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Numerical method for N electrons bound to a polar quantum dot with a Coulomb impurity
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A numerical method is proposed to calculate the Frohlich Hamiltonian contaih@gctrons bound to polar
guantum dot with a Coulomb impurity without transformation to the coordination frame of the center of mass
and by direct diagonalization. As an example to demonstrate the formalism of this method, the low-lying
spectra of three interacting electrons bound to an on-center Coulomb impurity, both for accepter and donor, are
calculated and analyzed in a polar quantum dot under a perpendicular magnetic field. Taking polaron effect into
account, the physical meaning of the phonon-induced terms, both self-square terms and cross terms of the
Hamiltonian are discussed. The calculation can also be applied to systems containing particles with opposite
charges, such as excitons.
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[. INTRODUCTION the impurity into account, the early investigation of impurity-
phonon interaction effects on these low-dimensional struc-
The theoretical studies of quantum dots containing fewtures was reviewed in Ref. 37. Within the framework of
electrons and excitons become a growing interest since selfariation approach, the binding energies of the ground state
assembled quantum dots can be fabricated irPf @ hydrogenic donor as a function of the size of the quan-
laboratoried~*® The great interests are due to the potentialtum well were first calculatedf. The studies of the same
use in designing electro-optical devices. The properties offamework were then modifi€d and extended to
the dots including impurities are one of the interests in thiscylindrical,* rectangulaf,’ infinite and finite cylindricat’
area because they modify the energy levels of the materia@uantum wires, and even quantum dbts! Since the exis-
and in turn affect their electronic and optical properties. ~ tence of on-centeD ~ in GaAs/AkGa,_,As quantum wells
The theoretical studies of few electrons in two-was first reported using far-infrared magnetotransmission
dimensional space and a perpendicular magnetic field can d magnetophotoconductivity measureméhtsoth experi-
traced back to the ear|y 1980’s. The three-electron Systerﬂqentm and theoretical studies in quantum wells and quantum
with parabolic pressure was first investigated by Laughlin indots have been carried out intensivély> However, the the-
the context of fractional Hall effedf His work became the oOretical studies of electron-phonon systems with more than
groundwork of the study of quantum dots. He constructedWo electrons are rare.
the spin-polarized correlated states in the lowest Landau lev- The objective of the present study is to develop a numeri-
els. Similar works was later carried out up to sevenc@ method to calculate the low-lying energy spectra of
electrons”*® Using the method of numerical diagonaliza- N-electron polar quantum dot bound to an on-center Cou-
tion, the energy spectra of quantum dots up to eight electronl®mb impurity. This is a case that electrons in a quantum
were also calculate¥:** The role of the electron correlation, dot interact with longitudinal-opticalLO) phonon and an
the effects of confinement and external magnetic field wer@n-center Coulomb impurity in a magnetic field. The calcu-
discussed in great detail. Furthermore, energy spectra angtion is an example of utilizing this method takimg=3.
persistent currents of few-electron quantum rings were alsdhe evolutions of the ground-state energy induced by mag-
studied*®*~?*However, the above studies only focused on thehetic fields, magnetic moment, and magnetic susceptibility

Coulomb interaction of electrons. They neither consider theare reported for the total electrons’ spigs=1/2 and S
effect of phonon nor the effect of impurities. =3/2, respectively. The modification of the Hamiltonian by

Polaron Hamiltonian was first derived by Frohft¢lising  the phonon induced terms with the phase factors for the three

the quantum theory of field on the basis of electron-phonor@lectrons is discussed. It is worth noting that, in the present
interaction. This Hamiltonian was then solved by Lee-Low-study, the method can also be applied to those systems with
Pines metho®! via two subsequent unitary transformations: the particles of opposite charges, e.g., excitons. In the latter
the first transformation is to eliminate the center-of-mass cocase, the difference is that the opposite signs are added for
ordinates, while the second is to displace the phonon coordihe phase factors of those particles with opposite charges.
nates. In the last two decades, the polaron Hamiltonians of

one and two electrons in two-dimensional systems, such as Il. THEORY

quantum well$8-2° one-dimensional systems, such as quan-

tum wires®3L and zero-dimensional systems, such as quan- Electrons moving in a quantum dot in the presence of a

tum dotst232-36\yere investigated. Besi th works onmagnetic field are considered as confined in a two-
um dots, ere investiga e_d es des_ eae works o gdimensional(2D) parabolic potential defined Hstmw?p?

one- or two-electron systems or in the studies of exciton, th > 2 Mwep;
Hamiltonians were also first transformed to center-of-massvherep; is the 2D position vector of the electronin the

frame before performing the unitary transformations. Takingcase thatN electrons bound to a Coulomb impurity in the
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dot, they interact not only with the surrounding field of LO dot with the neglection of the quantization of phonons due to
phonon but also with the Coulomb potential under the magthe size of the dot for mathematical simplicity. In a system of
netic field B along thez direction. Taking the effective-mass N electrons all with the same mass, the coupling strength
approximation, the Hamiltonian for such a systenNoélec-  with phonon is given by

trons is given by N

A =HFo+HFeot Fimpt Aing+ Fspin, (1) Vi(p1.p2: - PN =Z Ve, ()

in which the unperturbed tertdl,, the Coulomb repulsion . . -

N . _ with all the parameterg;=1 and the coefficient of electron-
term between electrorislco, th.eA Coulomb |nteract|-on term phonon  coupling V5 which depends on the electron
between electron and impurititi,,,, the phonon induced (hole)-LO phonon coupling constaat, o . This strength con-

term H;,q, and the spin term are expressed as tains N phase factors, angi=—1 for those corresponding
particles with opposite charges.

N . . .
1 Using the symmetry gauge description for the magnetic
2 2 L2
2 [P teAp) P+ 3 mwopi ’ @ field B, the vector potentiah(p;) =(— 3By, ,3Bx;,0) is cho-
sen and the unperturbed Hamiltonian can be rewritten as
2
N e
HCOZE —_—, (3 N 1 1
i<l €. pi p]| 2 + mpr,-i-zw cLil, (8)
N 2
g, = ne 4 in which wg= Jwg+ wild4, w.=eB/m is the cyclotron fre-
imp™ . ' (4) h o ¢ L
1=1 €xpi quency,L; is the angular momentum of the individual elec-
tron.
ZE ﬁwLoa aq+2 {aq q(Pl pz, ,5N)+H-C-}. In order to diagonalize the phonon induced term of the

Hamiltonianﬂind at zero temperature, the unitary operator
(5) U is introduced to displace the phonon coordinates

Hspin: g* ugBS,. (6) R Ab ma
. . ) U=ex 2(f*a~—f-a*)
The meanings of the symbols in E() are as follows: As ; %q g7
before, p; is the 2D position vector of electroin w, is the _ _ _ _
confining strength of the quantum dot; the parametés 1 ~ Where the displacement amplitufigand its complex conju-
for an accepter impurity ang- 1 for a donor impurity; and gatefg are to be determined by minimizing the matrix ele-
ag(ad) is the creation(destruction operator of the phonon ments(oph|0*1|3|0|oph> of the Hamiltonian, an¢0,,) is the
with 3D wave vectorq=(q,q,) in optical branch.Hg,, Phonon ground state at absolute zero temperature.
=g* ugBS, is the Zeeman energy for the coupling of the  T0 obtain the eigenfunction and the eigenenergies, for the
spins of charged particles and the magnetic figlgg is the  case ofN electrons, we diagonalizel in a model space
Bohr magnetong* is the effective Lande factor, ar§, is  spanned by a set of the translationally invariant 2D harmonic
the z component of the total spins of théelectrons. product basis functions with a total orbital angular momen-
We model the interaction between the phonons and theumL (=1,;+1,+ ... +1y), a parityw and a total spirSin
electrons by the corresponding bulk motféa the quantum  the form of a Slate determinant

(€)

by (PDXL Py (PDX1 - By (PN)X

L 1 ¢n2|2(51))(2 ¢n2|2(52)X2 e ¢n2|2(l;N)X2
W ’w:\/ﬁ (10

b (POXN B (PXN - b (PNXN

Here, an interchange of two electrons corresponds to an irene-electron eigenstaig, (p) can be expressed in associ-
terchange of two columns of the determinant. As a result, thated Laguerre polynomials with the corresponding eigen-
total wave functiony-™ changes signé,, and x; are the  value 2h+|I|+1 for an electron moving in a homogeous
spatial and the spin parts of the electipmespectively. The magnetic field and 2D parabolic potentialand|% are the
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FIG. 1. Lowest-energy states of total orbital angular momentuni,2,3,4, and 5 with and without polaron effect as functions of
confining strength for the total spB= 1/2 under magnetic fielB=1 T, (a) no impurity, (b) with an accepter impurity, an@) with a donor
impurity.

radial quantum number and the angular momentum, respetrifugal barriers such that the three electrons are closer to
tively. The symbola= JA/mwg is the size of the dot. each other so that the forces between them are more repul-

In our present numerical worlsee Appendix using the sive. As is known, a single-electron eigenstaté,)
number of electron®i=3 as an example, the low-lying ei- =(1/y2m)e'’R,(r) can be qualitatively regarded as the cir-
genvalue€(3) of the three-electron quantum dot bound to acular motion of the electron about the center of the quantum
Coulomb impurity forS,=1/2 andS,=3/2 are first calcu- dot with orbital angular momenturt¥.. The mean-square
lated. Then the magnetic moments and the magnetic susceprbit radiusr can be expressed 8s,
tibilities of the system are found.

In this work, only the non-negative orbital angular mo- (Dnlr?| by 2n+]1]|+ 1. (11
mental; of the individual electrons with zero quantum num-
bersn; are considered which do not largely affect the quali-The lower the angular momentum stét¢he closer the elec-
tative results. trons to the center of the quantum dot. From ELf), one
can see that the trend of eigeneneE(y) for electrons with
positive angular momentais the same as those with nega-
tive . For simplicity, we consider the electrons with non-

To what follows, one of the typical semiconducting mate-negative angular momentuhin the present calculation. The
rials GaAs, is taken as an example to discuss both energstateL =0 is forbidden according to Pauli exclusion prin-
spectra and magnetic moments as a function of magneticiple although it has no centrifugal barriers. The statel
fields. The material parameters are as folldWs,=12.83, is therefore most unstable comparing with the other angular
€,=10.90, iw o=36.7 meV, Lande factog*=0.44, m momentum states at lowes,. At higher w,, the energy
=0.675n,, wherem, is the single-electron bare mass. spectra are, however, different from those of lay, espe-

In the case that three electrons confined in a quantum dogjally for donor doped quantum dot. In Figc), it can be
the electrons position themselves form a regular triangle. Theeen that there is a clear-cut transition point @
configuration is known to be energetically stabind the ~0.0350, o without polaron effect and 0.02§ o with po-
electrons approach each other when the confinement strengtron effect. The higher the,, the closer are the electrons
w, increases. In order to show the, dependency of to the center and the larger effect the centered impurity acts
eigenenergy of such a system, the low-lying stdtes1-5  on the electrons. Since the electrons with lower angular mo-
for the unpolarized stateS{=1/2) in a fixed magnetic field mentum states are closer to the donor impurity, the donor and
B=1 T as a function ofw, are plotted with and without the electrons are under stronger attraction. The $taté is,
impurity, either accepter or donor. Figure 1 shows the resulttherefore, energetically more stable and becomes the lowest
with phonon correction by dashed lines and the results withstate at highew, . In the following, with the combined ef-
out phonon correction by solid lines. It is obvious that thefect of both impurity and confining strength of,
eigenenergies when phonon effect are taken into account are0.06w, o holding three electrons together in quantum dot,
lower. Hence, the system of three electrons is more stablthe low-lying states are presented as functions of magnetic
with the effect of phonon-electron interaction. fields.

The second note to make is that, for the dot with a donor Without the impurity effect, the low-lying states of the
impurity [Fig. 1(c)], at weak confinement strengtwhenw,  three-electron quantum dot for both unpolarize®}= 1/2)
is below about 0.2, o), the stateL=1 has smaller cen- and polarized §,= 3/2) states as functions of magnetic fields

IIl. DISCUSSION AND CONCLUSIONS
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FIG. 2. Lowest-energy states of total orbital angular momentuwith and without polaron effect as functions of magnetic field, with
different spin configurationga) the total spinS=1/2 and(b) the total spinS=3/2, and(c) both spin configuration presented together for
comparision. Note theéE,=f wg .

are plotted in Fig. 2. The low-lying states without and with rounding ions of the lattice. The other six cross terms are
polaron effects are denoted by solid and dashed lines, respealso negative which denote that the electrons are attractive
tively. Regardless of the polaron effect, the evolution of thevia the surrounding strain field, just like Cooper pairs in
ground state, in general, occurs only at the nonmagic valuesuperconductors. It is worth mentioning here that, if the
of total angular momenta # 3k, wherek is an integer, for  Frohlich or phonon induced interaction is applied to systems
unpolarized state and at the magic vallles3k for polar-  with particles of opposite charges, such as excitons, the cross
ized state. Figure () presents both spin configurations to- terms will be positive and the particles will be repulsive. For
gether for comparison. Overall, when only the Coulomb ef-the present case of a three-electron quantum dot, by compar-
fect is considered, as the magnetic field is increased fronng the solid and dashed curves in Figéa)2and 2b), the
zero, the ground-state transitions occurs in the sequence gfound-state energy decreases rapidly as the magnetic-field
L=3—5-6—7—9—12- ... increases due to the polaron effect. This effect on decreasing
When combined with polaron effect, EGA4) contains  the energy of the system are similar for both accepter and
the square of the sum of three phase factors of the electrornor doped impurities, as depicted by the results shown in
in quantum dot. After expanding, the resulting nine negativeFigs. 3 and 4, respectively. As clearly seen in Fie) 2the
phonon induced terms are generally divided into two differ-combined effect of both Coulomb and polaron for every
ent types, three self-square and six cross terms. Each of tlggound-statd /S transition is qualitatively the same as those
self-square terms is in fact the self-energy of the correspondwvhen only the Coulomb effect is considered, except that the
ing polaron. They are all negative values, which indicate thatransition shifts slightly towards higher magnetic fields. As
all three electrons are self-trapped or bound states due the magnetic-field increases, the dot sizéecreases and the
polarization by their Coulomb interactions with the sur-electrons will in turn jump to the orbits with higher angular
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FIG. 3. Same as those in Fig. 2, but with an accepter impurity.
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FIG. 4. Same as those in Fig. 2, but with a donor impurity.

momenta to avoid the increase in repulsive energy. When In Fig. 4, the low spectra for on-center donor doped quan-
polaron effect is enforced, the electrons are self-trapped anaim dot are presented. It is clearly observed that there are, in
become less repulsive. They jump to higher angular mogeneral, no crossovers of ground-state orbital angular mo-
menta only at higher magnetic fields. Furthermore, the unpomenta, except unclear level crossing of angular momentum
larized stated. =7 is no longer ground stafsee Fig. 2c)]. L=1 for unpolarized state with higher ones at higher mag-
In Fig. 3, for an on-center accepter doped quantum dotnetic fields,B>6T. Since there are two interaction energies,
similar to that without impurity, the ground-state transitselectron-electron repulsion and electron-donor attraction,
from one angular momentum to another as the magnetic-fieldompeting with each other, and the electron-donor attraction
increases. Since the accepter provides additional repulsion t® much stronger, the electrons are much closer to the center
the electrons, they have to jump to higher states even iof the dot and become localized in the vicinity of the center.
lower magnetic fields in order to minimize the energy of theTherefore, the electrons do not jump to higher angular mo-
whole system. The electrons at lower angular momenta ammenta or separate from the on-center donor impurity even at
closer to the center of the quantum dot and are energeticallyery high magnetic fields.
unstable because of the electron-accepter repulsion. They all The transition of orbital or spinSangular momentum in
repel from the center of the quantum dot, as we see in Figground-state energy can be appeared as discontinuities in the
3(a)for unpolarized state$,=2,4 and in Fig. 8)for polar-  magnetic properties of the quantum dot since they are clear-
ized stated=3. They are no longer ground states. Further-cut consequence of resulting interaction of the whole system.
more, the ground-state energies of the three-electron quafhe magnetic moment,qand the magnetic susceptibilty
tum dot for both unpolarized and polarized states shifttan be defined asumag=—9Egound3)/dB and x
0.6% w| o higher comparing with those without impurity. =dumag/ 9B, respectively. In Fig. 5, the magnetic moments

No impurity

FIG. 5. (a) Magnetic moment
Mmag IN UNits of Bohr magneton
g and(b) magnetic susceptibility
of a three-electron quantum dot.

susceptibility

L § N 1 . | -30 1 L L

B(T)

115321-5



J. K. F. YAU AND C. M. LEE PHYSICAL REVIEW B67, 115321 (2003

and the magnetic susceptibility of the three-electron quantum .

dot with (dashed linesand without(solid lineg polaron ef- (YralHol ¥y =1[2(n1+nz+ny)

fect are shown. With polaron effect, the spikes of both mag-

netic moment and the susceptibility shift to higher magnetic + 14|+ 1o+ 15| + 3] wg
fields.

In summary, a numerical method for the calculation of the
eigenenergies oN electrons bound to quantum dots with
Coulomb impurity is developed. As an example, using nu-
merical diagonalization, we calculate the energy spectra of a +g* ugBS,
three-electron polar quantum dot with and without Coulomb
impurity. Three remarks on the numerical results are worth
noting.

(1) There is a clear-cut transition at,~0.035v o with-
out polaron effect and 0.02§ o with polaron effect for the (Yl Hed ) 2 (Yl
donor doped quantum dot as the confining strength increases. | p |

(2) In the presence of electron-phonon interaction, the
S/L ground-state transitions shift towards higher magnetic 02 3
gglr(]jssic\i/:/alrtgdréspect to the case that only the Coulomb effect is (¢[k]|H|mp| Yoy = 2 (z,b[k]l —|¢[k/ ), (A3)

(3) For both magnetic moment and magnetic susceptibilty,
there are ground-state/S transitions or spikes for quantum
dots with or without centred acceptor. However, the ground- ((!f[k]||:|ind| Vi)
state transitions are generally suppressed for those with do-
nor impurity. a B

The phonon induced Hamiltonian derived in the present e Lof dai( ¢y |2 §|eq p'|<// k’]>|
study can be applied to systems with more than three elec-
trons and even those with particles of opposite charges, such (A4)
as excitons. The present formalism provides reference to cal-
culate the energy spectra of the few body systems involvin
excitons or charged excitons, which is of growing intefést.
The present results also motivate further study on the effe
of the position of the impurity, inside and outside of a few-
electron system.

1
+ Eﬁwc(ll“l‘lz“l‘lg)

=Y, (A2)

%vhereuLo is the polaron size and,=1 for all three elec-
drons. In the numerical work, for a particular total orbital
momentumL and particularzzcomponent spin of the total
electrons’ spins of the whole system, the whole sets of bases
with the total energies G+ n,+nz)+ |14+, +]l5| in-
cluding all combinations of the component of electron
ACKNOWLEDGMENTS spins are first arranged in an increasing order, before per-
. .forming the numerical diagonalization f&,=1/2 and 3/2,
This work was supported by the Research Grant Councilyeghectively. The accuracy of the numerical solution depends
Earmarked Grant No. CityU 4171/00E. on the size of the model space. No more than 42 bases are
involved in the present diagonalization. Note that zteom-
APPENDIX ponentS, can take the values &,S—1,...,—S for given
S In other words, for the final two sets of eignenergi8s,
If the whole set of quantum numbers is denoted by the=1/2 and 3/2, those low-lying states 8f= 1/2 belong to the
subscript[k] in brevity, in the case of three electrons, the spin stateS=3/2, whereas the remaining low-lying states of

matrix elements ¢y |H|¢[k, ) are given by S=1/2 belong toS=1/2.
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