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Electron spin relaxation in semiconductors and semiconductor structures
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We suggest an approach to the problem of a free electron spin evolution in a semiconductor with arbitrary
anisotropy or quantum structure in a magnetic field. The developed approach utilizes quantum kinetic equa-
tions for average spin components. These equations represent the relaxation in terms of correlation functions
for fluctuating effective fields responsible for spin relaxation. In a particular case when autocorrelation func-
tions are dominant, the kinetic equations reduce to the Bloch equations. The developed formalism is applied to
the problem of electron spin relaxation due to exchange scattering in a semimagnetic quant(@vWels
well as to the spin relaxation in a QW due to the Dyakonov-Perel mechanism. The results permit us to separate
the longitudinalT; and transversdl, relaxation times in a strong enough magnetic field and to trace the cases
of undistinguished parametefl§ and T, in zero and small magnetic fields. Some new predictions of the
developed theory are discussed. Namely, we discuss the nhonmonotonic behavior of spin relaxation caused by
exchange scattering under an external magnetic field and new peculiarities of electron spin evolution caused by
the presence of three relaxation timesther than twpfor the Dyakonov-Perel mechanism in a quantum well.
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I. INTRODUCTION the relaxation of each, to the thermal equilibrium valua?
might depend on the full set of spin averages. Therefore the
The achievements in the investigations of ferromagnetisnelaxation part reads
of diluted magnetic semiconductéréDMS’s) and in spin
injection technolog$ with the possibility to fabricate spin- (A,,—Alo,)
controlled devices have sparked renewed interest in the study Ri=- 2 —
of the spin relaxation of electrons, holes, and excit(see "

Ref. 3 and references thergiuring recent years, the opti- gometimes, the number of relaxation parametgis can be
cal picosecond technque hgs acqy|red the ability to ObserVleeduced due to the presence of specific physicél mechanisms
the electron and hole spin kinetics in semiconductor quantu ee, for example, Ref.)8Nevertheless, it should be men-

sftrUCt}ﬂEes over a vyide range of temperatures and magne foned that a general procedu(fr the estimation of the
flelds._ In spite of intensive v_vork spin relaxation processesmagnitudes of all relaxation parameteglowing us to re-
are still not fully understood in these structures. One of theduce the numbers of relaxation teri® is absent

reasons is the deficiencies in the present theories. If, for ex-" | oo problem arises when one tries to relate the pa-

ample, the theory of the giant spin splitting of the electron _1 o . .
states in DMS’s has a good base in terms of the molecuIarramet(_:‘rsn-'vJ 0 the spin-flip rateW (this is the aim of the

exchange field, spin relaxation theory has, by now, some kmn%\?vrslt)/regx:;g:rzoaceocmgnics?)lncs$|§1t::c|):§fybt?1?§d rggleﬂ:ﬁ\?v:aem
gaps between phenomenological and microscopic A onsider Bloch equations for the average spin components
proaches to this problem. The exception is the precessiop . € . 9 P_ P

., IN @ magnetic field directed along ti@Z axis:

mechanism of relaxatidrthat cannot be readily confronted

2

7'|’|/

with other mechanisms or applied to the case of localized _
electrons. Sx Sy SxIT2

The phenomenological description of carrier or exciton at Sy |=w| Sx |- SyIT, . (3
spin relaxation in semiconductors commonly starts from the S, 0 (S;—S9)/T,

HamiltonianH 4 without the dissipation terms responsible for
spin relaxation. For a particle with spBi(electron, exciton, Equation(3) looks like Egs.(1) and(2), wheresg is a ther-
etc), the number of equations for average spin valdgs mal equilibrium value ofS, and w is Zeeman splitting in a
=(SKS, ST (subscripts denote Cartesian componekism  magnetic field. Equatiorid) involves two relaxation times,
satisfy the condition £k+1+m=2S; the symboll stands the longitudinalT,; and transversarl,. In the framework of
for all indexes on the right-hand side &f) is finite and is  the phenomenological equatig¢d) it is not apparent how the
determined by the equations of motiofh= 1) parameterd; andT, having different physical meanings are
related to the spin-flip probabilitt. Moreover, the transfor-
| , mation from the caseél;=T, at zero magnetic field o
T —Ii[A,Hql. 1) =0) to the casd;# T, at w# 0 cannot be traced both with
the help of Eq.(3) and by microscopic calculations of the
The system(1) describes the evolution of the spin systemspin-flip rateW.
without relaxation. To take it into consideration we should The present work is an attempt to fill the gap between the
include the relaxation paR, to Eq.(1). Generally speaking, phenomenological approach to spin relaxation and micro-
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scopic calculations of the spin-flip rates in the case of elec- n=Pp=(1—fTr)p.

tron relaxation with spin 1/2 in a semiconductor. This means

that here we develop a universal procedure for the calcula- We are looking for the kinetic equation for the reduced
tion of microscopic parameters ;» [Eq. (2)] that can be density matrixo with the Hamiltonian

applied for any relaxation mechanism both for localized and

for delocalized electrons. To do that, we derive the kinetic H=Hs+H_+V, (6)
equations for electron spin components from first principles,ynere

First, we derive the quantum kinetic equations for the density

matrix of spin 1/2 in terms of correlation functions of the HS:H(S)+<HSL>1
dissipative subsystem. Despite the presence of some symme-
try of correlation parameters, the kinetic equations can be V=Hg —(Hg), (7)

only reduced to the form that remains, nevertheless, more

complicated than Bloch equations. The next section presen® that(V)=0 and(.--)=Tr f. ... _ _
an analysis of the corresponding correlation functions in It can be showt that exact form of the equation for is
terms of the relaxation time approximation. In subsequent do

sections the developed theory is applied to electron exchange —=—1Hso—C(0)—iD(p(0)),

scattering on the magnetic ions in a semimagnetic quantum dt

well (QW). Then, the Dyakonov-PeréDP) mechanism is ,ith

considered. New peculiarities related to the magnetic anisot-

ropy and maodification of relaxation time magnitudes in a t

magnetic field are discussed. We discuss also possible appli- C(U)ZTFLVJ S(t,t")Vo(t")dt',

cations of the results obtained here. 0

D(p(0))=Tr VS(t,00Pp(0),
Il. BASIC EQUATION FOR THE DENSITY MATRIX

There are several approaches to the derivation of kinetic 5(t,t’)=exw’ —j ft (Hs(7)+H_+PV)dr!. (8)
equation for small subsysten(ke spin) interacting with a t'
!arge heat bath. Of.‘e of them, the_prOJect_lon operator formalI'-|ere the script letters mean the Liouville operators intro-
ism (Ref. 9, had first been considered in Refs. 10 and llduced astso=[Hs, o], etc. The termD(p(0)) vanishes for
which adjusted the general Zwanzig’s approach to magnetiﬁje iniitial csonditioﬁ, (O’)=f;)'(0) P
relaxation of the localized electrons with an arbitrary discrete The expansion gf Eq€8) up io second order in the op-
energy spectrum. Meanwhile, some important ”mitationserator of interaction vields the kinetic equation fer
(namely, the requirement of nondegeneracy of the spin en- y q
ergy spectrum and rather large spin level splitticp not dor(t)
allow us to apply these theories to the above situations. The —
present work is free of the aforementioned limitations since dt
it is focused on the evolution equation of the two-level sys-nere
tem (or spin 1/2 only rather than on the complete problem of
magnetic relaxation for a multilevel system. [t [t

Let the electron spins represensmall partof the total V(t,t’)zexp{ =i I,Hs(T)dT] V(t)exp[ i f,Hs(T)dT},
system so that all other variables are related to the bath at ‘ ‘ (10)
thermal equilibrium. The corresponding Hamiltonian reads

=—iHgo—Tr f;V(t,t)V(t,t’)f(r(t)dt’, 9

H=H%+H, +Hag,. @) V(t)=exp{iH t}Vexp—iHt}. (11

0 ) o We consider the reduced density matXt) at the long
HereHs, H_, andHsg_ are, respectively, the Hamiltonians enoygh time scaléas compared to the times of attainment of
of electron spin, dissipative subsystefmssumed to be at 5 thermal equilibrium of dissipative subsysterfihus, the
thermal equilibrium with a bath at a temperatufg, and  ypper limit of integration in Eq(9) can be extended to in-
their interaction. According to the projection operator finity. Under this assumption we obtain a Markovian equa-
method the den_sity matrix of the systefd) is expressed in  tjon for o(t), provided that the spin relaxation tim&s, T,
terms of the main part and the rest: are sufficiently longer than the correlation timesof the
dissipative system responsible for spin relaxation.

p=fotn, ) To rewrite Eq.(9) in matrix form, we should use some
where base. As the base, here we use the eigenvectors of the spin
operators, . Fors=1/2, the most general form of interaction
a=Tr_p, ist?
_exp—BHY) 1 V=50, (12
~ Troexp(—BHL)’ p= T while electron spin Hamiltonian can be written as
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— t—oo t—oo
Hs=wsz, (13 to its equilibrium state X(t) — Xy, Y(t) — Yy, and

where w is the spin splitting in a magnetic field having re- Z(t)t::GZO, with Xo=Y,=0 and

gard to renormalizationt7) and OZ is an axis of quantiza-

tion. The operatorQ) represents the fluctuating effective 1 Bw

magnetic field giving rise to spin-flip processes. The interac- Zo= - EtanhT' (19)

tion in the form of Eq.(12) has been already used in Ref. 12

[see Eq.(3.39 therein for a description of the DP mecha- ~ The general form of the relaxation matdx=I'(y,,) is

nism. quite complex. However, the symmetry properties of the cor-
Substitution of Eq(12) for Eq. (9) (att—«) permits us relation functionsy,,, allow us to simplify significantly the

to express the collision integral in E) in terms of the expression fol(y,,). First, we consider the case of sym-

Fourier transformation of correlation functions. Their num-metric correlation functiong18), y,,(0)=1v,,(®). The

ber can be reduced if we take into account the spectral propsymmetry properties of the correlation function permit us to

erties of correlation functions and the following identities obtain

(valid for any operator$\ andB):

'ygz"_ NYyy —NYxy —NYxz
— e Bo — e Bo
<A(T)B>w € <B(T)A>—w € <BA(T)>w1 (14) F(S):’ﬂ —n'yxy 'ygz—i- n'yXX —n'yyz ,
where the definitions ofA(t) and B(t) are similar to Eq. Ny “Nyyz Nyt vyy)

(11). The definition of the Fourier transformation of the cor-

relation function is
where n=n(w)=(1+e)/2, y,,=7,(»), and 1),

1 (= . =1v,,(0). Notice that Egs.(17) and (20) are, generally
(A( T)B>w:2—J (A(7)B)e'“7dr. (150  speaking, derived for the case of an anisotropic medium and
TS = arbitrary electron spin splitting.

In the case of zero spin splittingwE0) and isotropic

It is convenient to introduce the average values of Sp"}nedium, the relaxation matrik, Eq. (20), depends on two

components instead of the density mawix components only;y2= 72# and 0= ?’?w (u#v). In this

case, Eq(20) is similar to that obtained in Ref. 12 in terms
of a fluctuating internal magnetic field.

In the case of strong enough spin splittiag one can
expect thaty,,,(0) <y,£0), because the , () is damped
with a factor of about inverse correlation time. If we intro-
duce Ty *= mn[ y,x(w) + ¥yy(w)] and T;'=7y,£0) and
omit the off-diagonal components &f, the latter inequality

Multiplying from the right Eq.(9) by the operatolsy,  permits us to reduce Eql7) to the form of a Bloch
then bysy and bys;, and taking into account the explicit equation(3).

form of the interaction operator for spin 1{Eq. (12)], one The second important case corresponds to the antisym-
can calculate the corresponding traces over the spin state$etric coefficientsy, ,(w)=—v,,(®) for v#u. In this
nv v '

The result can also be expressed Ma Y, andZ, which 556 we can obtain the relaxation matrix in the form of the
yields the following closed system of equations for compo-¢;,m of two parts:

(sx)=X=Trosy,
(sy)=Y=Trosy,

(sz)=Z=Tros;. (16)

nents(s):
r@=prt e, (21)
X -Y X
d where T'W=|IT 5, || is the diagonal part of the matrix
a Y =w X -r Y . (17) F(S), while
z 0 zZ-27, .
Yxy Yyz
Here the relaxation matrik=|T",,/[can be expressed via the 2)_:
correlation functions =ian| 0 %y 7Yax|. (22
0 0 7y

Vurl @) =( (D)o (189 In the limit of zero magnetic field, the coefficients
whereu,v=X,Y,Z are Cartesian indexes. No additional as-y,,(w—0) vanish atv# u; thus Eq.(21) transforms into
sumptions about the energy spectrum of the dynamic submatrix (20) with zero off-diagonal components. The spectral
system have been made here. This distinguishes substantiaftyoperties(14) with respect to the definition af(w) permit
our equation(17) from those obtained earli€Refs. 10 and us to observe that both the relaxation mat@t) and matrix
11). We recall here that this result appears due to the redud20) are even functions of the electron spin splittiag
tion of the general problem of relaxation of the system withI'(») =T'(— ).
an arbitrary discrete spectrum to the special case of spin-1/2 Equationg17) with definitions(20) and(21) are the main
relaxation. Thus, Eq17) describes the relaxation of spin 1/2 result of the theoretical background of this work. In the deri-

115319-3



Y. G. SEMENOQV PHYSICAL REVIEW B67, 115319(2003

vation of kinetic equation§l7) we assume neither any spe- ><7-;2> take place. This means that the summation in the Eq.
cific properties of the he_a_t path with Hamiltonid_rll. Nor  (26) can be performed in the |im'yt-;11_>0, which reduces
do we assume any specific interaction mechartitn. Be- g4 (26) 10 Eq. (25). This situation frequently occurs for
low we shall show how Eq17) can be used in the particular iterent cases of electron spin-flip scattering, if the average
cases corresponding to Eq80) and (21). electron energye,) (which is about thermal energlyfor the
nondegenerate case or Fermi enesgyfor the degenerate
casg exceeds its relaxation rate, b,

The technique of Green’s functiofspeing a very pow-  Second, let the identity,=0 hold. In terms of the effec-
erful and general tool for the analysis of correlation functionstive fluctuating magnetic fiel€)(t), this means tha€(t) is
in solids, sometimes lacks a clear physical meaning. At th€onstant between two successive electron collisions so that
same time, the correlation functions can be evaluated pretti€ electron spin loses its initial orientation due to precession
good within the exponential decay approximation in terms ofaround the€ direction. The corresponding operat(®3)
the appropriate correlation times. contains terms W|ttQp=agaq and w,=0. So Eq.(26) as-

To link Eq. (17) with real physical cases, we first consider sumes the form
the electron spin-flip scattering by quasiparticles with quan-
tum numberg and continuous energy spectrtfy. The cor- 1 ;
Iregpondlng Hamiltoniagin teims of (:Treanoraq and annihi- Yl )= 2 Vpl\/Ez(Qp Q) Py @
ation a, operatory readsH =2 qe4a,84+ Hin¢, Where the prpz 1R (Tpla))2+l
operatorH;,; describes quasiparticle scattering. The expan-
sion of interactiorHg, over quasiparticle variables gives the
following form of the effective magnetic field:

IIl. CORRELATION TIME APPROXIMATION

which cannot be reduced to integration withsafunction.
The latter situation corresponds to a precession mechanism
of spin relaxationfan example to be considered in Seg. V

Q,=> VEQp, (23 Comparison of Eqs(27) and (25) suggests that spin-flip
P scattering and precession mechanisms of electron spin relax-
whereQ, is a combination of operatora% a4, ..., while ation can be recognized by the spectral properties of the fluc-
p is a set of indexesq,q’, ...); thematrix eIementS\/fL tuating magnetic field. Namely, spin-flip scattering relaxation
depend on the specific mechanism of spin relaxation. has€)(t) with a spectral density of correlation functi¢5)
First of all, let us consider the casg,,—0. This means Proportional to the density of states of the dissipative sub-
thatQ, (1) ==,V°Q, exp(wt) and system(white noisg. The precession mechanism is provoked
by magnetic field€2(t), which fluctuate like an exponential
_ D1\ /Po , noise.
(Q#(t)ﬂﬁ—p%z V,L v, <Q91Qp2>exmwpt)* (24 Physically, in the former case the time dependence of

Q(t) can be easily understood as a series @inctions with
where wp is an energy difference between the states “nke%rguments Corresponding to instaﬂtsof spin_dependent
by operatorQ,; for instance,w,=eq—¢&q, if Qp:agaq’- electron collisions with mean time lapsg;={(t;.;—t;):
In the approximatior(24), we find immediately Q(t)=3,A ¢ 8(t—t;), whereA ¢, are the angles of spin ro-
tations accompanying spin-dependent collisions. Considering
_ P1y /P2 the relaxation as a Brownian motion of anghét) between
Yurl) p%z ViV Qe Q) dlep ). (29 current and initial(at t=0) spin directions with diffusion

Here thes function provides the conservation of energy in coefficientD =(A &)/ 751, one can find the loss of spin po-

N T . ) .
relaxation processes. The temfiyy(w)+ yy ()] in Eq. larizationZ = 3{cos¢) by direct integration of cog over the

H H H P H — —-1/2 2 .
(20) with respect to Eq(25) corresponds just to the Fermi diffusion d'Str'E“tlgng_(‘i’;f/)T_(ZWDt) exp(— ¢72D1):
golden rule for the electron spin transition probability. J cosgf(p)dp=e""""=e " = Thus, the spin relaxation

To account for the influence of quasiparticle diffusion on'ate is expected to b&; *=3(A¢) 7o' . In particular, the
spin relaxation we assume that the approximation of the coiconsidered pattern of spin relaxation corresponds to the
relation time , holds. Mathematically this means that the Elliott-Yafet mechanistt*®when some spin-flip probability
correlation function(Q, (t)Qp,) acquires the damping fac- (—(Ad¢)) accompanies each electron momentum diffusion

. . . . . 71
tor exp(-|t|/,), which leads to the spectral dependence Of\NltrllreIaxatlon timer, (which defines the parameter;
Eqg. (18) in the form

=7,7).

In the latter case, th@(t) may be imagined as a series of
1 ! flat steps over intervals between electron collisiofX;)
P1 =>.Q[0(t—t)—0(t—t;,,)]; the sum is taken over suc-
w)= 2, VP2 = : P j i+
Vil @) p%Z ww <Qp1Qp2>7T (wp,+©)2+ 7-';12 cessive collisions with electron momentum diffusion. The

(26) spin rotation during the intervaj , ; —t;, whenQ(t) =}, is
a constant, can be described as a precession of a free spin
Two typical cases should be distinguished in the subseA ¢;=Q;(t;;—t;), which defines the coefficient of spin
quent consideration. First, let the inequalifyw,+w)?)  diffusion D=<A¢i2)/rp=(ﬂi2>rp, where 7,=(tj,1—t;j).
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Thus, the spin relaxation ra@ "= 3(Q?) 7, is proportional ~ Ed. (31) due to the renormalization procedufd. This pro-
to the momentum relaxation time. This result is a distinctivecedure yields the following Hamiltonian of the dynamic sub-
feature of the DP mechanism. system:
Note that both the above cases had been considered ear-
lier separatelysee Ref. 12 and references theyeliere we Hs=ws;=(wet Gez)Sz - (32

should also mention that a more advanced theory based Gfg|d, consisting of an external magnetic figldith Zeeman
the microscopic calculation of correlation functiofi) (in  energyw,) and exchange molecular field:
terms of Green’s function, for examplé provides a possi-

bility to describe the spin relaxation beyond the approxima- a _ i
tion of the correlation timer,. Below, to discuss the effects Ge=— g 2 <S'>|¢/(Zj )|
of a magnetic field and electron energy spectrum anisotropy J

in QW's, we consider electron correlation functions in the % ) ol
approximation of the relaxation time, . =—a(S) fﬁwnm(z ) (z")|*dz". (33
IV. EXCHANGE ELECTRON SCATTERING Here n,(z') is a local concentration of magnetic ions as-
ON MAGNETIC IONS IN QW'S sumed to be the function of coordinate directed along the

) ) . growth axisOZ'. In the case of magnetic QW’s with width
Consider the problem of electron spin exchange scattenngW and nonmagnetic barriers, the integration should be per-

on the magnetic ions in a two-dimension@D) quantum  ¢ymeq between-L,/2 andL,/2, while n,(z) should be
well (see Refs. 17 and J.8The'carr|er—|on interaction opera- replaced by the average concentratignin the QW. More-
tor has the form of the following contact interaction: over, in the case of bulk samples or infinitely high barriers
Eq. (33) reproduces the well-known result for an exchange
Hei=—a> Is8(r—-R)), (28)  molecular field Ge= — any(S) (Ref. 6.

] Let the relaxation time of the electron momentum be
wherea is an exchange integral is the magnetic ion spin sho_rter than the spin relaxation time and Io_nge_r than the
at the siteR;, ands andr are electron spin and coordinate, "éciprocal valuei/T of the average electron kinetic energy
respectively. The summation is performed over all magnetid- AS discussed above, these conditigngich are usually
impurities. The Hamiltonian of the dissipative subsystem in-rué for semiconductoyslead to Eq.(25) for correlation
cludes the Zeeman energy of magnetic ions and the electrdqnctions. The spin operatorSy and Sy are conveniently
kinetic energye, with in-plane wave vectok. For simplic- ~ SPlit into two parts: $,=(S,+S_)/2 and Sy=(S,
ity, we restrict our consideration to the ground state of con-~S-)/2i. With respect to the definitioii29) one can find

. . . —a of i(Xwgteg —ep )t
fined electrons only. So the Hamiltonian assumes the form Qx kk o(t) = Skay ,ac ,&'“ 0 k")t so that corre-
sponding correlation functions are

Hi=2 0oSh+ 2 el a0 (29 o2
: “ ye (@)= 5(8:50) X [lz)|*i, o1 fi, o)

wherew, is the magnetic ion Zeeman splitting in a magnetic So 12

field directed along th®Z axis, al,(, anday , are the cre- X 8(* o+ ey~ ey, T ). (34)

ation and annihilation operators, and the spin indeis in-

troduced to normalize the chemical potential for the total Equation (34) allows us to find V(@) = Yy (@)

numbers of electrons. In our case, =[y, (0)+7_(0))/4 as well asy,y(w)=—7yy,(o)
=i[y+ —(w)—v- +(w)]/4. The latter equality shows that
2 <al »ax U);E fr =1 (30)  the exchange scattering corresponds to the relaxation matrix
k,o ’ ' K,o '

in the form (21). Thus, according to the definitioi21) and

o identity (14), we find
Now we can perform the renormalization proced(rg

with operator(28) and represent the interactiohs,, Eq. 1
(12), andV, Eq.(7), in second-quantized form with Nyxx(®)= §[7+,—(w)+ Y- (@) +yy (—o)
o L \P. +v_ - y 35
Q’u:—_k%: 2 |‘/’L(Rj)|zel(k k )RIQ,u,k,k’,(ra Y ,+( w)] ( )
Kk’

i
_ n7xy(w):§[7+,—(w)_7—,+(0))_7+,—(_w)
Quik.o=Shal ,aw 5 u=X,Y,Z. (32)

. : . Ty- (-] (36)
HereS, is the area of a sample angd (R;) is a perpendicu-
lar (to the plane of a structurecomponent of the confine- Using Eg. (34) and the identity (S.S.)=(S3)+(S%)
ment wave function. The term witk=Kk’ is excluded from  *=2(S,) we can derive the relaxation parameters in the form
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o (k#k') (see Ref. 1 with Hamiltonian (29) under the assumption
7Tn%(x(w)__ > E l(z))|* (SH[f(1—F") that the motions of a magnetic ion spin and
4S8 (o T electron are not correlated{S,a/ ,a. ,Sal ,ac o)
o wek, o s v9Ky o 10
' (1-D)[S(w+e—s' +wp) =(S,S,M(al o2k o8, o8] o). Contrary to the above ap-

proach, the equations for Green’s functions can easily incor-

tolwte—e'—wo)] porate other terms in the Hamiltoniah of the dissipative

(S,) subsystem as well as take into account magnetic-ion—
+ —(f fH)o(w+e—e'+wg) electron correlations. This is beyond the scope of the present
paper.

Now we are interested in the case of a nondegenerate
(37) electron gas. For the case of single-electron relaxation, Eq.

—S(wt+te—¢&'—wy)]{,

(30) reads
2 (k#k') 22
TNYyy(@)= .— 2 2 i )|4{<Sx>[f 1-f) > fo=g e T, (40

kk' o - SomT

+f’(1— [ 8(w+e—e'+wg) wherem s the in-plane effective mass of the carriers. Begin-
) ning with Eqg.(40), we restores for convenience. Calcula-
—dwte—e'—wp)] tion of the sums in Eq(39) yields
+@(f’ o(w+e—e’+wp) 270:|“2mnm<sé> (41)
R TIW AR

+8(w+e—e'—wp)]y, (38)  where the dimensionless parameltaeflects the “overlap”

of the ¢ function and magnetic ions:
wheree=gy ,,8' =gy , andf=1f, ,f'=f,, . are Fermi-

©

Dirac distribution functions. While deriving the Eq37) =L "N4dz (42)
and (38), we assume that neither 2D structure stress nor in- L - '
ternal magnetlc field affects the transversal magnet|zat|on
(which meang S2)=(S2)). Similarly, we find In the case of an infinitely deep QW containing magnetic
ions with concentratiom,,, the integration in Eq42) gives
o? (k#k") I=3/2.
?’gz 2<Sz> E 2 |¢(ZJ H(A—1)8(e—¢g"), In the same manner we can fing, and y,, . After some
kk' o algebra,
(39
and yy () =y, (w)=0 becaus€S.S;)=0. It is evident T = a’m {(Sx> ( +@[F1( ﬂ)
from Egs. (37), (38), and (39 that y(w)— 72, and h 2|_ wh 2 T T
Yxy(@)—0 in zero magnetic fieldd,wy— 0).
It should be noted that Eq$37), (38), and (39) can be _ (ﬂ_ ﬂ) ] (43)
obtained in terms of the Green’s functions formalism Ht o7 '
2 o - 2] - Lo~
a‘mn T T 0} 0w
el 4 <SZZ>{F1(T+?O +F1(7_?0” B

where we introduce the functions
The functionF(x,y) decreases monotonically from 1 to 1/2,

which reflects the suppression of electron spin fluctuations
by a magnetic field.

Recall thatw and wg are the electron spin splitting in an
effective field and magnetic ion Zeeman splitting in an ex-
ternal magnetic field, respectively. In the case of equidistant

1
F(x,y)=g[2+exp— [x+y])+exp(—[x=yD], (45

1
F1(x)= 7 sgrix)[expt —|x|) - 1]. (46)
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Zeeman energy spectra of the magnetic ions, the magnetic e ——

field dependences of spin square averages are .
B St 2 il

2\ 1 (O] b (O]
(Sx=5cothy—bg| —/,
0.8 L
(Sp)=S(S+1)-2(S), (47
wherebg(x) = —(S;)=SBy(SX) is nonnormalized Brillouin E_ 0.6 L
function: =
b =|S ! S ! Lot 48 " 0.4+ r
s(X)= +§ cot +§ X— ECOthi' (48) .

Equations(41), (43), and (44) together with Eqs(47) and !

(48) allow us to compare the different terms in the relaxation 0.2+ -

matrix (21). Numerical analysis shows that the second term

in Eq. (43) is negligible in comparison with the first one as

well asn| y,y| < ¥2,,n(¥xx+ ¥4 - Thus, the kinetic equation B

(17) transforms into the Bloch equatidB) with the follow- o 1 2 3 4 5

ing relaxation parameters: B (Tesla)

a2m ® wo FIG. 1. Magnetic field dependences of the rates of longitudinal
—=I 3nm<8>2()F(—,—), (49 [Eq. (49), i=1] and transversdlEq. (50), i =2] electron spin re-
T Luft T laxation atT=4 K in a Cd _,Mn,Te QW with x=0.017 andL,,
=8 nm.

1 o®m (S (SH)_[0 o
T, =! Lwﬁ3nm 2 * 2 F( T T ) ' (50 2D structures. For instance, in the 3D case the fa¢iis
expected to appear in Eq$49) and (50) (see Refs. 20
The right-hand sides of Eq$49) and (50) become equal to  and 23.

each other at zero magnetic field as is expected. Moreover, as At the end of this section we estimate the electron spin
w,wo—0, Egs.(49) and (50) transform just to the double relaxation time of the exciton composed of electrons and

rate W of spin-flip relaxation obtained with the help of Fer- holes with effective masses,=0.096n, and m,=0.25m,

mi's golden rule’"*® (so m=0.346n,, wherem, is the free electron maksn
With the magnetic field increasing, one can obtain, in thecd, |, Mn,Te QW's with «=1.5x10"2 eV cn?, x=0.017,
limit w>T, and L,=8 nm. At zero magnetic field one can fintd,
=5 ps, which is quite close to the experimental value ob-
E: E served recently via the time-resolved magneto-optic Kerr
25+ . (51 19
T, 2 effect:

Equation(51) shows that the rate of phase relaxatl‘ﬁ@1

can exceed the longitudinal relaxation ré’[{al by a factor V. DYAKONOV-PEREL MECHANISM

about one order of magnitude in the caseSef5/2 (ions of . o

Mn2*) despite their relationships to the microscopic param- It has been shown in a number of WOH‘%Z_ that a

eters in Eqs(49) and (50) being identical. fluctuating effective magnetl_c field accompanying the e!ec-
Figure 1 shows the magnetic field dependence of the lonfON Mmomentum scattering in semiconductors with a zinc-

gitudinal and transversal relaxation times calculated with thd!ende lattice results in quite efficient spin relaxation. In this

help of Egs.(49), (50), (47), and (48). One can see that the _sectlon we sh_ow how the Dyakonov-Perel mec_:hamsm can be

magnetic field suppresses the longitudinal relaxation while itncorporated into the above developed formalism in the case

enhances the transversal relaxationSor1/2. In the limit of ~ Of electron spin relaxation in a QW. _

saturated magnetic fieldsy,w,>T, the decreasing of, The Hamiltonian of the dissipative subsystem is assumed

reaches the factd(S+ 1)/(S+ 1/4). Note that the decreas- © have the form

ing of the transversal relaxation time in a magnetic field was

observed for Mn spins but has not been explained until

nOW-lg HLZE skal,cak,(r—i_ 2 Vk,k’al,oak’,a' (52)
Equations(49) and (50) do not manifest any spin relax- Ko kk'o

ation anisotropy with respect to the growth aZ’. Nev-

ertheless, the striking difference between the 3D and 20he second term in Eg52) has a symbolic meaning: we

cases can be expected in temperature dependences of relagssumeV, . to be an operator responsible for electron scat-

ation times due to the different densities of states of 3D andering by impurities, phonons, or electron-electron collisions.

115319-7



Y. G. SEMENOQV PHYSICAL REVIEW B67, 115319(2003

This electron scattering changes randomly an effective mag- 1 - 1 1
tr;ﬁgc fieldB=b(k)/g.u that corresponds to band spin split- T_z = ﬁnyxx:%nyyy:T_o m (61)
where T, corresponds to the relaxation time at zero field,
Hin= 2 sbk)ay ,ax, - (53 ,
ko 1 22T
. == Tp, (62
Therefore, the operator of this field, To 2m2Eg
-1 -1
m, - ={(71, (K)). 63
0,=2 b, (Ka 2, (54) o {7 ) ©9
k,o ! '
_ . The denominator on right-hand side of H&1) reflects
can be expressed in terms of Eg3) with the dependence df, on electron spin splitting but under the
assumption that the cyclotron frequeney, is sufficiently
szb#(k),Qp:aE’Uak’U,pz{k,g}_ (550  small, w;7,<1. Note that approximatiof63) is not neces-

sary for calculations off; andT,. For more accurate inte-
The specific form of the functiob (k) is determined by a gration(see Refs. 12 and)7the dependence,= 7,(k) can
band Hamiltoniar{see, for instance, Ref. 1and depends on be taken into account.
the dimensionality of the system under consideratitt. According to Eq.(20), the longitudinal relaxation rate is

The following calculations depend on the specific mecha-

nism of an electron momentum relaxatitiiThe correspond- 1 )
ing formalism in terms of Green'’s functions is presented in o %n(yxx+ Yyy) = T (64)
Ref. 14. For simplicity, here we consider the correlation 1 2
functions(18) in relaxation time approximatiof 27). With

\We can see thak, can be shorter thah, in 2D systems. The
respect to the fact that for the nondegenerate ca 1 2 Y

SF i . K X
= _ " elation (64) betweenT, and T, is consistent with that ob-
<QP1QPz>_ fp,(1=1p,) 8p,p,= fp, 9p,p,, EQ. (27) takes the tained by other density matrix methopisee Eq(A15) from
form Ref. 7).
Another important case corresponds to a magnetic field
77 1 Tp directed along th€Z axis in the QW plane while th©X
AL % b, (K)b,(K)f, le](k)wer 1 (56) axis is perpendicular to this plane. One can find
Consider now the electron spin splitting in a QW caused k=0, Kky=-k% Kk, =k, (65)
by k® terms in a band Hamiltonian of bulk crysllf the ) ) )
external magnetic field is directed along the axis of QWIn this case, three parameters describe the electron spin re-

growth, we havé&® laxation:
b.(K)=ryk,, (57 i:i
with Ty Tg
aohs 1 1 1
ey (58 =
m3%(2E,) 2 Tox  To 1+ (mp)Z)
k= —ke@?,  ky=kya% x,=0, (59) L .
wherem s the in-plane effective masay is a constant, and T_1 = T_o m (66)

q? is defined via the electror function confined in a QW,

Obviously, in zero field ¢=0) Egs.(66) are identical to
Egs.(61) and(64): the in-plane relaxation paramef€y co-
v (60 incides with the other on&,y and is twice as large ak,y .
We see that transversal relaxati@1) can be suppressed
significantly by strong enough electron spin splitting in a
Note that it is assumed thgtk in Eqgs.(57), (58), and(59).  magnetic field perpendicular to the QW planB|QZ’,
We see that only two components of relaxation paramwhereOZ’ is a growth directiondue to the dynamical av-
eters,y, andy,, have nonzero values. Calculations with the eraging effect® When a magnetic field is parallel to the
help of Eg.(40) lead to the following expression for the sample surfac¢BL OZ’, Egs.(66)], the transversal relax-
transversal relaxation time: ation time would decrease for no more than 2 times.
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FIG. 2. Evolution of electron spin projection on the axis growth
0OZ' in a magnetic field directed alond=q. (67), curve 1 and
acrosgEqg. (68), curve 2 OZ'.

To illustrate the effect of magnetic anisotropy in QW'’s, let
us consider a typical experimental situafidfiof normal to
the QW plane spin relaxation. In the ca®E0Z’ [Eq. (64)],
the electron spin deviation from its equilibrium value is de-
scribed by a simple exponential law

1

2(Z2—2Z,)=e 2", _.
( o) 1+(w7p)2

n= (67)

A more complicated case correspond8toOZ’. The solu-
tion of the kinetic equationgl?7) with relaxation parameters
( 66) gives rise to the evolution equation for the norntal
QW) spin component

~  7sinwt
coswt— E

w

2X= e*(lJr 7]/2)t(

) . w=+\w?- 7°l4.
(68)

In Egs.(67) and(68) the time and frequency are in units of
To and Ty * [Eq. (62)], respectively. In the zero-field case,
w—0, EQgs.(67) and (68) are reduced to the same depen-
dencee ?'. The difference between these two cases becom
important as a magnetic field increagégy. 2).

Note that we consider only one reason for the magneti
anisotropy of the DP mechanism in QW’s. In the case o
Landau quantizationg||OZ") when the cyclotron frequency
w; exceeds the rate of electron scatterh’gf, the plane
waves cease to be an adequate representation of the elect

wave functions. This situation had been considered in detal

in Ref. 25.
Actually, the typical scattering time of an electron in
semiconductors is about,~10 *?s. Thus, to make the ef-

fect of magnetic field anisotropy visible at moderate mag-

e

0
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netic fields we should use DMS structures where the inequal-
ity w7p,>1 can be reached due to giant spin splitt[ims.
(32) and (33)].

VI. CONCLUSIONS

In this work, we develop the microscopic theory of elec-
tron spin evolution in semiconductors in terms of quantum
kinetic equations for an arbitrary mechanism of spin relax-
ation. The relaxation term in these equations has been de-
rived as a matrix of correlation functions, providing rela-
tively short correlation timeg&s compared to spin relaxation
times, 7<T) of the dissipative subsystem. Our theory per-
mits us to distinguish the relaxation processes of transversal
and longitudinalwith respect to the direction of the external
magnetic field components and to capture the case of zero
and small magnetic fields.

We show that spin relaxation processes due to exchange
scattering in a semimagnetic QW reveal quite different be-
havior of the longitudinal and transversal spin relaxation
times in a magnetic field. Specific calculations of the relax-
ation parameters show that only longitudinal relaxation can
be described by flip-flop processes, suppressed in a magnetic
field. On the other hand, transversal relaxation is due to ef-
fective exchange field fluctuations, which increase with mag-
netic field. Qualitatively, the latter effect has the same reason
as the growth of the linewidth of spin-flip Raman scattering
by shallow donors in DMS'$®

Actually, the peculiarities of 2D structures in the ex-
change scattering problem reveal themselves only via the
electron density of states. A nontrivial manifestation of low-
dimensional structures is predicted for the particular mag-
netic anisotropy of the DP mechanism. In this case a signifi-
cant difference in transversal relaxation rates for parallel and
perpendicular(to growth axi$ magnetic field orientations
has been found.

The relaxation mechanisms considered in this paper can
be discerned by their different dependences on the QW
width. As may be seen from Eggl9), (50) and Eq.(62), the
spin relaxation rates are proportionalltd.,, or to g*. In the
case of deep enough QW'’s, this means proportionality to
L,,* andL,* for exchange scattering and the DP mechanism,
respectively.

The proposed approach to relaxation can be extended to
any two-level system described by a fictitious spin 1/2. From
this standpoint, the analysis of heavy-hole spin relaxation in
QW’S in terms of Eqs(17), (20), and (21) promises new
insight into this problem. Namely, in our approach, relax-
ation in the case of an in-plane magnetic field would involve

?ree relaxation times—Ilongitudinal,;, transversal(along

QW plane T, and perpendicularF,, —while the usual de-
scription of a heavy-hole relaxation involves only one relax-
ation time. Investigations of hole relaxation in QW’s or

Ilﬁ’ﬁ\axial semiconductors will be reported elsewhere.
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