PHYSICAL REVIEW B 67, 115317 (2003

Shallow donors in semiconductor heterostructures:
Fractal dimension approach and the variational principle
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We propose a simple method for calculating the energies of the shallow Gostates in semiconductor
heterostructures. The trial function is taken as a product of the wave equation for an unbound electron in the
heterostructure corresponding to the lowest level with a variational function that depends only on electron-ion
separation. Starting from variational principle, we find that the latter is a solution of the radial wave equation
for a hydrogen-like atom in an effective space with a non-power-law dependence of the Jacobian volume
element on the ion-electron separation. By using the relation between the Jacobian volume element and the
dimension of the space similar to the one proposed by Mandelbrot for fractal geometric objects, we find that
the fractional dimension is related with the density of charge distribution for the electron ground state within
the heterostructure. An excellent agreement between our results for donor binding energies ((G&a)és
qguantum wells, quantum well wireQWW’s), and quantum dots with a square-well potential and those
previously obtained by means of the variational, Monte Carlo, and series-expansion methods is found when we
use the fractal dimension defined locally. Additionally, donor binding energies curves versud GaA$As
QWW radius, for models with soft-edge-barrier and double-step potentials are presented.
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[. INTRODUCTION dimension to the average electron-hole distance within the
heterostructure in the unbound state by a simple exponential
In the past two decades the theoretical analysis of théaw. A different method to determine the appropriate frac-
low-dimensional systems have attracted a great deal afonal dimension foD°, in QW’'s, QWW'’s, QD’s, and SL’s
attentiort—** due to the technological progress in the generapy fitting the ground-state energy of the isotropic hydrogenic
tion of semiconductor structures, such as quantum wellgnodel in the fractional-dimensional space to an actual three-
(QW's), wires (QWW's), dots (QD's), and superlattices dimensional system has been proposed recently in a series of
(SLs). The strong quantum-confinement effect produced oRpegretical works of Oliveira and co-workers!®
bound carrier¢donor and acceptor impurities, excitons, BtC. |, the |ast decade, the model of the fractional-dimensional
in these structures widen the range of possibilities 0lgyace has heen successfully used to describe shallow donor,
electro-optical and electronic devices. The electronic Spectrg, citon properties, absorption spectra, and the exciton-
of shallow donor impurities in low-dimensional systemsphonon interaction'in semiconductor hetérostructﬂﬁéé?lg

have been studied theoretically by using the var!atlén%ll, However, as it was established previou$iyhis simple ap-
series-expansiohperturbative’ dimension scalind trigono- . .
proach breaks down when the confinement or the magnetic

metric sweeff and Monte Carl&" methods. feld b t00 strontf, M the di h
Several advances in the interpretation of experimental re_€'? P€COME 100 strony. Moreover, the discrepancy be-

. O . - - .
sults and the theoretical calculations have been reachdeen the calyculanon re’sults for tz" binding energies in
within the framework of the fractional-dimensional space ap-"arow QWW's and QD's and other theoretical calculations

proach in which the anisotropic interactions in a three-S more significant than the one in a Q¥4 possible reason
dimensional environment are treated as isotropic in an effedor these difficulties consists of the fact that the charge den-
tive fractional-dimensional space and the value of theSity in the heterostructures presents a complicated object
fractional dimensiorD (only parameter used in this thepry Whose exact value of the dimension may not be absolutely
is associated with the degree of anisotropy of the actualvell defined.

three-dimensional systeti-2® This approach was first ap-  The concept of the fractional dimension was first intro-
plied to analyze solid-state problems by*#leho, using the duced by Mandelbrat? who studied different geometric ob-
hydrogen-like Hamiltonian in effective fractional space pro-jects with self-similar structure and gave them name exact
posed by Stillinget? treated the interband optical transitions fractals. The formula proposed by Mandelbrot for the frac-
and bound excitons in strongly anisotropic semiconductorgional dimension gives the same value for all parts of the
Lefebvre and co-worket$'® applied this method to analyze self-similar objects. In contrast, the charge density within a
the exciton energy states and the absorption spectra imeterostructure has not self-similar structure and therefore its
GaAs/Ga_,AlLAs QW's and QWW'’s, considerinp as a  exact dimension may be well defined only locally. From this
phenomenological parameter related to the heterostructuimint of view the fractional-dimension approach proposed by
geometry. They proposed a formula that relates the fractionafie'® should be considered as an approximation in which the
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dimension of the effective space is defined only on the aver=e%2a% ¢ as the energy unit, angl=efB/2m* cR} as the
age. dimensionless unit of the magnetic-field strength. The
In this paper, we propose a general variational procedurground-state wave functiof,(x,y,z), for a free electron
which we call fractal-dimension method. In this method, weconfined in the heterostructure corresponding to the lowest
consider the charge density within a semiconductor heteraenergyE, can be found as the solution of the eigenvalue
structure as a fractal object and try to find the relation beproblem
tween the shape of this object and its local fractional dimen-
sion starting from the variational principle. By using the . _
method of the functional derivation, we found that the prob- Hofo(x,¥,2)=Eofo(x,y,2). @

lem of a donor in any semiconductor heterostructure can bg the heterostructure has a particular symmetigr ex-

_reduce_d to a simple problem of a hydrogen-like atom in armple, axial for a QW and QWW or spherical for a {tben
isotropic space with a non-power-law dependence of the Bhe Hamiltonian |:|o becomes separable and the three-

ONimensional problent3) can be solved exactly. On the con-

distance. In our formalism, the local noninteger dimension[rar the Schidinger equation for the donor impurit
D* appears in a natural form and can be found directly by(bozlnd electron g q punty

using the fractal-dimension definition of MandelbtdtThis
paper is organized as follows. In Sec. Il, we describe the . -

fractal-dimension method. In Sec. Ill, we compare our re- HWY(r)=EW¥(r), 4
sults with the corresponding calculations by using th
variational®?%?! fractional-dimensional’® Monte Carlo*
and series-expansi6ff methods. A summary of the results
and conclusions are presented in Sec. IV.

edoes not completely separate if the symmetry of the two
terms on the right side of Ed2a does not coincide. It is,
therefore, of interest to eliminate the one-particle potential in
the Schrdinger equatior(4) by using the following substi-

tution:
Il. THE FRACTAL-DIMENSION METHOD

FOR ONE-PARTICLE PROBLEMS - -
A. Donor impurities in semiconductor heterostructures
We consider the problem of a neutral donor impurity inWhere®(r) is a function that describes the properties of the
the center of a semiconductor Ga#Ba,A)As heterostruc-  intrinsic electron bound state. Substituting E@.and(5) in
ture (such as a QW, QWW, QD, or a $in the presence of EQ. (4) and taking into account the relati@B) one obtains
an uniform magnetic field. Within the effective-mass andan equation ford(r),
nondegenerate parabolic band approximations, the Hamil-

tonian for the donor can be written as H,on®(r)=(E—Eq)d(r), (6a)
P L +V(r) (1) 1 2
= -, —_ r ) A~ =3 1
ome [P S Ter Aren=— =—=V[Po(N)V]- -, (6b)
Po(r)

WhereV(F) is the confining potential. The material param-
etersm*, the conduction-band effective mass andhe di- )= F2(F

. : Po(r)="f5(r), (60)
electric constant of the semiconductor heterostructure are as-

sumed to be uniform throughout the heterostructure. The . I .
values of the physical parameters pertaining to Gamé ( where the renormalized Hamiltonidth,.,, does not include

=0.06"ny, and e=12.53, wherem, is the free-electron ﬁ;ﬂ'ﬁ'ﬂy ebnoeﬂr]althEe (%Oa;]gg?rrggn(t)n%ostfggaéeﬁgaltgercg)(tfc:&al
mas$ are used in our calculatiodsWe choose the vector -ng B4 >SP . ) p
g2 oL lem for hydrogen-like atom in an anisotropic and nhonhomo-
potential A=3(BXr), and the magnetic field oriented eneous space With (F) being the charae densitv in the
along thez axis, so that the Hamiltoniafl) for the impurity %eterostrucr'zure that (()jefines tge dimens?on of thtg effective
S states may be written in cylindrical coordingtes o
space. It can clearly be seen that the renormalized Schro
dinger equatiorni6) can be written as a variational problem of

H=Ho- % (28 the following functional:
. - . o 5 ) o
Flo=—V2+9(r), (2b) F[cb]=f[[V¢<r>12—(;—Eb)¢2(r>]f§<r)dr
V( I?) =V( F) + %'yzpz, (20 —min, Ep=Eo—E. (7)

_ _ _ Let us consider as an example a QW where the ground-state
Here, we have introduced the effective Bohr radaf  wave functionf(x,y,z) for a free electron depends only on
=gh/m*e? as the unit of length, the effective Rydbem; coordinatez:
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F[d>]=f:f§(z)dzjidxf: ‘%)1(
{i-efe

It is seen that for small electron-donor separatioms;>Q)

oD
ay

aP
0z

K&

(7a)

dy—min.

the Jacobianf2(z) in this expresion can be considered as a

constant, and the expressi¢na coincides with the func-
tional for the three-dimensional hydrogen-like atom. On th
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2 T
P(r)=f dcpJ sinAd o3
0 0

(9b)

Here, the valuer?P(r)dr is the probability of finding an
unbound electron within a spherical shell of radiand r
+dr.

Calculating the functional derivative, one can obtain the

X (r sinf cose,r sinfsine,r cosp).

gEuler-Lagrange equation for the envelope functiofr) that

other hand, as— the Jacobian can be approximated by aMinimizes the functional9):

& funcion, f3(z)~ &(z), and the expressiofva) transforms
into the functional for a two-dimensional hydrogen-like

atom. Since the dimensionality of the charge density varies
from 3 in the center of the QW to 2 in the barriers it can be

defined only locally. To derive a formula for locally defined

fractional dimension one should analyze in more detail the

structure of the Jacobian factor in the functio@l which
controls the dimensionality of the effective space.
B. Radial part of the Jacobian volume element

It should be noted thaﬁlren is separable only if the sym-
metry of the two terms on the right-hand side of Efb)

Hyeq®(r)=—Epd(r), (109
~ 1.d d] 2
Hred__ma J(f)d— e (10b

E,=E,—E. (100

Of course, the solution of Eq10) defines an approximated
value of the donor binding enerdy, and a wave function
that is not exact, buit is the best among all the functions
presented in the forni8). The reduced wave equatiqhO)
describes a hydrogen-like atom in an effective space with a

coincides, i.e., for heterostructures with a spherical Symme\_/ariable dimension. Such an interpretation arises from the

try (e.g., a spherical QD in the zero-magnetic-field gabe
the other casegsuch as QW’s, QWW's, and Sl’s the

Hamiltonian I:|ren is nonseparable and the exact equation
(6a) does not provide any advantage in comparison with the

initial eigenvalue problent4). Hence, to simplify the prob-
lem, we have to approximate the first term in the Hamil-
tonian(6b) by one with spherical symmetry. In this way, we
propose to replace the exact wave functibnby the follow-
ing approximation:

W(r)="fo(r)d(r), ®)

where the unknown isotropic functicﬁ(r) should be inter-

preted as the mean value of the exact functiofr) aver-
aged over all the directions. The representation of the tri
function in the form(8) is valid only for donorSstates and in
what follows we will be considering only the donor states
which correspond to this symmetry.

This approximation permits us to simplify the expression
(7) which after integrating over all angles can be rewritten as,

da(r)
dr

)
— F(I_Dz(r)JrEbCI_)Z(r)]dr

H@=Eﬂ%[

SF[D] o

oD

—min,

9

wheres/ 5 denotes the functional derivative adfr) is the

property of orthogonality of the eigenfunctioﬂ_:s1(r) of the
self-conjugate equatiofl0) for different S states:

focd_)n(r)am(r)\](r)drz J (NP (NAV= 6, .
0
(11)

It should be noted that the relatiqdl) together with the
definition of the radial part of the Jacobian volume element
(93 provides automatically the orthogonality of all trial
functions¥ ,(r) = fo(r)®,,(r) corresponding to different do-
nor Sstates. In Eq(11), dV=J(r)dr represents the volume
element in the functional effective space ah@) can be
considered as the frontier-surface area of an infinitesimal

. spherical shell of radir andr+dr in this space. For ex-

mple, for one-, two-, and three-dimensional homogeneous
spaces, the functiod(r) will be equal to 1, 2rr, and 4mr?,
respectively. If the dependence &fr) on r were a power
law, e.g.,J(r)=CrP~1, then the Eq(10) would coincide
with the Schrdinger equation fo6 states of a hydrogen-like
tom in an effective isotropic and homogeneous
D-dimensional spaceD being an integer or fractional
numbert® In general, the functiod(r) has no power-law
dependence on the ion-electron separatidne to the factor
P(r) and Eq.(10) could be considered as a wave equation
for hydrogen-like atom in an isotropic and nonhomogeneous
space with a variable dimension that depends on the ion-
electron distance. We will call this dimension fractal and it
can be calculated once the radial part of the Jacobian volume

radial part of the Jacobian volume element related to th&lementl(r) is found.

radial charge probability distributioR(r) by means of the
formula

J(r)=r?P(r), (9a)

The general expressidf) for J(r) can be simplified for
heterostructures with any type of symmetry. For heterostruc-
tures with a spherical symmetry, e.g., a QD with confining

potentiaI\N/(F)EV(r) in the absence of magnetic field,
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3

. T constant §~r° for QWW, and in a decreasing exponential
function (J~0) for a QD. Such behavior df(r) is typical of
an effective space with a variable dimension which falls as
increases.

NS
T
Fractal dimension
/
£
°
&

C. Fractal dimension

According to the theory of MandelbrStfor exact fractals
that have the property of self-similarity, the dimensidris
determined uniquely by a power-law dependence of its mass
M upon its sizd. asM =CLP. On the contrary, for non-self-

. . : similar fractals there are an infinite number of ways to mea-
0 1 2 3 sure the “size” and therefore there are different definitions
Relative electron-ion distance (r/a,*) and each may give a somewhat different answer. The fractal
dimension is often defined by using a set of measuring boxes
: in the form of geometric figures whose shapes reproduce the
ferent GaAs/GgAloAs heterostructures, as a function of the oonir of the object and whose sizes gradually approach
o B o A o s ot 7210, 1L easonable o have [ hape of e boes 1o cor
QW’'s, QWW's, and QD’s is plotted for different sizes of the het- re.Spond to the basic physics of the problem and be cqngruent
erostructures. with the symmetry of the analyzed system. If we con3|der_the
charge density within a heterostructure as a fractal object,
then due to the symmetry of the donSrstates, the boxes
.J(r)=47rr2fg(r), (129 natural set will beipherez with the center in the donor loca-
where the wave functioriy(r) is the solution of the one- tion. Therefore, we can postulate that the dimendbof
dimensional Schidinger equation this object is determined by the dependence of the charge
Q enclosed within the sphere upon its radR®f this box

Jacobian volume element J(r)

FIG. 1. The radial part of the Jacobian volume element in dif-

,d as Q=CRP. In this relation, the parametefs and D are
Tzarar +V(r) | fo(r)=Eofo(r) (12D constants only for exact fractals otherwise they vary slowly
with R.
corresponding to the lowest-energy leve). For hetero- Let us consider a charg#Q within a thin spherical shell

structures with a cylindrical symmetry such as a QW, doublewith the inner and outer radiiandr +dr. For a free electron
QW, multiple QW, SL, cylindrical QWW, coaxial QWW, in the heterostructure, this charge is related to the density of

guantum disk, or a quantum ring, probability P(r), and the radial part of the Jacobian volume
element J(r), defined by the formulasgQ=r2?P(r)dr
r .
—9 £2( f2—22 1 =J(r)dr. If we assume that the charge density can be con-
Ir)=2ar ﬁr o(Nr'-z%2)dz, (133 sidered as a spherical fractal with a finite dimendiof(r),

then the chargeQ enclosed within a spherical shell and its
radiusr should be related by means of the quasi-power-law

dependencelQ=C(r)r®" " ~1dr with the functionsC(r)

wherefy(p,2) is the solution of the two-dimensional Schro
dinger equation

19 o9 o2 ¥2p? andD* (r) varying more slowly than any power function. If
P TS +V(p,z)+ fo(p,z)=Eofo(p,2), one define the fractal dimension as
paip dp oz
(13b dinJ(r) dinP(r)
, , D*(r)=1+r =3+r , (149
for the lowest-energy levelE,. SinceV(p,z)=V(z) in het- dr dr
erostructures with the growth axis along théirection(such ; o -
as a QW, SL, and so grand V(p,z)=V(p) in cylindrical with the additional condition
QWW's, Eq.(13b) becomes separable and splits into a pair dinC(r) dD*(r)
of the independent one-dimensional equations, whose solu- ar +Inr ar =0, (14b)

tions can be found numerically.
For a model with square-well potential, one can calculatehen both expressions fatQ coincide

J(r) directly by using the relationgl2g and (133 and the

well-known analytical expressions for the wave functions of J(r):C(r)rD*(r)—l_ (140

an unbound electron in a QWgylindrical QWW? and a

spherical QD Figure 1 shows the typical behavior of the  Note that this definition also includes the case of exact

radial part of the Jacobian volume elemd(it) obtained for  fractals for which the function€(r) and D*(r) are con-

these three models of confinement. For small values of thetant. In this way, the Jacobian factor in the Laplacian of the

electron-ion separation, the three curves behave as para-renormalized wave EqJ10) is related to the fractal dimen-

bolic (J~r?). As electron-ion distance increases, the curvesion of the free-electron charge density in the heterostructure

transform into a linear functionJ¢r) for a QW, into a by means of the relationd4c) and(14a), therefore, Eq(10)
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can be interpreted as the wave equation forS3tstates of a ' ' '

hydrogen-like atom in an effective space with fractal dimen- | /->\ g Kﬁ;‘g‘é“ﬁ;“}ff;ﬁdoﬁ;ifzi)l) .
sion (149. This is the reason why the procedure of finding a y=3 ‘ ’
donor binding energy by solving Eq®) and(10) is referred ! \

as thefractal-dimension method

The inset in Fig. 1 shows the fractal dimensibrf (r) x 3
calculated as a function of the ion-electron separation for&
on-center donors in GaAs/G#AlAs QW’'s, QWW’s, and ;n
QD’s (barrier height 4BJ) with square-well potential. In Vo
this model of confinement, the explicit expressionsff@(rF)
in QW, QWW, and QD are well known and therefore, one

can calculateD* (r) directly by using the relation§9) and . . . .
(14). It can be seen from Fig. 1 that the fractal dimension 0 1 2 3 4
D*(r) falls from 3 for small electron-ion distances to 2 for W/a*

a QW (dotted ling, to 1 for a QWW(dashed ling and to 0

for a QD (solid line) as the distance ion-electron become FIG. 2. D° Binding energy in a GaAs/GaAlyAs QW with
larger and the electron is placed in the barrier of the heterosquare-well potential, as a function of the well width for two
structure. Such dependence of the dimension on the electrostrengths of the magnetic field/&0 andy=3) obtained by using
ion separation is typical for quasi-zero, one-, and twothe fractal-dimensioitsolid lineg and fractional-dimensiofdotted
-dimensional heterostructures, respectively. lines) methods.

Within our formalism, it is also possible to introduce the

average value of the fractional dimensibnof the effective regults similar to those obtained pr_ewously n Refs. 17,18 in
spite of the fact that our calculation method is absolutely

space. There are different ways to defide@nd one of them igterent. Therefore, it is clear that different definitions of the
is proposed in the papet§!®We propose to define tHe of  average fractional dimension provide similar results and any
the donorS states as the mean value of the fractal dimenSiOFﬂmprovement of this approximation can be achieved only by
given by Eq.(14a which is calculated by using the radial taking into account the fact that the dimension is not the
probability distribution corresponding to the states for asame in all parts of the heterostructure.

hydrogen-like atom in &-dimensional space.

w I1l. RESULTS AND DISCUSSION
fD*(r)R%[nD*(r)]J(r)dr
0

D= =, . ' (15 As it was pointed out above, we have two different algo-
Jl) Ry[r,D*(r)]3(r)dr rithms for calculating the binding energy of the dor®r
states in semiconductor heterostructures. The first of them
Here,R,(r,D) is the radial part of the hydrogen-like atom consists of solving the one-dimensional wave equatid)
wave function inD-dimensional space for thes state i that takes into account the spatial dependence of the fractal

A. Comparison of calculation methods

=1,2,...)which is given by the expressibh dimension. In our calculations, the eigenvalue problé®)
is solved by using the numerical procedure of trigonometric
Ra(r,D)=exp(—«r)M(1-n,D—1,2«r), sweep'® We refer this algorithm as the fractal-dimension
method. The second algorithm referred as the fractional-
_ 1 (16) dimension approach, is based on the approximated formulas
= (D-3)"° (15—(17) in which the fractal dimension is defined only on
n+ 2 average. In order to compare the accuracy of these two meth-

ods, we have calculated the ground-state binding energies of
with M(a,b,2) Being the confluent hypergeometric function. a donor in a QW, QWW, and a QD with the square-well
Once the valu® is found thens-state donor binding energy potential. Figure 2 displays the binding energy of a donor in

E, and the corresponding wave funCtidf},(I?) can be ob- @ GaAs(Ga,Al)As QW as a function of the well width and
tained in a straightforward way throutgh for different magnetic-field strengths. Our results are com-

pared with the corresponding calculations by Pangl!t
) R o (Monte Carlo methog and Fraizzoliet al?* (variational
5, V() =fo(r)Ry(r,D). (17) method and some of them are also listed in Table I.
It is seen from Fig. 2 and Table | that the agreement
between our results obtained by using the fractal-dimension
o approach(from Eq. (10), [solid line and column(b)]) and
We have performed the calculations bf for a QW, a  those of the Monte Carlo methddpen circles and column
cylindrical QWW, and a spherical QD with square-well con- (c)] is excellent if we take into account the relative simplicity
fining potentials as a function of the heterostructures size byf our procedure and the fact that the error bar for the Monte
using relationg9), (14), and(15). In all the cases, we have Carlo method is 0.02;/* . Moreover, this agreement notably

E—
b ,D-3
T
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TABLE I. Binding energy of a shallow on-center donor in a
GaAs/Ga Al 5As QW, present results obtained by usi@
fractional-dimension(b) fractal-dimension, andc) Monte Carlo
methods(Ref. 1J).

Wiag  Ep/Ry*(y=0)  Ep/Ry*(y=3) Ep/Ry*(y=3)

@ ® @© @ b @© @ b (©
1.0 187 2.04 209 235 288 292 3.04 3.88 3.89
20 153 167 1.74 199 247 252 263 3.35 3.36

improves in the strong magnetic fields. Similarly, an excel-
lent agreement between our resukslid line) and those of
the previous variational calculaticttgopen trianglesis ob-

PHYSICAL REVIEW B57, 115317 (2003

4 Series expansion method (Ref. 22)

*

>
~
= 4r
o

44|

0

R/ao*

served in Fig. 2 for the case of zero-magnetic field. In con-

trast, the agreement between our results obtained by using FIG. 4. Binding energy of a donor in a GaAs/GAlgAs
the fractional-dimension approa@dotted lines and column spherical QD with square-well potentials, as a function of the dot
(a)] and Monte Carlo calculations is poor and even stillradius obtained by using fractal-dimensidsolid lineg and

worse in the strong magnetic fielfisf. columns(a) and(c)
in Table . This result underlines again the fact that the
fractional-dimension method breaks down for strong mag
netic fields(fact emphasized also in Refs. 17 and.18

The ground-state binding energigg, of a donor located
at the axis of a cylindrical GaAs/GgAly As QWW in the
presence of a uniform magnetic field are shown in Fig. 3
Our results obtained by using fractal-dimension approac

(solid lineg are in an excellent agreement with the previous

variational calculatioris(open diamong The dotted lines in
Fig. 3 show the donor binding energies calculated by usin
the fractional-dimension approach, which are considerabl

lower than the corresponding results obtained by the varia-

tional methodRef. 3. It should be noted that in a QWW the

confining potentia[ V(r)=V(p)] and the termy?p?/4 that
describes the external magnetic field in Hamiltoni@t)
have the same type of symmetry and therefore they produ
a similar effect. As it is seen from Fig. 3, for small values of
the QWW radius R/aj§ <1), the binding energy is relatively

< Variational method (Ref. 3)

B =200 KG

R/ao*

FIG. 3. Binding energy of a donor in a GaAs/GAly.AsS

Fo

fractional-dimensior{dotted line$ methods.

insensitive to the magnetic fields used here since the diamag-

netic energy of the electron strongly confined in the radial

direction tends to zero. In this range of radii, the effect of the

geometrical or spatial localization overcomes the effect of

the magnetic field. As the QWW radius increases and sur-

asses the cyclotron radius value, the effect of the magnetic
ield becomes considerable. The increase of the binding en-
ergy in a strong magnetic field observed for large values of

the QWW radius can be ascribed to the electron localization
elated to the cyclotron radius reducing. For all the cases in

ig. 3, E, increases as the wire radius decreases up to a
critical radius R.~0.24a§ when the ground-state level is
pushed up and the electronic wave-function leakage into the
barrier region becomes significant. The obtained results indi-
cate that the fractal-dimension method provides a wave func-
n flexible enough to transform its symmetry from spheri-
cal to cylindrical as the wire radius decreases and to change
its asymptotic behavior from exponential to Gaussian in the
presence of magnetic field.

In Fig. 4 we plot the donor binding energy as a function of
the radius of a GaAs/GaAl, sAs spherical QD. A total co-
incidence can be observed between the present calculations
(solid line) and the results obtained previously by Zhu
(solid diamond, who found the exact solutions of donor
states in a spherical QD by using a series-expansion method.
The dotted line in Fig. 4 presents the calculation results by
using the fractional-dimension approach. Although the solid
and dotted lines have a similar behavior the energies ob-
tained by means of this simple method are 25% lower than
the corresponding exact values. This emphasizes once again
the fact that the fractional-dimension approach in a strong
confining limit breaks down.

It can be seen from Fig. 4 that, as the QD radius decrease
to critical valueR.~0.333 , the electron wave function be-
comes compressed in the narrowing well and the donor bind-

QWW with square-well potential, as a function of the wire radius,INd energy climbs up due to the decreasing of the average
for different magnetic-field strengths obtained by using the fractal-distance between the electron and the ion. The binding en-

dimension (solid lines and fractional-dimension(dotted line$
methods.

11531

ergy E, reaches a maximum of 8.B3 as it was already
established in Ref. 22. As the QD radius further decreases the
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FIG. 5. Binding energy of a donor in a FIG. 6. Binding energy of a donor in a GaAs/zAl .4 cylin-
GaAs/Gg Al AS/Gay s5Al g 45 As coaxial QWW (double step po-  drical QWW with soft-barrier potentials, as a function of the wire
tential), as a function of the outer radilg and for different wire  radius, and for different thickness of the transition region in the
lengths. junction.

wave function’s three-dimensional character is restored anténgthL. We have simulated the distribution of the Al con-
Ey, begins to fall off sharply to ER; 10 centration in the radial direction for this heterostructure by
using the following function:
B. Quantum wire with different potential shapes

c(p)=F(p,R4,0.2,0.02+F(p,R,0.25,0.0]. 20
The fractal-dimension approach is a simple and effective (P)=F(p.Ry AR ) 20

tool for calculating the ground-state binding energy of do-\wWe assume that the QWW radii, innBy and outerR are
nors confined in semiconductor heterostructures with differrejated asR,=0.2R. According to the relationg19) and
ent potential shapes. Below we use our procedure to analyze0), the Al concentratiorc(p) has two almost rectangular
the potential-shape effects on the binding energy ofashallowmps from O up to 0.2 in the first junctionpER;) and
donor in a cylindrical QWW considering the models of one-from 0.2 up to 0.45 in the second junctiop=%R). The
step and doyble—step spft—edge—.bar'rier potentials. To descrignfinement potential ,(p) in these junctions jumps from 0
the conduction-band discontinuity in the GaAs{GaAlLAS  yp toV, and fromV, up toV,, respectively {, andV, are
junction, we assume that in all the cases the displacement ghe values ofv, in Eq. (18) corresponding to the Al concen-
the band bottom is related to the distribution of the Al con-yations 0.2 arp1d 0.45, respectivelfFrom Fig. 5 the exis-

centration in the radial directio(p) by means of the inter-  iance of two peaks in thE, curves is evident. The main in

polation formuld each curve is associated with the wave-function leakage into
5 the exterior barrier region, whereas the secondary peak can
V,(p)=0.61.36c(p) +0.2Z%(p)] eV, (18)  be ascribed to electronic wave-function leakage into the in-

) ) ) o terior barrier region. A considerable increase of the binding
whereasc(p) in the junction of the cylindrical QWW of  gnergy is found as the wire length decreases due to transfor-

radiusR varies smoothly according to the relation mation of the quasi-one-dimensional systé@WW) into
guasi-zero-dimensional orieylindrical QD).
1—exp(—pl§) The calculation results of the ground-state binding energy

=F(p.RXx.H). (19 of a donor in a cylindrical GaAs/GagAlyAs QWW are

shown in Fig. 6 for three different thickness of the transition
The parametef determines the thickness of the transition region in the heterostructure junctioffR=0.01,0.1,0.2 cor-
region in the heterostructure junction where the Al concentesponding to almost rectangular, smooth, and very smooth
tration increases smoothly from 0, at the axis of the wireedge-barrier potentials, respectively. The curves crossover in
(p—0) up tox, in the barrier as g—R)/é>1, while the  the region 0.4 R/ag <0.6 is evident. It is apparent that for
Qonfinemem potential increases .from 0 upM, respec- intermediate and large values of the QWW radil®a
tively [V (p)=V, as c(p)=x]. Different potential-barrier >0 ) the electronic orbital confinement is small and the
shape¥ from almost rectangular {R—0) up to very energy level is situated close to the bottom of the conduction
smooth one {/R— 1) can be obtained by varying the dimen- band. The electronic orbital confinement in this region for
sionless ratio¢/R. The results obtained for a double-step the smooth potential is stronger than for the rectangular one
potential corresponding to a coaxial structure of cylindricaland the potential shape correspondingtB=0.2 gives the
GaAs/Gag Al AS/IGa 55Alh4sAS QWW'’s are presented in largest binding energy followed b§/R=0.1, whereas the
Fig. 5, where we plot the donor binding enerBy, as a corresponding tg/R=0.01 present the smallest confinement
function of the outer radiuR for several values of the wire and binding energy. As the QWW radius decreases the en-

P =X exd — (p—RIE]
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ergy level rises to the upper part of the conduction band We have calculated the ground-state binding energies for
where the electronic orbital confinement for the rectangulaa donor confined in a QW, cylindrical QWW, and a spherical
potential is the strongest. Therefore, Rsis small (R/ag QD with a square-well potential. Our results are in a good
<0.4) the potential corresponding §R=0.01 presents the agreement with those obtained previously by using more rig-
largest donor binding energy followed GR=0.1, while  orous methods such as the Monte CHrland the series
the corresponding tg/R=0.2 present the smallest binding expansior:?> Moreover, we apply the fractal-dimension
energy. method to the problems of donors in coaxial QWW's and
cylindrical GaAstGa,A)As QWW'’s with a smooth variation
IV. SUMMARY AND CONCLUSIONS of the Al concentration within the transition region of the

To sum up, we have developed a simple method to Stud{)eterosFructure junction. Similarly, the problem Caﬁ% be
the electronicS states of shallow donors confined in semi- reated in more complex hgterostructures such as T- shaped
conductor heterostructures where the problem is reduced @9 V- shapetf quantum wires. ,
the wave equation for a hydrogen-like atom in an effective Finally, we can argue that it is possible to reduce any
space with a non-power-law dependence of the radial part dyroblem for a few—partlplg system.confnjed in §em|conduptor
the Jacobian volume element on the ion-electron separatioR€terostructures to a similar one in an isotropic space with a
By using the relation between the radial part of the Jacobiaiariable fractal dimension by using the variational principle.
volume element and the dimension of the space similar tdn this way, our method might be applied to study properties
one proposed by Mandelbrot for fractal geometric objectsof any carriers bounded statg®eutral and negatively
we find that the dono® states fractional dimension is related charged donors, acceptors, exciton, biexcitons, trions, and so
to the charge-density distribution for the free-electron groundn) in different types of heterostructures such as SL's, QW’s,
state within the heterostructure and decreases from 3 fA@WW'’s, QD’s, rings, etc. in the presence of any external
small electron-ion distances to 2 in QW's, to 1 in QWW's, perturbation, and it may even exhibit practical advantages

and to 0 in QD’s barriers. like in the cases considered in this work.
All information about any anisotropic perturbation of the

system(confinement due to the heterostructure or the mag-
netic field is contained in the radial dependence of the Jaco-
bian volume element for which we have found an analytical
expression. One of the attractive features of the proposed This work was partially financed by the Universidad In-
method is its universality which is related to the simplicity of dustrial de SantandéU1S), through the General Researches
its application for different models of confinement in the (DIF) and the Colombian Agency COLCIENCIA&ontract
framework of the same numerical procedlig¢rigonometric  No. Cod 1106-05-025-96 The authors are very grateful to
sweep method It permits to avoid tedious calculations to Professor F. M. Peeters for their interest and invaluable dis-
obtain, with high accuracy, the donor binding energy in anycussion of the present work. R.A.E. and J.S.O. wish to thank
heterostructure once the probability density of the free electhe Universidad del Magdalena for the permission to study at
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