#, we can use Eq.~4! to
calculate the induced charge density in the in-plane ga
r ind(x)5@ k̄/(2pe)#ReF8(x1 i01). For the total induced
chargeQR5*d

`dxr ind(x) in the right gate this yields

QR

en0d
52

2

pE21

1

djF12
n el~jd!

n0
GarctanA11j

12j
. ~15!

The corresponding resultQL for the left gate is obtained
from Eq. ~15! by replacingj under the square root by2j.
The sum of these induced charges compensates the
charges,QR1QL52*2d

d dxr(x), and their difference van-
ishes if the electron density is symmetric,n el(2x)
5n el(x).

The asymmetric density profile, resulting for the curre
carrying stationary state from the requirementVG50, leads
to QRÞQL . SinceQR1QL is kept constant, this means th
charge must flow from one gate to the other as the station
state is established. As an alternative electrostatic boun
condition, which may be more realistic in certain situation
we investigated the ‘‘floating gate’’ condition, requiring th
QR ~and thusQL) be kept constant and a finite voltage b
tween the in-plane gates build up.

III. RESULTS

A. Classical regime

In the classical regime of low magnetic field and hig
temperature, the magnetic field should not affect the therm
dynamic equilibrium state24 ~Bohr–van-Leeuwen theorem!.
7-3
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KAAN GÜVEN AND ROLF R. GERHARDTS PHYSICAL REVIEW B67, 115327 ~2003!
Therefore, we use the simple DOSD(E)5D0u(E), which
for zero temperature renders Eq.~6! as

VH~jd!5
1

aEbL

bR
dj8K~j,j8!@EF2V~j8d!#, ~16!

where the dimensionless parametersbL,bR define the
edges of the density profile,V(bLd)5V(bRd)5EF5m* (T
50), and where

a5pn0 /~E0D0!5pa0 /d, ~17!

with a05k̄\2/(2me2) the screening length.@Due to a mis-
print, in the denominator in Eq.~15! of Ref. 18 the factorp
is missing.# Together with Eq.~2!, Eq. ~16! represents a lin-
ear integral equation forV(jd) in the intervalbL<j<bR ,
which can easily be solved numerically. Solutions of th
linear equation are used as starting points for all numer
calculations at finite temperature and magnetic field, wh
lead to nonlinear integral equations that must be solved
eratively.

As has been shown in Ref. 18, with decreasing value
a screening becomes more effective, and a voltageVG ap-
plied across the bar leads to a shift and deformation of
equilibrium electron density profilenel(x). At finite tempera-
ture, the sharp edges of the zero-temperature profiles
smeared out.

In the nonequilibrium calculations, we use the Dru
model for the resistivity tensor,

r l~x!51/s0~x!, rH~x!5vctr l~x!, ~18!

with s0(x)5(e2t/m)nel(x). Then, according to Eq.~12!, the
current densityj y(x)5s0(x)Ey

0 is proportional to the elec
tron density, andEx(x)5vctEy

0 is constant. Strictly speak
ing the last result, which follows from the fundamental line
response equationj x(x)5sxx(x)@Ex2vctEy#[0, can be
justified from our local approach only at positionsx where
nel(x)Þ0. On the other hand, within our local equilibrium
model we expect the electrochemical potential to be cons
in regions where no~dissipative! current flows and where no
electrons are. Therefore we putEx(x)50 if nel(x)50. In
practical calculations we use

Ex~x!5vctEy
0u„nel~x!/n02e…, ~19!

with e51024, which defines effective edgesbL,bR of the
density profile bynel(bL)5nel(bR)5en0.

Typical results are shown in Fig. 2, where for the curre
carrying states the variation of the electrochemical poten
Dm* [m* (bR)2m* (bL)5(bR2bL)vctEy

0 , is fixed asuH

5Dm* /E050.2. This yields the currentI 5uH@2d/(bR

2bL)#(e2n̄el /mvc)E0 /e, where 2dn̄el5*2d
d dxnel(x) is

fixed, n̄el /n050.6278. We observed that, for fixed vanishin
gate voltage and 0,uH&0.2, the shift~and deformation! of
the density profile increases roughly linearly withuH . Under
floating gate conditions, foruH50.2 a voltageVR2VL
50.319E0 builds up between the in-plane gates. This
larger than the linear extrapolationuH@2d/(bR2bL)#E0 due
to the singular slopes of the self-consistent potential at
11532
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edges of the gates~see Fig. 2!. Figure 2 shows that, over th
whole range of finite density, the self-consistently calcula
total potentialV(x) follows very closely the linear position
dependence of the electrochemical potential. This obse
tion holds for both fixed-gate-voltage and floating-ga
boundary conditions. In the following we will consider on
the more realistic floating-gate-boundary conditions.

B. Quantum regime

For strong, quantizing magnetic fields we should use
suitable form of a broadened Landau DOS

D~E!5
gs

2p l m
2 (

n50

`

An~E!, ~20!

whereAn(E) is the spectral function of thenth Landau level
with energy eigenvalue«n5\vc(n11/2), and gs52 ac-
counts for spin degeneracy. The model to be used for
resistivity tensor should show the characteristic behav
known from the quantum Hall regime, notably~nearly! van-
ishing r l(x) at ~even! integer local filling factor n(x)
52p l mnel(x). Moreover, the approximations for the con
ductivity tensor and the DOS should satisfy certain cons
tency relations ~consequences of the equation
continuity!.27 However, before we address such sophistica
questions we want to present a very simple model.

1. Simplified model

First we follow previous work15,18 and consider the bare
Landau DOS, taking in Eq.~20! An(E)5d(«n2E). This
leads, in thermal equilibrium, to the appearance of inco
pressible strips of finite width at integer values of the loc
filling factor. The temperature dependence of these strips
been discussed in Ref. 15, and the dependence of pos

FIG. 2. ~a! Density profilenel(x) and~b! total potentialV(x) in
equilibrium ~gray lines! and with currentI}uH ~black lines! for
fixed gate voltageVR52VL50 ~solid line! and for floating gates
~dash-dotted lines!, and ~c! induced Hartree potentialsV(x;I )
2V(x,0) for both cases. The thin lines indicate the electrochem
potentialsm* (x). a50.01, bR52bL50.848.
7-4
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SELF-CONSISTENT LOCAL EQUILIBRIUM MODEL FOR . . . PHYSICAL REVIEW B67, 115327 ~2003!
and width of the strips on magnetic field and applied g
voltageVR2VL has been investigated in Refs. 18 and 25
the present Hall bar geometry. To investigate the effect o
imposed current, we first use a simplistic model for the
sistance tensor, which has been used successfully for the
culation of the current density in an antidot system in
strong magnetic field.21,26For syx(x)52sxy(x)5sH(x) we
take

sH~x!5~e2/h!n~x!, ~21!

which yields the correct values at integer filling factors, b
no quantum Hall plateaus. To simulate the behavior ofsxx
5syy5s l near integer fillingn52, we approximate21 the
longitudinal conductivity as

s l~x!5sH~x!$e1@22n~x!#2/4%, ~22!

with a small but finite positive valuee (;1023) to avoid
divergencies. This describes correctly thatr l(x)}s l(x) be-
comes very small at the incompressible strips with local fi
ing factorn(x)52, although the analytical dependences
nÞ2 are not correct@see Fig. 4~b! below#.

Nevertheless, this simple model is able to reproduce c
acteristic features observed in the experiment10 as is shown
in Fig. 3. The current flows preferably along the incompre
ible strips, wheren(x)52 and the longitudinal resistivity is
smallest, and there the gradient ofm* (x) is largest. Due to
the Thomas-Fermi-Poisson self-consistency requirement
total potentialV(x) is forced to followm* (x) closely, so that
the current-induced change of the electron density profil
small ~which keeps the change of electrostatic energy sm!.

FIG. 3. ~a! Self-consistent potentialV(x) and ~b! normalized
densityn(x) for zero~thick solid gray! and finite~thick solid black
lines! current, calculated for model~22! with e50.002. a! also
shows the correspondingm* (x) ~dash-dotted lines! and the Landau
levelsV(x)1V(n11/2) ~dashed lines!, and~b! the current density
~long-dashed line, arbitrary units!. ~c! shows the current-induce
change of the self-consistent potential~black!. Model parameters
~see text! are a50.02, V[\vc5E0/200, kBT/V50.04, UH

[Dm* 53V.
11532
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The induced DV(x) follows closely m* (x) and varies
mainly in the region of incompressible strips.

2. Gaussian-level broadening

As a more realistic model for the longitudinal conducti
ity we use the Gaussian model27

s l5
e2gs

h E
2`

`

dEF2
d f

dEG (
n50

` S n1
1

2D @ApGAn~E!#2,

~23!

with the spectral function

An~E!5
exp~2@«n2E#2/G2!

ApG
, ~24!

which then, for consistency reasons, should also be use
the DOS, Eq.~20!. An alternative, which leads to qualita
tively the same results, would be to use the self-consis
Born approximation20,28which would replace the normalize
Gaussians by normalized half-ellipses. To avoid diverg
cies, we replaces l of Eq. ~23! for n.1 by max(sl ,sH/104).

Together with n52p l m
2 *dE f(E2m)D(E), Eqs. ~20!,

~23!, and ~24! can be used to calculates l as function ofn.
Results are plotted in Fig. 4 for several temperatures.
high temperatureskBT*0.3\vc , one gets the modified
Drude result s l5sH /(vctgauss) with sH5(e2/h)n and
\/tgauss5Ap/2G.

To proceed, we first investigate the effect of the Landa
level broadeningG on the existence and width of the incom
pressible strips. Results of self-consistent calculations
shown in Fig. 5. The width of the incompressible stri
shrinks with increasing temperature and with increasing le
broadening. ForkBT/\vc&0.04 and G/\vc&0.1 clearly
visible incompressible strips exist. Thus, collision broade

FIG. 4. Longitudinal conductivitys l vs filling factor n for the
Gaussian model~23! with G/\vc50.035 for ~a! high and~b! low
values of the reduced temperaturet5kBT/\vc . The thick solid
curves coincide with the limits for high temperature@kBT.\vc ,
~a!# and zero temperature@kBT!G, ~b!#. The long-dashed curve in
~b! indicates the model~22!.
7-5
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KAAN GÜVEN AND ROLF R. GERHARDTS PHYSICAL REVIEW B67, 115327 ~2003!
ing of the Landau DOS does not change the screening p
erties of the 2DEG qualitatively, provided the width of th
Landau levels remains small enough as compared with
cyclotron energy.

Next we perform the self-consistent calculation of t
charge and current densities and of the electrostatic and
trochemical potentials for the Gaussian model. To achi
convergence of the nested self-consistency loops for g
values of temperatureT, cyclotron energyV[\vc , and to-
tal current I}UH[Dm!, we proceed as follows. First w
define the density profile by solving the linear integral eq
tion @Eqs.~2! and ~8!# for T50, B50, andI 50. Then we
raise, still forB50 andI 50, the temperature stepwise up
the valuekBT50.3V and solve at each step the nonline
problem iteratively using a Newton-Raphson procedure.
this high temperature all quantum effects are smeared
and we can replace theB50 DOS by the Gaussian Landa
DOS corresponding to the requiredV value without conver-
gence problems. Now we raise stepwise the current until
required value is reached. This calculation is equivalen
the solution of the Drude problem discussed above. W
self-consistency is achieved, we lower the temperature s
wise until the required~low! value is reached. In each ste
we iterate until full self-consistency is achieved, using t
previous potential profile and the conductivity tensor w
the density profile of the previous step as starting conditio

Figure 6 shows the self-consistent results for several
termediate temperatures. At the highest temperature~thin
solid lines! one observes Drude-like behavior: the curre
density @Fig. 6~b!# is proportional to the electron densit
@note that Fig. 6~a! shows the latter only near local filling
factor n(x)52, while n(0)52.25] and the electrostatica
and electrochemical potentials increase nearly linearly ac
the 2DEG. With decreasing temperature the 2DEG deve
incompressible strips with low longitudinal resistivity an
the current density is increasingly confined to the inco

FIG. 5. Density profile@~a!, ~b!# and potential@~c!, ~d!# calcu-
lated with a Gaussian DOS;~b! and~d! show results in the region o
the incompressible strip for several values of temperatu
kBT/\vc5t/50, and level broadening,g5G/\vc . The solid and
dash-dotted curves are plotted in~a! and ~c! for one-half of the
symmetric sample (a50.02, \vc /E050.005).
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pressible regions. Simultaneously the potentials develo
steplike behavior with variation across the incompressi
strips and plateaus in the compressible regions.

To evaluate the current-induced electrostatic poten
DV, we perform the self-consistent calculation with a
without applied current and defineDV(x)5V(x;I ,B,T)
2V(x;0,B,T). A typical result is shown in Fig. 7. The mai
difference between this result and Fig. 3 is that now
current density is confined more strictly to a narrow regi
along the incompressible strips~see dashed lines in th
middle panels of the figures!. The more rapid decrease of th
current density from the large values in the incompress
strips to the small values in the compressible regions
caused mainly by the much steeper increase ofs l(n) with

,

FIG. 6. Self-consistent results for~a! filling factor n(x), ~b!
current densityj y(x), and~c! electrostatic and electrochemical po
tentials,V(x) and m!(x), at three temperaturest5kBT/\vc , cal-
culated from the Gaussian model (a50.02, \vc /E050.0053,
G/\vc50.03, UH5\vc).

FIG. 7. Same Fig. 3, but withs l calculated from the Gaussia
model ~23! instead of Eq.~22!, and only results forUH[Dm*
5V are shown (G/\vc50.03, all other parameters as in Fig. 3!.
7-6
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increasingun22u @see Fig. 4~b!#. The ratio between the val
ues of the current density in the compressible region
those in the incompressible strips is also smaller, since
used nearn52 a smaller cutoffe5min@sl(n)/sH(n)# in the
Gaussian model (e51024) than in model ~22! (e52
31023). As a consequence, the variation of the elect
chemical potential~dash-dotted line of upper panel! and of
the current-induced electrostatic potential~lower panel! is
practically confined to the region of the incompressib
strips.

The width and position of the incompressible strips a
thus the locations of strong variation of the current-induc
potential change strongly with varying magnetic field, i.
with varying filling factors of the Landau levels. In Fig. 8 w
show results for selected values of the magnetic field, le
ing to filling factors in the center of the Hall bar that va
betweenn(0)51.62 andn(0)54.52. The temperature is a
ways chosen so low that the incompressible strips are
developed (kBT/\vc&0.04).

These results are easily understood. For\vc*5.7
31023E0 no incompressible strips exist,n(x),2 for all
uxu,d, and the current density is largest near the cente
the sample, where the filling factor is largest and the lon
tudinal resistivity (r l}s l) is smallest. Therefore the gradie
of DV(x) is largest in the center of the Hall bar. Ifn(0)
,2 is very close to 2,r l(x50) is very small, the curren
density has a sharp maximum in the center, and the pote
profile has a strongly nonlinear appearance~‘‘type II’’ behav-
ior!. If n(0) becomes considerably smaller than 2,r l(x) has
a broad maximum nearx50 and the current density profil
follows essentially the density profile, similar to the Dru
case. This leads to an essentially linear potential pro
~‘‘type I’’ !, as is seen in the top curve of Fig. 8 for\vc
57.031023E0, with n(0)51.62.

For slightly lower magnetic field, an incompressible st
with n(0)52 and~nearly! vanishingr l occurs in the center

FIG. 8. Current-induced partDV(x) of the self-consistently cal-
culated electrostatic potential in units of the cyclotron energyV
5\vc , for several values ofV. The numbers in the figure indicat
(V/E0)3103, those on the right-hand side the corresponding v
ues ofn(0). Forclarity, the traces are shifted vertically by an arb
trary amount.
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Then the variation ofDV(x) is confined essentially to this
strip ~type II!. With still decreasing\vc this strip splits into
two, which move with decreasing magnetic field towards
edges of the Hall bar. The electrochemical potential a
~apart from some minor edge effects! the current-induced
electrostatic potential then drop only across these inco
pressible strips~‘‘type III’’ !, as is seen in Fig. 8 for the
curves with 2.04<n(0)<3.77. As with further decreasing
magnetic field the filling factor in the center region com
close to 4 and thusr l(x50) becomes small, a considerab
part of the current flows through this center region. Since
the same time the strips with local filling factor 2 becom
very narrow, forn(0)&4 a considerable part of the induce
potential drops in a broad center region~type II!. For n(0)
.4 the center region becomes again compressible, with c
stant DV(x), and the incompressible strips withn(x)54,
across which now most of the Hall voltage drops, mo
away from the center~type III!. The lowest trace in Fig. 8
shows such a situation with tiny structures at the edges of
electron density profile which are due to the outer inco
pressible strips with local filling factor 2.

IV. CONCLUSIONS

Our results for the current-induced Hall-potential profi
~Fig. 8! reproduce the characteristic features of the exp
ment of Ahlswedeet al.10 ~Fig. 1!, although in the experi-
ment spin splitting is resolved whereas we assumed spin
generacy. We therefore do not attempt a quantitat
comparison. We also plot the electrostatic potential ene
V(x)52ef(x) instead off(x), and we apparently conside
the direction of the imposed current~or of the applied mag-
netic field! opposite to that considered in the experiment.

If the filling factorsn(0) in the center of the sample ar
close to, but below, integer values, the potential drops i
nonlinear fashion in a broad center region. Forn(0) values
slightly larger than the integer values, the potential is co
stant in the center region and drops exclusively across
incompressible strips. Of course, our results show this ch
acteristic behavior only near even integer values ofn(0),
since we have neglected spin splitting, whereas in the exp
ment spin splitting is resolved and this behavior occurs a
near small odd-integer values ofn(0).

This characteristic dependence of the Hall-potential p
file on the magnetic field cannot be explained by the pre
ous calculations assuming dissipationless Hall currents17,18,25

and emphasizes the importance of dissipation. From the
qualitative agreement of our results with the experimen
data we conclude that our local equilibrium approach, wh
combines dissipative transport with screening effects and
lows us to calculate electron and current density as wel
electrostatic and electrochemical potentials self-consiste
contains most of the relevant physics. There is, howe
room and need for improvements.

One desirable improvement concerns the effectivenes
narrow incompressible strips. To avoid numerical diverge
cies, we used a cutoffe•sH for s l at even integer values o
n, with e51024. If we take the limite→0 and sufficiently
low temperatures,r l(x) becomes exponentially small in th

l-
7-7
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incompressible strips. Then, according to Eq.~14!, the elec-
tric field along the Hall bar and, therefore, the longitudin
resistance become exponentially small whenever an inc
pressible strip exists, and not only for a limited interval
magnetic field values in a plateau region of the QHE.
eliminate this unreasonable behavior, we should includ
mechanism~other than the simple cutoff! that limits the cur-
rent density in, and thereby the voltage drop across, nar
incompressible strips. Such a mechanism could make the
compressible strips with local filling factorn(x)52 ineffec-
tive for magnetic fields withn(0)*3. This would turn the
‘‘type III’’ curves with n(0)53.23 and 3.77 in Fig. 8 into
quasilinear ‘‘type I’’ curves and would eliminate the tin
edge-near structures in the three lowest curves. Both cha
would improve the agreement with the experiment.

Several physical effects may lead to such a mechan
One is the nonlocal relation between the current density
the driving electric field, which we have approximated by
strictly local one. Another one is Joule heating, which
most effective where the current density is high and m
destroy narrow incompressible strips, i.e., lead to a lo
breakdown of the QHE. A systematic treatment of heat
effects will require the consideration of energy balance a
heat conduction, as has recently been pointed out by Ake29

in his hydrodynamic approach to quantum Hall systems
the breakdown regime. A consideration of the heating p
cesses relevant under QHE conditions~e.g., ‘‘quasielastic
inter-Landau-level scattering’’! ~Refs. 30 and 31! may even
ro

,

rl,

rl,

E

l.

v.

v.
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demand a treatment beyond a local hydrodynamic appr
mation and require a more microscopic nonlocal descript
of stationary current-carrying nonequilibrium states interm
diate between the zero-resistance quantum Hall state an
finite-resistance breakdown state.32 Such a microscopic ap
proach to heating and resistive processes may also ope
possibility of a unified description of dissipative curren
which we have considered phenomenologically in t
present paper, and nondissipative equilibrium curre
which we have mentioned in the Introduction but complet
neglected in the calculations.

Finally we want to mention that in our model calculatio
the imposed current leads to a broadening of the incompr
ible strips on one side of the sample and to a narrowing
the corresponding strips on the opposite side~of course the
strips exchange their role if we invert the direction of t
current!. This asymmetry is clearly seen in Fig. 8 and c
also be observed in the experiment;10 see Fig. 1. A systematic
investigation of this effect may be of interest.
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