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Electron spin relaxation in semiconductors and semiconductor structures

Y. G. Semenov
Groupe d’Etude des Semi-Conducteurs, Universite´ Montpellier 2, Place Euge`ne Bataillon, 34095 Montpellier, France

~Received 18 July 2001; revised manuscript received 14 October 2002; published 19 March 2003!

We suggest an approach to the problem of a free electron spin evolution in a semiconductor with arbitrary
anisotropy or quantum structure in a magnetic field. The developed approach utilizes quantum kinetic equa-
tions for average spin components. These equations represent the relaxation in terms of correlation functions
for fluctuating effective fields responsible for spin relaxation. In a particular case when autocorrelation func-
tions are dominant, the kinetic equations reduce to the Bloch equations. The developed formalism is applied to
the problem of electron spin relaxation due to exchange scattering in a semimagnetic quantum well~QW! as
well as to the spin relaxation in a QW due to the Dyakonov-Perel mechanism. The results permit us to separate
the longitudinalT1 and transversalT2 relaxation times in a strong enough magnetic field and to trace the cases
of undistinguished parametersT1 and T2 in zero and small magnetic fields. Some new predictions of the
developed theory are discussed. Namely, we discuss the nonmonotonic behavior of spin relaxation caused by
exchange scattering under an external magnetic field and new peculiarities of electron spin evolution caused by
the presence of three relaxation times~rather than two! for the Dyakonov-Perel mechanism in a quantum well.

DOI: 10.1103/PhysRevB.67.115319 PACS number~s!: 75.50.Pp, 72.80.Ey, 75.30.Hx
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I. INTRODUCTION

The achievements in the investigations of ferromagnet
of diluted magnetic semiconductors1 ~DMS’s! and in spin
injection technology2 with the possibility to fabricate spin
controlled devices have sparked renewed interest in the s
of the spin relaxation of electrons, holes, and excitons~see
Ref. 3 and references therein!. During recent years, the opt
cal picosecond technique has acquired the ability to obs
the electron and hole spin kinetics in semiconductor quan
structures over a wide range of temperatures and magn
fields.4,5 In spite of intensive work spin relaxation process
are still not fully understood in these structures. One of
reasons is the deficiencies in the present theories. If, for
ample, the theory of the giant spin splitting of the electr
states in DMS’s has a good base in terms of the molec
exchange field,6 spin relaxation theory has, by now, som
gaps between phenomenological and microscopic
proaches to this problem. The exception is the preces
mechanism of relaxation7 that cannot be readily confronte
with other mechanisms or applied to the case of locali
electrons.

The phenomenological description of carrier or excit
spin relaxation in semiconductors commonly starts from
HamiltonianHd without the dissipation terms responsible f
spin relaxation. For a particle with spinS ~electron, exciton,
etc.!, the number of equations for average spin valuesAI

5^SX
k SY

l SZ
m& ~subscripts denote Cartesian components;k,l ,m

satisfy the condition 1<k1 l 1m<2S; the symbolI stands
for all indexes on the right-hand side ofAI) is finite and is
determined by the equations of motion (\51)

dAI

dt
52 i @AI ,Hd#. ~1!

The system~1! describes the evolution of the spin syste
without relaxation. To take it into consideration we shou
include the relaxation partRI to Eq.~1!. Generally speaking
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the relaxation of eachAI to the thermal equilibrium valueAI
0

might depend on the full set of spin averages. Therefore
relaxation part reads

RI52(
I 8

~AI 82AI 8
0

!

t I ,I 8

. ~2!

Sometimes, the number of relaxation parameterst I ,I 8
21 can be

reduced due to the presence of specific physical mechan
~see, for example, Ref. 8!. Nevertheless, it should be men
tioned that a general procedure~for the estimation of the
magnitudes of all relaxation parameters! allowing us to re-
duce the numbers of relaxation terms~2! is absent.

Another problem arises when one tries to relate the
rameterst I ,J

21 to the spin-flip rateW ~this is the aim of the
majority of microscopic calculations based on differe
known relaxation mechanisms!. To clarify this problem we
consider Bloch equations for the average spin compon
Sm in a magnetic field directed along theOZ axis:

d

dt S SX

SY

SZ

D 5vS 2SY

SX

0
D 2S SX /T2

SY /T2

~SZ2SZ
0!/T1

D . ~3!

Equation~3! looks like Eqs.~1! and ~2!, whereSZ
0 is a ther-

mal equilibrium value ofSZ andv is Zeeman splitting in a
magnetic field. Equation~3! involves two relaxation times
the longitudinalT1 and transversalT2 . In the framework of
the phenomenological equation~3! it is not apparent how the
parametersT1 andT2 having different physical meanings ar
related to the spin-flip probabilityW. Moreover, the transfor-
mation from the caseT15T2 at zero magnetic field (v
50) to the caseT1ÞT2 at vÞ0 cannot be traced both with
the help of Eq.~3! and by microscopic calculations of th
spin-flip rateW.

The present work is an attempt to fill the gap between
phenomenological approach to spin relaxation and mic
©2003 The American Physical Society19-1
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scopic calculations of the spin-flip rates in the case of e
tron relaxation with spin 1/2 in a semiconductor. This mea
that here we develop a universal procedure for the calc
tion of microscopic parameterst I ,I 8 @Eq. ~2!# that can be
applied for any relaxation mechanism both for localized a
for delocalized electrons. To do that, we derive the kine
equations for electron spin components from first principl
First, we derive the quantum kinetic equations for the den
matrix of spin 1/2 in terms of correlation functions of th
dissipative subsystem. Despite the presence of some sym
try of correlation parameters, the kinetic equations can
only reduced to the form that remains, nevertheless, m
complicated than Bloch equations. The next section pres
an analysis of the corresponding correlation functions
terms of the relaxation time approximation. In subsequ
sections the developed theory is applied to electron excha
scattering on the magnetic ions in a semimagnetic quan
well ~QW!. Then, the Dyakonov-Perel~DP! mechanism is
considered. New peculiarities related to the magnetic ani
ropy and modification of relaxation time magnitudes in
magnetic field are discussed. We discuss also possible a
cations of the results obtained here.

II. BASIC EQUATION FOR THE DENSITY MATRIX

There are several approaches to the derivation of kin
equation for small subsystems~like spin! interacting with a
large heat bath. One of them, the projection operator form
ism ~Ref. 9!, had first been considered in Refs. 10 and
which adjusted the general Zwanzig’s approach to magn
relaxation of the localized electrons with an arbitrary discr
energy spectrum. Meanwhile, some important limitatio
~namely, the requirement of nondegeneracy of the spin
ergy spectrum and rather large spin level splitting! do not
allow us to apply these theories to the above situations.
present work is free of the aforementioned limitations sin
it is focused on the evolution equation of the two-level s
tem~or spin 1/2! only rather than on the complete problem
magnetic relaxation for a multilevel system.

Let the electron spins represent asmall part of the total
system so that all other variables are related to the bat
thermal equilibrium. The corresponding Hamiltonian read

H5HS
01HL1HSL . ~4!

Here HS
0 , HL , andHSL are, respectively, the Hamiltonian

of electron spin, dissipative subsystem~assumed to be a
thermal equilibrium with a bath at a temperatureT), and
their interaction. According to the projection operat
method9 the density matrix of the system~4! is expressed in
terms of the main part and the rest:

r5 f s1h, ~5!

where

s5TrLr,

f 5
exp~2bHL!

TrL exp~2bHL!
, b5

1

T
,
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h5Pr[~12 f TrL!r.

We are looking for the kinetic equation for the reduc
density matrixs with the Hamiltonian

H5HS1HL1V, ~6!

where

HS5HS
01^HSL&,

V5HSL2^HSL&, ~7!

so that^V&50 and^•••&5TrL f ••• .
It can be shown11 that exact form of the equation fors is

ds

dt
52 iHSs2C~s!2 iD„r~0!…,

with

C~s!5TrLVE
0

t

S~ t,t8!Vf s~ t8!dt8,

D„r~0!…5TrLVS~ t,0!Pr~0!,

S~ t,t8!5expH 2 i E
t8

t

~HS~t!1HL1PV!dtJ . ~8!

Here the script letters mean the Liouville operators int
duced asHSs5@HS ,s#, etc. The termD„r(0)… vanishes for
the initial conditionr(0)5 f s(0).

The expansion of Eqs.~8! up to second order in the op
erator of interaction yields the kinetic equation fors:

ds~ t !

dt
52 iHSs2TrLE

0

t

V~ t,t !V~ t,t8! f s~ t !dt8, ~9!

where

V~ t,t8!5expH 2 i E
t8

t

HS~t!dtJ V~ t !expH i E
t8

t

HS~t!dtJ ,

~10!

V~ t !5exp$ iH Lt%V exp$2 iH Lt%. ~11!

We consider the reduced density matrixs(t) at the long
enough time scale~as compared to the times of attainment
a thermal equilibrium of dissipative subsystem!. Thus, the
upper limit of integration in Eq.~9! can be extended to in
finity. Under this assumption we obtain a Markovian equ
tion for s(t), provided that the spin relaxation timesT1 , T2
are sufficiently longer than the correlation timest of the
dissipative system responsible for spin relaxation.

To rewrite Eq.~9! in matrix form, we should use som
base. As the base, here we use the eigenvectors of the
operatorsZ . Fors51/2, the most general form of interactio
is12

V5sV, ~12!

while electron spin Hamiltonian can be written as
9-2
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HS5vsZ , ~13!

wherev is the spin splitting in a magnetic field having r
gard to renormalization~7! and OZ is an axis of quantiza-
tion. The operatorV represents the fluctuating effectiv
magnetic field giving rise to spin-flip processes. The inter
tion in the form of Eq.~12! has been already used in Ref. 1
@see Eq.~3.35! therein# for a description of the DP mecha
nism.

Substitution of Eq.~12! for Eq. ~9! ~at t→`) permits us
to express the collision integral in Eq.~9! in terms of the
Fourier transformation of correlation functions. Their num
ber can be reduced if we take into account the spectral p
erties of correlation functions and the following identiti
~valid for any operatorsA andB):

^A~t!B&v5e2bv^B~t!A&2v5e2bv^BA~t!&v , ~14!

where the definitions ofA(t) and B(t) are similar to Eq.
~11!. The definition of the Fourier transformation of the co
relation function is

^A~t!B&v5
1

2pE2`

`

^A~t!B&eivtdt. ~15!

It is convenient to introduce the average values of s
components instead of the density matrixs:

^sX&[X5Tr ssX ,

^sY&[Y5Tr ssY ,

^sZ&[Z5Tr ssZ . ~16!

Multiplying from the right Eq.~9! by the operatorsX ,
then bysY and bysZ , and taking into account the explic
form of the interaction operator for spin 1/2@Eq. ~12!#, one
can calculate the corresponding traces over the spin st
The result can also be expressed viaX, Y, and Z, which
yields the following closed system of equations for comp
nents^s&:

d

dt S X

Y

Z
D 5vS 2Y

X

0
D 2GS X

Y

Z2Z0

D . ~17!

Here the relaxation matrixG5iGmnican be expressed via th
correlation functions

gmn~v!5^Vm~t!Vn&v , ~18!

wherem,n5X,Y,Z are Cartesian indexes. No additional a
sumptions about the energy spectrum of the dynamic s
system have been made here. This distinguishes substan
our equation~17! from those obtained earlier~Refs. 10 and
11!. We recall here that this result appears due to the red
tion of the general problem of relaxation of the system w
an arbitrary discrete spectrum to the special case of spin
relaxation. Thus, Eq.~17! describes the relaxation of spin 1
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to its equilibrium state X(t) →
t→`

X0 , Y(t) →
t→`

Y0 , and

Z(t) →
t→`

Z0 , with X05Y050 and

Z052
1

2
tanh

bv

2
. ~19!

The general form of the relaxation matrixGÄG(gmn) is
quite complex. However, the symmetry properties of the c
relation functionsgmn allow us to simplify significantly the
expression forG(gmn). First, we consider the case of sym
metric correlation functions~18!, gmn(v)5gnm(v). The
symmetry properties of the correlation function permit us
obtain

G(s)5pS gzz
0 1ngyy 2ngxy 2ngxz

2ngxy gzz
0 1ngxx 2ngyz

2ngxz 2ngyz n~gxx1gyy!
D ,

~20!

where n[n(v)5(11ebv)/2, gmn[gmn(v), and gmn
0

[gmn(0). Notice that Eqs.~17! and ~20! are, generally
speaking, derived for the case of an anisotropic medium
arbitrary electron spin splittingv.

In the case of zero spin splitting (v50) and isotropic
medium, the relaxation matrixG, Eq. ~20!, depends on two
components only,gd

05gmm
0 and gn

05gmn
0 (mÞn). In this

case, Eq.~20! is similar to that obtained in Ref. 12 in term
of a fluctuating internal magnetic field.

In the case of strong enough spin splittingv, one can
expect thatgmn(v)!gzz(0), because thegmn(v) is damped
with a factor of about inverse correlation time. If we intro
duce T1

215pn@gxx(v)1gyy(v)# and T2
215pgzz(0) and

omit the off-diagonal components ofG, the latter inequality
permits us to reduce Eq.~17! to the form of a Bloch
equation~3!.

The second important case corresponds to the antis
metric coefficientsgmn(v)52gnm(v) for nÞm. In this
case we can obtain the relaxation matrix in the form of
sum of two parts:

G(a)ÄG(1)1G(2), ~21!

where G(1)5iGm,n
(s) dm,ni is the diagonal part of the matrix

G(s), while

G(2)ÄipnS gxy 0 gyz

0 gxy gzx

0 0 gxy

D . ~22!

In the limit of zero magnetic field, the coefficient
gmn(v→0) vanish atnÞm; thus Eq.~21! transforms into
matrix ~20! with zero off-diagonal components. The spect
properties~14! with respect to the definition ofn(v) permit
us to observe that both the relaxation matrix~21! and matrix
~20! are even functions of the electron spin splittingv:
G(v)5G(2v).13

Equations~17! with definitions~20! and~21! are the main
result of the theoretical background of this work. In the de
9-3
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vation of kinetic equations~17! we assume neither any sp
cific properties of the heat bath with HamiltonianHL . Nor
do we assume any specific interaction mechanismHSL . Be-
low we shall show how Eq.~17! can be used in the particula
cases corresponding to Eqs.~20! and ~21!.

III. CORRELATION TIME APPROXIMATION

The technique of Green’s functions,14 being a very pow-
erful and general tool for the analysis of correlation functio
in solids, sometimes lacks a clear physical meaning. At
same time, the correlation functions can be evaluated pr
good within the exponential decay approximation in terms
the appropriate correlation timestp .

To link Eq. ~17! with real physical cases, we first consid
the electron spin-flip scattering by quasiparticles with qu
tum numberq and continuous energy spectrum«q . The cor-
responding Hamiltonian~in terms of creationaq

† and annihi-
lation aq operators! readsHL5(q«qaq

†aq1Hint , where the
operatorHint describes quasiparticle scattering. The exp
sion of interactionHSL over quasiparticle variables gives th
following form of the effective magnetic field:

Vm5(
p

Vm
p Qp , ~23!

whereQp is a combination of operatorsaq
† ,aq8 , . . . , while

p is a set of indexes (q,q8, . . . ); the matrix elementsVm
p

depend on the specific mechanism of spin relaxation.
First of all, let us consider the caseHint→0. This means

that Vm(t)5(pVm
p Qp exp(ivpt) and

^Vm~ t !Vn&5 (
p1 ,p2

Vm
p1Vn

p2^Qp1
Qp2

&exp~ ivpt !, ~24!

wherevp is an energy difference between the states link
by operatorQp ; for instance,vp5«q2«q8 , if Qp5aq

†aq8 .
In the approximation~24!, we find immediately

gmn~v!5 (
p1 ,p2

Vm
p1Vn

p2^Qp1
Qp2

&d~vp1
1v!. ~25!

Here thed function provides the conservation of energy
relaxation processes. The termn@gxx(v)1gyy(v)# in Eq.
~20! with respect to Eq.~25! corresponds just to the Ferm
golden rule for the electron spin transition probability.

To account for the influence of quasiparticle diffusion
spin relaxation we assume that the approximation of the
relation timetp holds. Mathematically this means that th
correlation function̂ Qp1

(t)Qp2
& acquires the damping fac

tor exp(2utu/tp1
), which leads to the spectral dependence

Eq. ~18! in the form

gmn~v!5 (
p1 ,p2

Vm
p1Vn

p2^Qp1
Qp2

&
1

p

tp1

21

~vp1
1v!21tp1

22
.

~26!

Two typical cases should be distinguished in the sub
quent consideration. First, let the inequality^(vp1v)2&
11531
s
e

tty
f

-

-

d

r-

f

e-

@^tp
22& take place. This means that the summation in the

~26! can be performed in the limittp1

21→0, which reduces

Eq. ~26! to Eq. ~25!. This situation frequently occurs fo
different cases of electron spin-flip scattering, if the avera
electron energŷ«q& ~which is about thermal energyT for the
nondegenerate case or Fermi energy«F for the degenerate
case! exceeds its relaxation rate^tp

21&.
Second, let the identityvp[0 hold. In terms of the effec-

tive fluctuating magnetic fieldV(t), this means thatV(t) is
constant between two successive electron collisions so
the electron spin loses its initial orientation due to precess
around theV direction. The corresponding operator~23!
contains terms withQp5aq

†aq and vp[0. So Eq.~26! as-
sumes the form

gmn~v!5 (
p1 ,p2

Vm
p1Vn

p2^Qp1
Qp2

&
1

p

tp1

~tp1
v!211

, ~27!

which cannot be reduced to integration with ad function.
The latter situation corresponds to a precession mechan
of spin relaxation~an example to be considered in Sec. V!.

Comparison of Eqs.~27! and ~25! suggests that spin-flip
scattering and precession mechanisms of electron spin re
ation can be recognized by the spectral properties of the fl
tuating magnetic field. Namely, spin-flip scattering relaxati
hasV(t) with a spectral density of correlation function~25!
proportional to the density of states of the dissipative s
system~white noise!. The precession mechanism is provok
by magnetic fieldsV(t), which fluctuate like an exponentia
noise.

Physically, in the former case the time dependence
V(t) can be easily understood as a series ofd functions with
arguments corresponding to instantst i of spin-dependent
electron collisions with mean time lapsets f5^t i 112t i&:
V(t)5( iDfid(t2t i), whereDfi are the angles of spin ro
tations accompanying spin-dependent collisions. Conside
the relaxation as a Brownian motion of anglef(t) between
current and initial~at t50) spin directions with diffusion
coefficientD5^Dfi

2&/ts f , one can find the loss of spin po
larizationZ5 1

2 ^cosf& by direct integration of cosf over the
diffusion distribution f (f,t)5(2pDt)21/2exp(2f2/2Dt):
* cosff(f,t)df5e2Dt/2[e2t/Ts. Thus, the spin relaxation
rate is expected to beTs

215 1
2 ^Df i

2&ts f
21 . In particular, the

considered pattern of spin relaxation corresponds to
Elliott-Yafet mechanism15,16 when some spin-flip probability
(;^Dfi

2&) accompanies each electron momentum diffus
with relaxation timetp ~which defines the parameterts f

21

5tp
21).
In the latter case, theV(t) may be imagined as a series

flat steps over intervals between electron collisions,V(t)
5( jVj@u(t2t j )2u(t2t j 11)#; the sum is taken over suc
cessive collisions with electron momentum diffusion. T
spin rotation during the intervalt j 112t j , whenV(t)5Vj is
a constant, can be described as a precession of a free
Dfj5Vj (t j 112t j ), which defines the coefficient of spi
diffusion D5^Dfi

2&/tp5^Vi
2&tp , where tp5^t j 112t j&.
9-4
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Thus, the spin relaxation rateTs
215 1

2 ^Vi
2&tp is proportional

to the momentum relaxation time. This result is a distinct
feature of the DP mechanism.

Note that both the above cases had been considered
lier separately~see Ref. 12 and references therein!. Here we
consider them in the framework of a unified approach.
should also mention that a more advanced theory base
the microscopic calculation of correlation functions~18! ~in
terms of Green’s functions,14 for example! provides a possi-
bility to describe the spin relaxation beyond the approxim
tion of the correlation timetp . Below, to discuss the effect
of a magnetic field and electron energy spectrum anisotr
in QW’s, we consider electron correlation functions in t
approximation of the relaxation timetp .

IV. EXCHANGE ELECTRON SCATTERING
ON MAGNETIC IONS IN QW’S

Consider the problem of electron spin exchange scatte
on the magnetic ions in a two-dimensional~2D! quantum
well ~see Refs. 17 and 18!. The carrier-ion interaction opera
tor has the form of the following contact interaction:

HSL52a(
j

Sjsd~r2Rj !, ~28!

wherea is an exchange integral,Sj is the magnetic ion spin
at the siteRj , ands and r are electron spin and coordinat
respectively. The summation is performed over all magn
impurities. The Hamiltonian of the dissipative subsystem
cludes the Zeeman energy of magnetic ions and the elec
kinetic energy«k with in-plane wave vectork. For simplic-
ity, we restrict our consideration to the ground state of c
fined electrons only. So the Hamiltonian assumes the for

HL5(
j

v0SZ
j 1(

k,s
«kak,s

† ak,s , ~29!

wherev0 is the magnetic ion Zeeman splitting in a magne
field directed along theOZ axis, ak,s

† and ak,s are the cre-
ation and annihilation operators, and the spin indexs is in-
troduced to normalize the chemical potential for the to
numbers of electrons. In our case,

(
k,s

^ak,s
† ak,s&[(

k,s
f k,s51. ~30!

Now we can perform the renormalization procedure~7!
with operator~28! and represent the interactionsHSL , Eq.
~12!, andV, Eq. ~7!, in second-quantized form with

Vm52
a

S0
(

k,k8,s
kÞk8

(
j

uc'~Rj !u2ei (k2k8)RjQm,k,k8,s ,

Qm,k,k8,s5Sm
j ak,s

† ak8,s ,m5X,Y,Z. ~31!

HereS0 is the area of a sample andc'(Rj ) is a perpendicu-
lar ~to the plane of a structure! component of the confine
ment wave function. The term withk5k8 is excluded from
11531
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Eq. ~31! due to the renormalization procedure~7!. This pro-
cedure yields the following Hamiltonian of the dynamic su
system:

HS[vsZ5~ve1GeZ!sZ . ~32!

Equation~32! defines the electron spin splittingv in a total
field, consisting of an external magnetic field~with Zeeman
energyve) and exchange molecular field:

Ge52
a

S0
(

j
^Sj&uc~zj8!u2

52a^S&E
2`

`

nm~z8!uc~z8!u2dz8. ~33!

Here nm(z8) is a local concentration of magnetic ions a
sumed to be the function of coordinatez8 directed along the
growth axisOZ8. In the case of magnetic QW’s with width
Lw and nonmagnetic barriers, the integration should be p
formed between2Lw/2 and Lw/2, while nm(z) should be
replaced by the average concentrationnm in the QW. More-
over, in the case of bulk samples or infinitely high barrie
Eq. ~33! reproduces the well-known result for an exchan
molecular field,Ge52anm^S& ~Ref. 6!.

Let the relaxation time of the electron momentum
shorter than the spin relaxation time and longer than
reciprocal value\/T of the average electron kinetic energ
T. As discussed above, these conditions~which are usually
true for semiconductors! lead to Eq. ~25! for correlation
functions. The spin operatorsSX and SY are conveniently
split into two parts: SX5(S11S2)/2 and SY5(S1

2S2)/2i . With respect to the definition~29! one can find
Q6,k,k8,s(t)5S6

j ak,s
† ak8,sei (6v01«k1

2«k2
)t so that corre-

sponding correlation functions are

g6,7~v!5
a2

S0
2 ^S6S7& (

k1 ,k2 ,s
(

j
uc~zj !u4f k1 ,s~12 f k2 ,s!

3d~6v01«k1
2«k2

1v!. ~34!

Equation ~34! allows us to find gxx(v)5gyy(v)
5@g1,2(v)1g2,1(v)#/4 as well as gxy(v)52gyx(v)
5 i @g1,2(v)2g2,1(v)#/4. The latter equality shows tha
the exchange scattering corresponds to the relaxation m
in the form ~21!. Thus, according to the definition~21! and
identity ~14!, we find

ngxx~v!5
1

8
@g1,2~v!1g2,1~v!1g1,2~2v!

1g2,1~2v!#, ~35!

ngxy~v!5
i

8
@g1,2~v!2g2,1~v!2g1,2~2v!

1g2,1~2v!#. ~36!

Using Eq. ~34! and the identity ^S6S7&5^SX
2&1^SY

2&
62^SZ& we can derive the relaxation parameters in the fo
9-5
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pngxx~v!5
pa2

4S0
2 (

k,k8,s

(kÞk8)

(
j

uc~zj !u4H ^SX
2&@ f ~12 f 8!

1 f 8~12 f !#@d~v1«2«81v0!

1d~v1«2«82v0!#

1
^SZ&

2
~ f 2 f 8!@d~v1«2«81v0!

2d~v1«2«82v0!#J , ~37!

pngxy~v!5 i
pa2

4S0
2 (

k,k8,s

(kÞk8)

(
j

uc~zj !u4H ^SX
2&@ f ~12 f 8!

1 f 8~12 f !#@d~v1«2«81v0!

2d~v1«2«82v0!#

1
^SZ&

2
~ f 82 f !@d~v1«2«81v0!

1d~v1«2«82v0!#J , ~38!

where«5«k,s ,«85«k8,s and f 5 f k,s , f 85 f k8,s are Fermi-
Dirac distribution functions. While deriving the Eqs.~37!
and ~38!, we assume that neither 2D structure stress nor
ternal magnetic field affects the transversal magnetiza
~which meanŝ SX

2&5^SY
2&). Similarly, we find

gzz
0 5

a2

S0
2 ^SZ

2& (
k,k8,s

(kÞk8)

(
j

uc~zj !u4f ~12 f 8!d~«2«8!,

~39!

and gxz(v)5gyz(v)50 becausê S6SZ&50. It is evident
from Eqs. ~37!, ~38!, and ~39! that gxx(v)→gzz

0 and
gxy(v)→0 in zero magnetic field (v,v0→0).

It should be noted that Eqs.~37!, ~38!, and ~39! can be
obtained in terms of the Green’s functions formalis
11531
-
n

~see Ref. 14! with Hamiltonian ~29! under the assumption
that the motions of a magnetic ion spin an
electron are not correlated:̂ Sm

j ak,s
† ak8,sSn

j ak1 ,s
† ak

18 ,s&

5^Sm
j Sn

j &^ak,s
† ak8,sak1 ,s

† ak
18 ,s&. Contrary to the above ap

proach, the equations for Green’s functions can easily inc
porate other terms in the HamiltonianHL of the dissipative
subsystem as well as take into account magnetic-io
electron correlations. This is beyond the scope of the pre
paper.

Now we are interested in the case of a nondegene
electron gas. For the case of single-electron relaxation,
~30! reads

(
s

f k,s5
2p\2

S0mT
e2«k /T, ~40!

wherem is the in-plane effective mass of the carriers. Beg
ning with Eq. ~40!, we restore\ for convenience. Calcula
tion of the sums in Eq.~39! yields

p

\
gzz

0 5I
a2mnm

2Lw\3
^SZ

2&, ~41!

where the dimensionless parameterI reflects the ‘‘overlap’’
of the c function and magnetic ions:

I 5LwE
2`

` nm~z8!

nm
uc~z8!u4dz8. ~42!

In the case of an infinitely deep QW containing magne
ions with concentrationnm , the integration in Eq.~42! gives
I 53/2.

In the same manner we can findgxx andgxy . After some
algebra,

p

\
ngxx5I

a2mnm

2Lw\3 H ^SX
2&FS v

T
,
v0

T D1
^SZ&

2 FF1S v

T
1

v0

T D
2F1S v

T
2

v0

T D G J , ~43!
p

\
ngxy5 i I

a2mnm

2Lw\3
H ^SX

2&

expS 2
uv1v0u

T D2expS 2
uv2v0u

T D
4

1
^SZ&

2 FF1S v

T
1

v0

T D1F1S v

T
2

v0

T D GJ , ~44!
2,
ons

n
x-
ant
where we introduce the functions

F~x,y!5
1

4
@21exp~2ux1yu!1exp~2ux2yu!#, ~45!

F1~x!5
1

4
sgn~x!@exp~2uxu!21#. ~46!
The functionF(x,y) decreases monotonically from 1 to 1/
which reflects the suppression of electron spin fluctuati
by a magnetic field.

Recall thatv andv0 are the electron spin splitting in a
effective field and magnetic ion Zeeman splitting in an e
ternal magnetic field, respectively. In the case of equidist
9-6
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Zeeman energy spectra of the magnetic ions, the magn
field dependences of spin square averages are

^SX
2&5

1

2
coth

v0

2T
bSS v0

T D ,

^SZ
2&5S~S11!22^SX

2&, ~47!

wherebS(x)52^SZ&5SBS(Sx) is nonnormalized Brillouin
function:

bS~x!5S S1
1

2D cothS S1
1

2D x2
1

2
coth

x

2
. ~48!

Equations~41!, ~43!, and ~44! together with Eqs.~47! and
~48! allow us to compare the different terms in the relaxat
matrix ~21!. Numerical analysis shows that the second te
in Eq. ~43! is negligible in comparison with the first one a
well asnugxyu,gzz

0 ,n(gxx1gxx). Thus, the kinetic equation
~17! transforms into the Bloch equation~3! with the follow-
ing relaxation parameters:

1

T1
5I

a2m

Lw\3
nm^SX

2&FS v

T
,
v0

T D , ~49!

1

T2
5I

a2m

Lw\3
nmH ^SZ

2&
2

1
^SX

2&
2

FS v

T
,
v0

T D J . ~50!

The right-hand sides of Eqs.~49! and ~50! become equal to
each other at zero magnetic field as is expected. Moreove
v,v0→0, Eqs. ~49! and ~50! transform just to the double
rateW of spin-flip relaxation obtained with the help of Fe
mi’s golden rule.17,18

With the magnetic field increasing, one can obtain, in
limit v@T,

T1

T2
52S1

1

2
. ~51!

Equation~51! shows that the rate of phase relaxationT2
21

can exceed the longitudinal relaxation rateT1
21 by a factor

about one order of magnitude in the case ofS55/2 ~ions of
Mn21) despite their relationships to the microscopic para
eters in Eqs.~49! and ~50! being identical.

Figure 1 shows the magnetic field dependence of the
gitudinal and transversal relaxation times calculated with
help of Eqs.~49!, ~50!, ~47!, and~48!. One can see that th
magnetic field suppresses the longitudinal relaxation whil
enhances the transversal relaxation forS.1/2. In the limit of
saturated magnetic fields,v,v0@T, the decreasing ofT2
reaches the factor23 (S11)/(S11/4). Note that the decreas
ing of the transversal relaxation time in a magnetic field w
observed for Mn spins but has not been explained u
now.19

Equations~49! and ~50! do not manifest any spin relax
ation anisotropy with respect to the growth axisOZ8. Nev-
ertheless, the striking difference between the 3D and
cases can be expected in temperature dependences of
ation times due to the different densities of states of 3D
11531
tic
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2D structures. For instance, in the 3D case the factorAT is
expected to appear in Eqs.~49! and ~50! ~see Refs. 20
and 21!.

At the end of this section we estimate the electron s
relaxation time of the exciton composed of electrons a
holes with effective massesme50.096m0 and mh50.25m0
~so m50.346m0 , where m0 is the free electron mass! in
Cd12xMnxTe QW’s with a51.5310223 eV cm3, x50.017,
and Lw58 nm. At zero magnetic field one can findT2
55 ps, which is quite close to the experimental value o
served recently via the time-resolved magneto-optic K
effect.19

V. DYAKONOV-PEREL MECHANISM

It has been shown in a number of works12,22–24 that a
fluctuating effective magnetic field accompanying the el
tron momentum scattering in semiconductors with a zi
blende lattice results in quite efficient spin relaxation. In th
section we show how the Dyakonov-Perel mechanism can
incorporated into the above developed formalism in the c
of electron spin relaxation in a QW.

The Hamiltonian of the dissipative subsystem is assum
to have the form

HL5(
k,s

«kak,s
† ak,s1 (

k,k8,s

Vk,k8ak,s
† ak8,s . ~52!

The second term in Eq.~52! has a symbolic meaning: w
assumeVk,k8 to be an operator responsible for electron sc
tering by impurities, phonons, or electron-electron collisio

FIG. 1. Magnetic field dependences of the rates of longitudi
@Eq. ~49!, i 51] and transversal@Eq. ~50!, i 52] electron spin re-
laxation atT54 K in a Cd12xMnxTe QW with x50.017 andLw

58 nm.
9-7
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This electron scattering changes randomly an effective m
netic fieldB5b(k)/gem that corresponds to band spin spl
ting

Hint5(
k,s

sb~k!ak,s
† ak,s . ~53!

Therefore, the operator of this field,

Vm5(
k,s

bm~k!ak,s
† ak,s , ~54!

can be expressed in terms of Eq.~23! with

Vm
p 5bm~k!,Qp5ak,s

† ak,s ,p[$k,s%. ~55!

The specific form of the functionbm(k) is determined by a
band Hamiltonian~see, for instance, Ref. 12! and depends on
the dimensionality of the system under consideration.23,24

The following calculations depend on the specific mec
nism of an electron momentum relaxation.12 The correspond-
ing formalism in terms of Green’s functions is presented
Ref. 14. For simplicity, here we consider the correlati
functions~18! in relaxation time approximation~ 27!. With
respect to the fact that for the nondegenerate c
^Qp1

Qp2
&5 f p1

(12 f p1
)dp1p2

5 f p1
dp1p2

, Eq. ~27! takes the
form

p

\
ngmn5

1

\ (
p

bm~k!bn~k! f p

tp

tp
2~k!v211

. ~56!

Consider now the electron spin splitting in a QW caus
by k3 terms in a band Hamiltonian of bulk crystal.22 If the
external magnetic field is directed along the axis of Q
growth, we have23

bm~k!5r akm , ~57!

with

r a5
a0\3

m3/2~2Eg!1/2
, ~58!

kx52kxq
2, ky5kyq

2, kz50, ~59!

wherem is the in-plane effective mass,a0 is a constant, and
q2 is defined via the electronc function confined in a QW,

q25K cU2
]2

]z2UcL . ~60!

Note that it is assumed thatq@k in Eqs.~57!, ~58!, and~59!.
We see that only two components of relaxation para

eters,gxx andgyy have nonzero values. Calculations with t
help of Eq. ~40! lead to the following expression for th
transversal relaxation time:
11531
g-

-

se

d

-

1

T2
5

p

\
ngxx5

p

\
ngyy5

1

T0

1

11~vtp!2
, ~61!

whereT0 corresponds to the relaxation time at zero field,

1

T0
5

a0
2\2q4T

2m2Eg

tp , ~62!

tp
215^tp

21~k!&. ~63!

The denominator on right-hand side of Eq.~61! reflects
the dependence ofT2 on electron spin splitting but under th
assumption that the cyclotron frequencyvc is sufficiently
small, vctp!1. Note that approximation~63! is not neces-
sary for calculations ofT1 andT2 . For more accurate inte
gration ~see Refs. 12 and 7!, the dependencetp5tp(k) can
be taken into account.

According to Eq.~20!, the longitudinal relaxation rate is

1

T1
5

p

\
n~gxx1gyy!5

2

T2
. ~64!

We can see thatT1 can be shorter thanT2 in 2D systems. The
relation ~64! betweenT1 and T2 is consistent with that ob-
tained by other density matrix methods@see Eq.~A15! from
Ref. 7#.

Another important case corresponds to a magnetic fi
directed along theOZ axis in the QW plane while theOX
axis is perpendicular to this plane. One can find

kx50, ky52kyq
2, kz5kzq

2. ~65!

In this case, three parameters describe the electron spi
laxation:

1

T2Y
5

1

T0
,

1

T2X
5

1

T0
S 11

1

11~vtp!2D ,

1

T1
5

1

T0

1

11~vtp!2
. ~66!

Obviously, in zero field (v50) Eqs. ~66! are identical to
Eqs.~61! and ~64!: the in-plane relaxation parameterT1 co-
incides with the other oneT2Y and is twice as large asT2X .

We see that transversal relaxation~61! can be suppresse
significantly by strong enough electron spin splitting in
magnetic field perpendicular to the QW plane (BiOZ8,
whereOZ8 is a growth direction! due to the dynamical av
eraging effect.25 When a magnetic field is parallel to th
sample surface@B'OZ8, Eqs. ~66!#, the transversal relax
ation time would decrease for no more than 2 times.
9-8
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To illustrate the effect of magnetic anisotropy in QW’s, l
us consider a typical experimental situation5,19 of normal to
the QW plane spin relaxation. In the caseBiOZ8 @Eq. ~64!#,
the electron spin deviation from its equilibrium value is d
scribed by a simple exponential law

2~Z2Z0!5e22ht, h5
1

11~vtp!2
. ~67!

A more complicated case corresponds toB'OZ8. The solu-
tion of the kinetic equations~17! with relaxation parameter
~ 66! gives rise to the evolution equation for the normal~to
QW! spin component

2X5e2(11h/2)tS cosṽt2
h

2

sinṽt

ṽ
D , ṽ5Av22h2/4.

~68!

In Eqs.~67! and ~68! the time and frequency are in units o
T0 and T0

21 @Eq. ~62!#, respectively. In the zero-field cas
v→0, Eqs.~67! and ~68! are reduced to the same depe
dencee22t. The difference between these two cases beco
important as a magnetic field increases~Fig. 2!.

Note that we consider only one reason for the magn
anisotropy of the DP mechanism in QW’s. In the case
Landau quantization (BiOZ8) when the cyclotron frequenc
vc exceeds the rate of electron scatteringtp

21 , the plane
waves cease to be an adequate representation of the ele
wave functions. This situation had been considered in de
in Ref. 25.

Actually, the typical scattering time of an electron
semiconductors is abouttp;10212 s. Thus, to make the ef
fect of magnetic field anisotropy visible at moderate ma

FIG. 2. Evolution of electron spin projection on the axis grow
OZ8 in a magnetic field directed along@Eq. ~67!, curve 1# and
across@Eq. ~68!, curve 2# OZ8.
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netic fields we should use DMS structures where the ineq
ity vtp.1 can be reached due to giant spin splitting@Eqs.
~32! and ~33!#.

VI. CONCLUSIONS

In this work, we develop the microscopic theory of ele
tron spin evolution in semiconductors in terms of quantu
kinetic equations for an arbitrary mechanism of spin rela
ation. The relaxation term in these equations has been
rived as a matrix of correlation functions, providing rel
tively short correlation times~as compared to spin relaxatio
times, t!T) of the dissipative subsystem. Our theory pe
mits us to distinguish the relaxation processes of transve
and longitudinal~with respect to the direction of the extern
magnetic field! components and to capture the case of z
and small magnetic fields.

We show that spin relaxation processes due to excha
scattering in a semimagnetic QW reveal quite different
havior of the longitudinal and transversal spin relaxati
times in a magnetic field. Specific calculations of the rela
ation parameters show that only longitudinal relaxation c
be described by flip-flop processes, suppressed in a mag
field. On the other hand, transversal relaxation is due to
fective exchange field fluctuations, which increase with m
netic field. Qualitatively, the latter effect has the same rea
as the growth of the linewidth of spin-flip Raman scatteri
by shallow donors in DMS’s.26

Actually, the peculiarities of 2D structures in the e
change scattering problem reveal themselves only via
electron density of states. A nontrivial manifestation of lo
dimensional structures is predicted for the particular m
netic anisotropy of the DP mechanism. In this case a sign
cant difference in transversal relaxation rates for parallel
perpendicular~to growth axis! magnetic field orientations
has been found.

The relaxation mechanisms considered in this paper
be discerned by their different dependences on the Q
width. As may be seen from Eqs.~49!, ~50! and Eq.~62!, the
spin relaxation rates are proportional toI /Lw or to q4. In the
case of deep enough QW’s, this means proportionality
Lw

21 andLw
24 for exchange scattering and the DP mechanis

respectively.
The proposed approach to relaxation can be extende

any two-level system described by a fictitious spin 1/2. Fr
this standpoint, the analysis of heavy-hole spin relaxation
QW’s in terms of Eqs.~17!, ~20!, and ~21! promises new
insight into this problem. Namely, in our approach, rela
ation in the case of an in-plane magnetic field would invo
tree relaxation times—longitudinalT1 , transversal~along
QW plane! T2i , and perpendicularT2'—while the usual de-
scription of a heavy-hole relaxation involves only one rela
ation time. Investigations of hole relaxation in QW’s o
uniaxial semiconductors will be reported elsewhere.
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