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Exact-exchange density functional theory for quasi-two-dimensional electron gases
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A simple exact-exchange density-functional method for a quasi-two-dimensional electron gas with variable
density is presented. An analytical expression for the exact-exchange potential with only one occupied subband
is provided, without approximations. When more subbands are occupied the exact-exchange potential is ob-
tained numerically. The theory shows that, in contradiction with LDA, the exact-exchange potential exhibits
discontinuities and the system suffers a zero-temperature first-order transition each time a subband is occupied.
Results suggesting that the translational symmetry might be spontaneously broken at zero temperature are
presented. An extension of the theory to finite temperatures allows to describe a drop in the intersubband
spacing in good quantitative agreement with recent experiments.

DOI: 10.1103/PhysRevB.67.115325 PACS number~s!: 71.15.Mb, 73.21.2b
p

n
-
p
a

la
a

on
on
3

it
t

re

a
in
ar
ls
ili
he
ra
o

o
ng

s
X

e

g
i

l
ic

ch
rst-
cu-
ase
be
res
ing
ive

la-
pi-

the

to
the

in

ned
-

b-

ed
re
Density-functional theory1 ~DFT! has been one of the
most successful approaches to the problem of interacting
ticles. The use of the local-density-approximation2 ~LDA ! of
DFT and related approximations has been widely applied
the study of atoms, molecules, clusters, nuclei, a
condensed-matter systems.3,4 At the same time, steady im
provements on the experimental techniques have made
sible the production of a great number of semiconductor
tificial structures that confine the three-dimensional~3D!
electron gas in one or more dimensions. In particu
GaAs/AlxGa12xAs heterostructures have attracted intense
tention, because they are particularly well grown, their c
duction band is simple to describe, and they allow the c
tinuous change of the electron density. Because typical
electron densities in the quantum well~QW! are very small,
the conduction-band dispersion can be approximated, w
out significant error, by a second-order expansion around
minimum ~effective-mass approximation!.5 As a conse-
quence, theeffectiveelectron-gas formed in the nanostructu
can be treated in the frame of Kohn–Sham2 DFT. All the
theoretical techniques developed around DFT and its
proximations, such as the LDA, time dependent LDA, sp
density LDA can be tested in these structures which
much easier to modify and control than natural materia5

Therefore, semiconductor nanostructures offer the possib
to test over a broad range of conditions the validity of t
theoretical tools that are used to describe matter in gene

In this paper, we present an approach that goes bey
LDA: an exact-exchange6,7 density-functional theory for the
case of a quasi-two-dimensional electron gas~2DEG!. Be-
cause we study a metallic system with several subbands
cupied, our theory is different than previous exact-excha
~XX ! procedures aimed to the study of atoms6 or bulk
semiconductors.7 Moreover, the number of particles isnot
fixedbut it is allowed to fluctuate.3 When a single subband i
occupied we provide an analytical expression for the X
potentialwithout approximations. When more subbands ar
occupied the XX potential is obtainedup to numerical pre-
cision. The implementation of the method is simple enou
to replace the state of the art method for 2DEG which
currently based in the LDA.8 We prove that the XX potentia
is, in general, a discontinuous function of the density wh
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can not be accounted by LDA. Therefore, the XX approa
yields qualitatively new physics: at zero temperature a fi
order transition occurs every time a new subband is oc
pied. In the transition region, the theory suggest a new ph
in which the translational symmetry of the system might
broken. An extension of the theory to finite temperatu
allows us to describe a drop in the intersubband spac
when the first subband is occupied in good quantitat
agreement with recent experiments.9

This theory can be applied to any system with trans
tional symmetry in a plane. For instance, a QW grown e
taxially as shown schematically in Fig. 1~a!. In these sys-
tems, it is possible to confine an electron gas changing
semiconductor in the growth directionz. If the larger gap
semiconductor is doped with donors, it provides electrons
the trap formed by the smaller gap semiconductor, until
charge-transfer field equilibrates the chemical potentials
the QW and the doped region@see Fig. 1~b!#. The charge
transferred from the doped reservoir to the QW can be tu
by an external electric field.9 Assuming translational symme
try of the 2DEG in thex2y plane~areaA), and proposing
accordingly a solution of the typef iks(r )5exp(ik
•r)j i

s(z)/AA the ground-state-electron density can be o

FIG. 1. ~a! Schematic representation of an asymmetric dop
quantum well nanostructure.~b! Self-consistent subband structu
and self-consistent potential for the zero-bias situation.
©2003 The American Physical Society25-1
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tained by solving a set of effective one-dimensional Koh
Sham equations2 of the form

F2
1

2

]2

]z2
1VKS~z,s!Gj i

s~z!5« i
sj i

s~z!, ~1!

where\2/(m* a0*
2)52 Ry* and a0* are the units of energy

and length, beingm* the electron effective mass anda0* the
effective Bohr radius.j i

s(z) is the wave function correspond
ing to an electron with a spin projections ~↑ or ↓!, subband
index i, and eigenvalue« i

s . In Eq. ~1! VKS(z,s)5Vex(z)
1VH(z)1VXX(z,s)1Vc(z,s) is the spin-dependent Kohn
Sham potential given as sum of the external, Hartree, lo
XX, and correlation potentials, respectively. The exter
potential is given by the sum of the epitaxial potential p
any external electric field. The zero-temperature 3D el
tron densityn(z)5(sn(z,s)5(«

i
s,m(m2« i

s)uj i
s(z)u2/2p,

n(z,s) being the fraction ofs polarized electrons.m is the
chemical potential~or Fermi level! of the system, which is
determined by the electrostatic and thermodynamic equ
rium with a reservoir.VH(z) is the solution of the Poisso
equation. We approximate thecorrelation potentialVc(z,s)
as a function of the local spin density.10 It remains to define
the XX potentialVXX .

The exchange energyEX@n(z,s)# of a 2DEG can be ob-
tained through a Slater determinant constructed with the~oc-
cupied! self-consistent solutions of Eq.~1!, as follows

EX52 (
i , j ,s

kF
iskF

j sE dzdz8w i
s~z,z8!w j

s~z8,z!Fi j
11~z,z8!,

~2!

where w i
s(z,z8)5j i

s(z)* j i
s(z8),Fi j

mn(z,z8)5(A/4p)*dr/
(rm1n21)@Jm(kF

is r)Jn(kF
j sr)#/Ar21(z2z8)2, kF

is

5A2u(m2« i
s)(m2« i

s)1/2,u(x) is the step function, and
Jn(x) stands for the cylinder Bessel function of ordern. The
XX potential VXX(z,s) can be obtained from

VXX~z,s!5
dEX

dn~z,s!
5A(

i
E dz8

dVKS~z8,s!

dn~z,s!

3H E dz9F dEX

dj i
s~z9!

dj i
s~z9!

dVKS~z8,s!
1c.c.G

1
dEX

dkF
is

dkF
is

dVKS~z8,s!
J . ~3!

The first term in the right-hand side~rhs! of Eq. ~3! comes
from functional derivatives with respect to the ‘‘shape’’
the wave function,7 while the second term is a result o
changes in the occupation of the subbands and has not
considered in previous XX treatments for fixed partic
number systems.dVKS(z8,s)/dn(z,s)[xs

21(z,z8) is the in-
verse of the operatorxs(z,z8)[dn(z,s)/dVKS(z8,s) given
by
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xs~z,z8!5(
i

H ~kF
is!2

4pA
@w i

s~z,z8!Gis~z,z8!1c.c.#

2
f ~« i

s!

2pA
uw i

s~z,z8!u2J , ~4!

being Gis(z,z8)5( j (Þ i )w j
s(z8,z)/(« i

s2« j
s), and f (« i

s)
51/@11exp((«i

s2m)/kBT))] the Fermi occupation factor.11

The first term in Eq.~4! comes from first-order perturbatio
theory,12 whereas the second term results from first-ord
perturbation theory and the thermodynamic equilibrium b
tween the 2DEG and the reservoir that fixes a comm
chemical potentialm allowing the change of the number o
particles. Indeed, without this second term, the opera
xs(z,z8) in general cannot be inverted because it
singular.6,7 Equation~3! could be brought to an alternativ
expression, which allows the discussion of our approach
the context of the optimized potential method~OPM!.13 For
this, we multiply Eq.~3! by xs(z,z8), and integrate over al
z. Proceeding this way, it could be rewritten as

(
i

~kF
is!2E dz8$@VXX~z8,s!2vX,i~z8,s!#

3Gis~z8,z!w i
s~z8,z!1c.c.%22(

i

occ

uj i
s~z!u2

3F V̄XX,i~s!2
2p

AkF
is

dEX

dkF
isG50. ~5!

Here vX,i(z,s)5@4p/A(kF
is)2j i

s(z)* #dEX /dj i
s(z), and

V̄XX,i(s) is the diagonal matrix element ofVXX(z,s) with
j i

s(z). This integral equation forVXX(z,s) is the generaliza-
tion of the OPM to our open configuration, where the syst
is free to exchange particles with the surroundings; fo
closed system~fixed number of particles!, the last term on
the rhs of Eq.~5! is zero, and the integral equation reduces
that of the standard OPM for atoms and molecules.13 Some
consequences of Eq.~5! are worth addressing:~a! the solu-
tion for VXX(z,s) is univocally determined, including the
~possible! presence of a constant shiftC; ~b! its solution in
the one-subband casei 50 is immediate: Replacing
VXX

0 (z,s)5vX,0(z,s)1C in Eq. ~5! and solving forC, we
found

VXX
0 ~z,s!52

8p

A H E dz1w0
s~z1 ,z1!F00

11~z1 ,z!

1kF
0sE dz1dz2uw0

s~z1 ,z2!u2

3FF00
01~z1 ,z2!

2
2

F00
11~z1 ,z2!

kF
0s G J . ~6!

Using Eq. ~6! it can be shown that*VXX
0 (z,s)@j0

s(z)#2

5dEX /dNs5mX
s , with EX given by Eq. ~2!, Ns

5*dr n(z,s) the total number of electrons with spins, and
5-2
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EXACT-EXCHANGE DENSITY-FUNCTIONAL THEORY . . . PHYSICAL REVIEW B67, 115325 ~2003!
mX
s the exchange contribution to the total chemical poten

m. Accordingly, the Janak theorem14 is explicitly satisfied in
our XX-DFT formalism. Besides, when Eq.~6! is particular-
ized to the strict 2D limit by imposing the conditio
@j0

s(z)#2→d(z) @d(z) being the Diracd function#, we ob-
tain VXX

0 (0,s)522kF
0s/p, which is exactly the well-known

value of the exchange contribution to the chemical poten
for an homogeneous 2D electron gas. In other words, Eq~6!
contains the exact 2D limit of the exchange potential.15 Fi-
nally ~c!, for two ~or more! occupied subbands, the analytic
exact solution of our OPM integral equation is unknow
Some progress can be achieved following the Sharp–Ho
or KLI approximation13 of the orbital Green’s function
Gis(z,z8). It amounts to replace the denominators (« i

s

2« j
s) by an orbital independent averageD«̃s ; substituting

Gis(z,z8).@d(z2z8)2( i uw i
s(z,z8)u2#/D«̃s in Eq. ~5! one

obtains an explicit solution forVXX(z,s), which will be
given elsewhere.16 For the one-subband case, the KLI a
proximation leads to the exact result, given by Eq.~6!. But
for the multisubband case (i>1), and because of the secon
term in Eq.~5!, the explicit solution forVXX(z,s) becomes

D«̃s dependent, in contrast with the situation for atoms a
molecules.13

As proceeding along this line of work would had force
us to introduce a new and unknown scale of energyD«̃s , we
studied the multisubband case by directly solving Eq.~3!.
The fundamental ingredient for this direct approach is
analytical limit for xs

21(z,z8). For T50 and in the case
whereonly the ground-state subband is occupiedx0s

21(z,z8)
5( idi

sc i
s(z)c i

s(z8), where d0
s522, di .0

s 52(« i
s2«0

s)/
(m2«0

s), andc i
s(z)5j i

s(z)/j0
s(z). Replacing this and Eq

~2! into Eq. ~3! we get again, by a different method, Eq.~6!.
For many occupied subbands, one can obtainVXX(z,s) us-
ing Eq.~3! becausexs

21(z,z8) can be obtained recursively i
terms ofx0s

21(z,z8) for any number of bands and temper
ture, by using the Sherman–Morrison method.17 Thus for
more than one subband we have evaluatedVXX(z,s) up to
numerical precision. In order to test the numerical meth
we verified that, in double quantum well systems withtwo
occupied subbands, thesingle subband analytical limit for
the XX potential in one well@Eq. ~6!#, is nicely reproduced
numerically as we increase the barrier between the wells

Fig. 1~b! gives the full self-consistent potentialVKS(z)
and the squared wave functions@j i

s(z)#2 corresponding to
the first four states. The results were obtained for a QW
GaAs in AlxGa12xAs with a band offset of 220 meV and
width of 245 Å. The structure is doped on one side at 135
from the left-QW edge with a 3D dopant density of
31018/cm23. Without external electric field and at zero tem
perature the ground state is paramagnetic, the intersub
spacings areE015«1

s2«0
s526.78 meV, E02560.58 meV,

E035108.36 meV, whilem2«0
s524.14 meV is just below

«1
s2«0

s and only one subband is occupied.
In Fig. 2 we compare the potentialVXX

0 (z,s) correspond-
ing to Fig. 1~b! @obtained using Eq.~6!# with the exchange
potential in LDA Vx

LDA(z,s)52@6n(z,s)/p#1/3 for the
11532
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sameXX density. Note that althoughVx
LDA andVXX

0 have a
similar amplitude in the QW region, their respectiv
asymptotic behaviors are completely different: whileVx

LDA

goes exponentially to zero foruzu→`, VXX
0 tends asymptoti-

cally ~as21/uzu) towards the constant~positive! contribution
of Eq. ~6!. This results in larger intersubband spacings us
XX theory for the same total electron density. Note that t
minimum of VXX

0 (z,s) is not at the maximum ofn(z,s) as
in Vx

LDA(z,s) and also note thatVXX
0 (z,s) is large where

n(z,s) is negligible. Both features are consequences of
nonlocal dependence ofVXX

0 (z,s) on n(z,s), displayed ex-
plicitly in Eq. ~6!.

Significant qualitative differences between LDA and X
theory appear each time a new subband is occupied.
instance in Eq.~3!, at zero temperature, a finite term propo
tional to dEX /dkF

1s appears discontinuously9 when kF
1s

→01. Moreover, in Eq.~4!, whenm→«1
s101, a finite con-

tribution (2uw1
s(z,z8)u2/2pA) appears in the second term

Therefore, the inversexs
21(z,z8) also changes discontinu

ously when kF
1s→01. Although the discontinuities in

dEX /dkF
1s andxs

21 have opposite effects, they do not canc
each other andxs

21 dominates.16 Let us consider what hap
pens whenm crosses a subband energy«n

s but one neglects
the self-consistent adjustments of the charge. In that c
because of the discontinuities introduced bydEX /dkF

1s and
in xs

21 , the XX potential must change discontinuously,

VXX~z,s,m→«n
s101!

5VXX~z,s,m→«n
s201!1DVXX

n21,n~z,s!. ~7!

Therefore, the wave functions, the total electron density,
the total energy cannot be continuous functions ofm and the
discontinuityDVXX

n21,n signals a first-order transition of th
2DEG. An interesting question is, what is the effect
DVXX

0,1(z,s) on the intersubband spacingE01. Case I—if one
only considers the discontinuities indEX /dkF

1s , E01(m
→«1

s101),E01(m→«1
s201), m lies above the first-

FIG. 2. Comparison of the exact exchange potential with
LDA potential when only one subband is occupied. The full upp
line is the 3D densityn(z) obtained with XX theory~corresponding
to a 2D density of 0.6831012/cm2). XX and LDA exchange poten-
tials are compared for this same density. Energies are meas
from the chemical potentialm.
5-3
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excited subband and afinite amount of charge is abruptl
transferred from the ground to the first-excited subba
Case II—if one adds the discontinuities inxs

21 , E01(m
→«1

s101). E01(m→«1
s201), m remains below the bot

tom of the first-excited subband and a self-consistent s
tion of the system is not possible~under our assumption o
translational symmetry!. In other words, if the system at
tempts the occupation of the first-excited subband, this
creases the intersubband spacing, which in turn empties
excited subband in the next iteration, which in turn produ
a lower intersubband spacing, and so on. Finally, ifE01(m
→«1

s101)5E01(m→«1
s201) ~case III! a smooth occupa

tion of the first-excited subband would be possible. Provid
that self-consistency is frozen, the only possibility in t
LDA is case III, because the LDA exchange potential is
continuous function of the density. Self-consistent effects
some conditions, can generate first-order transitions wi
LDA.8 But in XX theory, in contrast, a second-order tran
tion will be an accident and, in general, first-order transitio
are expected whenm crosses a subband energy at ze
temperature.18

In Fig. 3 we plot the intersubband spacingE01 as a func-
tion of the total 2D electron-densityN/A5(N↑1N↓)/A with
different methods. The dotted line corresponds to the us
LDA, the continuous line to XX theory at zero temperatu
and the dashed line was obtained with an approximat11

finite temperature XX theory@T510 K in Eq. ~4!#. The

FIG. 3. Intersubband spacingE01 as a function of the 2D density
N/A. Full lines, zero temperature exact exchange; dashed li
finite temperature exact exchange; dotted line, LDA.
s
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straight line is the evolution ofm2«0
s5(p\2/m* )N/A in an

hypothetical system with a single band occupied. All me
ods give similar qualitative results whenE01 is far from m
2«0

s , though LDA calculations give smaller intersubban
spacings than XX methods~as expected from Fig. 2!. How-
ever, significant qualitative differences appear whenE01
'm2«0

s . The LDA calculation gives a continuous curve b
there is a discontinuity in the derivative ofE01 when the
first-excited subband is occupied~which implies a second-
order transition!. The zero-temperature calculations with X
theory give a remarkable result. There is a window of de
sities where a self-consistent solution is not achieved beca
it corresponds to the case II discussed above. Our inter
tation of this window, where it is not possible to find a se
consistent solution under the assumption of translational
variance, is that this symmetry must be broken in the grou
state. Thus in this density region a new broken symme
phase might exist at low temperatures.

Consideration of finite temperatures in Eq.~4! introduces
smoothly the discontinuity inxs

21(z,z8) when um2«1
su

'kBT. This allows us to achieve a self-consistent soluti
for all densities~although the numerical convergence b
comes unstable in some cases!. As the density increases, th
occupation of the first-excited subband cannot be avoi
and dEX /dkF

1s generates a sudden drop inE01. This new
solution is also stable at lower densities. Accordingly, th
is a range of densities where it is possible to findtwo solu-
tions. A first-order transition occurs when the free energies
the two solutions cross; detailed temperature-dependent
culations will be reported elsewhere. From Fig. 3 we c
estimate the drop onE01 considering the energies in the de
sity range where the two solutions exist.DE0152.4
60.4 meV, which is in very good agrement with the me
surement of 3.5 meV reported by Gon˜i et al.9

In summary, we have extended the KS-DFT for 2DE
beyond the state of the art method based on the LDA. O
theory allows to obtain an exact exchange potential with
approximations up to numerical precision, while correlatio
are considered in the LDA level. The theory satisfies kno
limits and theorems. The theory predicts first-order tran
tions every time a new subband is occupied and suggest
for some systems at zero temperature the translational s
metry might be spontaneously broken. Finite temperature
fects are included approximately. We calculated the s
consistent solutions for a realistic system and obtained ph
transitions which are in good quantitative agreement w
recent experiments.

The authors would like to thank A. Gon˜i for the experi-
mental information and discussions that inspired this wo
and to V. H. Ponce for useful discussions and a critical re
ing of the manuscript. We are indebted to CONICET a
Fundacio´n Antorchas of Argentina for financial support.
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