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Shallow donors in semiconductor heterostructures:
Fractal dimension approach and the variational principle
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We propose a simple method for calculating the energies of the shallow donorS states in semiconductor
heterostructures. The trial function is taken as a product of the wave equation for an unbound electron in the
heterostructure corresponding to the lowest level with a variational function that depends only on electron-ion
separation. Starting from variational principle, we find that the latter is a solution of the radial wave equation
for a hydrogen-like atom in an effective space with a non-power-law dependence of the Jacobian volume
element on the ion-electron separation. By using the relation between the Jacobian volume element and the
dimension of the space similar to the one proposed by Mandelbrot for fractal geometric objects, we find that
the fractional dimension is related with the density of charge distribution for the electron ground state within
the heterostructure. An excellent agreement between our results for donor binding energies in GaAs-~Ga,Al!As
quantum wells, quantum well wires~QWW’s!, and quantum dots with a square-well potential and those
previously obtained by means of the variational, Monte Carlo, and series-expansion methods is found when we
use the fractal dimension defined locally. Additionally, donor binding energies curves versus GaAs-~Ga,Al!As
QWW radius, for models with soft-edge-barrier and double-step potentials are presented.

DOI: 10.1103/PhysRevB.67.115317 PACS number~s!: 73.21.2b, 73.20.Hb, 73.40.Kp
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I. INTRODUCTION

In the past two decades the theoretical analysis of
low-dimensional systems have attracted a great dea
attention1–11 due to the technological progress in the gene
tion of semiconductor structures, such as quantum w
~QW’s!, wires ~QWW’s!, dots ~QD’s!, and superlattices
~SL’s!. The strong quantum-confinement effect produced
bound carriers~donor and acceptor impurities, excitons, et!
in these structures widen the range of possibilities
electro-optical and electronic devices. The electronic spe
of shallow donor impurities in low-dimensional system
have been studied theoretically by using the variational1–6

series-expansion,7 perturbative,8 dimension scaling,9 trigono-
metric sweep10 and Monte Carlo11 methods.

Several advances in the interpretation of experimental
sults and the theoretical calculations have been reac
within the framework of the fractional-dimensional space a
proach in which the anisotropic interactions in a thre
dimensional environment are treated as isotropic in an ef
tive fractional-dimensional space and the value of
fractional dimensionD ~only parameter used in this theory!
is associated with the degree of anisotropy of the ac
three-dimensional system.12–18 This approach was first ap
plied to analyze solid-state problems by He12 who, using the
hydrogen-like Hamiltonian in effective fractional space pr
posed by Stillinger,13 treated the interband optical transition
and bound excitons in strongly anisotropic semiconduct
Lefebvre and co-workers14,15 applied this method to analyz
the exciton energy states and the absorption spectr
GaAs/Ga12xAl xAs QW’s and QWW’s, consideringD as a
phenomenological parameter related to the heterostruc
geometry. They proposed a formula that relates the fractio
0163-1829/2003/67~11!/115317~9!/$20.00 67 1153
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dimension to the average electron-hole distance within
heterostructure in the unbound state by a simple expone
law. A different method to determine the appropriate fra
tional dimension forD0, in QW’s, QWW’s, QD’s, and SL’s
by fitting the ground-state energy of the isotropic hydroge
model in the fractional-dimensional space to an actual thr
dimensional system has been proposed recently in a seri
theoretical works of Oliveira and co-workers.17,18

In the last decade, the model of the fractional-dimensio
space has been successfully used to describe shallow d
exciton properties, absorption spectra, and the excit
phonon interaction in semiconductor heterostructures.12,14–18

However, as it was established previously,18 this simple ap-
proach breaks down when the confinement or the magn
field become too strong.18 Moreover, the discrepancy be
tween the calculation results for theD0 binding energies in
narrow QWW’s and QD’s and other theoretical calculatio
is more significant than the one in a QW.18 A possible reason
for these difficulties consists of the fact that the charge d
sity in the heterostructures presents a complicated ob
whose exact value of the dimension may not be absolu
well defined.

The concept of the fractional dimension was first intr
duced by Mandelbrot,19 who studied different geometric ob
jects with self-similar structure and gave them name ex
fractals. The formula proposed by Mandelbrot for the fra
tional dimension gives the same value for all parts of
self-similar objects. In contrast, the charge density within
heterostructure has not self-similar structure and therefor
exact dimension may be well defined only locally. From th
point of view the fractional-dimension approach proposed
He12 should be considered as an approximation in which
©2003 The American Physical Society17-1
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dimension of the effective space is defined only on the av
age.

In this paper, we propose a general variational proced
which we call fractal-dimension method. In this method,
consider the charge density within a semiconductor het
structure as a fractal object and try to find the relation
tween the shape of this object and its local fractional dim
sion starting from the variational principle. By using th
method of the functional derivation, we found that the pro
lem of a donor in any semiconductor heterostructure can
reduced to a simple problem of a hydrogen-like atom in
isotropic space with a non-power-law dependence of the
dial part of the Jacobian volume element on the ion-elect
distance. In our formalism, the local noninteger dimens
D* appears in a natural form and can be found directly
using the fractal-dimension definition of Mandelbrot.19 This
paper is organized as follows. In Sec. II, we describe
fractal-dimension method. In Sec. III, we compare our
sults with the corresponding calculations by using
variational,5,20,21 fractional-dimensional,17,18 Monte Carlo,11

and series-expansion7,22 methods. A summary of the resul
and conclusions are presented in Sec. IV.

II. THE FRACTAL-DIMENSION METHOD
FOR ONE-PARTICLE PROBLEMS

A. Donor impurities in semiconductor heterostructures

We consider the problem of a neutral donor impurity
the center of a semiconductor GaAs-~Ga,Al!As heterostruc-
ture ~such as a QW, QWW, QD, or a SL! in the presence o
an uniform magnetic field. Within the effective-mass a
nondegenerate parabolic band approximations, the Ha
tonian for the donor can be written as

H5
1

2m*
FpW 1

e

c
AW G2

2
e2

«r
1V~rW !, ~1!

whereV(rW) is the confining potential. The material param
etersm* , the conduction-band effective mass and«, the di-
electric constant of the semiconductor heterostructure are
sumed to be uniform throughout the heterostructure. T
values of the physical parameters pertaining to GaAs (m*
50.067m0, and «512.53, wherem0 is the free-electron
mass! are used in our calculations.3 We choose the vecto
potential AW 5 1

2 (BW 3rW), and the magnetic fieldBW oriented
along thez axis, so that the Hamiltonian~1! for the impurity
S states may be written in cylindrical coordinates2 as

Ĥ5Ĥ02
2

r
, ~2a!

Ĥ052¹21Ṽ~rW !, ~2b!

Ṽ~rW !5V~rW !1
1

4
g2r2. ~2c!

Here, we have introduced the effective Bohr radiusa0*
5«\/m* e2 as the unit of length, the effective RydbergRy*
11531
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5e2/2a0* « as the energy unit, andg5e\B/2m* cRy* as the
dimensionless unit of the magnetic-field strength. T
ground-state wave functionf 0(x,y,z), for a free electron
confined in the heterostructure corresponding to the low
energyE0 can be found as the solution of the eigenval
problem

Ĥ0f 0~x,y,z!5E0f 0~x,y,z!. ~3!

If the heterostructure has a particular symmetry~for ex-
ample, axial for a QW and QWW or spherical for a QD! then
the Hamiltonian Ĥ0 becomes separable and the thre
dimensional problem~3! can be solved exactly. On the con
trary, the Schro¨dinger equation for the donor impurit
~bound electron!

ĤC~rW !5EC~rW !, ~4!

does not completely separate if the symmetry of the t
terms on the right side of Eq.~2a! does not coincide. It is,
therefore, of interest to eliminate the one-particle potentia
the Schro¨dinger equation~4! by using the following substi-
tution:

C~rW !5 f 0~x,y,z!F~rW !, ~5!

whereF(rW) is a function that describes the properties of t
intrinsic electron bound state. Substituting Eqs.~2! and~5! in
Eq. ~4! and taking into account the relation~3! one obtains
an equation forF(rW),

ĤrenF~rW !5~E2E0!F~rW !, ~6a!

Ĥren52
1

P0~rW !
¹W @P0~rW !¹W #2

2

r
, ~6b!

P0~rW !5 f 0
2~rW !, ~6c!

where the renormalized HamiltonianĤren does not include
explicitly both the confinement potential and the extern
field. In general, Eq.~6a! corresponds to a central force pro
lem for hydrogen-like atom in an anisotropic and nonhom
geneous space withP0(rW) being the charge density in th
heterostructure that defines the dimension of the effec
space. It can clearly be seen that the renormalized Sc¨-
dinger equation~6! can be written as a variational problem
the following functional:

F@F#5E H @¹W F~rW !#22S 2

r
2EbDF2~rW !J f 0

2~rW !drW

→min, Eb5E02E. ~7!

Let us consider as an example a QW where the ground-s
wave functionf 0(x,y,z) for a free electron depends only o
coordinatez:
7-2
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F@F#5E
2`

`

f 0
2~z!dzE

2`

`

dxE
2`

` F S ]F

]x D 2

1S ]F

]y D 2

1S ]F

]z D 2

2S 2

r
2EbDF2Gdy→min. ~7a!

It is seen that for small electron-donor separations, (r→0)
the Jacobian,f 0

2(z) in this expresion can be considered as
constant, and the expression~7a! coincides with the func-
tional for the three-dimensional hydrogen-like atom. On
other hand, asr→` the Jacobian can be approximated by
d funcion, f 0

2(z)'d(z), and the expression~7a! transforms
into the functional for a two-dimensional hydrogen-lik
atom. Since the dimensionality of the charge density va
from 3 in the center of the QW to 2 in the barriers it can
defined only locally. To derive a formula for locally define
fractional dimension one should analyze in more detail
structure of the Jacobian factor in the functional~7! which
controls the dimensionality of the effective space.

B. Radial part of the Jacobian volume element

It should be noted thatĤren is separable only if the sym
metry of the two terms on the right-hand side of Eq.~6b!
coincides, i.e., for heterostructures with a spherical sym
try ~e.g., a spherical QD in the zero-magnetic-field case!. In
the other cases~such as QW’s, QWW’s, and SL’s!, the
Hamiltonian Ĥren is nonseparable and the exact equat
~6a! does not provide any advantage in comparison with
initial eigenvalue problem~4!. Hence, to simplify the prob-
lem, we have to approximate the first term in the Ham
tonian~6b! by one with spherical symmetry. In this way, w
propose to replace the exact wave function~5! by the follow-
ing approximation:

C~rW !5 f 0~rW !F̄~r !, ~8!

where the unknown isotropic functionF̄(r ) should be inter-
preted as the mean value of the exact functionF̄(rW) aver-
aged over all the directions. The representation of the t
function in the form~8! is valid only for donorSstates and in
what follows we will be considering only the donor stat
which correspond to this symmetry.

This approximation permits us to simplify the expressi
~7! which after integrating over all angles can be rewritten

F@F̄#5E
0

`

J~r !H FdF̄~r !

dr
G2

2
2

r
F̄2~r !1EbF̄2~r !J dr

→min,
dF@F̄#

dF̄
50, ~9!

whered/dF̄ denotes the functional derivative andJ(r ) is the
radial part of the Jacobian volume element related to
radial charge probability distributionP(r ) by means of the
formula

J~r !5r 2P~r !, ~9a!
11531
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P~r !5E
0

2p

dwE
0

p

sinudu f 0
2

3~r sinu cosw,r sinu sinw,r cosu!. ~9b!

Here, the valuer 2P(r )dr is the probability of finding an
unbound electron within a spherical shell of radiir and r
1dr.

Calculating the functional derivative, one can obtain t
Euler-Lagrange equation for the envelope functionF̄(r ) that
minimizes the functional~9!:

Ĥ̄ redF̄~r !52EbF̄~r !, ~10a!

Ĥ̄ red52
1

J~r !

d

dr FJ~r !
d

drG2
2

r
, ~10b!

Eb5E02E. ~10c!

Of course, the solution of Eq.~10! defines an approximate
value of the donor binding energyEb and a wave function
that is not exact, butit is the best among all the function
presented in the form~8!. The reduced wave equation~10!
describes a hydrogen-like atom in an effective space wit
variable dimension. Such an interpretation arises from
property of orthogonality of the eigenfunctionsF̄n(r ) of the
self-conjugate equation~10! for different S states:

E
0

`

F̄n~r !F̄m~r !J~r !dr5E F̄n~r !F̄m~r !dV5dn,m .

~11!

It should be noted that the relation~11! together with the
definition of the radial part of the Jacobian volume elem
~9a! provides automatically the orthogonality of all tria
functionsCn(rW)5 f 0(rW)F̄n(r ) corresponding to different do
nor S states. In Eq.~11!, dV5J(r )dr represents the volume
element in the functional effective space andJ(r ) can be
considered as the frontier-surface area of an infinitesi
spherical shell of radiir and r 1dr in this space. For ex-
ample, for one-, two-, and three-dimensional homogene
spaces, the functionJ(r ) will be equal to 1, 2pr , and 4pr 2,
respectively. If the dependence ofJ(r ) on r were a power
law, e.g.,J(r )5CrD21, then the Eq.~10! would coincide
with the Schro¨dinger equation forSstates of a hydrogen-like
atom in an effective isotropic and homogeneo
D-dimensional space,D being an integer or fractiona
number.13 In general, the functionJ(r ) has no power-law
dependence on the ion-electron separationr due to the factor
P(r ) and Eq.~10! could be considered as a wave equati
for hydrogen-like atom in an isotropic and nonhomogene
space with a variable dimension that depends on the
electron distancer. We will call this dimension fractal and i
can be calculated once the radial part of the Jacobian vol
elementJ(r ) is found.

The general expression~9! for J(r ) can be simplified for
heterostructures with any type of symmetry. For heterostr
tures with a spherical symmetry, e.g., a QD with confini
potentialṼ(rW)[V(r ) in the absence of magnetic field,
7-3
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J~r !54pr 2f 0
2~r !, ~12a!

where the wave functionf 0(r ) is the solution of the one
dimensional Schro¨dinger equation

F2
1

r 2

d

dr
r 2

d

dr
1V~r !G f 0~r !5E0f 0~r ! ~12b!

corresponding to the lowest-energy levelE0. For hetero-
structures with a cylindrical symmetry such as a QW, dou
QW, multiple QW, SL, cylindrical QWW, coaxial QWW
quantum disk, or a quantum ring,

J~r !52pr E
2r

r

f 0
2~Ar 22z2,z!dz, ~13a!

where f 0(r,z) is the solution of the two-dimensional Schr¨-
dinger equation

F2
1

r

]

]r
r

]

]r
2

]2

]z2
1V~r,z!1

g2r2

4 G f 0~r,z!5E0f 0~r,z!,

~13b!

for the lowest-energy levelE0. SinceV(r,z)[V(z) in het-
erostructures with the growth axis along thez direction~such
as a QW, SL, and so on! and V(r,z)[V(r) in cylindrical
QWW’s, Eq. ~13b! becomes separable and splits into a p
of the independent one-dimensional equations, whose s
tions can be found numerically.

For a model with square-well potential, one can calcul
J(r ) directly by using the relations~12a! and ~13a! and the
well-known analytical expressions for the wave functions
an unbound electron in a QW,2 cylindrical QWW,3 and a
spherical QD.20 Figure 1 shows the typical behavior of th
radial part of the Jacobian volume elementJ(r ) obtained for
these three models of confinement. For small values of
electron-ion separationr, the three curves behave as pa
bolic (J;r 2). As electron-ion distance increases, the cur
transform into a linear function (J;r ) for a QW, into a

FIG. 1. The radial part of the Jacobian volume element in d
ferent GaAs/Ga0.7Al0.3As heterostructures, as a function of th
electron-ion separation. In the inset the fractal dimensionD* as a
function of the ion-electron separation for on-center donors
QW’s, QWW’s, and QD’s is plotted for different sizes of the he
erostructures.
11531
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constant (J;r 0) for QWW, and in a decreasing exponenti
function (J;0) for a QD. Such behavior ofJ(r ) is typical of
an effective space with a variable dimension which falls ar
increases.

C. Fractal dimension

According to the theory of Mandelbrot19 for exact fractals
that have the property of self-similarity, the dimensionD is
determined uniquely by a power-law dependence of its m
M upon its sizeL asM5CLD. On the contrary, for non-self
similar fractals there are an infinite number of ways to m
sure the ‘‘size’’ and therefore there are different definitio
and each may give a somewhat different answer. The fra
dimension is often defined by using a set of measuring bo
in the form of geometric figures whose shapes reproduce
contour of the object and whose sizes gradually appro
zero. It is reasonable to have the shape of the boxes to
respond to the basic physics of the problem and be congr
with the symmetry of the analyzed system. If we consider
charge density within a heterostructure as a fractal obj
then due to the symmetry of the donorS states, the boxes
natural set will be spheres with the center in the donor lo
tion. Therefore, we can postulate that the dimensionD of
this object is determined by the dependence of the cha
Q enclosed within the sphere upon its radiusR of this box
as Q5CRD. In this relation, the parametersC and D are
constants only for exact fractals otherwise they vary slow
with R.

Let us consider a chargedQ within a thin spherical shell
with the inner and outer radiir andr 1dr. For a free electron
in the heterostructure, this charge is related to the densit
probability P(r ), and the radial part of the Jacobian volum
element J(r ), defined by the formulas;dQ5r 2P(r )dr
5J(r )dr. If we assume that the charge density can be c
sidered as a spherical fractal with a finite dimensionD* (r ),
then the chargedQ enclosed within a spherical shell and i
radiusr should be related by means of the quasi-power-l
dependencedQ5C(r )r D* (r )21dr with the functionsC(r )
andD* (r ) varying more slowly than any power function.
one define the fractal dimension as

D* ~r !511r
d ln J~r !

dr
531r

d ln P~r !

dr
, ~14a!

with the additional condition

d ln C~r !

dr
1 ln r

dD* ~r !

dr
50, ~14b!

then both expressions fordQ coincide

J~r !5C~r !r D* (r )21. ~14c!

Note that this definition also includes the case of ex
fractals for which the functionsC(r ) and D* (r ) are con-
stant. In this way, the Jacobian factor in the Laplacian of
renormalized wave Eq.~10! is related to the fractal dimen
sion of the free-electron charge density in the heterostruc
by means of the relations~14c! and~14a!, therefore, Eq.~10!

-

n
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can be interpreted as the wave equation for theS states of a
hydrogen-like atom in an effective space with fractal dime
sion ~14a!. This is the reason why the procedure of finding
donor binding energy by solving Eqs.~9! and~10! is referred
as thefractal-dimension method.

The inset in Fig. 1 shows the fractal dimensionD* (r )
calculated as a function of the ion-electron separation
on-center donors in GaAs/Ga0.7Al0.3As QW’s, QWW’s, and
QD’s ~barrier height 40Ry* ) with square-well potential. In

this model of confinement, the explicit expressions forf 0(rW)
in QW, QWW, and QD are well known and therefore, o
can calculateD* (r ) directly by using the relations~9! and
~14!. It can be seen from Fig. 1 that the fractal dimens
D* (r ) falls from 3 for small electron-ion distances to 2 f
a QW ~dotted line!, to 1 for a QWW~dashed line!, and to 0
for a QD ~solid line! as the distance ion-electron becom
larger and the electron is placed in the barrier of the hete
structure. Such dependence of the dimension on the elec
ion separation is typical for quasi-zero, one-, and t
-dimensional heterostructures, respectively.

Within our formalism, it is also possible to introduce th
average value of the fractional dimensionD̄ of the effective
space. There are different ways to defineD̄ and one of them
is proposed in the papers.17,18We propose to define theD̄ of
the donorSstates as the mean value of the fractal dimens
given by Eq.~14a! which is calculated by using the radia
probability distribution corresponding to the states for
hydrogen-like atom in aD-dimensional space.

D̄5

E
0

`

D* ~r !Rn
2@r ,D* ~r !#J~r !dr

E
0

`

Rn
2@r ,D* ~r !#J~r !dr

. ~15!

Here,Rn(r ,D) is the radial part of the hydrogen-like ato
wave function inD-dimensional space for thens state (n
51,2, . . . ) which is given by the expression13

Rn~r ,D !5exp~2kr !M ~12n,D21,2kr !,

k5
1

n1
~D23!

2

, ~16!

with M (a,b,z) being the confluent hypergeometric functio
Once the valueD̄ is found thens-state donor binding energ
Eb and the corresponding wave functionCn(rW) can be ob-
tained in a straightforward way through13

Eb5
4

Fn1
D̄23

2
G2 , Cn~rW !5 f 0~rW !Rn~r ,D̄ !. ~17!

We have performed the calculations ofD̄ for a QW, a
cylindrical QWW, and a spherical QD with square-well co
fining potentials as a function of the heterostructures size
using relations~9!, ~14!, and~15!. In all the cases, we hav
11531
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results similar to those obtained previously in Refs. 17,18
spite of the fact that our calculation method is absolut
different. Therefore, it is clear that different definitions of th
average fractional dimension provide similar results and
improvement of this approximation can be achieved only
taking into account the fact that the dimension is not
same in all parts of the heterostructure.

III. RESULTS AND DISCUSSION

A. Comparison of calculation methods

As it was pointed out above, we have two different alg
rithms for calculating the binding energy of the donorS
states in semiconductor heterostructures. The first of th
consists of solving the one-dimensional wave equation~10!
that takes into account the spatial dependence of the fra
dimension. In our calculations, the eigenvalue problem~10!
is solved by using the numerical procedure of trigonome
sweep.10 We refer this algorithm as the fractal-dimensio
method. The second algorithm referred as the fraction
dimension approach, is based on the approximated form
~15!–~17! in which the fractal dimension is defined only o
average. In order to compare the accuracy of these two m
ods, we have calculated the ground-state binding energie
a donor in a QW, QWW, and a QD with the square-w
potential. Figure 2 displays the binding energy of a donor
a GaAs-~Ga,Al!As QW as a function of the well width and
for different magnetic-field strengths. Our results are co
pared with the corresponding calculations by Panget al.11

~Monte Carlo method!, and Fraizzoli et al.21 ~variational
method! and some of them are also listed in Table I.

It is seen from Fig. 2 and Table I that the agreeme
between our results obtained by using the fractal-dimens
approach„from Eq. ~10!, @solid line and column~b!#… and
those of the Monte Carlo method@open circles and column
~c!# is excellent if we take into account the relative simplici
of our procedure and the fact that the error bar for the Mo
Carlo method is 0.02Ry* . Moreover, this agreement notab

FIG. 2. D0 Binding energy in a GaAs/Ga0.7Al0.3As QW with
square-well potential, as a function of the well width for tw
strengths of the magnetic field (g50 andg53) obtained by using
the fractal-dimension~solid lines! and fractional-dimension~dotted
lines! methods.
7-5
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improves in the strong magnetic fields. Similarly, an exc
lent agreement between our results~solid line! and those of
the previous variational calculations21 ~open triangles! is ob-
served in Fig. 2 for the case of zero-magnetic field. In c
trast, the agreement between our results obtained by u
the fractional-dimension approach@dotted lines and column
~a!# and Monte Carlo calculations is poor and even s
worse in the strong magnetic fields@cf. columns~a! and ~c!
in Table I#. This result underlines again the fact that t
fractional-dimension method breaks down for strong m
netic fields~fact emphasized also in Refs. 17 and 18!.

The ground-state binding energiesEb , of a donor located
at the axis of a cylindrical GaAs/Ga0.6Al0.4As QWW in the
presence of a uniform magnetic field are shown in Fig.
Our results obtained by using fractal-dimension appro
~solid lines! are in an excellent agreement with the previo
variational calculations3 ~open diamond!. The dotted lines in
Fig. 3 show the donor binding energies calculated by us
the fractional-dimension approach, which are considera
lower than the corresponding results obtained by the va
tional method~Ref. 3!. It should be noted that in a QWW th
confining potential@V(rW)5V(r)# and the termg2r2/4 that
describes the external magnetic field in Hamiltonian~2c!
have the same type of symmetry and therefore they prod
a similar effect. As it is seen from Fig. 3, for small values
the QWW radius (R/a0* ,1), the binding energy is relatively

FIG. 3. Binding energy of a donor in a GaAs/Ga0.6Al0.4As
QWW with square-well potential, as a function of the wire radiu
for different magnetic-field strengths obtained by using the frac
dimension ~solid lines! and fractional-dimension~dotted lines!
methods.

TABLE I. Binding energy of a shallow on-center donor in
GaAs/Ga0.75Al0.25As QW, present results obtained by using~a!
fractional-dimension,~b! fractal-dimension, and~c! Monte Carlo
methods~Ref. 11!.

W/a0* Eb /Ry* (g50) Eb /Ry* (g53) Eb /Ry* (g53)
~a! ~b! ~c! ~a! ~b! ~c! ~a! ~b! ~c!

1.0 1.87 2.04 2.09 2.35 2.88 2.92 3.04 3.88 3.
2.0 1.53 1.67 1.74 1.99 2.47 2.52 2.63 3.35 3.
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insensitive to the magnetic fields used here since the diam
netic energy of the electron strongly confined in the rad
direction tends to zero. In this range of radii, the effect of t
geometrical or spatial localization overcomes the effect
the magnetic field. As the QWW radius increases and s
passes the cyclotron radius value, the effect of the magn
field becomes considerable. The increase of the binding
ergy in a strong magnetic field observed for large values
the QWW radius can be ascribed to the electron localiza
related to the cyclotron radius reducing. For all the case
Fig. 3, Eb increases as the wire radius decreases up t
critical radius Rc'0.24a0* when the ground-state level i
pushed up and the electronic wave-function leakage into
barrier region becomes significant. The obtained results in
cate that the fractal-dimension method provides a wave fu
tion flexible enough to transform its symmetry from sphe
cal to cylindrical as the wire radius decreases and to cha
its asymptotic behavior from exponential to Gaussian in
presence of magnetic field.

In Fig. 4 we plot the donor binding energy as a function
the radius of a GaAs/Ga0.7Al0.3As spherical QD. A total co-
incidence can be observed between the present calcula
~solid line! and the results obtained previously by Zhu22

~solid diamond!, who found the exact solutions of dono
states in a spherical QD by using a series-expansion met
The dotted line in Fig. 4 presents the calculation results
using the fractional-dimension approach. Although the so
and dotted lines have a similar behavior the energies
tained by means of this simple method are 25% lower th
the corresponding exact values. This emphasizes once a
the fact that the fractional-dimension approach in a stro
confining limit breaks down.

It can be seen from Fig. 4 that, as the QD radius decre
to critical valueRc'0.33a0* , the electron wave function be
comes compressed in the narrowing well and the donor b
ing energy climbs up due to the decreasing of the aver
distance between the electron and the ion. The binding
ergy Eb reaches a maximum of 8.13Ry* as it was already
established in Ref. 22. As the QD radius further decreases

,
l-

FIG. 4. Binding energy of a donor in a GaAs/Ga0.7Al0.3As
spherical QD with square-well potentials, as a function of the
radius obtained by using fractal-dimension~solid lines! and
fractional-dimension~dotted lines! methods.
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wave function’s three-dimensional character is restored
Eb begins to fall off sharply to 1Ry* .10

B. Quantum wire with different potential shapes

The fractal-dimension approach is a simple and effec
tool for calculating the ground-state binding energy of d
nors confined in semiconductor heterostructures with dif
ent potential shapes. Below we use our procedure to ana
the potential-shape effects on the binding energy of a sha
donor in a cylindrical QWW considering the models of on
step and double-step soft-edge-barrier potentials. To desc
the conduction-band discontinuity in the GaAs/Ga12xAl xAs
junction, we assume that in all the cases the displaceme
the band bottom is related to the distribution of the Al co
centration in the radial direction,c(r) by means of the inter-
polation formula3

Vr~r!50.6@1.36c~r!10.22c2~r!# eV, ~18!

whereasc(r) in the junction of the cylindrical QWW of
radiusR varies smoothly according to the relation

c~r!5x
12exp~2r/j!

11exp@2~r2R!/j#
[F~r,R,x,j!. ~19!

The parameterj determines the thickness of the transiti
region in the heterostructure junction where the Al conc
tration increases smoothly from 0, at the axis of the w
(r→0) up to x, in the barrier as (r2R)/j@1, while the
confinement potential increases from 0 up toV0, respec-
tively @V

r
(r)5V0 as c(r)5x]. Different potential-barrier

shapes10 from almost rectangular (j/R→0) up to very
smooth one (j/R→1) can be obtained by varying the dime
sionless ratioj/R. The results obtained for a double-ste
potential corresponding to a coaxial structure of cylindri
GaAs/Ga0.8Al0.2As/Ga0.55Al0.45As QWW’s are presented in
Fig. 5, where we plot the donor binding energyEb , as a
function of the outer radiusR for several values of the wire

FIG. 5. Binding energy of a donor in a
GaAs/Ga0.8Al0.2As/Ga0.55Al0.45 As coaxial QWW~double step po-
tential!, as a function of the outer radiusR, and for different wire
lengths.
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lengthL. We have simulated the distribution of the Al con
centration in the radial direction for this heterostructure
using the following function:

c~r!5F~r,R1,0.2,0.01!1F~r,R,0.25,0.01!. ~20!

We assume that the QWW radii, innerR1 and outerR are
related asR150.2R. According to the relations~19! and
~20!, the Al concentrationc(r) has two almost rectangula
jumps from 0 up to 0.2 in the first junction (r5R1) and
from 0.2 up to 0.45 in the second junction (r5R). The
confinement potentialVr(r) in these junctions jumps from 0
up toV1 and fromV1 up toV2, respectively (V1 andV2 are
the values ofVr in Eq. ~18! corresponding to the Al concen
trations 0.2 and 0.45, respectively!. From Fig. 5 the exis-
tence of two peaks in theEb curves is evident. The main in
each curve is associated with the wave-function leakage
the exterior barrier region, whereas the secondary peak
be ascribed to electronic wave-function leakage into the
terior barrier region. A considerable increase of the bind
energy is found as the wire length decreases due to tran
mation of the quasi-one-dimensional system~QWW! into
quasi-zero-dimensional one~cylindrical QD!.

The calculation results of the ground-state binding ene
of a donor in a cylindrical GaAs/Ga0.6Al0.4As QWW are
shown in Fig. 6 for three different thickness of the transiti
region in the heterostructure junction:j/R50.01,0.1,0.2 cor-
responding to almost rectangular, smooth, and very smo
edge-barrier potentials, respectively. The curves crossove
the region 0.4,R/a0* ,0.6 is evident. It is apparent that fo
intermediate and large values of the QWW radius (R/a0*
.0.6) the electronic orbital confinement is small and t
energy level is situated close to the bottom of the conduc
band. The electronic orbital confinement in this region
the smooth potential is stronger than for the rectangular
and the potential shape corresponding toj/R50.2 gives the
largest binding energy followed byj/R50.1, whereas the
corresponding toj/R50.01 present the smallest confineme
and binding energy. As the QWW radius decreases the

FIG. 6. Binding energy of a donor in a GaAs/Ga0.6Al0.4 cylin-
drical QWW with soft-barrier potentials, as a function of the wi
radius, and for different thickness of the transition region in t
junction.
7-7
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ergy level rises to the upper part of the conduction ba
where the electronic orbital confinement for the rectangu
potential is the strongest. Therefore, asR is small (R/a0*
,0.4) the potential corresponding toj/R50.01 presents the
largest donor binding energy followed byj/R50.1, while
the corresponding toj/R50.2 present the smallest bindin
energy.

IV. SUMMARY AND CONCLUSIONS

To sum up, we have developed a simple method to st
the electronicS states of shallow donors confined in sem
conductor heterostructures where the problem is reduce
the wave equation for a hydrogen-like atom in an effect
space with a non-power-law dependence of the radial pa
the Jacobian volume element on the ion-electron separa
By using the relation between the radial part of the Jacob
volume element and the dimension of the space simila
one proposed by Mandelbrot for fractal geometric objec
we find that the donorSstates fractional dimension is relate
to the charge-density distribution for the free-electron grou
state within the heterostructure and decreases from 3
small electron-ion distances to 2 in QW’s, to 1 in QWW
and to 0 in QD’s barriers.

All information about any anisotropic perturbation of th
system~confinement due to the heterostructure or the m
netic field! is contained in the radial dependence of the Ja
bian volume element for which we have found an analyti
expression. One of the attractive features of the propo
method is its universality which is related to the simplicity
its application for different models of confinement in th
framework of the same numerical procedure10 ~trigonometric
sweep method!. It permits to avoid tedious calculations t
obtain, with high accuracy, the donor binding energy in a
heterostructure once the probability density of the free e
tron is known.
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We have calculated the ground-state binding energies
a donor confined in a QW, cylindrical QWW, and a spheric
QD with a square-well potential. Our results are in a go
agreement with those obtained previously by using more
orous methods such as the Monte Carlo11 and the series
expansion.7,22 Moreover, we apply the fractal-dimensio
method to the problems of donors in coaxial QWW’s a
cylindrical GaAs-~Ga,Al!As QWW’s with a smooth variation
of the Al concentration within the transition region of th
heterostructure junction. Similarly, the problem can
treated in more complex heterostructures such as T- shap23

and V- shaped24 quantum wires.
Finally, we can argue that it is possible to reduce a

problem for a few-particle system confined in semiconduc
heterostructures to a similar one in an isotropic space wi
variable fractal dimension by using the variational princip
In this way, our method might be applied to study propert
of any carriers bounded states~neutral and negatively
charged donors, acceptors, exciton, biexcitons, trions, an
on! in different types of heterostructures such as SL’s, QW
QWW’s, QD’s, rings, etc. in the presence of any extern
perturbation, and it may even exhibit practical advanta
like in the cases considered in this work.
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