PHYSICAL REVIEW B 67, 115325 (2003

Exact-exchange density functional theory for quasi-two-dimensional electron gases
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A simple exact-exchange density-functional method for a quasi-two-dimensional electron gas with variable
density is presented. An analytical expression for the exact-exchange potential with only one occupied subband
is provided, without approximations. When more subbands are occupied the exact-exchange potential is ob-
tained numerically. The theory shows that, in contradiction with LDA, the exact-exchange potential exhibits
discontinuities and the system suffers a zero-temperature first-order transition each time a subband is occupied.
Results suggesting that the translational symmetry might be spontaneously broken at zero temperature are
presented. An extension of the theory to finite temperatures allows to describe a drop in the intersubband
spacing in good quantitative agreement with recent experiments.
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Density-functional theory (DFT) has been one of the can not be accounted by LDA. Therefore, the XX approach
most successful approaches to the problem of interacting payields qualitatively new physics: at zero temperature a first-
ticles. The use of the local-density-approximafi0nDA) of ~ order transition occurs every time a new subband is occu-
DFT and related approximations has been widely applied t@ied. In the transition region, the theory suggest a new phase
the Study of atoms, mo|ecu|esy C|usters, nuc|ei' andn which the translational symmetry of the System mlght be
condensed-matter systefiSAt the same time, steady im- broken. An extension of the theory to finite temperatures
provements on the experimental techniques have made poallows us to describe a drop in the intersubband spacing
sible the production of a great number of semiconductor arwhen the first subband is occupied in good quantitative
tificial structures that confine the three-dimensiof@D)  agreement with recent experimefits.
electron gas in one or more dimensions. In particular This theory can be applied to any system with transla-
GaAs/AlLGa,_,As heterostructures have attracted intense attional symmetry in a plane. For instance, a QW grown epi-
tention, because they are particularly well grown, their contaxially as shown schematically in Fig(a). In these sys-
duction band is simple to describe, and they allow the contems, it is possible to confine an electron gas changing the
tinuous change of the electron density. Because typical 3€miconductor in the growth directian If the larger gap
electron densities in the quantum wéQW) are very small, Semiconductor is doped with donors, it provides electrons to
the conduction-band dispersion can be approximated, withthe trap formed by the smaller gap semiconductor, until the
out significant error, by a second-order expansion around theharge-transfer field equilibrates the chemical potentials in
minimum (effective-mass approximatio As a conse- the QW and the doped regidsee Fig. 1b)]. The charge
quence, theffectiveelectron-gas formed in the nanostructure transferred from the doped reservoir to the QW can be tuned
can be treated in the frame of Kohn—SHRaBFT. All the by an external electric fieldAssuming translational symme-
theoretical techniques developed around DFT and its aply of the 2DEG in thex—y plane(areaA), and proposing
proximations, such as the LDA, time dependent LDA, spin-accordingly a solution of the typed;y,(r)=-explk
density LDA can be tested in these structures which arep)&’(z)/JA the ground-state-electron density can be ob-
much easier to modify and control than natural matenials.
Therefore, semiconductor nanostructures offer the possibility
to test over a broad range of conditions the validity of the
theoretical tools that are used to describe matter in general.

In this paper, we present an approach that goes beyond
LDA: an exact-exchangé€ density-functional theory for the
case of a quasi-two-dimensional electron g2aBEG). Be- R
cause we study a metallic system with several subbands oc- V(@)
cupied, our theory is different than previous exact-exchange (®)
(XX) procedures aimed to the study of aténm bulk

semiconductor$.Moreover, the number of particles it ) [ P
fixedbut it is allowed to fluctuatd When a single subband is 2 e sfgEcstise P
occupied we provide an analytical expression for the XX u /

potentialwithout approximationsWhen more subbands are 95 - Y

occupied the XX potential is obtainag to numerical pre- Growth direction z (A)

cision The implementation of the method is simple enough

to replace the state of the art method for 2DEG which is FIG. 1. (a) Schematic representation of an asymmetric doped
currently based in the LDAWe prove that the XX potential quantum well nanostructuréb) Self-consistent subband structure
is, in general, a discontinuous function of the density whichand self-consistent potential for the zero-bias situation.
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tained by solving a set of effective one-dimensional Kohn— 'U 2
Sham equatiofof the form xXo(2,2")= 2 [ [qol (z,2")G;,(z,2')+c.c]
1 2 ( i)
_§E+VKS(Z'U)1 T(2)=g[&(2), 1) | V(2,2 )|2] 4

being G (z,2')=% 2',2)l(e{—¢ and f(e
where?/(m* *2) 2 Ry* andag are the units of energy —1/[gl+el>(2£)((s - )/IJ<(E:'&II7))(]P]t(he Ize(rml occ)upanon fa(cté)FL
and length, beingn* the electron effective mass aag the e first term in Eq(4) comes from first-order perturbation
effective Bohr radiusé?(2) is the wave function correspond- theory!2 whereas the second term results from first-order
ing to an electron with a spin projectian(7 or |), subband  perturbation theory and the thermodynamic equilibrium be-
index i, and eigenvaluey”. In Eq. (1) Vks(z,0)=Vex2)  tween the 2DEG and the reservoir that fixes a common
+Vh(2) +Vxx(z,0) +V(z,0) is the spin-dependent Kohn— chemical potentiak allowing the change of the number of
Sham potential given as sum of the external, Hartree, locgdarticles. Indeed, without this second term, the operator
XX, and correlation potentials, respectively. The externaly (z,z’) in general cannot be inverted because it is
potential is given by the sum of the epitaxial potential plussingular®’ Equation(3) could be brought to an alternative
any external electric field. The zero-temperature 3D elecexpression, which allows the discussion of our approach in
tron densityn(z) =X ,n(z,0) =2 o, (n— &) & "(2)|?/2m,  the context of the optimized potential meth@PM).: For

n(z,o) being the fraction ofr polarized electronsu is the  this, we multiply Eq.(3) by x,(z,z"), and integrate over all

chemical potentialor Fermi level of the system, which is 2z Proceeding this way, it could be rewritten as

determined by the electrostatic and thermodynamic equilib-

rium with a reservoirVy(z) is the solution of the Poisson Kio 2J dz {1V N (gt

equation. We approximate therrelation potentialV (z, o) 2 (k) Z{[Vxx(Z' o) ~vxi(Z",0)]

as a function of the local spin densifylt remains to define

the XX potentialVyy . , o _ o2
The exchange enerdyy[n(z,0)] of a 2DEG can be ob- XGin(Z',2)¢i(z',2) +C.c} ZEi &7 (2)]

tained through a Slater determinant constructed with(dle

occ

cupied self-consistent solutions of EqL), as follows | Vi () 2w OEy 5)
(o) — — 2| =
T AR skle
ojo o 11 ’ .
Bx=— 2 kK sz‘“% 22)¢{(Z DF2Z), Here vy i(z,0)=[4mIAKY)?E7(2)* |6Ex I 567(2),  and

(2 Vxx,i((f) is the diagonal matrix element &fyy(z,0) with
&7 (2). This integral equation fovyx(z, o) is the generaliza-
where ¢7(z,2')=¢7(2)*&(2'),Fil"(z.2')=(Al4m) [dp/ tion of the OPM to our open configuration, where the system
(p™ " [ Ik p)In(kp) 1IVp%+ (z—2)?, ki is free to exchange particles with the surroundings; for a
= \/ig(lu_gi Y — e 712 g(x) is the step function, and closed systentfixed number of particlgs the last term on

J,(x) stands for the cylinder Bessel function of oraeiThe  the rhs of Eq(5) is zero, and the integral equation reduces to
XX potential Vyx(z,o) can be obtained from that of the standard OPM for atoms and molectfeSome

consequences of E¢5) are worth addressinga) the solu-
tion for Vyx(z,o) is univocally determined, including the

Vyx(Z,0) = 2 f dz  Vks(2',0) (possiblg presence of a constant shi@ (b) its solution in
5”(2 on(z,o) the one-subband casé=0 is immediate: Replacing
o n V?(X(Z,U)=vxyo(z,a')+C in Eqg. (5) and solving forC, we
X‘szn iEX" &3 (Z,) c] found
0§/ (Z") 6Vks(Z', o)

0 _ 8_77 o 11,
Vyx(Z,0)= A dz190(21,21)F55(21,2)

)

SE Skl
n if—F }
Okg” oVs(Z',0)

+k°“jdzdz %(z,,2,)|?
The first term in the right-hand sidehs) of Eq. (3) comes F 1422] ¢5(21,22)]

from functional derivatives with respect to the “shape” of
the wave functiord, while the second term is a result of
changes in the occupation of the subbands and has not been
considered in previous XX treatments for fixed particle-
number systemsiVy«(z',0)/on(z,0)=x, (z,2') isthein-  Using Eq. (6) it can be shown thatf Vy(z,0)[ £5(2) 1
verse of the operatoy,(z,z2')=n(z,0)/ 8Vks(z',0) given  =dEx/dN,=uy, with Ex given by Eqg. (2), N,
by = [dr n(z,0) the total number of electrons with spirn and

(6)

Fou(Z1,22) B FooZ1.,22)
2 k2 '
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ny the exchange contribution to the total chemical potential
w. Accordingly, the Janak theoréfis explicitly satisfied in
our XX-DFT formalism. Besides, when E(p) is particular-
ized to the strict 2D limit by imposing the condition
[£5(2)]°— 8(2) [8(2) being the Diracs function], we ob-
tain V%,(0,0) = — 2k2?/ 7r, which is exactly the well-known
value of the exchange contribution to the chemical potential
for an homogeneous 2D electron gas. In other words(@&q.
contains the exact 2D limit of the exchange poterifidfi-

5
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5
5
S
S
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Potential (meV) Density (10'7/cm?3)

Vil(2)
nally (c), for two (or more occupied subbands, the analytical
exact solution of our OPM integral equation is unknown. -50 0 50 100 150 200 250 300
Some progress can be achieved following the Sharp—Horton Growth direction z (A)
or KLI approximatiot® of the orbital Green's function
Gi,(z,2"). It amounts to replace the denominators; ( FIG. 2. Comparison of the exact exchange potential with the

LDA potential when only one subband is occupied. The full upper
=~ line is the 3D densityi(z) obtained with XX theorycorresponding
Gin(z.2')=[8(z=2") = Zil¢{(z.2')?]/Ae, in EqQ. (5) one 154 2D density of 0.68 10'%cn?). XX and LDA exchange poten-
obtains an explicit solution foMyx(z,0), which will be tials are compared for this same density. Energies are measured
given elsewheré® For the one-subband case, the KLI ap- from the chemical potentigk.
proximation leads to the exact result, given by E). But
for the multisubband casé¥1), and because of the second SameXX density. Note that although’;°* and V3, have a
term in Eq.(5), the explicit solution folVyy(z,0) becomes Similar amplitude in the QW region, their respggtive
A%, dependent, in contrast with the situation for atoms and*SYmPptotic behaviors are completelyodlﬁerent: whilg ,
moleculed? goes exponentially to zero foz| -, Vy, tends asymptoti-
As proceeding along this line of work would had forced cally (s — 1//z|) towards the constarpositive) contribution
us to introduce a new and unknown scale of energy , we of Eq. (6). This results in larger mtersubban_d spacings using
studied the multisubband case by directly solving E). XX theory for the same total electron density. Note that the

The fundamental ingredient for this direct approach is ar{“'n'TDlim of Vxx(2,0) is not at ‘heomax'm‘%m oh(z,0) as
analytical limit for y,%(z,2'). For T=0 and in the case " Vx_ (%0) and also note thaVy,(z,0) is large where

whereonly the ground-state subband is occupjgff(z 2 n(z,o) is negligible. Both features are consequences of the
—3,d7y0(2) 47 (2'), where dj=—2, d7,= _(83—;8)/ nonlocal dependence M?(X(z,a) onn(z,o), displayed ex-

- A s ) ) plicitly in Eq. (6).
Eg) inig)l’z ar(]g)dcvéz) ;tii‘ (;?rllgob(z)é (if?grlzgtnr?wetthr:z dan;ﬁ;iq. Significant qualitative differences between LDA and XX
F 9- ; g t?b ’d y YA ’ " theory appear each time a new subband is occupied. For
~or many occupie _slu e}n S: one can o WQ(Z’U). US™ " instance in Eq(3), at zero temperature, a finite term propor-
ing Eq.(3) becausey, *(z,z") can be obtained recursively in tional to SEy/oki’ appears discontinuoudlywhen ki”
terms of yo,1(z,2') for any number of bands and tempera- W F

7 . —0". Moreover, in Eq(4), whenu—&{+07, a finite con-
ture, by using the Sherman—Morrison metttédrhus for tribution (~ | (2,2')|2/2mA) appears in the second term.
more than one subband we have evalualgd(z,o) up to Therefore, the inversg 1(z,z') also changes discontinu-
numerical precision. In order to test the numerical method L +QU ' nges discontin
we verified that, in double quantum well systems witro ~ OUSlY vl/hen kaTO - Although  the discontinuities in
occupied subbands, theingle subband analytical limit for 9Ex/&kg” andy,,~ have opposite effects, they do not cancel
the XX potential in one wel[Eq. (6)], is nicely reproduced €ach other ang,* dominates’® Let us consider what hap-
numerically as we increase the barrier between the wells. pens wheru crosses a subband energ but one neglects

Fig. 1(b) gives the full self-consistent potenti®lcs(z)  the self-consistent adjustments of the charge. In that case,
and the squared wave functiops’(z)]? corresponding to because of the discontinuities introduced &fyy / ok’ and
the first four states. The results were obtained for a QW ofn Xgl, the XX potential must change discontinuously,
GaAs in ALGa _,As with a band offset of 220 meV and a
width of 245 A. The structure is doped on one side at 135 A Vxx(z,0,p—&7+07)
from the left-QW edge with a 3D dopant density of 2 _ o At n—1n
X 10'%/cm™3. Without gxternal electric fiellczj and at ze?o tem- =Vxx(Z,0,p— 87— 07)+ AV (2,0). @)
perature the ground state is paramagnetic, the intersubbarterefore, the wave functions, the total electron density, and
spacings areEy =7 —e3=26.78 meV, Ey,=60.58 meV, the total energy cannot be continuous functiong.aind the
Ep3=108.36 meV, whileu—eJ=24.14 meV is just below discontinuityAV?(;(l'n signals a first-order transition of the
e7—¢g and only one subband is occupied. 2DEG. An interesting question is, what is the effect of
In Fig. 2 we compare the potentMﬁX(z,g-) correspond- AV?(’>1((Z,0') on the intersubband spaciig,. Case |—if one
ing to Fig. Xb) [obtained using Eq(6)] with the exchange only considers the discontinuities IBEy/skt”, Eqi(u
potential in LDA ViPA(z,0)=—[6n(z,0)/m]Y® for the —&{+0")<Eg(u—ef—0"%), u lies above the first-

—¢&{) by an orbital independent average , ; substituting
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30 = straight line is the evolution g — = (7A2/m*)N/A in an
hypothetical system with a single band occupied. All meth-
ods give similar qualitative results whety, is far from u
—e&g, though LDA calculations give smaller intersubband
spacings than XX methodas expected from Fig.)2How-
ever, significant qualitative differences appear wheg
XX (T=10 K) ~u—eg . The LDA calculation gives a continuous curve but
there is a discontinuity in the derivative &,; when the
first-excited subband is occupiddhich implies a second-
order transition The zero-temperature calculations with XX
theory give a remarkable result. There is a window of den-
sities where a self-consistent solution is not achieved because
it corresponds to the case Il discussed above. Our interpre-
tation of this window, where it is not possible to find a self-
consistent solution under the assumption of translational in-
........ variance, is that this symmetry must be broken in the ground
......... state. Thus in this density region a new broken symmetry
phase might exist at low temperatures.
0.65 0.7 075 08 0.85 Consideration of finite temperatures in E4) introduces
2D electron density (10'2/cm2) smoothly the discontinuity iny,*(z,z') when |u—g|
~kgT. This allows us to achieve a self-consistent solution
FIG. 3. Intersubband spacitg, as a function of the 2D density for all densities(although the numerical convergence be-
N/A. Full lines, zero temperature exact exchange; dashed line§omes unstable in some capess the density increases, the
finite temperature exact exchange; dotted line, LDA. occupation of the first-excited subband cannot be avoided
and 6Ey/5kt” generates a sudden drop Hy,. This new

excited subband and finite amount of charge is abruptly solution is also stable at lower densities. Accordingly, there

transferred from the ground to the first-excited subband!S @ range of densities where it is possible to fimt solu-
Case Il—if one adds the discontinuities i, Eoi(x tions. Afirst-order transition occurs when the free energies of

. the two solutions cross; detailed temperature-dependent cal-
—&7+07)> Eg(u—ef—07), u remains below the bot- ' P P

i f the first ited subband and if istent sol culations will be reported elsewhere. From Fig. 3 we can
om ot the first-excited subband and a Seli-ConsIStent SolUa i ate the drop 0By, considering the energies in the den-
tion of the system is not possiblender our assumption of

translational symmetjy In other words, if the system at- sity range where the two solutions exishEq,=2.4
tempts the oc?:/u atior)ll of the first—exciied subbgnd this in-i 0.4 meV, which is in very good agrement with the mea-
P P ' surement of 3.5 meV reported by Gaet al®

creases the intersubband spacing, which in turn empties the In summary, we have extended the KS-DFT for 2DEG

excited gubband in the next iteration, which "? turn p.rOduce%eyond the state of the art method based on the LDA. Our
a lOXV er Lntersubband f paclng, and so on. Finall=gi(u theory allows to obtain an exact exchange potential without
—e1+07)=Eq(u—e7—0") (case Il) a smooth occupa- o0 6vimations up to numerical precision, while correlations
tion of the flrst_-exuted.subband would be F’OSS',b'_e; Pr.owde re considered in the LDA level. The theory satisfies known
that self-consistency is frozen, the only possibility in thejynits and theorems. The theory predicts first-order transi-
LDA is case Ill, because the LDA exchange potential iS &;qns every time a new subband is occupied and suggest that
continuous function of the density. Self-consistent effects, iy, some systems at zero temperature the translational sym-
some8 conqnlons, can generate first-order transitions W'th”?netry might be spontaneously broken. Finite temperature ef-
LDA.” But in XX theory, in contrast, a second-order ransi-to(q” are included approximately. We calculated the self-

tion will be an accident and, in general, first-order ransitions, o nsistent solutions for a realistic system and obtained phase
are expected whene crosses a subband energy at zeroyansitions which are in good quantitative agreement with

26
XX (T=0 K)

24

22

Intersubband Energy E,; (meV)

8
temper'aturé. _ _ recent experiments.
In Fig. 3 we plot the intersubband spacikg; as a func-
tion of the total 2D electron-density/A=(N;+N)/A with The authors would like to thank A. Gofor the experi-

different methods. The dotted line corresponds to the usuahental information and discussions that inspired this work,
LDA, the continuous line to XX theory at zero temperature,and to V. H. Ponce for useful discussions and a critical read-
and the dashed line was obtained with an approxintateding of the manuscript. We are indebted to CONICET and
finite temperature XX theory T=10 K in Eq. (4)]. The  Fundacim Antorchas of Argentina for financial support.
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