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Conductance of mesoscopic systems with magnetic impurities
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We investigate the combined effects of magnetic impurities and applied magnetic field on the interference
contribution to the conductance of disordered metals. We show that in a metal with weak spin-orbit interaction,
the polarization of impurity spins reduces the rate of electron phase relaxation, thus enhancing the weak-
localization correction to conductivity. Magnetic field also suppresses thermal fluctuations of magnetic impu-
rities, leading to a recovery of the conductance fluctuations. This recovery occurs regardless of the strength of
the spin-orbit interaction. We calculate the magnitudes of the weak-localization correction and of the mesos-
copic conductance fluctuations at an arbitrary level of the spin polarization induced by a magnetic field. Our
analytical results for theli/e” Aharonov-Bohm conductance oscillations in metal rings can be used to extract
the spin and gyromagnetic factor of magnetic impurities from existing experimental data.
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[. INTRODUCTION was carefully measured on Cu wire rin§sThe goal of that
measurement was to corroborate the existence of localized

Conductance of disordered metals is sensitive to the apspins, conjectured on the basis of measurements of the elec-
plied magnetic field. At weak magnetic field the conductivity tron energy relaxation rate in Cu wirés.
of a bulk metal has a sharp feature due to the weak localiza- Theory of conductance fluctuations and WL correction to
tion (WL).! Similarly, the conductance of mesoscopic metalsthe conductivity at partial spin polarization of magnetic im-
fluctuates as the magnetic field is changiridBoth the con-  purities has not been developed yet. Only the limits of no
ductance fluctuations and the WL correction to the conducspin polarization aB=0 and of strong polarization &
tivity are quantum-mechanical phenomena originating from®> T/gugS were consideréd®~'® (here B is the magnetic
the interference of quantum states. As any other interferendéeld, Sis the impurity spinT is the system temperaturgjs
phenomena, they may be suppressed by interactiofe impurity gyromagnetic factor, andg is the Bohr mag-
processe$. neton.

Localized spins affect the electron transport in metals. In this paper we concentrate on the interference contribu-
Various properties of electron kinetics are sensitive to differtion to the linear conductance of mesoscopic systems in the
ent aspects of the localized spin dynamics. The energy expresence of partially polarized magnetic impurities. Particu-
change between electrons in the process of scattering off larly, we calculate the weak-localization correction to the
magnetic impurity is made possible by the quantum fluctuaconductivity and the amplitude of the mesoscopic conduc-
tions of the impurity spin: its virtual flip in the course of tance fluctuations.
scattering facilitates the energy transfer between the two
electrons’. On the other hand, no spin dynamics of impurities
is needed for the suppression of the weak-localization cor- Il. MAIN RESULTS
rection to conductivity; interaction of electron spins with

randomly oriented magnetic moments already leads to that It IS _weI_I known that scattering of el_ect_rons off magnetic
suppressiof. Impurities in the absence of a magnetic field suppresses the

Mesoscopic conductance fluctuations are not suppressé'aterference correction to the conductivity of a wiré:

by static magnetic moments. However, even a relatively slow

relaxation of individual magnetic moments, such as Korringa 5

relaxation’ leads to the time-averaging of the random poten- Ag=— e JD 3 _ 1 1)

tial “seen” by conduction electrons in the course of measure- 27h V213ry 2z

ment, and the mesoscopic fluctuations of the dc conductance

get averaged oft® The sensitivity of conductance fluctua-

tions to the time evolution of the system of localized mag-HereD is the diffusion constant for electrons in the wire and

netic moment¥ was used extensively to probe the spin-glassl/z is the electron scattering rate off magnetic impurities. To

freezing in metafs-*2and semiconductors. the lowest order in the exchange constadntalculation,
An applied magnetic field may be used to control thel/re=2mrnJ?S(S+1), whereng is the concentration of

statistical properties and dynamics of localized magnetic momagnetic impuritiesy is the electron density of states at the

ments. It was noticéd that in a strong magnetic field the Fermi level per spin degree of freedom, & the magni-

amplitude of conductance fluctuations and/&” Aharonov-  tude of impurity spins. Taking into account the Kondo renor-

Bohm (AB) oscillations increases, apparently because thenalization of the exchange constant, at temperatures well

spin fluctuations are quench&dRecently the dependence of above the Kondo temperatufg , this rate can be cast in the

the amplitude of h/e” AB oscillations on magnetic field form
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1 8mngS(S+1) gupB
Ts v |I’]2T/TK gupBs«

It is clear from Eq/(2) that the phase relaxation rate increases 5
GHB Do

upon reduction of the temperature towartls. This rate
reaches maximum &k~ Ty, and decreases if the tempera-
ture is further reduced. The specific form of functinfT) at
low temperatures depends on the sBinf local moments. Tx
The screening of the local spiB=1/2 is complete af =0
and atT<Ty the phase relaxation rate can be found from the
Nozieres’ Fermi liquid theory,

0 T T, T
2
1 nS(l) T<T.. (3a) FIG. 1. Different regimes of the temperatufeand magnetic
Kl K field B dependence of the mesoscopic conductance fluctuations and
L ) _ the WL correction to conductivity. Below the Kondo temperature,
If S=1, then screening is incomplete, and the logarithmicr<T,  and at weak magnetic fielduzB=T«, magnetic impuri-

renormalization theory can be employed for the evaluation ofies are screened and the electron phase relaxation rate is given by

7 at low temperatures) Egs.(3). The impurity magnetic moments acquire a significant po-
larization at fields aroun®=T/gugS (straight solid ling, which
1 8wng S2—1/4 results in strong dependence of the electron phase relaxation rate on
= T<Tk. (3b) the applied magnetic field. The exponential behavior of the phase

2 1
Ts Vo InT /T relaxation rate oB/T is replaced by a weaker power-law function,

see Eq(7), at a crossover fiel8, defined by Eq(8) and depicted
from the approximate expression, used sometimes in th € solid bold curve. Strong variation of the WL correction is
possible only in the absence of spin-orbit interaction and at suffi-

; : 21
an?lySA.S of ex.perlmenl?é’.l h It for WL ciently weak orbital effect of the magnetic field. This last condition
n this section, we only present the result for COIMEC-is satisfied below the dashed curg(T) defined by Eq.(34),

tio_n Ao to the co_nductiv_ity of Q_thin wire in the absence o_f which intersects the lingusSB=T at temperaturd, .
spin-orbit scattering. If, in addition, the density of magnetic

impurities is small, then starting from rather weak fields theW
conditiongugB7s>1 is satisfied, and we find

Note that the low-temperature asymptotes, E&S, differ

L correction, however, is associated with the spin polariza-

tion. This variation occurs &~ T/gug, and is described by

Egs.(4) and(5).

_ e’ f de/T VD 4) At strong magnetic fieldB=T/gug, the spin-flip rate of

Amh ) cose/2T JF(e)+ﬂDABZ/<I)§' thermal electrons ~T) becomes exponentially small;

cexp(—gugB/T)/[(S+1)7g]. In this case higher-order

HereA s the wire cross-section ared,is a numerical factor, terms in the exchange interaction must be retained to calcu-

and®,=hc/2e. FunctionI'(g) represents the spin-flip rate late the phase relaxation rate. We find the following result for

Ao=

in the presence of magnetic fieki I'(e):
(S +(S,)tant(e +gugB)/2T| 1 1 v mT?+ &2
I'(e)=|1~ Sl ) I(e)=5=— 5 @)
S(s+1) s 2 ngr? [gueB(S+1)]

Here(- - -) stands for the thermodynamic average over th

states of an isolated impurity spin, see Eth). The Kondo- °The crossover between the rates given by Efsand (7)

renormalized rate % in Eq. (5) is given by Eq.(2) at weak occurs at
magnetic fieldB<T/ ,and b
? Jte, ANCDY B, (T)~(T/gue)In(v/Snry. ®
iz 2mns  S(S+1) ©6) The relaxation rate at high fields, E,), may still be large
Ts v In?[gueB/Tk] enough to compete with the conventional mechantéha$
phase relaxation caused by the electron-electron and
at strong magnetic fiel>maxXT,Tx}/gug- electron-phonon interactions.

In the domain of relatively weak magnetic fields, If one disregards the orbital effect of magnetic fiélery
ligupTs<B<T/gug, the spins are not polarized, however, thin wire), then the WL correction to the conductivity, Eq.
their precession already affects the value of WL correction(4), is a function of the ratioB/T, up to slowly varying
Equation(4), valid in this domain, yieldd\ o differing from  logarithmic factors InfugB/Tx) and In(T/Ty), see Eqs(2)
the full zero-field value(1) by a factor 2/(3-\1/3)~0.83.  and(6).

We discuss the detailed behavior of the WL correction in the Different regimes for the WL are schematically repre-
field regionB=1/gug7sin Sec. IV. The main variation of the sented in Fig. 1. Substantial variation&é with B occurs at
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B=T/gugS. The curveB=B, (T) is shown in Fig. 1 by the Where
bold solid line. ao . a

The effect of magnetic-field-induced polarization of local- P(e)=|1- (S +(Sytani(e +gugB)/2T| 1 (11)
ized spins on the WL correction to the conductivity is sig- S(S+1) Ts
nificant only if two quite stringent conditions are met. First

. P . “"is the phase relaxation rate to the second order in the ex-
the orbital effect of the magnetic field on WL (Ref. 8 is change interactiod, and« is a dimensionless geometry de-

needed to be small in the range of fieBsT/gug, where pendent factor. As the magnetic field increasEég) de-

the spin polarization is significant. The orbital effect domi'creases exponentially and at fidd , given by Eq.(8), the
. - 2 2 — 1 . L

nates over the spin scattering, AB/®o=I'(e=T), See  pishar order term in the exchange interaction, ER), pre-

Eq. (4). This condition defines the upper boufa dashed i

line in Fig. 1) for the domain of fieldsB in which the spin Equation(10) is valid atT'(s=T)<T. This condition is

polarization noticeably affects the WL correction. In general,avs satisfied at a sufficiently strong magnetic field, since
to avoid the undesirable orbital effect, measurements are tf’(s:T)—>O asB increases and the impurity spins become

be done gn tuin wir_es aL_Iow temp_erature. b Hicientl almost polarized, see Eqg&l) and(11). Here again we dis-

Secon_ » the spin-orbit scattering must be suificient yregarded other mechanisms of phase relaxation, such as the
weak. This condition limits the range of host conductors t0,|actron-electron interacticr??
materials with sufficiently low atomic numbetdn heavier We emphasize that qui) contains the averaggs,)?
materials, the spin-orbit interaction suppresses the triplet Paff\stead of the term{S2) in Eq. (5). The two equations are
qf the WL correction to the qonductlwty, represented by thedif'ferent because of tﬁe nature of the electron dynamics pro-
first term in Eqg.(1). Polarization of local moments does not

eliminate the randomness of the effective magnetic field in—dUCing the WL correction to the conductivity and conduc-
; g ) ) gnetic ne tance fluctuations. The difference can be understood in the
duced by spin-orbit interaction, and the triplet contribution tof llowing way.

the WL remains suppressed. At the same time, the smglef) The weak-localization correction to the conductivity

par_t of the WL correctlor[the' second term .m.Ec(_‘L).]'re- griginates from the electron passage along the same trajec-
mains suppresse_d b_y scattering off magnetic impurities eve{bry twice. The time difference between the two passages
at their full polarization, see Sec. IV. :

. o . does not exceed the time of phase relaxatjdi(e~T)] !
The effect of spin polarization on the mesoscopic conduc: S .

; . . e .~in our case. In the derivation of E(p) we assumed this time
tance fluctuations is not subject to the two restrictions dls—bein shorter than the Korringa relaxation th see E
cussed above. In other words, the manifestation of the spin 9 g me q:

polarization in the conductance fluctuations and in thée® (18). Hence the instantaneous spin-spin correld@j en-

Aharonov-Bohm effect is much more robust than that in thes'> Eq.(5). The origin of the correlations in mesoscopic

WL. The presence of magnetic impurities suppresses th(éonductance is also due to passage of electrons along the

. game trajectory. Here, however, the relevant time difference

the impurity system. If the measurement time is significantl))s. _deflned by the time bet\_Neen the measurements, and sig-
longer than the characteristic time of the variation of impu-nIfICantIy _exc_eeds-T. _That 'S wf12y the conductance cqrr_ela—
rity spin configuration, then the conductance fluctuations ardon function IS described b‘/SZ>. corrt_alator,_ characterizing
averaged out. Quenching of the spin configuration by thé nonfluctuat[ng component of impurity SpIns. .
applied magnetic field decreases the effect of the conduc- Note that in the case of low concentration of magnetic

tance averaging and restores the fluctuations. In the limit ofPuritiesns=vT the IS()lrringa relaxation time may become
full polarization, magnetic impurities no longer affect the shorter thgr[l“(afvT)] - In thls_case E‘J(ll) rather than.
conductance fluctuatioris. Eq. (5) defines the phase relaxation rate in the WL correction

We concentrate on the amplitude of the Aharonov-Bohmi© the conductivity. The corresponding modification of the

“hc/e” conductance oscillations, since they are exponen-WL correction atB=0 was considered earlier in Ref. 18.

tially sensitive to the polarization of impurity spins.
Magnetic-field fluxd threading the ring of radiuR changes
electron wave functions and, consequently, the conductan
ge Of the ring. The conductance statistics is characterized b
the correlation function:

To summarize, we studied the effect of magnetic field on
the weak-localization correction and on the magnitude of
d@esoscopic conductance fluctuations in a conductor with

agnetic impurities. Our results are valid at an arbitrary
evel of the spin polarization. We demonstrate that the elec-
tron phase relaxation rate acquires energy dependence due to
o the Zeeman splitting. Such energy dependence is absent in
Ad e : : g
{9090+ 10))= E ICkcos< 27rk—), (9) thg Im_uts of no impurity poIanzgnonB-O, an.d strong po-
k=0 g larization, gugB>T. However, in the experimentally rel-
evant intermediate regimgugB~T, the effect of spin po-

. 2 . . .
where® = 7R"B is the magnetic flux through the ring. larization cannot be accounted for by assigning a single
We find the amplitude of oscillations of the conductancephase relaxation rate to all electron states.

correlation function:

I1l. MODEL
et D3R e—zquR\sTWﬁ
Ki=a , (10 We consider a metal with isotropic elastic scattering of
324% R*T? VI'(e)  costfe/2T electrons by impurities, characterized by the mean scattering
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rate of electrons k.= 2mvnU?. Herev is the electron den- Herer, andr, are the spin relaxation times for components
sity of states at the Fermi surface per spin stateis the  perpendicular and parallel to the applied magnetic field, re-
concentration of impurities, and is the Born amplitude of spectively. In a weak magnetic field the two spin relaxation

elastic scattering by an impurity. times coincide and are equal to the Korringa time
The scattering of conducting electrons off magnetic impu-
rities is described by the Hamiltonian 1 1 1 2= _,
—=—=—=—Jp)°T. (18
T T, T, 3

H,=J57, 12 _ L »
m (12 The applied magnetic field produces Zeeman splitting

of energy states of transport electrons. When estimating the
Zeeman energy, in metals with magnetic impurities, it is
ﬁﬁportant to notice that the sign of the exchange constént
fixed by the nature of the pair of host and impufitatoms.
1 Polarization of magnetic impurities results in the exchange
—=2mvnJ?S(S+1). (13)  contribution nJ(S,)/ug to the effective magnetic field
Ts which causes the Zeeman splitting of spin states of trans-
Heren, is the magnetic impurity concentration, aBds the ~ port electrons with the gyromagnetic factgy
total impurity spin. The exchange constdris renormalized
due to the Kondo effecti— 2/(v In T/Ty) at temperatured £2=QetteB—2n5)(S,). (19

exceeding bothTy and gugB. In stronger fields,B  £qation(19) shows that magnetic impurities may signifi-
>maxT,T}j/gug, temperatureT under the logarithm is  conty affect the Zeeman splitting of transport electron states.
replaced bygugB. o » _ In the case of antiferromagnetic exchandz;0, the de-
We study the effect of magnetic impurities on conductiv- pendence of, on B is not monotonic at low temperatures.
ity of metals. In order to evaluate the interference effects inyg \ve will see below, Eq(19) provides a mechanism for a
electron transport we will need instantaned(®) and(SZ),  nopmonotonic inB interference contribution to the metal
and time delayed spin-spin correlation functions: conductivity, similar to the Jaccarino-Peter mechanism of the
A reentrant superconductivify:?*
_ (SAS(t—1)) 14 We also consider the effect of spin-orbit scattering on the
XA7)= S(S+1) (143 conduction of electric current. For the specific case of heavy
element impurities of concentratiamy,, the corresponding

IS+, S (t=7)]4) term of the Hamiltonian has the fofmH,=UJpxp’']a,
xu(7)= S(S+1) (14D 2nd the spin-orbit scattering ragg,=2mvngJ2ps.

. . . . In this paper we assume that the shortest electron relax-
Here S,(t) and S.(t)=S,(t) =iS,(t) are parallel and per- ation time is due to elastic scattering and calculate the con-
pendicular spin components of a magnetic impufity, ], ductivity to the lowest order inreys and 7eys,, Using the
is an anticommutator, and standard diagrammatic technique for a disordered m&tal.
L Nevertheless, the results are valid even for conductors with

_ moc/T - Mo /T strong spin-orbit interaction in their host material, when the
(A= z m:E_S Amn€ S, 2= m;_s ews (19 spin-orbit scattering rate is comparable with elastic scattering
rate.
stands for the thermodynamic average in the presence of a
magnetic field B, producing the Zeeman splittingog
=gugB of the magnetic impurity stateg is the impurity
spin gyromagnetic factor.
For a metal with dilute noninteracting magnetic impuri-  The weak-localization correction to the conductivity is

whereS is the spin operator of a magnetic impurity, ahi
the exchange constant. The electron scattering rate by ma
netic impurities is

S S

IV. WEAK-LOCALIZATION CORRECTION TO THE
CONDUCTIVITY

ties, functionsy,(7) and x, (7) have the form given by the following expression:
(S2+H{(S) —(S)}o(7) e?D de
z( )= ) (16@ - - -
X7 S(5+1) so®)=- 7 | 4T cosfe/2T
{S(s+1)—(SH}u(7) diq &
X1(7)= S5+ 1) : (16b) xJ Wi; aiC(e,w=04), (20

The functionsf,(7) andf, (7) describe spin relaxation. In \yhere the Cooperoé(e,w,q) is
a dilute system of magnetic impurities, relaxation occurs due
to the Korringa mechanisfrand is exponential: 1

Ci(svwaq):

| —_— @1
fL(T):e_|T|/7L+IwST, fZ(T)Ze_lTllTZ. (17) iw+Dq +Fi(8)
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TABLE I. The Cooperon phase relaxation factors for variousfor the weak-localization correction to the conductivity in the
components corresponding to different spin configurations. Thewo-dimensional case. The existence of this term complicates
components withi=1,2,3 represent a spin states with total spin gnalysis of the magnetoresistance measurements.

one,Sc=1. These spin configurations form a triplet in an isotropic | the quasi-one-dimensional case the integral over mo-
system. Anisotropy due to the applied magnetic field splits the dementum gives

generacy. Thé=4 component is a singlet spin configuration with

zero total momentunS:=0. 1 D
FiBTI'y)=s\/z7"" 25
1 ) 2 VI'i+ yom 29

i |Sc.mc) Lits Q;

1 So=1me=+1 1-(S))/? 1 The denommgtor of Eq(25) contams_the sum of el_eqtron _

5 So—1me——1 1 (S +1 phase relaxation rates_due to scattering of_f magnetic impuri-

3 _’1 c 0 (]2 ‘1 ties and due to the orbital effect of the applied magnetic field
SC: ,mc: (S) Yorb- FOr @ magnetic field of strengand applied in direc-

4 Sc=0mc=0 4 -1 tion n, the orbital contribution to the phase relaxation rate is

: : . e’B?DA
The Cooperon components, corresponding to different indi- Yory=3(N) ———, (26)
cesi, represent possible spin configurations: indicedl,2 h2c?

are assigned to the Cooperon components with nonzero spin . N .
projections on the direction of magnetic fiel,= =1 and where the function}(n) of the directionn is of the order of

S,=1; indexi=3 is assigned to the Cooperon wis=1 unity, andA is the area of the wire cross section.
arcwd z,ero-spin projectiom,=0: and index =4 stands for a In the following subsections we focus on properties of the
c— Y -

singlet componentS,=m.=0, see Table |. p_hase relaxation r_a_IEi due to scattering off magnetic impu-
Performing the integration over momentunwe obtain rities. To be_ ;pemﬁc, we WI|.| present the WL correction to
a general result in the form the conductivity of a thin wire. Since the phase relaxation
factorsI’; do not depend on the sample geometry, the results

2 4 for the WL correction to the conductivity of the next two
Aog=— — 2 a;F4(B,T). (22) subsections can be easily generalized to other geometries,
mh =1 such as a film, a metal ring, or an open quantum?§ot.

Functions 74(B,I") have different form depending on the _ o N
conductor geometryd=2 for a metal film andd=1 for a B. Effect of classical spin impurities

wire), while parametersy; and phase relaxation raté$(B) Even in the absence of spin-orbit interaction, there are
are determined by details of electron scattering processefive parameters affecting the WL correction to the conduc-
First we present functiongy(B,I") for different conductor tjvity, including system temperatufg the applied magnetic
geometries and then discuss the effect of spin-flip scatteringe|q B, impurity spin-relaxation timerr, the electron scat-

on the weak-localization correction to the conductivity. tering rate off magnetic impurities 4= 27 rnJ?S(S+1)
[where the factor $+1) may be replaced bg in the clas-
A. Geometry dependence sical limit S>1], and the phase relaxation rate due to the

The weak-localization correction to the conductivity of a Orbital effect of the applied magnetic field,,. Itis easier to
quasi-two-dimensional metal is determined by the fonowingestabllsh the role of these parameters in the case of classical

expression: (S>1) spin_s,_ considered in this subseption.
The explicit matrix form of the equation for the Cooperon
1 1 i+ Yo 4eB, D7, in the case of classical spins is given in Appendix A, see Eqs.
Fo(B,I') =~ - U §+4DeBl/ﬁc 7e , (A2) therein. For an arbitrary relation between the electron

(23 dephasing raté’; gnd the impu.rity spin-relaxation rate7d/,

the solution of this equation is cumbersome. Here we con-
where/(x) is the digamma function anld; is the dephasing  sijder only the limiting cases of longr{I';>1) and short
rate for theith component of the Cooperon. Hdrgincludes (7. <1) spin-relaxation time. Usuallyfor not too small
dephasingy,r, by the applied magnetic field parallel to the concentration of magnetic impurities=»T) the first con-
film yon=e’BfDa?/12%c?, where B, and B are the ition is satisfied: the second condition may become relevant
magnetic-field components, perpendicular and parallel to thgnly at very lowng. In the first case one may negl®the
film. In weak perpendicular magnetic field we ug€l/2  dynamics of localized spins setting=0 in the correlation

+x)~Inx+1/24x* and obtain functions Eq.(A2b). In the second case, we need to set
) —o in Eq. (A2b). In both limits we obtain the following
1 1 2(DeB, /fic) expressions for the parameters of E2p):
Fo(B.T)=—|In - .
4| (it Yom)Te  3(Ti+ o) y y
(29 - — 4 L —_
a1,2 1, a3 +ZTS' ay ZTS (27)

The terms withr, in Egs.(23) and (24) originate from the
ultraviolet logarithmic divergence of the momentum integraland for the phase relaxation rates
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1 (20) and (27). At strong magnetic field,ws+e,| 71, the
Fl,zz(l_Xz)?S' (283 contribution ofi=3,4 Cooperon components tho; van-
ishes, since both the Zeeman splitting of the conduction elec-

1 trons and the energy transferred in the spin-flip process de-
F3=(1+X2);+iws—z, (28  stroy the interference of time-reversed paths in the
S Cooperon. If the spin-relaxation time is still long;I";>1,
1 we have
Tg 2
Y(B,T)= : (32)
Here \/1_ <S§>/SZ+ YorbTs
7 X 42 For a system with short relaxation time of impurity spins,
Y T_sz_(sz ws)% rI;<1, the Cooperon modes with= 3,4 do not contribute

to Ao, again. In this case, the weak-localization correction
Xz and y, are the impurity spin correlators given by Egs. to the conductivity is given by Eq30) with
(16) and (17) with proper substitutionr=0 or 7—~. The

correlation function§S,) and(S?) of classical spins are de- 2 33
scribed by the following functions: Y(B,T)= : 33
Y g \/1_ <Sz>2/82+ YorbTs
(SZ)=ScothS—wS— l (293 We notice that as magnetic field increases, the phase relax-
T s ation rate decreases, and the condition of short spin-

relaxation time Iy ,<1) may be reached, even though
initially system was in the opposite regime;> 7.

We conclude from Eq9:31)—(33) that the WL correction
to the conductivity depends on the polarization of magnetic
The weak-localization correction to the conductivity of aimpurities through the thermodynamic average®) and

2 2 2T S(x)s
<SZ>=S - STCOthT+2
S

T 2
—) . (29b
ws

wire may be represented as (S?). The polarization is significant in an applied field of the
) order ofB=T/gugS, shown as a straight solid line in Fig. 1.
e The orbital effect of the applied magnetic field is repre-
Aog,=—=—D7s Y(B,T). . .
71 2an VTS (B (30 sented by the termy,,7s in Egs. (31)—(33). The orbital ef-

fect and the impurity spin polarization compete with each
other: the orbital effect suppresses, while the spin polariza-
tion enhances the WL correction to the conductivity. The

In the limit of long spin relaxation time#I';>1) and h . _
T ase relaxation rat andI'; become equaly,,=11,
weak magnetic field gsre<1 ande,7s<1) all four Coop- gt magnetic field3 (Te)%’rb ! AH&om="1
o(T):

eron modes contribute to the weak-localization correction to

the conductivity, BT) d, m (34)
2 1 ¢ VDTA S

Y(B,T)= +
\/1_ <S§>/SZ+ YorbTs \/2<S§>/SZ+ YorbTs

The functionY(B,T) has different forms, depending on the
relations between parameters of the system.

The effect of spin scattering prevails over orbital effect of the

1 magnetic field aB=B,(T). On the other hand, the enhance-
———— (31 ment of the WL correction due to impurity spin polarization
V2+ YorTs is significant aB=T/gugS. These two limitations are met if

The first term in Eq(31) is due to the Cooperon modes with the wire temperaturg=<T,, where
i=1,2. It is the first term of the functiol(B,T) which is

responsible for a nonmonotonic magnetic-field dependence _ . @,
of the WL correction to the conductivity. As magnetic field To=0ue DA TSA. (39

increases and impurity spins become polarized, the phase

relaxation rate for modes=1,2 decreases, and the first term At higher temperatureT=T,, the effect of the spin polar-

in Eq. (31) grows. The combination of the remaining two ization is concealed by the orbital effect.

terms, representing Cooperon componént8,4, constitutes In Fig. 2 we illustrate the effect of an applied magnetic

0.17A o4 of the full value ofAo; at zero magnetic field and field on the WL correction to the conductivity. We show

monotonically decreases as the magnetic field increases. dependence of the functiof(B,T) on the applied magnetic
We notice that the contribution af= 3,4 Cooperon com- field B at temperature§=0.3T, and T=0.03T,. At low

ponents diminishes not only as magnetic impurities becom&mperaturel =0.03T,, the effect of impurity spin polariza-

polarized, but also as the Zeeman splitting of conductiortion is significant, but already at temperatufe=0.3T, it

electrons and impurity spinse¢+ wg) increases, see Eqgs. fades away.
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while in the opposite limit-;<< 7 the correction also depends
4l ) on the polarization of impurity spins:

1
\/1 + <SZ>2/SZ+ 3857'3/4750"" YorbTs

Y(B,T)=— . (39

The termsy,,7s>< A in the denominator of Eq$38) and
2 [rmmm— .. . . 2] (39) originate from the orbital magnetic-field effect, see Eq.
' (26). If the areaA is sufficiently small so that the orbital part
is not important, and the temperature is low enough, then the
antilocalization may show a nonmonotonic field dependence
T=03 T 1 951 due to the Jaccarino-Peter mechanfSmee Eq(19).
7=0.3 TZ {« rkk From the above analysis performed in the approximation
0 ; > 3 of large impurity spins we make two conclusions. First, the
B/B polarization of impurity spins hardly affects the weak antilo-
° calization correction to the conductivity in metals with
FIG. 2. Dependence of the weak-localization correction on theStrong spin-orbit interaction. Indeed, the only surviving con-
applied magnetic field in a metal with classical spin impurities. Thetribution to the conductivity correction originates from the
plot shows functionY(B,T) at two temperature valueE=0.3T,  singlet spin configuration of the Cooperon, which is not sen-
and T=0.03T, for both short ¢r< 17y and long (x> 7 impurity  sitive to the impurity spin polarization. Second, in metals
spin relaxation timerr. The subplot shows the WL correction to without spin-orbit interaction, the Cooperon modes with
the conductivity forS=1/2 impurities afT=T,. HereT, is given  zero-spin projection on the magnetic fieid<3,4) give only
by Eq. (35). a small (~0.17A¢) contribution to the total WL correction
to the conductivity, and their contribution vanishes at mod-
The spin-_o_rbit int_eraction mo_difies the WL corre_ction 10 erately strong <7<~ 1) magnetic field. In the next subsec-
the conductivity. Using Eq9A2) in Appendix A we find tion we neglect these terms and calculate the WL correction
B to the conductivity, originating from Cooperon modes
a12=1, (369 =1,2 at such fields thabgre=1. We perform the calcula-
tions for an arbitrary value db.

—— T7=0.03 TDy T <<,
-_— 720037 ,7 >>7

2ysd3=x./7s

az= > 51 (36b)
\/(Z'Ysc/s_XL IT)—e5 C. Effect of quantum spin impurities
29 /3 / We notice that the semiclassical description is applicable
o Ysd3—x./7s @369  only (i) for alarge spirS>1, when linear ir§ contributions
V(2yed3—x. I79)%— €2 to the dephasing rates can be neglected,(@pdt high tem-

peratureT> wg, SO that the discreteness of spin energy lev-
els can be disregarded. In this subsection we consider quan-
1 4y tum spins with arbitrary value dd and for arbitrary ratio of
[yo= (1= xp)— + —=, (379  ws/T. As we discussed in the previous subsection, only
' s 3 components =1,2 of the Cooperon with parallel spins, see

and the phase relaxation rates are

Table |, are important at strong magnetic field. The terms

:l+Xzz+ %Jr \/ XL 27302_82 (37h) with i=3,4 are small at relatively strong magnetic fields,
3T 1 3 s 3 z |ws+e7|7s=1. Moreover, even at weak fields, modes
=3,4, give rise only to a small portion afo4, equal to
1+ X7 2Yso \/ X 2y 0.17A o, at zero magnetic field and monotonically decreas-
I'y= Ts + 3 75_ 3|  fz (379 ing at stronger field8. To avoid cumbersome expressions,
we omit the terms with = 3,4 in our further analysis.
Here we assumeas<TI'; for simplicity. The contribution to the Cooperon self-energy due to the

According to Egs(37), in metals with strong spin-orbit = scattering off magnetic impurities is shown in Fig. 3. Details
scattering,ys,7s>1, the terms with =1,2,3 are suppressed of our calculations are presented in Appendix B. We find that
and the interference correction to the conductivity is dethe WL correction to the conductivity may be represented in
scribed by the singlet antilocalization teirt 4. In the limit  the form of Eq.(30) with function Y(B,T) replaced by
of long impurity spin-relaxation timery> 75, the weak-
localization correction to the conductivity dependsmrand

+oo d 1
the Zeeman energys; : YS(B,T)=f © , (40
—» 2T coste/2T (T'(&)+ Vo) Ts
1
Y(B,T)=— > , (38)  where the phase relaxation rate due to scattering off mag-
V2+3857d4ys5t YorTs netic impurities is
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k(r)
2) Li= 0
1 (Rl Er(k)l 1 1 ﬁr P11 )Cir tot
 1/2mvTe | 1/27vTe k
1 Ea 11 Pl )G:a(k) Ltit o, Ea ; TEZZ
£k

FIG. 3. The Cooperon decay rate is determined by diagrams of the second order in the exchange oHstéatwo left diagrams
represent the electron self-energy contribution from processes with and wittedshown spin flip. The right diagram represents the vertex
correction.

(3 +(8)tan e+ w /2T | 1 If the orbital effect of the magnetic field is smalj,,,
— _ Z R =

I'e)=|1 S5+ 1) _ (41) 0, we have

provided that the impurity spin-relaxation time is large, 38 sinh(3wg/4T)

T (e~T)>1. We remind that; '=27vnJ?S(S+1). Yy(B,T)=1\/3 (44)

< . 3tanH wg/2T) JcosH wg/2T)
Spin-correlation function¢S,) and (S?) in Eq. (41) are Ned2T) og2T)

defined by Eqs(15). We notice that in strong fieldes=T a4 the weak-localization correction to the conductivity is

the impurity spins are polarized and the phase relaxation ra ven by Ea.(30) with Y1,(B.T) in the form of Eq.(44). In
of electrons close to the Fermi surfagd<T vanishes, in § y Eq.30 4{B.T) a.(44).

agreement with Ref. 8.

We consider the special case of magnetic impurities wit
S=1/2 in more details. First, we discuss the meaning of th
energy-dependent relaxation rdf€¢e), Eq. (41). In the S

=1/2 casel' (&) can be rewritten in the form e2 D 1 1 ws
AriB)== N S 1 3 7y Tsinhws/T)

the opposite limit, when the orbital effect of the magnetic
l{ield on WL dominates over the effect of spin scattering, we
dnay expand functiofys/(B,T) in (7sYor) ~* and obtain

h
4
F@)= g APll-n(Etwegl+pinEteg) (42 (45)

We notice that the second term in E@5) has the same
structure as the phase relaxation rate suggested in Ref. 18 to
describe the WL correction to the conductivity. Therefore the
expansion, presented in E@5), establishes the conditions

wherep;()=(2 coshwg2T) ~lexp(+ wg2T) is the probabil-
ity for the spin impurity to be parallefantiparalle] to the
direction of the magnetic field ant(e) =[1+expE/T)] *is
the Fermi occupation number for electrons with enesgyt ¢ applicability of the suggested formuta.

temperaturel. We interpret Eq(42) in the following way. Expression for the phase relaxation rate in E4f) was
Two processes contribute to the electron phase relaxatioferived in the limit of long impurity spin-relaxation time,
rate:(i) an electron with spin up and energyis scattered by 7T(s~T)>1. In the opposite limit, the spins at different

an impurity with spin down to the electron state with Spin o ments of time are not correlated, and we have to substi-

down and energy + wg; (ii) a hole with spin up and energy tut 2¢ 2\ in Eq. (41). Then. the functiorY1/(B.T
¢ is scattered by an impurity with spin up to the electron y e<_SZ> or (S;) in Bg. (41). Then, the functio u{B.T)
acquires the form

state with spin down and energy+ wg. The probabilities of
these processes are determined by the first and second terms
in Eq. (42), respectively.

In the limit of short impurity spin-relaxation time,

1 ws 2 1)
Y1,£B,T)=f [l— “tanf— —tanr(x+ =
' (e=T)>1, the functionYl/gB,T) has the form

3 2T 3 2T

-1/2 dx

cosix

ws
X tanhz==+ Yo (46)

2 coshx
3 coshwg/2T coshiix+ wg/2T)

+o  dx

Y1,£B,T)=f

~ cosHx
We observe from Eq(41), that at strong magnetic field
(43) the phase relaxation rate exponentially vanishes. Conse-
quently, higher-order terms in the exchange consiamiay

. . . . ) become important. The fourth-order diagrams for the Coop-
We illustrate the behavior of functiovy/(B,T) in the inset  gron phase relaxation rate are shown in Fig. 4 and the corre-
of Fig. 2 at temperatur@=0.3T,, whereT, is defined by sponding analytical calculations, presented in Appendix C,
Eq. (35) with S=1/2. yield

—-1/2
+ YorbTs
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consequently, the ring conductance. The fluctuations of the
conductance are usually characterized by the correlation
function C(At,AD):

K(At,A®)=((da(0)dp+1a(A1)))a (50

where ® = 7R?H is the magnetic flux through the ring of
radiusR, andAt is the time lapse between the measurements
of gy andgq . ae . The dc conductance, E¢O), is defined

in terms of the currenit(t), averaged over measurement time
T,

t+Tmdl g (t
- Ef&) gm(t):f %\5)|V:0dt’, (51
t

FIG. 4. The Cooperon self-energy diagrams to the fourth ordetvhereV is the applied bias. During the measurement tifpe
in the exchange constarlt The spin-spin correlation function the magnetic flux should be constant, otherwise the measured

(wavy line) acquires correction due to the electron scattering off theconductance is already averaged over different realizations.

spin. We assume that the system satisfies the ergodic hypothesis
and the averaging over the magnetic field is equivalent to
272 2 averaging over impurity configuratioRs® To calculate the
1 v 7T+ec 1 . .
I'e)==— S (47 conductance correlation function, E§0), we apply the con-
27 NsTs wg(S+1)% 7s ventional averaging techniqd®We consider only the case

of short relaxation timery<At. In this case the spin-
correlation functions in Eq$16) should be taken in the limit
— 0, s0 thaty, (7—%)=0 andy,(7—»)=(S,)%.

The conductance correlation function contains all har-
monics,

We emphasize that E¢47) represents th@* contribution to
the electron phase relaxation rate, while E4fl) represents
the J2 contribution. The corresponding small parameter of”
the expansion in powers df may be written as/(ngro).
As the applied magnetic field increases, both JAeand
J# contributions may become comparable, sinceXheon- o AD
tribution decreases exponentially, while th& contribution K(AD)= 2 KkCOg{ Zwk—). (52
at energy|e|~T decreases much slower, cf. E¢41) and k=0 g
(47). The small factorv/(ngry) is compensated at strong
enough magnetic field, , which we estimate from exp
(—ws/T)=vl(ngry). We obtain

The amplitudest, consist of two part$? originating from
the fluctuations of the diffusion coefficient, Figiap, and the
fluctuations of the electron density of states, Fih)5

T 4
B,(T)=—1In . (48) et DZJ dede’ L, € s g’
n = i — .
Jup NgTg Ky a(zrﬁ)z - Tor? cosh o7 cosh o7
At small fields,B=<B, , the relaxation rate decreases ex- 4
ponentially with the increase d@, whereas at higher fields 10 , 0 ,
this dependence is replaced by a slower power I le (Ai'(e,e)+Bi(e,87)), (53

~T)«T?/w3. The counterpart of Eq45) at B>B, reads _ . _ .
see Appendix D. Here is a geometry dependent dimension-

1 GZ\F T v 1 T2 less factor of order of unity; functionsd{)(e,e’) and
AoB)=——+—\/—|1-" 5 —— ——|. B{(e,e") are defined b
1(B) w2 fic N yom 3 NsTs TsYorb (S+ 1)2wé (ee) y
(49 . x\[2
A(k”(s,s'):zf ‘Di<s,s’,—) cog 27kx)dx,
In conclusion of this subsection we notice that the mag- R
netic field modifies the phase relaxation rate of the singlet (543
component of the Cooperon. This ratelig(B=0)= 2/ at
zero magnetic field, and it remains fin-itE,.(B>T/g,uB) Bf(i)(s,s’)=J Re{D?(s,s’,i)]COS(Zﬂ'kX)dX
=[S/(S+1)]T4(B=0), at strong magnetic fiek¥. R
(54b)
V. CONDUCTANCE FLUCTUATIONS in terms of the diffuson components:
In this section we study the effect of the impurity spin 1
polarization on conductance fluctuations of a metal ring, Di(e,e',q)= _
weakly connected to the leaé’sMagnetic flux® piercing ' i(e—e'+sje7)+ D%+ Yot Ti(e,e")
the ring changes wave functions of electrons in the ring and, (55
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I p("")

R;"U

D " ; n
D ( uO,. n) ( %

c).

FIG. 5. Diagrams(a) and (b) give the main contribution to the conductance correlation function. Diagenoriginates from the
fluctuations of the diffusion coefficient and decreases only s high temperature. Diagrah) is referred to as the contribution from the
fluctuations of the electron density of states and exponentially vanishes at high temperature, see Ref. 29. The Hikdmcktsquargis
the sum of two diagrams, shown {n).

The indexi in Egs.(54) runs over different spin configu- the system. In the next subsection we calculate the amplitude
rations of the diffusorD;(e,e’,q), which are related to the of conductance correlation function, Eq84), for spinsS
common classification of spin-wave functions of two spin-~1 in a metal with strong spin-orbit interaction.
1/2 particles in terms of triplet and singlet states, see Table Il. We consider systems with fast spin relaxation time
In our notations, modes=1,2 correspond to total spi;  <At, whereAt is the time lapse between the current mea-
=1 with nonzero projections on the magnetic fiefg,= surements, see E@O0). In this case the solution of the dif-
+1, modei = 3 represents total spi®,=1 with zero projec- fuson equation, Eq(A4), is described by the following
tion on the magnetic fieldn;=0, and modé=4 is a singlet  energy-independent decay rates:
spin configuration. Energiese, represent the effect of the
Zeeman splitting of conduction electron states on various 2l 4
diffuson modes. Coefficients are given in Table Il. [1=(1+(S)“/S );;L 3 Ysos (569

We explicitly separated two additive components,
I'i(e,e") andy,, to the diffuson decay rate in E(65). The 1 a4
componentl’;(e,e") corresponds to the contributions from 3=(1-(S)%S?)—+ = Veo, (56b)
spin-orbit interaction and scattering off magnetic impurities. 7s 3
The componenty,, takes into account other processes, such L
as electron escape through the leads and scattering caused by _
the electron-phonon and electron-electron interacttéA&*? F4_(1_<SZ>2/SZ)?S' (569
Here(S,) is defined by Eq(2939 and depends only on the
ratio of the magnetic field and temperatBET.

Following the spirit of Sec. IV, we first analyze conduc-  Thei=1,2 modes represent the interference of electron
tance fluctuations in the presence of class®all spins.  states with opposite spin orientations. The exchange field of
This analysis allows us to explore the effect of the impuritymagnetic impurities produces differefapposité contribu-
spin polarization at various relations between parameters qfons to the phases of these two states. Because the phase

contributions for different electron trajectories fluctuate, the

TABLE Il. The decay rates of various components of the diffu- interference of electron states with opposite spins is sup-
son in a metal without spin orbit interaction. The components Withpressed even if all spins of magnetic impurities are fully
i=1,2,3 represent a spin states with total spin &g 1. These  polarized. Thus the polarization of impurity spins does not
spin configurations form a triplet in an isotropic system.Anisotropysuppress the effect of electron phase relaxation due to the
due to the applied magnetic field lifts the degeneracy. THhé scattering off magnetic impurities for diffuson modeés
component i_s_a singlet spin configuratic_ﬁ;,_,zo. The last (_:olumn =1,2. According to Eq(56a), the diffuson decay ratek; ,
shows coefficients; for the Zeeman splitting of conduction elec- actually increase as the applied magnetic field increases.

A. Effect of classical spin impurities

trons. On the other hand, thie=3,4 modes stand for the inter-

i 1Sg,mg) T'(H)r N ference_of_two electron states with pz_irallel spins._ At strong
' : s : magnetic fieldB>T/gugS, when all spins are polarized, the

1 Si=1mg=+1 1+(S,)?/S? +1 scattering off magnetic impurities provides equal phase shifts

2 Se=1mg=-1 1+(S,)%s* -1 to both states and does not affect diffuson relaxation rates

3 S¢=1my=0 1-(S,)%s? 0 I'34. That is why the contribution td’; 4, caused by the

4 S4=0my=0 1—(S)4S? 0 scattering off magnetic impurities, vanishes as impurity spins

become polarized, see Eq56b) and (56¢).
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Substituting the diffuson decay times from Es6) into
Egs. (53)—(55), we can describe the harmonics of the con-
ductance correlation function E(?2) at an arbitrary value of
magnetic field, ranging frolB=0 to B>T/gugS. To ana-

lyze this crossover, we first consider a metal without spin-

orbit interaction,y,,=0, and evaluate the integrals over en-
ergiese and e’ in Eq. (53) for two limiting cases of low
(T<TIi+1v,) or high temperatureT>1";+ v,,).

In the low-temperature limit we havé:

4 3
37ma € i( R
= — | 27k—+1 e*Zka/Li

T2 (2mh)? 2 Rl 27K

(57)
with
Li=\/ b (58)
I ri+7¢.

For simplicity, we omitted the Zeeman splitting of the con-
duction electron states, which actually modifies tkel,2

terms in Eq(57). We emphasize that at low temperature both

diagrams in Figs. @) and(b) contribute to the conductance
correlation function.

In the limit of high temperatureT>I";+1y,, the
contribution of the diagram in Fig. (B) is small as
exd — (2m)¥*R(T/D)*?] and may be disregarded. The con-
tribution due to fluctuations of the diffusion coefficient, dia-
gram in Fig. %a), decays only as I/ at high temperatur@:

]

whereL+=+D/T is the thermal length, and coefficiends
are presented in Table Il. The function

-

~ Y3 (2mh)

L2L,
R3

Si€z
2T

,Ck e—ZWkR/Li’ (59)

4
2 2 f

z coshz—sinhz

f(2)=3 (60)

sink’z

takes into account the Zeeman splittifd0)=1 andf(z)
~12(z—1)e % for z>1.

Regardless of scattering off magnetic impurities, the Zee
man splitting destroys the contribution of modes1,2 to
the conductance correlation functidg at e,>T, see Eq.
(59). From Eq.(59) we conclude that at strong magnetic
field, e ;> T andSwg>T, the amplitude of conductance fluc-

PHYSICAL REVIEW®&, 115310(2003

4 6 10
guSB/T

FIG. 6. Amplitude/C;(B) as a function of the applied magnetic
field B for a metal with classical$>1) magnetic impurities in the
absence of spin-orbit interaction. A nonmonotonic behaviokKof
due to the Zeeman splitting of the conduction electron states is
illustrated for two cases(i) ;= wg (dashed ling (i) ¢,=wg
—7T(S,) (dotted ling, here the second term represents the average
exchange field 8,J(S,) with ngJJ=3.5T. The limit e,— is pre-
sented by a solid line. We choosg7,=2 andR=D/y,,.

of the amplitude of the conductance oscillations is reminis-
cent to the reentrance effect in superconductors.

To illustrate the effects of the Zeeman splittiag, we
plot amplitude/C; of the principal harmonidk=1, as a func-
tion of B in Fig. 6. We choose the following values of the
system parametersy,7s=2 and R=D/vy,. The dashed
line corresponds to the case of eqgalactors for the con-
duction electrons and impurity spins, i.ez=wg, and neg-
ligibly small exchange contribution in Eql9), ngJ(S)
<wg. The limit of e,>T, when only termd=3,4 in Eq.
(59 survive, is represented by the solid line. Finally, the
dotted line demonstrates the reentrance effect due to the an-
tiferromagnetic impurities at some specific value rof]
=3.5T with T being the temperature.

Now we notice, see Eq$56), that the spin-orbit interac-
tion suppresses the contribution to the amplitude of the con-
ductance fluctuations, originating from the diffuson modes
with i =1,2,3 (S4=1). In the limit of strong spin-orbit inter-
action (ysg>D/R?) only the contribution from the singlet
(S4=0 andi=4) mode survives:

772

e et LI,

—2mkR/L
=ao— e 4,
3 (27h)? R®

(61)

tuations is no longer determined by the scattering rate offvith lengthL, defined by Eqs(56¢) and(58). The function

magnetic impurities, . Since mode$=1,2 are also sup-
pressed at,>T even in a metal without spin impurities, we

Ky for a metal with strong spin-orbit scattering monotoni-
cally increases as a function &/T, providedy, remains

conclude that a strong magnetic field restores the amplitudeonstant. At strong magnetic fiel8ws>T, magnetic impu-

of conductance fluctuations up to the amplitude in the sam
ring as if magnetic impurities were absent.

dgties do not affect the conductance fluctuations.
We emphasize that the nonmonotonic behavior of the am-

We also discuss another effect of the Zeeman splitting omplitudes IC, of the conductance correlation function origi-
the conductance correlation function. If the exchange connates from the diffuson modes wiih=1,2, which do not

stantJ is antiferromagnetic)>0, the Zeeman splitting van-
ishes not only aB= 0 but also at some finitB, see Eq(19),
and thus produces another wrinkle in the dependendé,of

contribute to the correlation function in metals with strong
spin-orbit interaction. Thus the monotonic or nonmonotonic
behavior of the amplitudes, distinguishes materials with or

on the applied magnetic field. This nonmonotonic behaviomwithout spin-orbit coupling.
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1

As the polarizationS,) and the Zeeman splitting g in-
crease, the diffuson decay rdt€s=T) to the second order

0.8} in the exchange constafibecomes exponentially small, see
/8\ Eq. (63). In this case we have to take into account higher-
— 06} order contribution inJ, which is represented by EG7). The
19 crossover from the phase relaxation rate in the form of Eq.
= o4} (63) to the form of Eq.(47) takes place at magnetic fiell
Ei/ ~B, (T), see Eq(8).
&2 0.2}

VI. CONCLUSIONS

10 The main question addressed in this paper is how the
polarization of magnetic impurities in a metal affects the
interference contribution to its conductance. It is well known

FIG. 7. The dependence of conductance oscillatiop@) as a thé_“ at_ weak magnetic field, Wh'Ch does_not cause such po-
fur)ction of the applieq magnetic fiel for four values of impurity Isau“pz[:i'ttlezgyicmeoiI('[af(\:g?/\rl]ezcﬁltéigl}igzﬁ{glr?(c::ecl)l;fggtizﬂntz rtehsem(t:i)rI]rj
ﬁsgsssz 71//22 E;:gﬁ_ggg)éds”ns)zzv\(,iai:%%;;niz - iﬁ (:r?éteéi ductivity and in supprgssion of the mesqscqpic conductance
= \Dlv,. fluctuations. If these interference contributions can be re-

stored by an application of a stronger spin-polarizing field,
B. Effect of quantum spin impurities then a transport measurement may serve as a test for the
_ _ _ presence of magnetic impurities in a sample. This possibility

In this subsection we perform a quantum calculation t0,55 the main motivation of the presented study.

analyze the effect of polarization of impurity spins wigh We obtained analytical results for the WL correction to

~1, when the semiclassical description of electron scattefe conductivity and for the amplitude of conductance fluc-

ing off magnetic impurities is not applicable. \éVe consideryations valid for an arbitrary magnetic field. We found that

metals with strong spin-orbit interactiop,>D/R®, so that  he conditions for the restoration of weak-localization correc-

only the singlet component of the diffuson survives. In thistion gre quite stringent. The weak-localization correction can
case the calculation of the diffuson self-energy is similar topg substantially enhanced by an application of a magnetic
the calculation of the proper quantity for the Cooperon, segjg|q only in samples of very small sizéo avoid the orbital

Sec. IV C. Details of calculations and the expression for thestfect of the magnetic fie)dand made of a light-element

amplitude of the conductance fluctuations are presented igyaterial, to make the spin-orbit scattering negligible. If these

Appendix E. . conditions are met, the spin polarization may completely

Below we focus on the high-temperature case, g|iminate the effect of magnetic impurities. At intermediate
>I'(e,e'=T), which is reached at sufficiently strong mag- fie|ds B, the weak-localization correction depends on the ra-

over the difference of: and &’ converges fastle—¢'|  spanning the full range of spin polarizations.
=TI'(e,e"=T). This observation allows us to perform inte-  The effect of spin polarization on the mesoscopic conduc-
gration over the energy difference. We obtain tance fluctuations is much more robust. The amplitude of
fluctuations is restored if variations of a spin configuration in
72 e* DLZ[ e 2nKRITE)T7,/\D  gg/T time are suppressed by the external magnetic field. At the
Kk=a? 2mh)? R m coste/oT’ same time, there is no detrimental orbital influence of the

(62) applied magnetic field on mesoscopic fluctuations. The spin-
orbit interaction also does not spoil the effect of spin polar-

with the dephasing rate in the form of ization on the amplitude of fluctuations. We evaluated the
amplitude of the h/e” Aharonov-Bohm oscillations of the

(5,)%+(8,)tani(e + wg)/2T| 1 conductance correlation function. In a metal with strong

I'e)=|1- S5+ 1) —. (63 spin-orbit interaction, the polarization of magnetic impurities

s restores this amplitude up to its value characteristic for the

We represent the corresponding curve&gfas a function of host material in the ab;ence qf magnet.ic impurities. .We find
the applied magnetic fielB in Fig. 7 for several values & the full crossover functlon, which describes the amplitude of
assumingr,T>1 and for the following values of the system fluctuations at arbitrary value @&/ T. The use of our res_ult_s
parametersyy,7s=1/2 andR=\D/y,. The shapes of the for the analysis of transport measurements may, in principle,
curves corresponding to various values of the impurity pin Yi€ld such characteristics of magnetic impurities as the val-
are different from each other. Particularly, we conclude that'®S of their spin ang factor, which are hard to access di-
the conductance fluctuations are faster restored by magnelrigC Y-
field in metals with a larger value @& The fitting of experi-
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APPENDIX A: COOPERON AND DIFFUSON IN A METAL where7{5 is a matrix in spin space representing the Zeeman
WITH CLASSICAL MAGNETIC IMPURITIES splitting of conduction electron states and spin-orbit interac-
In calculations of the weak-localization correction to the 0N
conductivity of a metal with classical magnetic moments, we 0 0 0 0 2 0 0 0
use the Cooperon which is formally defined as an average of )
electron Green'’s functions F— 0 2ieg 0 0 " 270 1 1 0
ot e 10 0 -2, O 310 1 1 o
B 2o B ettt ) o 0 0 o0 00 0 (2A2b)
=(GR(tL by ir,r )Gty ). (A1) and7{,,. describes scattering off magnetic impurities:
[1=XxzdA7)] 0 0 0
PYNIE] LR tae L B 0 20,
T)= — c
s Ts 0 _XI(T) [1+x:A7)] 0
0 0 0 [1=xud7)]

The solution of Eqs(A2) yields the Cooperon in the form of ER1).
The diffuson appears in this paper in calculations of the conductance correlation function and is defined as

o 4t
T Bt

Py 2 2

A=ty | St —ty —t3 +t5) =(G(t] 11 rr)GY(ty t7 ). (A3)
It satisfies the following equation:

[(i0+Dg?)1+Hg+HI(1)]Dy(w,7) =1, (Ada)

where the matrixfiop does not depend on time variabteand describes the Zeeman splitting of conduction electron states and
spin-orbit interaction:

0 0 0 0 1 0 0 1
|0 2e; 0 0| 29,0 2 00
D S0
. , A4
ol o —2is;, 0 300 20 (Adb)
0 O 0 0 1 0 0 1
andﬂf(q-) represents scattering off magnetic impurities:
[1—Xz47)] 0 0 —x.(7)
o1 0 [1+x:47)] 0 0 "
EOTLL o 0 [txdn] O (A%
X1 (7) 0 0 [1—xz47)]

Solving Eqgs.(A4), we obtain the diffuson in the form of E¢55).
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FIG. 8. The Keldysh contour allows us to take into account time

ordering of quantum operators. The time subscripgsmean that
the operator is taken at tinteat the forward {;) or backward {)
part of the Keldysh contour.

APPENDIX B: COOPERON DECAY RATE DUE TO
SCATTERING OFF QUANTUM MAGNETIC
IMPURITIES

In this appendix we derive the Cooperon decay rate in
metal with quantum$~ 1) impurity spins. The Hamiltonian

of interaction of conduction electrons with magnetic impuri-

ties, Eq.(12), has the form
H,=3(50,+S_o,.+S,0_), (B1)

whereo,, o,, ando, are the Pauli matrices angl. = (o
ii&y)lz. We notice that the first term in E¢B1) represent

scattering without spin flip, while two other terms corre-

spond to spin-flip scattering.
We will follow the standard Keldysh formalism: first, we

define electron and spin operators on the forward and back3%e)=
ward parts of the Keldysh contour, see Fig. 8, and then per-

form rotation in the Keldysh space. As the result, we obtai
the standard form of the electron Green’s function in term
of the retarded G(R(g,p), advanced G¥(e,p), and

Keldysh G®(&,p) components. The spin operator in the

rotated basis acquires the form
(S%t) é?(t))
S S/

where§“a(t)=§i(tf)i§i(tb). In our calculations of the im-

n 1
S‘(t)zz

(B2)

purity average conductivity, we work in the Born approxima- Figs. 98 and(b) is I'xf(s) =ingJ

PHYSICAL REVIEW B 67, 115310 (2003

and £}4t) vanish due to the commutation relations of the
spin operator along theaxis and the Hamiltoniak gy,

Now we present correlators of the spin components per-
pendicular to the magnetic field:

L2 (H)=0(—1)e"XS,), (B5a)
LT, ()=—0(1)e"KS,), (B5b)
L£E (H)=e“d[S(S+1)—(5H)]. (B50)

Using the formal definitions of EqgB4) and (B5), we
&alculate the Cooperon decay rate, which has the meaning of
the Cooperon self-energy, see Egl). The diagrams which
contribute to the decay rates of Cooperon moideg,2 are
shown in Figs. 81 and (b) and correspond to the electron
self-energy due to magnetic impurities:

dp (d
Ef(s)=f (2:)d %{(£5+(w)+£52(w))6’(8+w,p)
+(LL (o) + L [0)GXe+w,p)}, (B6a)
f dp (do )
i) 2 ((E @)+ LE ) GYe + 0,p)

n

s (@) LHe)C et wp).

(B6b)

The elastic part of the self-energy is expressed only in terms
of the retarded and advanced Green’s function and is not
affected by the electron distribution, while the inelastic part
of the self-energy contains also the Keldysh component of
the electron Green'’s function. Consequently, for inelastic
processes the electron distribution is important, since such
processes should satisfy the fermion exclusion principle. The
contribution to the Cooperon decay rate from diagrams in
2[2%e)—32P(e)] and can

tion, therefore the scattering is completely characterized b€ Written as

the bilinear spin correlators:

1., .
L£i5(=7(SOSv), (B33

1. -
c{j(t)=2<§(t)sf(0)>, (B3b)

1. N
Li(H)=72(S1S](0)). (B30)

which are counterparts of the Keldysh Green'’s function of al
interaction field, see Ref. 31.

For the Zeeman HamiltoniaHl 5= gugBS,, spin cor-
relator components with=j =z have only the Keldysh ele-
ment £ X (t):

L0 =(5(1)53(0))=(5D), (B4)

etw IM{L  (0)} do

2T  S(S+1) 2w
(B7)

I'e)= Ti[l—f tanh

The first term in Eq.(B7) originates from terms in Egs.
(B6b), containing the Keldysh components of the spin corr-
elators ‘Z‘Z(w) and£'§+(w). We used the property of these
correlators ¥ (t=0)+ £X  (t=0)=S(S+1), arising from
their definitions, see Eq$B3). We observe that the first term
in Eq. (B7) is the total electron scattering rate on magnetic
r{'mpurities 1k¢. The second term represents the rate of in-
elastic scattering processes, accompanied by the energy
transfer. Particularly, this term explicitly contains the elec-
tron distribution function in the form Z2n(e)
=tanhe/2T, which takes into account the Pauli exclusion
principle for electrons.

We identify the diagram in Fig.(8) with the vertex cor-
rection to the Cooperon self-energy. For the Cooperon com-
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ponent with parallel electron spins, only the component of L 0)=LO"w) 0" w) LD w), (C3)
the scattering off magnetic impurities without spin flip re-
mains: L(0)= L ()0 (@) L w), (c4

- where £ (9" w) =(S)/(0— ws*+i0) are the bare spin-spin
T(s)= i () _ (BY) correlation functions, defined by E(5). Using this nota-
¢ 7s S(S+1) tions, we reduce diagrams in Fig. 4 to diagrams in Figa) 3
and(b). Then, after the standard calculations, we obtain
The decay rate of Cooperon modes1,2 is given by the
sum of ' ;(&) andT"(&): 2T+ 62

I'y(e)=2mng3)*s? (C5)

2
1] (B)+(5)tanhe+wy/2T “s
I'(e)= 7 1- S(S+1) - (B9 Using the definition ofrg, we rewrite Eq(C5) in the form of
s Eq. (47).
When deriving Eq.(B9) we assumed that the conduction
electron spins and average impurity spins are parallel, so that APPENDIX D: CONDUCTANCE CORRELATION

ws>0 and(éz>>0. The opposite case is also described by FUNCTION

Eqg. (B9) with ws<0 and(S,)<0. Equation(B9) determines In this appendix we outline the calculation of the conduc-

the energy-depgndent phase relaxation rate in the WL corre¢ance correlation functio/lC(A®), see Eq(52). The contri-

tion to conductivity, see Eq30). butions to/C(A®) originate from two diagrams, shown in
Fig. 5. We have

APPENDIX C: THE J%-ORDER CONTRIBUTION )
TO THE ELECTRON SELF-ENERGY KA®)=K@(AdD)+ K P (Ad), (D1)

In this appendix we derive the correction to the Cooperorivhere the first ternkC (A®) is the contribution from fluc-
self-energy to the fourth order in the exchange consfant tuations of the diffusion coefficient
For this purpose we will use the rules of the Keldysh dia-
grammatic technique, outlined in Sec. IV C. K @(AD) e* D2 desds’ 1 1
The contribution to the Cooperon self-energy is shown in Ta 2 o4 2 ;
Fig. 4. The electron-hole loops can be treated as the self- (27h)" R 16T* costie/2T costie'/2T

energyé of the spin-spin Keldysh Green'’s function, respon- e A
sible for the spin relaxation as a result of the electron inelas- X2 2 2 Di(S,S',Qn— @)
tic scattering. The imaginary part of this electron-hole loop et 0
determines the Korringa spin-relaxation rate.the Keldysh  and second term in E@D1) originates from fluctuations of
formalism, we can distinguish three components of the selfthe electron density of states:

energy, related to the advanced, retarded, and Keldysh ele-

2
; (D2)

ments of the spin-spin Green’s function. e* D2 dede’ 1 1
We have for the difference of retarded and advanced comk ®(A®) =« i 5 ,
ponents of the spin-spin self-energy the following expres- (2wh)? R*J  16T? costfe/2T costfe’/2T
sion: too
AD
<3 S rdvifesta pyl] ©9
0" (w)— 0¥ w)=2m1r’Iw, (C1 n=-e | 0
_ HereD;(e,e',q) is theith diffuson component and the sum
and the Keldysh component is over n runs through all discrete values of momentum

=n/R. We apply the Poisson summation formula

0 (w)=coth_~[0'(w) ~ 0%w)]. (C2) . .
> f(n)=k_2 f(n)e?™k"dn

n=—ow

This result is of no surprise. Indeed, the self-energy is not
related to the type of interaction, since it is uniquely deteryg Egs.(D2) and (D3) and obtain Eq(52) with amplitudes
Ir.nined by the electron-hole loop, rather than the interactionc, defined by Eqs(53) and (54).

ines.

Here we are interested in the strong magnetic field limit,
ws>T, so that only two impurity spin states wi=S and
S,=S—1 are involved. Under this condition, the diagrams in
Fig. 4 can be represented in terms of the modified spin-spin We consider the singlet contribution to the conductance
correlators, which to the second order in the exchange corfluctuations in the limit of short spin-relaxation tinte, so
stant»?J? have the form that the components of spin perpendicular to magnetic field

APPENDIX E: DIFFUSON DECAY RATE DUE TO
SCATTERING OFF QUANTUM MAGNETIC IMPURITIES
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are not correlated at the characteristic titnebetween con- 1 [ <*Sz>z <éz>
ductance measurements(At)—0 in Egs.(16). Inthiscase T'(g,e’)=—|1— -

the diffuson self-energy is defined by diagrams similar to Ts S(S+1)  28(S+1)
ones shown in Fig. 3, but with the opposite direction of the e+ wg e+ ws
advanced Green'’s function. X | tanh >T +tanh >T

The diffuson self-energy consists of three terms; two of

them coincide with the self-energi&s(e) andXe) of re- . [ tanHe+ )/2T—tanhe’ + )/2T dw
tarded and advanced electron Green functions, respectively, +i(S,) f m |

and the third term is the vertex correcti@fi(e). Using the 0T Os T
formalism, presented in Appendix B, we obtain the following (E3
expression for the self-energy of electron Green functionsgoy the calculation of the conductance fluctuations, we have
see Eqs(B6b): to consider a finite difference between the energiesds’,

transferred along the advanced and retarded Green’s func-
tions. The last term in EqE3) originates from the real part
(S§)2+(S)tant & + wg) /2T of the electron self-energy and vanishes # ¢'. This term
- S(S+1) represent renormalization of the electron density of states.
The amplitude of thekth harmonic of the conductance
(&) [ tan(s+)/2T de correlation function is expressed in terms.4f* and B(*,
*i S5+1) e 5| (ED see Eqgs(53) and(54):

1
Er'a(s)zz[l

2
A(k4): —
The vertex correction to the diffuson originates from the im- Ree—¢g'+Iml'(e,e’)

purity spin correlator, taken at time differencd, see Eqg. \/ — - \/—
(50). Since we assume that the impurity spin-relaxation time “Im exp(—27kRVy,+1'(s,e')+i(e—&")/ VD)
\/’y(P-l-F(S,S')-Fi(S—S,)

is much smaller than the delay tindd, the spin correlator is

x2.=(S,)? and we have
(E4a

1 w._ . [p7 RVD
EV(S):;S<SZ>2. (E2 By'= —R 1+27Tk\/

Yot Tl(e,e")+i(e—g")

Vye+T(s,8) +i(e—e')
Combining the electron self-energy part and the vertex xexp —2mkR \/B '
correction given by Eq9E1) and(E2), we obtain the diffu-

son self-energy in the form (E4b)
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