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Numerical method for N electrons bound to a polar quantum dot with a Coulomb impurity

J. K. F. Yau* and C. M. Lee†
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A numerical method is proposed to calculate the Frohlich Hamiltonian containingN electrons bound to polar
quantum dot with a Coulomb impurity without transformation to the coordination frame of the center of mass
and by direct diagonalization. As an example to demonstrate the formalism of this method, the low-lying
spectra of three interacting electrons bound to an on-center Coulomb impurity, both for accepter and donor, are
calculated and analyzed in a polar quantum dot under a perpendicular magnetic field. Taking polaron effect into
account, the physical meaning of the phonon-induced terms, both self-square terms and cross terms of the
Hamiltonian are discussed. The calculation can also be applied to systems containing particles with opposite
charges, such as excitons.
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I. INTRODUCTION

The theoretical studies of quantum dots containing f
electrons and excitons become a growing interest since
assembled quantum dots can be fabricated
laboratories.1–15 The great interests are due to the poten
use in designing electro-optical devices. The properties
the dots including impurities are one of the interests in t
area because they modify the energy levels of the mate
and in turn affect their electronic and optical properties.

The theoretical studies of few electrons in tw
dimensional space and a perpendicular magnetic field ca
traced back to the early 1980’s. The three-electron sys
with parabolic pressure was first investigated by Laughlin
the context of fractional Hall effect.16 His work became the
groundwork of the study of quantum dots. He construc
the spin-polarized correlated states in the lowest Landau
els. Similar works was later carried out up to sev
electrons.17,18 Using the method of numerical diagonaliz
tion, the energy spectra of quantum dots up to eight electr
were also calculated.8–11The role of the electron correlation
the effects of confinement and external magnetic field w
discussed in great detail. Furthermore, energy spectra
persistent currents of few-electron quantum rings were a
studied.19–23However, the above studies only focused on
Coulomb interaction of electrons. They neither consider
effect of phonon nor the effect of impurities.

Polaron Hamiltonian was first derived by Frohlich24 using
the quantum theory of field on the basis of electron-phon
interaction. This Hamiltonian was then solved by Lee-Lo
Pines method25 via two subsequent unitary transformation
the first transformation is to eliminate the center-of-mass
ordinates, while the second is to displace the phonon coo
nates. In the last two decades, the polaron Hamiltonian
one and two electrons in two-dimensional systems, suc
quantum wells,26–29one-dimensional systems, such as qu
tum wires,30,31 and zero-dimensional systems, such as qu
tum dots,12,32–36were investigated. Besides these works
one- or two-electron systems or in the studies of exciton,
Hamiltonians were also first transformed to center-of-m
frame before performing the unitary transformations. Tak
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the impurity into account, the early investigation of impurit
phonon interaction effects on these low-dimensional str
tures was reviewed in Ref. 37. Within the framework
variation approach, the binding energies of the ground s
of a hydrogenic donor as a function of the size of the qu
tum well were first calculated.38 The studies of the sam
framework were then modified39 and extended to
cylindrical,40 rectangular,41 infinite and finite cylindrical42

quantum wires, and even quantum dots.13,14 Since the exis-
tence of on-centerD2 in GaAs/AlxGa12xAs quantum wells
was first reported using far-infrared magnetotransmiss
and magnetophotoconductivity measurements,43 both experi-
mental and theoretical studies in quantum wells and quan
dots have been carried out intensively.44,45However, the the-
oretical studies of electron-phonon systems with more t
two electrons are rare.

The objective of the present study is to develop a num
cal method to calculate the low-lying energy spectra
N-electron polar quantum dot bound to an on-center C
lomb impurity. This is a case thatN electrons in a quantum
dot interact with longitudinal-optical~LO! phonon and an
on-center Coulomb impurity in a magnetic field. The calc
lation is an example of utilizing this method takingN53.
The evolutions of the ground-state energy induced by m
netic fields, magnetic moment, and magnetic susceptib
are reported for the total electrons’ spinsS51/2 and S
53/2, respectively. The modification of the Hamiltonian b
the phonon induced terms with the phase factors for the th
electrons is discussed. It is worth noting that, in the pres
study, the method can also be applied to those systems
the particles of opposite charges, e.g., excitons. In the la
case, the difference is that the opposite signs are added
the phase factors of those particles with opposite charge

II. THEORY

Electrons moving in a quantum dot in the presence o
magnetic field are considered as confined in a tw
dimensional~2D! parabolic potential defined as17 1

2 mvo
2r i

2 ,

whererW i is the 2D position vector of the electroni. In the
case thatN electrons bound to a Coulomb impurity in th
©2003 The American Physical Society21-1
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dot, they interact not only with the surrounding field of L
phonon but also with the Coulomb potential under the m
netic fieldB along thez direction. Taking the effective-mas
approximation, the Hamiltonian for such a system ofN elec-
trons is given by

Ĥ5Ĥ01Ĥco1Ĥ imp1Ĥ ind1Ĥspin, ~1!

in which the unperturbed termĤ0, the Coulomb repulsion
term between electronsĤco, the Coulomb interaction term
between electron and impurityĤ imp , the phonon induced
term Ĥ ind , and the spin term are expressed as

Ĥ05(
i 51

N F 1

2m
@PW i1eAW ~r i

W !#21
1

2
mvo

2r i
2G , ~2!

Ĥco5(
i , j

e2

e`urW i2rW j u
, ~3!

Ĥ imp5(
i 51

N
he2

e`r i
, ~4!

Ĥ ind5(
qW

\vLOâqW
1

âqW1(
qW

$âqWVqW~rW 1 ,rW 2 , . . . ,rW N!1H.c.%,

~5!

Ĥspin5g* mBBSz . ~6!

The meanings of the symbols in Eq.~1! are as follows: As
before,rW i is the 2D position vector of electroni; vo is the
confining strength of the quantum dot; the parameterh is 1
for an accepter impurity and21 for a donor impurity; and
âqW

1(âqW) is the creation~destruction! operator of the phonon

with 3D wave vectorqW 5(qW i ,qz) in optical branch.Ĥspin
5g* mBBSz is the Zeeman energy for the coupling of th
spins of charged particles and the magnetic fieldB. mB is the
Bohr magneton,g* is the effective Lande factor, andSz is
the z component of the total spins of theN electrons.

We model the interaction between the phonons and
electrons by the corresponding bulk modes46 in the quantum
i
th

11532
-

e

dot with the neglection of the quantization of phonons due
the size of the dot for mathematical simplicity. In a system
N electrons all with the same mass, the coupling stren
with phonon is given by

VqW~rW 1 ,rW 2 , . . . ,rW N!5(
i 51

N

z iVqWe
iqW •rW i, ~7!

with all the parametersz i51 and the coefficient of electron
phonon coupling24 VqW which depends on the electro
~hole!-LO phonon coupling constantaLO . This strength con-
tains N phase factors, andz i521 for those corresponding
particles with opposite charges.

Using the symmetry gauge description for the magne

field B, the vector potentialAW (rW i)5(2 1
2 Byi , 1

2 Bxi ,0) is cho-
sen and the unperturbed Hamiltonian can be rewritten as

Ĥo5(
i 51

N S Pi
2

2m
1

1

2
mvB

2r i
21

1

2
vcLi D , ~8!

in which vB5Avo
21vc

2/4, vc5eB/m is the cyclotron fre-
quency,Li is the angular momentum of the individual ele
tron.

In order to diagonalize the phonon induced term of t
HamiltonianĤ ind at zero temperature, the unitary operato25

Û is introduced to displace the phonon coordinates

Û5expF(
qW

~ f qW âqW
1

2 f qW
* âqW !G ~9!

where the displacement amplitudef qW and its complex conju-
gate f qW

* are to be determined by minimizing the matrix el

ments^0phuÛ21ĤÛu0ph& of the Hamiltonian, andu0ph& is the
phonon ground state at absolute zero temperature.

To obtain the eigenfunction and the eigenenergies, for
case ofN electrons, we diagonalizeĤ in a model space
spanned by a set of the translationally invariant 2D harmo
product basis functions with a total orbital angular mome
tum L (5 l 11 l 21 . . . 1 l N), a parityp and a total spinS in
the form of a Slate determinant
cL,p5
1

AN!U fn1l 1
~rW 1!x1 fn1l 1

~rW 2!x1 ••• fn1l 1
~rW N!x1

fn2l 2
~rW 1!x2 fn2l 2

~rW 2!x2 ••• fn2l 2
~rW N!x2

••• ••• ••• •••

fnNl N
~rW 1!xN fnNl N

~rW 2!xN ••• fnNl N
~rW N!xN

U . ~10!
i-
en-
s

Here, an interchange of two electrons corresponds to an
terchange of two columns of the determinant. As a result,
total wave functioncL,p changes sign.fni l i

and x i are the
spatial and the spin parts of the electroni, respectively. The
n-
e
one-electron eigenstatefnl(r) can be expressed in assoc
ated Laguerre polynomials with the corresponding eig
value 2n1u l u11 for an electron moving in a homogeou
magnetic field and 2D parabolic potential.n and l\ are the
1-2



of

NUMERICAL METHOD FOR N ELECTRONS BOUND TOA . . . PHYSICAL REVIEW B 67, 115321 ~2003!
FIG. 1. Lowest-energy states of total orbital angular momentumL51,2,3,4, and 5 with and without polaron effect as functions
confining strength for the total spinS51/2 under magnetic fieldB51 T, ~a! no impurity,~b! with an accepter impurity, and~c! with a donor
impurity.
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radial quantum number and the angular momentum, res
tively. The symbola5A\/mvB is the size of the dot.

In our present numerical work~see Appendix!, using the
number of electronsN53 as an example, the low-lying e
genvaluesE(3) of the three-electron quantum dot bound to
Coulomb impurity forSz51/2 andSz53/2 are first calcu-
lated. Then the magnetic moments and the magnetic sus
tibilities of the system are found.

In this work, only the non-negative orbital angular m
mental i of the individual electrons with zero quantum num
bersni are considered which do not largely affect the qua
tative results.

III. DISCUSSION AND CONCLUSIONS

To what follows, one of the typical semiconducting ma
rials GaAs, is taken as an example to discuss both en
spectra and magnetic moments as a function of magn
fields. The material parameters are as follows:47 eo512.83,
e`510.90, \vLO536.7 meV, Lande factorg* 50.44, m
50.675mo , wheremo is the single-electron bare mass.

In the case that three electrons confined in a quantum
the electrons position themselves form a regular triangle.
configuration is known to be energetically stable9 and the
electrons approach each other when the confinement stre
vo increases. In order to show thevo dependency of
eigenenergy of such a system, the low-lying statesL51 –5
for the unpolarized state (Sz51/2) in a fixed magnetic field
B51 T as a function ofvo are plotted with and withou
impurity, either accepter or donor. Figure 1 shows the res
with phonon correction by dashed lines and the results w
out phonon correction by solid lines. It is obvious that t
eigenenergies when phonon effect are taken into accoun
lower. Hence, the system of three electrons is more st
with the effect of phonon-electron interaction.

The second note to make is that, for the dot with a do
impurity @Fig. 1~c!#, at weak confinement strength~whenvo
is below about 0.25vLO), the stateL51 has smaller cen
11532
c-

ep-

-

-
gy
tic

ot,
e

gth

ts
-

re
le

r

trifugal barriers such that the three electrons are close
each other so that the forces between them are more re
sive. As is known, a single-electron eigenstateufnl&
5(1/A2p)eil uRnl(r ) can be qualitatively regarded as the c
cular motion of the electron about the center of the quant
dot with orbital angular momentuml\. The mean-square
orbit radiusr can be expressed as,9

^fnlur 2ufnl&}2n1u l u11. ~11!

The lower the angular momentum statel, the closer the elec-
trons to the center of the quantum dot. From Eq.~11!, one
can see that the trend of eigenenergyE( l ) for electrons with
positive angular momental is the same as those with neg
tive l. For simplicity, we consider the electrons with no
negative angular momentuml in the present calculation. Th
stateL50 is forbidden according to Pauli exclusion prin
ciple although it has no centrifugal barriers. The stateL51
is therefore most unstable comparing with the other ang
momentum states at lowervo . At higher vo , the energy
spectra are, however, different from those of lowvo , espe-
cially for donor doped quantum dot. In Fig 1~c!, it can be
seen that there is a clear-cut transition point atvo
'0.035vLO without polaron effect and 0.025vLO with po-
laron effect. The higher thevo , the closer are the electron
to the center and the larger effect the centered impurity a
on the electrons. Since the electrons with lower angular m
mentum states are closer to the donor impurity, the donor
the electrons are under stronger attraction. The stateL51 is,
therefore, energetically more stable and becomes the low
state at highervo . In the following, with the combined ef-
fect of both impurity and confining strength ofvo
50.06vLO holding three electrons together in quantum d
the low-lying states are presented as functions of magn
fields.

Without the impurity effect, the low-lying states of th
three-electron quantum dot for both unpolarized (Sz51/2)
and polarized (Sz53/2) states as functions of magnetic fiel
1-3



ith
or

J. K. F. YAU AND C. M. LEE PHYSICAL REVIEW B67, 115321 ~2003!
FIG. 2. Lowest-energy states of total orbital angular momentumL with and without polaron effect as functions of magnetic field, w
different spin configurations,~a! the total spinS51/2 and~b! the total spinS53/2, and~c! both spin configuration presented together f
comparision. Note thatEo5\vB .
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are plotted in Fig. 2. The low-lying states without and w
polaron effects are denoted by solid and dashed lines, res
tively. Regardless of the polaron effect, the evolution of
ground state, in general, occurs only at the nonmagic va
of total angular momentaLÞ3k, wherek is an integer, for
unpolarized state and at the magic valuesL53k for polar-
ized state. Figure 2~c! presents both spin configurations t
gether for comparison. Overall, when only the Coulomb
fect is considered, as the magnetic field is increased f
zero, the ground-state transitions occurs in the sequenc
L53→5→6→7→9→12•••.

When combined with polaron effect, Eq.~A4! contains
the square of the sum of three phase factors of the elect
in quantum dot. After expanding, the resulting nine negat
phonon induced terms are generally divided into two diff
ent types, three self-square and six cross terms. Each o
self-square terms is in fact the self-energy of the correspo
ing polaron. They are all negative values, which indicate t
all three electrons are self-trapped or bound states du
polarization by their Coulomb interactions with the su
11532
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rounding ions of the lattice. The other six cross terms
also negative which denote that the electrons are attrac
via the surrounding strain field, just like Cooper pairs
superconductors. It is worth mentioning here that, if t
Frohlich or phonon induced interaction is applied to syste
with particles of opposite charges, such as excitons, the c
terms will be positive and the particles will be repulsive. F
the present case of a three-electron quantum dot, by com
ing the solid and dashed curves in Figs. 2~a! and 2~b!, the
ground-state energy decreases rapidly as the magnetic-
increases due to the polaron effect. This effect on decrea
the energy of the system are similar for both accepter
donor doped impurities, as depicted by the results show
Figs. 3 and 4, respectively. As clearly seen in Fig. 2~c!, the
combined effect of both Coulomb and polaron for eve
ground-stateL/S transition is qualitatively the same as tho
when only the Coulomb effect is considered, except that
transition shifts slightly towards higher magnetic fields. A
the magnetic-field increases, the dot sizea decreases and th
electrons will in turn jump to the orbits with higher angul
FIG. 3. Same as those in Fig. 2, but with an accepter impurity.
1-4
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FIG. 4. Same as those in Fig. 2, but with a donor impurity.
he
a
o

p

o
its
fie
n

he
a
a
y
Fi

er
ua
hi

an-
e, in
mo-
tum
g-
s,
on,
tion
nter
er.
o-

n at

n the
ear-
em.

ts
momenta to avoid the increase in repulsive energy. W
polaron effect is enforced, the electrons are self-trapped
become less repulsive. They jump to higher angular m
menta only at higher magnetic fields. Furthermore, the un
larized stateL57 is no longer ground state@see Fig. 2~c!#.

In Fig. 3, for an on-center accepter doped quantum d
similar to that without impurity, the ground-state trans
from one angular momentum to another as the magnetic-
increases. Since the accepter provides additional repulsio
the electrons, they have to jump to higher states even
lower magnetic fields in order to minimize the energy of t
whole system. The electrons at lower angular momenta
closer to the center of the quantum dot and are energetic
unstable because of the electron-accepter repulsion. The
repel from the center of the quantum dot, as we see in
3~a!for unpolarized states,l 52,4 and in Fig. 3~b!for polar-
ized statesl 53. They are no longer ground states. Furth
more, the ground-state energies of the three-electron q
tum dot for both unpolarized and polarized states s
0.6\vLO higher comparing with those without impurity.
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In Fig. 4, the low spectra for on-center donor doped qu
tum dot are presented. It is clearly observed that there ar
general, no crossovers of ground-state orbital angular
menta, except unclear level crossing of angular momen
L51 for unpolarized state with higher ones at higher ma
netic fields,B.6T. Since there are two interaction energie
electron-electron repulsion and electron-donor attracti
competing with each other, and the electron-donor attrac
is much stronger, the electrons are much closer to the ce
of the dot and become localized in the vicinity of the cent
Therefore, the electrons do not jump to higher angular m
menta or separate from the on-center donor impurity eve
very high magnetic fields.

The transition of orbitalL or spinSangular momentum in
ground-state energy can be appeared as discontinuities i
magnetic properties of the quantum dot since they are cl
cut consequence of resulting interaction of the whole syst
The magnetic momentmmag and the magnetic susceptibiltyx
can be defined asmmag52]Eground(3)/]B and x
5]mmag/]B, respectively. In Fig. 5, the magnetic momen
FIG. 5. ~a! Magnetic moment
mmag in units of Bohr magneton
mB and~b! magnetic susceptibility
of a three-electron quantum dot.
1-5
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and the magnetic susceptibility of the three-electron quan
dot with ~dashed lines! and without~solid lines! polaron ef-
fect are shown. With polaron effect, the spikes of both m
netic moment and the susceptibility shift to higher magne
fields.

In summary, a numerical method for the calculation of t
eigenenergies ofN electrons bound to quantum dots wi
Coulomb impurity is developed. As an example, using n
merical diagonalization, we calculate the energy spectra
three-electron polar quantum dot with and without Coulo
impurity. Three remarks on the numerical results are wo
noting.

~1! There is a clear-cut transition atvo'0.035vLO with-
out polaron effect and 0.025vLO with polaron effect for the
donor doped quantum dot as the confining strength increa

~2! In the presence of electron-phonon interaction,
S/L ground-state transitions shift towards higher magne
fields with respect to the case that only the Coulomb effec
considered.

~3! For both magnetic moment and magnetic susceptib
there are ground-stateL/S transitions or spikes for quantum
dots with or without centred acceptor. However, the grou
state transitions are generally suppressed for those with
nor impurity.

The phonon induced Hamiltonian derived in the pres
study can be applied to systems with more than three e
trons and even those with particles of opposite charges, s
as excitons. The present formalism provides reference to
culate the energy spectra of the few body systems involv
excitons or charged excitons, which is of growing interes48

The present results also motivate further study on the ef
of the position of the impurity, inside and outside of a fe
electron system.
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APPENDIX

If the whole set of quantum numbers is denoted by
subscript@k# in brevity, in the case of three electrons, t
matrix elementŝc [k] uĤuc [k8]& are given by
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1u l 1u1u l 2u1u l 3u13#\vB

1
1

2
\vc~ l 11 l 21 l 3!

1g* mBBSzJ d [k],[ k8] , ~A1!

^c [k] uĤcouc [k8]&5
e2

e`
(
i , j

^c [k] u
1

urW i2rW j u
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e2

e`
(
i 51
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1
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