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Self-consistent local equilibrium model for density profile and distribution of dissipative currents
in a Hall bar under strong magnetic fields
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Recent spatially resolved measurements of the electrostatic-potential variation across a Hall bar in strong
magnetic fields, which revealed a clear correlation between current-carrying strips and incompressible strips
expected near the edges of the Hall bar, cannot be understood on the basis of existing equilibrium theories. To
explain these experiments, we generalize the Thomas-Fermi-Poisson approach for the self-consistent calcula-
tion of electrostatic potential and electron densityatal thermal equilibrium to docal equilibriumtheory that
allows us to treat finite gradients of the electrochemical potential as driving forces of currents in the presence
of dissipation. A conventional conductivity model with small values of the longitudinal conductivity for integer
values of the(local) Landau-level filling factor shows that, in apparent agreement with experiment, the current
density is localized near incompressible strips, whose location and width in turn depend on the applied current.
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[. INTRODUCTION center region and drops across two strips that move with
increasingv towards the sample edgé&ype IIl,” seen at
The question, where the current flows in a Hall bar undei2.14< v=<2.50). The position and width of these strips coin-
quantum-Hall-effectQHE) conditions, has been investigated cide with those of the incompressible stfibshat are ex-
by many authors, and many controversial answers have bed@ected to form in the sample due to the nonlinear screening
given. Part of this controversy arises from the fact that, apar@roperties of the 2DEG in strong magnetic fietds:®
from the total electric current density, different partial current ~ The fact that the Hall voltage drops across the incom-

densities can be defined which integrate to the same totRressible stripg indicates that_ the current flows preferably
current® Even in the thermodynamic equilibrium state with &0ng these strips. Such a conjecture can be found in an early

vanishing total current, quantum calculations yield finite cur-p"#_)er: by Chadnc}).dSeIf-copS|IstentHe(qllu|I|br|um calculhat|ons(,j
rent densities which are related to the density variation and/N'c! |rbnposde a 'Ssd'F:.at'on est; ZD(I:EUG”?”I ai'a"t fé{go y-
the energy dispersion of the two-dimensional electron gagamlc oundary condition on the 2 Inamna !
(2DEG) near the sample edges. Such current distributionCOUId' however, not confirm this conjecture. On the contrary,
. e . e current-density profile was found to extend over the
Eiavf be(;:n calculatec_i us;p%;ilfferer;]t_atpprto?jc?es,tfromtsm}p hole sample width and to follow closely the electron-
efghrsségp:ngpggﬁglgzcl)% e?'fesgrz L?/i'ltﬁ?nea (r:leJ?r;?r:jZnZit ;iensity profile. On the other hand, there is a simple classical
functional theory** Unfortunately, there is little experimen-
tal information about the current-density distribution in
samples with zero or small total current. Experiments with

1.76
high currents, of the order of the critical current for the M‘
breakdown of the QHE, have shown that the current distri- .
bution depends strongly on the mobility of the santblrjt __,.M

also on screening effects caused by nearby metallic Yates .00

2
mesoscopic inhomogeneities like arrays of antiddts. W

V=167

Our present work is motivated by a recent series of
experiments; ! in which a scanning force microscopes
used to measure the Hall-potential distribution across a Hall
bar under QHE conditions. The characteristics of the poten-
tial distribution are found to change drastically with the mag-
netic field applied perpendicularly to the sample, i.e., with
the Landau-level filling factow. Typical experimental re-
sults for v~2 are reproduced in Fig. 1, and similar results
have been obtained around=4.° While for v values far
away from integers the potential varies linearly across the

HALL POTENTIAL
N
3

sample(“type |” behavior, seen in Fig. 1 for=1.67, 1.76, 0 5 4 6 8 10

and 2.73 and for integer and slightly lower values a nonlin- TIP POSITION (um)

ear potential drop in a broad region in the middle of the

sample is observefitype Il,” seen for 1.96<sv=<2.09), for FIG. 1. Measured Hall-potential profile for different magnetic

slightly larger than integer values the potential is flat in the fields around filling factow=2, after Ref. 10.
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argument supporting Chang’s conjecture. If we describe the V(X)=V(X) +Vg(X) +Vy(x), )
magnetotransport in the inhomogeneous Hall bar by a Iocavlv

Ohm's law with a position-dependent resistivity tenpomwe

find that the current density is largest where the longitudinal V +Vg Vg—V, (X
resistivity is smallest, i.e., along the incompressible strips, if V(%)= > arcsn‘( a)
we assume that(») depends on the local filling factor in the

same manner as for a homogeneous sample. Such a classittadetermined by the potential values on the in-plane gates
local magnetotransport model has previously been used t#@nd accompanied by compensating induced charges on the
explain, for inhomogeneous samples, a finite width of quangdates. The free charges determiigx,z)=ImF(¢) with'®

tum Hall plateaus without the assumption of localized state§We write the potential as potential energy of an electron, i.e.,
and to simulate the magnetic-field dependence of Hall-typéncluding a factor—e)

voltages in Hall bars with internal contacts?® More re-

()

cently such a local model has also proved useful for the d_':: i fd d Vd“—x? 2me (x) (4)
understanding of the current and electric-field distribution in A mw(0)) ¢ & —x « PR

antidot systems close to the breakdown of the GHE.

Since the dissipative nonequilibrium current will lead to awherew(£)=yd“—{* is analytic except on cuts a=0,
position-dependent electrochemical potential, which changel|=d, andx= (- + «x.)/2. By integration one obtains the
the equilibrium electron-density and electrostatic-potentialbare confinement potential fong(x)=0 as
distribution, we have to generalize the Thomas-Fermi-

Poisson scheme for the self-consistent calculation of the lat- x\? 2re?

ter to include the current-induced changes. This will be done Vo(X)=—Eo\ 1~ a) ' EOZT”Od- ®
in Sec. Il. Typical results obtained from this approach are

presented in Sec. Ill. In Sec. IV we will discuss the mostThe Hartree potential due to the 2DEG follows as
relevant results in the light of the motivating experimefits, E 1 y

and we will comment on apparent limitations of our model. _ o el N e '

Some preliminary results of this work have been presented V()= wnofldg K(d N )ne,(g d), ©)
previously??

with the kernel®
Il. MODEL

VI-)(1- ) +1- &7
Following previous work*!®we model the Hall bar as a

&= h “

2DEG in the planez=0, being restricted to the strifx|
<d and translation invariant in the direction. Physically, The electron density is, in turn, determined by the poten-
the confinement potential of the 2DEG is produced by dial V(x). We assume that(x) varies slowly on the scale of
homogeneous background charge in the strip, so that the defypical quantum mechanical lengths, notably the magnetic
sity of free charges has the forp{x) §(z) with lengthl,,= VAi/mw. defined by the cyclotron frequenay,

=eB/mc, and calculate the electron density in the Thomas-

p(x)=e[Ng—n ¢(x)]0(d*—x?), (1 Fermi approximation

with n 4(x) andng the surface densities of 2DEG and back-

ground, respectively. Electrostatic boundary conditions are ne,(x)zf dED(E)f(E+V(x)—u*), (8
fixed by the assumption of metallic half-planes of constant

potentialsV, andVg in z=0, x<—d, and inz=0, x>d,  where f(E)=1[1+expE/kgT)] is the Fermi distribution
respectively, and by dielectric constants and x. in the  andD(E) the (single particlg density of state$DOS) of the
half-spacesz>0 andz<0. With these assumptions, far 2DEG. For the Hall bar in the absence of a magnetic field,
#0 the electrostatic potenti&dl(x,z)=Im F({) satisfies the B=0, we takeD(E)=Dy6(E), with Do=m/(7#2), while
Laplace equation and can be written as the imaginary part dbr large B we will use a(suitably broadengd_andau DOS.

K(¢, 71)=|n‘

an analytic functionF({) of the complex variable/=x Solving Egs.(2) and (8) self-consistently forconstant
+iz, which is determined by its boundary conditions on theelectrochemical potentialt*, we obtain the electron density
real axis?>1314 and the electrostatic potential in the thermal equilibrium

We shall recall briefly the use of this electrostatic modelstate. The value oft* determines the average electron den-
for the description of the thermodynamic equilibrium sity and vice versdfor fixed T, B, etc).
staté®>!® and then propose an extension to current-carrying

stationary nonequilibrium states. B. Local equilibrium with imposed current

If a stationary net current is imposed on the Hall bar, this
leads to position-dependent current densities and electric

To determineng(x) we need the electrostatic potential fields which, in the linear response regime, are interrelated
V(x)=V(x,z=0) in |x|=<d. It can be written as the sum of by Ohm’s law. The relevant field driving the net current is
three terms, the gradient of the electrochemical potenti®ly*, which

A. Thermal equilibrium
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vanishes in thermal equilibrium. In view of E@8), we
should expect that a position-dependerit will lead to a

PHYSICAL REVIEW B7, 115327 (2003

dence of the conductivity tensor on the electron density. To
solve it iteratively, we start with zero curreht0 and solve

modified electron densitgi(Xx) and this, according to Pois- the old equilibrium problem. Then we take a fixed value
son’s equation, to a modified electrostatic potential. Our aim#*0 and proceed as follows.

is to extend the self-consistent Thomas-Fermi-Poisson ap- In the next step of the new iteration, we usg(x) from
proximation for the thermal equilibrium state to the station-the previous step and calculate for the givethe electro-
ary nonequilibrium situation defined by the imposed currentchemical potential13). Then we put this into Eq(8). To

To do so, we adopt the widely used assumptionlazfal

compensate thglinear term, we add an identical term to the

equilibriumt thermodynamic variables are assumed to varyelectrostatic potential. This guarantees that the electron den-
only slowly in space and to satisfy locally the same relationssity remains independent of. Then we solve the “old”
as they would do in a homogeneous thermodynamic equilibproblem, Egs.(2) and (8) with the modified x-dependent

rium state. Then, for a given position-dependgfit(x), we
can use again Eq$2) and(8) to calculateV(x) andng(x).

electrochemical potential, self-consistently to determine
V(x) andng(x), choosingug so that the average electron

We will now formulate a model that allows us to calculate density remains the same as without current. Convergence of
Vu*, and thus the position-dependent electrochemical pothe “old” problem completes this step of the new iteration.

tential up to a constant, provided the electron densjifx)
and the total current

d
| = fﬁddey(X,y) 9

are given. In the spirit of the Thomas-Fermi and the local
equilibrium approximation, which assume that electrostati
potentials and thermodynamic variables vary on a scal%
much larger than quantum lengths, we also assume that tr&

current density(r) = (jx(X,y),jy(x,y)) and the electric field
satisfy the local version of Ohm’s law,

p(Ni(N=E(r)=Vu*(r)le, (10)

where the resistance tensefr) =[ a(ng(r))]~* is assumed
to depend on position only via the electron densigyr).

The steps of the new iteration are repeated until there is
practically no further change af,(x).

We have performed these self-consistent calculations for
two types of electrostatic boundary conditions. First we
started with a symmetric electron profile an@g=Vg—V,
=0, and assumed that an applied current does not change the

otentials of the in-plane gates. Then, in a strong magnetic
ield and under an imposed current, we obtain an asymmetric
lectron profile that is shifted towards one of the sample
ges. This is an obvious consequence of the Lorentz force
on the drifting electrons. In this situation, the applied current
leads to a change of the induced charges in the in-plane
gates.

Since dV(x,z)/dz=Rg dF/d{], we can use Eq(4) to
calculate the induced charge density in the in-plane gates,

pmd(x)=[;/(277e)]ReF’(x+i0*). For the total induced

Assuming a stationary situation with translation invari- chargeQg= [ ;dxpi,(X) in the right gate this yields

ance iny direction (i.e., p, j, andE are independent of),
we obtain from the Maxwell equationg-j(r)=0 andV
X E(r)=0 that the current density, across and the fiel&,
along the bar are independent>of

jx=0, Ey(x)=Ej. (12)
With  pyy=pxx=pi(X) the longitudinal and py,=—pyy
=pn(X) the Hall resistivity, we further get
. 1 PH(X)
X)=——E%, E(x)= EC. 12
WO=oG S BT 32
From these results we obtain
X N
M*(X,Y):M3+9E8|y+f dX’&,)], (13
o p(x")

whereug occurs as an undefined constant, and from(Ex.
we get the normalization

Ey=—rg——. (14)
[ a0
—d

Q21 [i+¢
m = ;fﬁldg arcta rg (15)

The corresponding resul®, for the left gate is obtained
from Eq. (15) by replacingé under the square root by ¢.
The sum of these induced charges compensates the free
chargesQr+ Q. = —f‘idpr(x), and their difference van-
ishes if the electron density is symmetria) o(—X)
=N ¢(X).

The asymmetric density profile, resulting for the current-
carrying stationary state from the requiremsfy=0, leads
to Qr# Q. . SinceQgr+ Q. is kept constant, this means that
charge must flow from one gate to the other as the stationary
state is established. As an alternative electrostatic boundary
condition, which may be more realistic in certain situations,
we investigated the “floating gate” condition, requiring that
Qr (and thusQ,) be kept constant and a finite voltage be-
tween the in-plane gates build up.

1— Ne(éd)
No

Ill. RESULTS
A. Classical regime

In the classical regime of low magnetic field and high

The new self-consistency problem for the stationary statéemperature, the magnetic field should not affect the thermo-
is completely defined, if we choose a model for the dependynamic equilibrium stafé (Bohr—van-Leeuwen theorem
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Therefore, we use the simple DA E)=Dy60(E), which
for zero temperature renders H) as

1 (Br
Vued)= 5 [ de k(eI E VgD, a9

where the dimensionless parametg8s<pBr define the
edges of the density profil&/(8,d)=V(Brd) =Eg=u* (T
=0), and where
a:’ﬂnol(EoDo):Waold, (17)
with ap= «#%/(2me?) the screening lengtiDue to a mis-
print, in the denominator in Eq15) of Ref. 18 the factorr
is missing] Together with Eq(2), Eq. (16) represents a lin-
ear integral equation fov(&d) in the interval 8, <é< g,
which can easily be solved numerically. Solutions of this

1.0
0.8
= 0.6

304

VIE,

AVIE,, Au’

linear equation are used as starting points for all numerical

calculations at finite temperature and magnetic field, whic
lead to nonlinear integral equations that must be solved i
eratively.

As has been shown in Ref. 18, with decreasing values o

a screening becomes more effective, and a voltdgeap-
plied across the bar leads to a shift and deformation of th
equilibrium electron density profileg(X). At finite tempera-
ture, the sharp edges of the zero-temperature profiles a
smeared out.

In the nonequilibrium calculations, we use the Drude
model for the resistivity tensor,

pi(X)=1ao(X), pu(X)=wcTp(X), (18)

with oo(x) = (€27/m)ng(x). Then, according to Eq12), the
current densityj y(x)=ao(x)E§: is proportional to the elec-
tron density, ancEx(x)szrES is constant. Strictly speak-
ing the last result, which follows from the fundamental linear
response equatio,(X) = oy(X)[Ex— w.7E,]=0, can be
justified from our local approach only at positiornsvhere
ne(x)#0. On the other hand, within our local equilibrium

0.2
0.0
0.0
-0.1
-0.2
-0.3
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h FIG. 2. (a) Density profileng(x) and(b) total potentialV(x) in
t_equilibrium (gray lineg and with currentlecuy (black lines for

fixed gate voltage/gr=—V_ =0 (solid line) and for floating gates

(fdash-dotted lines and (c) induced Hartree potential¥/(x;l)
—V(x,0) for both cases. The thin lines indicate the electrochemical
8otentials,u* (X). «=0.01, Bg=—B.=0.848.

edges of the gatdgsee Fig. 2 Figure 2 shows that, over the
Whole range of finite density, the self-consistently calculated
total potentialV(x) follows very closely the linear position
dependence of the electrochemical potential. This observa-
tion holds for both fixed-gate-voltage and floating-gate-
boundary conditions. In the following we will consider only

the more realistic floating-gate-boundary conditions.

B. Quantum regime

For strong, quantizing magnetic fields we should use a
suitable form of a broadened Landau DOS

model we expect the electrochemical potential to be constant

in regions where nddissipative current flows and where no
electrons are. Therefore we pHt(x)=0 if ng(x)=0. In
practical calculations we use

Ex(X) = 0, 7E)0(Ne(X)/Ng— €), (19

with e=10"4, which defines effective edgés <bg of the
density profile byng(b,)=ng(bg) = eng.

Au*=p* (bg)— u* (b)) =(bgr— bL)wCTES, is fixed asuy
=Au*/Ey=0.2. This yields the curreni =uy[2d/(bg
—b)](e’ng/mw.)Ey/e, where Zine|=f‘iddxne,(x) is
fixed, ng/ny=0.6278. We observed that, for fixed vanishing
gate voltage and @ uy=<0.2, the shifttand deformationof
the density profile increases roughly linearly with . Under
floating gate conditions, fouy=0.2 a voltageVg—V,

larger than the linear extrapolatiany[ 2d/(bg—b, ) JE, due

D(E)=

2
27l

%S Al
n=0

E).

(20

whereA,(E) is the spectral function of theth Landau level
with energy eigenvalue,=%w (n+1/2), andgs=2 ac-
counts for spin degeneracy. The model to be used for the
resistivity tensor should show the characteristic behavior
known from the quantum Hall regime, notakyearly van-
ishing p;(x) at (even integer local filling factor »(x)
=27l ,ne(X). Moreover, the approximations for the con-

Typical results are shown in Fig. 2, where for the current-ductivity tensor and the DOS should satisfy certain consis-
carrying states the variation of the electrochemical potentiakency

relations (consequences of

the equation

of

continuity).?” However, before we address such sophisticated
questions we want to present a very simple model.

1. Simplified model

First we follow previous work*'® and consider the bare
Landau DOS, taking in Eq20) A,(E)=46(e,—E). This
leads, in thermal equilibrium, to the appearance of incom-
=0.31%, builds up between the in-plane gates. This ispressible strips of finite width at integer values of the local
filling factor. The temperature dependence of these strips has
to the singular slopes of the self-consistent potential at th&een discussed in Ref. 15, and the dependence of position

115327-4



SELF-CONSISTENT LOCAL EQUILIBRIUM MODEL FOR.. .. PHYSICAL REVIEW B7, 115327 (2003

. a) screeneld potential S
32 | B~ —-— electro-chem. pot. e 4
G 33 | 1
S 33
34 L 4
-35 X A . 7 =
20 1 b) \ V(x), Uy=0 i
5 | \\ ——- current density / ||
10f [} Ny 4 AN
/ o -7 \
/ \
0.0 < : : : >~
a 1.0 C) 7]
< 00 S
< -10 b
_2.0 1 1 1
-1.0 -0.5 0.0 0.5 1.0
x/d
FIG. 3. (a) Self-consistent potentiaV(x) and (b) normalized FIG. 4. Longitudinal conductivityr, vs filling factor v for the

densityv(x) for zero(thick solid gray and finite(thick solid black  Gaussian model23) with I'/% w.=0.035 for(a) high and(b) low
lines) current, calculated for modeR2) with €é=0.002. & also  values of the reduced temperature kgT/%w.. The thick solid
shows the corresponding” (x) (dash-dotted lingsand the Landau  curves coincide with the limits for high temperatylesT>7%w.,
levelsV(x) + Q(n+1/2) (dashed lings and(b) the current density  (a)] and zero temperatufd&gT<T", (b)]. The long-dashed curve in
(long-dashed line, arbitrary unjts(c) shows the current-induced (b) indicates the model22).

change of the self-consistent potentidlack). Model parameters

(see text are @=0.02, Q=hw =Ex/200, kgT/Q1=0.04, Uy The inducedAV(x) follows closely u*(x) and varies
=Au*=30Q. mainly in the region of incompressible strips.

and width of the strips on magnetic field and applied gate 2. Gaussian-level broadening

voltageVr—V, has been mvestlga_ted m_Refs. 18 and 25 for As a more realistic model for the longitudinal conductiv-
fche present Hall bar geometry. To investigate the effect of aril[y we use the Gaussian model

imposed current, we first use a simplistic model for the re-
sistance tensor, which has been used successfully for the cal- e?g. [~
culation of the current density in an antidot system in a o= SJ’ dE [VaTAL(E)]?,
strong magnetic field*°For a(X) = — o,y(X) = o(X) we h )

take (23

with the spectral function

L
"3

on(x)=(e*/h)v(x), (21)
exp(—[e,—E]4T?)
which yields the correct values at integer filling factors, but An(E)= JaT ' (24)
no quantum Hall plateaus. To simulate the behaviotrgf
=oy,= oy near integer filingr=2, we approximaté the  which then, for consistency reasons, should also be used in

longitudinal conductivity as the DOS, Eq.(20). An alternative, which leads to qualita-
tively the same results, would be to use the self-consistent
()= ()] e+[2— v(x)]/4}, (220 Born approximatioff?®which would replace the normalized

Gaussians by normalized half-ellipses. To avoid divergen-
with a small but finite positive value (~1073) to avoid  cies, we replace of Eq. (23) for »>1 by maxg;,on/10%.
divergencies. This describes correctly thaix) > o(x) be- Together with v=2712fdEf(E—w)D(E), Egs. (20),
comes very small at the incompressible strips with local fill-(23), and(24) can be used to calculatg as function ofw.
ing factor v(x)=2, although the analytical dependences forResults are plotted in Fig. 4 for several temperatures. For
v#2 are not correctsee Fig. 4b) below]. high temperaturekgT=0.3%4w., one gets the modified

Nevertheless, this simple model is able to reproduce chabrude result o= oy /(wcTgausd With o= (e?/h)v and
acteristic features observed in the experinfas is shown il Tgauss NET
in Fig. 3. The current flows preferably along the incompress- To proceed, we first investigate the effect of the Landau-
ible strips, wherev(x) =2 and the longitudinal resistivity is level broadenind” on the existence and width of the incom-
smallest, and there the gradient @f (x) is largest. Due to pressible strips. Results of self-consistent calculations are
the Thomas-Fermi-Poisson self-consistency requirement, threhown in Fig. 5. The width of the incompressible strips
total potentialV(x) is forced to followu™* (x) closely, so that  shrinks with increasing temperature and with increasing level
the current-induced change of the electron density profile ibroadening. ForkgT/Aw.<0.04 andI'/Aw.<0.1 clearly
small (which keeps the change of electrostatic energy 9mall visible incompressible strips exist. Thus, collision broaden-
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FIG. 5. Density profilg(a), (b)] and potential(c), (d)] calcu- ) .
lated with a Gaussian DO$y) and(d) show results in the region of FIG. 6. Self-consistent results fag) filling factor v(x), (b)
the incompressible strip for several values of temperatureSurrent densitjy(x), and(c) electrostatic and electrochemical po-
ks T/fhw.=1/50, and level broadeningy=T"/%w,. The solid and  tentials,V(x) and u*(x), at three temperatures-k T/ o, cal-
dash-dotted curves are plotted @ and (c) for one-half of the ~Culated from the Gaussian modek£0.02, fiw./Eq=0.0053,
symmetric sampled¢=0.02, i w/E,=0.005). I'hw.=0.03, Uy=riwc).

ing of the Landau DOS does not change the screening progpressible regions. Simultaneously the potentials develop a
erties of the 2DEG qualitatively, provided the width of the steplike behavior with variation across the incompressible
Landau levels remains small enough as compared with thstrips and plateaus in the compressible regions.
cyclotron energy. To evaluate the current-induced electrostatic potential
Next we perform the self-consistent calculation of theAV, we perform the self-consistent calculation with and
charge and current densities and of the electrostatic and elegithout applied current and defindaV(x)=V(x;I,B,T)
trochemical potentials for the Gaussian model. To achieve-V(x;0,B,T). A typical result is shown in Fig. 7. The main
convergence of the nested self-consistency loops for givedifference between this result and Fig. 3 is that now the
values of temperatur€, cyclotron energf)=#%w., and to-  current density is confined more strictly to a narrow region
tal currentl<Uy=Apu*, we proceed as follows. First we along the incompressible stripgee dashed lines in the
define the density profile by solving the linear integral equa-middle panels of the figurg&sThe more rapid decrease of the
tion [Egs.(2) and(8)] for T=0, B=0, andl=0. Then we current density from the large values in the incompressible
raise, still forB=0 andl =0, the temperature stepwise up to strips to the small values in the compressible regions is
the valuekgT=0.3() and solve at each step the nonlinearcaused mainly by the much steeper increase ¢¥) with
problem iteratively using a Newton-Raphson procedure. At
this high temperature all quantum effects are smeared out _g 15 :
and we can replace tH2=0 DOS by the Gaussian Landau
DOS corresponding to the requir€d value without conver-
gence problems. Now we raise stepwise the current until thesy
required value is reached. This calculation is equivalent to™
the solution of the Drude problem discussed above. Wher  -0.17
self-consistency is achieved, we lower the temperature step 3.0
wise until the requiredlow) value is reached. In each step

screened potential
—-— electro-chem. pot.
-0.16 | — Landau levels

we iterate until full self-consistency is achieved, using the 201 1 — v o ]
previous potential profile and the conductivity tensor with 10 | “ — = current density i ]
the density profile of the previous step as starting conditions. I ,' 1
Figure 6 shows the self-consistent results for several in- 0.0 < -+ =
termediate temperatures. At the highest temperatthia o 0.5 f"
solid lineg one observes Drude-like behavior: the current & 00 ------------------------------/~----- =
density [Fig. 6(b)] is proportional to the electron density < -05 — 1
[note that Fig. ) shows the latter only near local filling -1.0 ' ' '
factor v(x)=2, while »(0)=2.25] and the electrostatical -1.0 -0 2/'2 0.5 1.0

and electrochemical potentials increase nearly linearly across

the 2DEG. With decreasing temperature the 2DEG develops FIG. 7. Same Fig. 3, but witkr, calculated from the Gaussian
incompressible strips with low longitudinal resistivity and model (23) instead of Eq.(22), and only results foll,=Au*
the current density is increasingly confined to the incom-=Q are shown ['/w.=0.03, all other parameters as in Fig. 3
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2.51

2.83
3.23

3.77
3.90
4.02
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AVIQ

v(0)

0.0
x/id

-1.0 -0.5 1.0

FIG. 8. Current-induced patV(x) of the self-consistently cal-
culated electrostatic potential in units of the cyclotron enefgy
=hw,, for several values of). The numbers in the figure indicate
(Q/Eg) X 10°, those on the right-hand side the corresponding va
ues ofy(0). Forclarity, the traces are shifted vertically by an arbi-
trary amount.

increasing v— 2| [see Fig. 4b)]. The ratio between the val-

PHYSICAL REVIEW B7, 115327 (2003

Then the variation ofAV(x) is confined essentially to this
strip (type Il). With still decreasingi w, this strip splits into
two, which move with decreasing magnetic field towards to
edges of the Hall bar. The electrochemical potential and
(apart from some minor edge effecthe current-induced
electrostatic potential then drop only across these incom-
pressible stripg“type 1ll” ), as is seen in Fig. 8 for the
curves with 2.0&v(0)<3.77. As with further decreasing
magnetic field the filling factor in the center region comes
close to 4 and thup,(x=0) becomes small, a considerable
part of the current flows through this center region. Since at
the same time the strips with local filling factor 2 become
very narrow, forv(0)<4 a considerable part of the induced
potential drops in a broad center regi@gpe Il). For »(0)

>4 the center region becomes again compressible, with con-
stantAV(x), and the incompressible strips with(x) =4,
across which now most of the Hall voltage drops, move
away from the centeftype Ill). The lowest trace in Fig. 8
shows such a situation with tiny structures at the edges of the
I_electron density profile which are due to the outer incom-
pressible strips with local filling factor 2.

IV. CONCLUSIONS

ues of the current density in the compressible region and Our results for the current-induced Hall-potential profile
those in the incompressible strips is also smaller, since wéFig. 8) reproduce the characteristic features of the experi-

used neaw=2 a smaller cutoffe=min[oi(v)/oy(v)] in the
Gaussian model €=10"%) than in model (22) (e=2

ment of Ahlswedeet al!° (Fig. 1), although in the experi-
ment spin splitting is resolved whereas we assumed spin de-

x1073%). As a consequence, the variation of the electro-generacy. We therefore do not attempt a quantitative

chemical potentialdash-dotted line of upper paneind of
the current-induced electrostatic potentiwer panel is

comparison. We also plot the electrostatic potential energy
V(x)= —e¢p(X) instead ofp(x), and we apparently consider

practically confined to the region of the incompressiblethe direction of the imposed curretdr of the applied mag-

strips.

netic field opposite to that considered in the experiment.

The width and position of the incompressible strips and If the filling factors »(0) in the center of the sample are
thus the locations of strong variation of the current-inducectlose to, but below, integer values, the potential drops in a
potential change strongly with varying magnetic field, i.e.,nonlinear fashion in a broad center region. F¢0) values
with varying filling factors of the Landau levels. In Fig. 8 we slightly larger than the integer values, the potential is con-
show results for selected values of the magnetic field, leadstant in the center region and drops exclusively across the
ing to filling factors in the center of the Hall bar that vary incompressible strips. Of course, our results show this char-
betweenv(0)=1.62 andrv(0)=4.52. The temperature is al- acteristic behavior only near even integer valuesv(d),
ways chosen so low that the incompressible strips are wellince we have neglected spin splitting, whereas in the experi-

developed kg T/% w,=<0.04).
These results are easily understood. Fow.=5.7
X107 3E, no incompressible strips exisy(x)<2 for all

ment spin splitting is resolved and this behavior occurs also
near small odd-integer values o{0).
This characteristic dependence of the Hall-potential pro-

|x|<d, and the current density is largest near the center ofile on the magnetic field cannot be explained by the previ-

the sample, where the filling factor is largest and the long
tudinal resistivity p o) is smallest. Therefore the gradient
of AV(x) is largest in the center of the Hall bar. #(0)
<2 is very close to 2p(x=0) is very small, the current

i-ous calculations assuming dissipationless Hall curténts®

and emphasizes the importance of dissipation. From the nice
gualitative agreement of our results with the experimental
data we conclude that our local equilibrium approach, which

density has a sharp maximum in the center, and the potentiabmbines dissipative transport with screening effects and al-

profile has a strongly nonlinear appearafitgpe 11” behav-
ior). If »(0) becomes considerably smaller tharpgx) has
a broad maximum near=0 and the current density profile

lows us to calculate electron and current density as well as
electrostatic and electrochemical potentials self-consistently,
contains most of the relevant physics. There is, however,

follows essentially the density profile, similar to the Drude room and need for improvements.
case. This leads to an essentially linear potential profile One desirable improvement concerns the effectiveness of

(“type 1" ), as is seen in the top curve of Fig. 8 fbikw,
=7.0x10 3E,, with »(0)=1.62.

narrow incompressible strips. To avoid numerical divergen-
cies, we used a cutof- o for o at even integer values of

For slightly lower magnetic field, an incompressible strip v, with e=10"%. If we take the limite—0 and sufficiently

with »(0)=2 and(nearly vanishingp, occurs in the center.

low temperaturesp,(x) becomes exponentially small in the
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incompressible strips. Then, according to Etf), the elec- demand a treatment beyond a local hydrodynamic approxi-
tric field along the Hall bar and, therefore, the longitudinalmation and require a more microscopic nonlocal description
resistance become exponentially small whenever an inconf stationary current-carrying nonequilibrium states interme-
pressible strip exists, and not only for a limited interval of diate between the zero-resistance quantum Hall state and the
magnetic field values in a plateau region of the QHE. Tofinite-resistance breakdown stdfeSuch a microscopic ap-
eliminate this unreasonable behaVior, we should include %roach to heating and resistive processes may aISO open the
mechanisn{other than the simple cutofthat limits the cur-  possibility of a unified description of dissipative currents,
rent density in, and thereby the voltage drop across, narroyhich we have considered phenomenologically in the
incompressible strips. Such a mechanism could make the ifbresent paper, and nondissipative equilibrium currents,
compressible strips with local filling factor(x) =2 ineffec-  \which we have mentioned in the Introduction but completely
tive for magnetic fields Wlth/(0)23 This would turn the neg|ec[ed in the calculations.
“type IlI” curves with »(0)=3.23 and 3.77 in Fig. 8 into Finally we want to mention that in our model calculations
quasilinear “type 1" curves and would eliminate the tiny the imposed current leads to a broadening of the incompress-
edge-near structures in the three lowest curves. Both changgsie strips on one side of the sample and to a narrowing of
would improve the agreement with the experiment. the corresponding strips on the opposite Sidecourse the
Several physical effects may lead to such a mechanisnstrips exchange their role if we invert the direction of the
One is the nonlocal relation between the current density andurrenh_ This asymmetry is C|ear|y seen in F|g 8 and can

the driving electric field, which we have approximated by aalso be observed in the experiméhsee Fig. 1. A systematic
strictly local one. Another one is Joule heating, which isinvestigation of this effect may be of interest.

most effective where the current density is high and may

destroy narrow incompressible strips, i.e., lead to a local

breakdown of the QHE. A systematic treatment of heating ACKNOWLEDGMENTS
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