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Conductance of mesoscopic systems with magnetic impurities

M. G. Vavilov and L. I. Glazman
Theoretical Physics Institute, University of Minnesota, Minneapolis, Minnesota 55455

~Received 22 October 2002; published 12 March 2003!

We investigate the combined effects of magnetic impurities and applied magnetic field on the interference
contribution to the conductance of disordered metals. We show that in a metal with weak spin-orbit interaction,
the polarization of impurity spins reduces the rate of electron phase relaxation, thus enhancing the weak-
localization correction to conductivity. Magnetic field also suppresses thermal fluctuations of magnetic impu-
rities, leading to a recovery of the conductance fluctuations. This recovery occurs regardless of the strength of
the spin-orbit interaction. We calculate the magnitudes of the weak-localization correction and of the mesos-
copic conductance fluctuations at an arbitrary level of the spin polarization induced by a magnetic field. Our
analytical results for the ‘‘h/e’’ Aharonov-Bohm conductance oscillations in metal rings can be used to extract
the spin and gyromagnetic factor of magnetic impurities from existing experimental data.
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I. INTRODUCTION

Conductance of disordered metals is sensitive to the
plied magnetic field. At weak magnetic field the conductiv
of a bulk metal has a sharp feature due to the weak loca
tion ~WL!.1 Similarly, the conductance of mesoscopic met
fluctuates as the magnetic field is changing.2,3 Both the con-
ductance fluctuations and the WL correction to the cond
tivity are quantum-mechanical phenomena originating fr
the interference of quantum states. As any other interfere
phenomena, they may be suppressed by interac
processes.4

Localized spins affect the electron transport in meta
Various properties of electron kinetics are sensitive to diff
ent aspects of the localized spin dynamics. The energy
change between electrons in the process of scattering o
magnetic impurity is made possible by the quantum fluct
tions of the impurity spin: its virtual flip in the course o
scattering facilitates the energy transfer between the
electrons.5 On the other hand, no spin dynamics of impuriti
is needed for the suppression of the weak-localization c
rection to conductivity; interaction of electron spins wi
randomly oriented magnetic moments already leads to
suppression.6

Mesoscopic conductance fluctuations are not suppre
by static magnetic moments. However, even a relatively s
relaxation of individual magnetic moments, such as Korrin
relaxation,7 leads to the time-averaging of the random pote
tial ‘‘seen’’ by conduction electrons in the course of measu
ment, and the mesoscopic fluctuations of the dc conducta
get averaged out.8,9 The sensitivity of conductance fluctua
tions to the time evolution of the system of localized ma
netic moments10 was used extensively to probe the spin-gla
freezing in metals11,12 and semiconductors.13

An applied magnetic field may be used to control t
statistical properties and dynamics of localized magnetic m
ments. It was noticed12 that in a strong magnetic field th
amplitude of conductance fluctuations and ‘‘h/e’’ Aharonov-
Bohm ~AB! oscillations increases, apparently because
spin fluctuations are quenched.8 Recently the dependence o
the amplitude of ‘‘h/e’’ AB oscillations on magnetic field
0163-1829/2003/67~11!/115310~17!/$20.00 67 1153
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was carefully measured on Cu wire rings.14 The goal of that
measurement was to corroborate the existence of local
spins, conjectured on the basis of measurements of the e
tron energy relaxation rate in Cu wires.15

Theory of conductance fluctuations and WL correction
the conductivity at partial spin polarization of magnetic im
purities has not been developed yet. Only the limits of
spin polarization atB50 and of strong polarization atB
@T/gmBS were considered8,16–18 ~here B is the magnetic
field, S is the impurity spin,T is the system temperature,g is
the impurity gyromagnetic factor, andmB is the Bohr mag-
neton!.

In this paper we concentrate on the interference contri
tion to the linear conductance of mesoscopic systems in
presence of partially polarized magnetic impurities. Parti
larly, we calculate the weak-localization correction to t
conductivity and the amplitude of the mesoscopic cond
tance fluctuations.

II. MAIN RESULTS

It is well known that scattering of electrons off magne
impurities in the absence of a magnetic field suppresses
interference correction to the conductivity of a wire:1,6

Ds52
e2

2p\
ADS 3

A2/3ts

2
1

A2/ts
D . ~1!

HereD is the diffusion constant for electrons in the wire a
1/ts is the electron scattering rate off magnetic impurities.
the lowest order in the exchange constantJ calculation,
1/ts52pnnsJ

2S(S11), where ns is the concentration of
magnetic impurities,n is the electron density of states at th
Fermi level per spin degree of freedom, andS is the magni-
tude of impurity spins. Taking into account the Kondo ren
malization of the exchange constant, at temperatures
above the Kondo temperatureTK , this rate can be cast in th
form
©2003 The American Physical Society10-1
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1

ts
5

8pns

n

S~S11!

ln2T/TK

, T@TK . ~2!

It is clear from Eq.~2! that the phase relaxation rate increas
upon reduction of the temperature towardsTK . This rate
reaches maximum atT;TK , and decreases if the temper
ture is further reduced. The specific form of functionts(T) at
low temperatures depends on the spinS of local moments.
The screening of the local spinS51/2 is complete atT50
and atT!TK the phase relaxation rate can be found from
Noziéres’ Fermi liquid theory,

1

ts
}

ns

n S T

TK
D 2

, T!TK . ~3a!

If S>1, then screening is incomplete, and the logarithm
renormalization theory can be employed for the evaluation
ts at low temperatures,19

1

ts
5

8pns

n

S221/4

ln2TK /T
, T!TK . ~3b!

Note that the low-temperature asymptotes, Eqs.~3!, differ
from the approximate expression, used sometimes in
analysis of experiments.20,21

In this section, we only present the result for WL corre
tion Ds to the conductivity of a thin wire in the absence
spin-orbit scattering. If, in addition, the density of magne
impurities is small, then starting from rather weak fields t
conditiongmBBts@1 is satisfied, and we find

Ds52
e2

4p\E d«/T

cosh2«/2T

AD

AG~«!1qDAB2/F0
2

. ~4!

HereA is the wire cross-section area,q is a numerical factor,
andF05hc/2e. FunctionG(«) represents the spin-flip rat
in the presence of magnetic fieldB:

G~«!5F12
^Ŝz

2&1^Ŝz&tanh~«1gmBB!/2T

S~S11!
G 1

ts
, ~5!

Here ^•••& stands for the thermodynamic average over
states of an isolated impurity spin, see Eq.~15!. The Kondo-
renormalized rate 1/ts in Eq. ~5! is given by Eq.~2! at weak
magnetic field,B,T/gmB , and by

1

ts
5

2pns

n

S~S11!

ln2@gmBB/TK#
~6!

at strong magnetic field,B.max$T,TK%/gmB .
In the domain of relatively weak magnetic field

1/gmBts!B!T/gmB , the spins are not polarized, howeve
their precession already affects the value of WL correcti
Equation~4!, valid in this domain, yieldsDs differing from
the full zero-field value~1! by a factor 2/(32A1/3)'0.83.
We discuss the detailed behavior of the WL correction in
field regionB&1/gmBts in Sec. IV. The main variation of the
11531
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WL correction, however, is associated with the spin polari
tion. This variation occurs atB;T/gmB , and is described by
Eqs.~4! and ~5!.

At strong magnetic field,B*T/gmB , the spin-flip rate of
thermal electrons («;T) becomes exponentially small,G
}exp(2gmBB/T)/@(S11)ts#. In this case higher-orde
terms in the exchange interaction must be retained to ca
late the phase relaxation rate. We find the following result
G(«):

G~«!5
1

2p

n

nsts
2

p2T21«2

@gmBB~S11!#2
. ~7!

The crossover between the rates given by Eqs.~5! and ~7!
occurs at

B* ~T!'~T/gmB!ln~n/Snsts!. ~8!

The relaxation rate at high fields, Eq.~7!, may still be large
enough to compete with the conventional mechanisms1,4 of
phase relaxation caused by the electron-electron
electron-phonon interactions.

If one disregards the orbital effect of magnetic field~very
thin wire!, then the WL correction to the conductivity, Eq
~4!, is a function of the ratioB/T, up to slowly varying
logarithmic factors ln(gmBB/TK) and ln(T/TK), see Eqs.~2!
and ~6!.

Different regimes for the WL are schematically repr
sented in Fig. 1. Substantial variation ofDs with B occurs at

FIG. 1. Different regimes of the temperatureT and magnetic
field B dependence of the mesoscopic conductance fluctuations
the WL correction to conductivity. Below the Kondo temperatu
T&TK , and at weak magnetic field,gmBB&TK , magnetic impuri-
ties are screened and the electron phase relaxation rate is give
Eqs.~3!. The impurity magnetic moments acquire a significant p
larization at fields aroundB5T/gmBS ~straight solid line!, which
results in strong dependence of the electron phase relaxation ra
the applied magnetic field. The exponential behavior of the ph
relaxation rate onB/T is replaced by a weaker power-law functio
see Eq.~7!, at a crossover fieldB* defined by Eq.~8! and depicted
by the solid bold curve. Strong variation of the WL correction
possible only in the absence of spin-orbit interaction and at su
ciently weak orbital effect of the magnetic field. This last conditi
is satisfied below the dashed curveBo(T) defined by Eq.~34!,
which intersects the linegmBSB5T at temperatureTo .
0-2
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CONDUCTANCE OF MESOSCOPIC SYSTEMS WITH . . . PHYSICAL REVIEW B67, 115310 ~2003!
B*T/gmBS. The curveB5B* (T) is shown in Fig. 1 by the
bold solid line.

The effect of magnetic-field-induced polarization of loca
ized spins on the WL correction to the conductivity is s
nificant only if two quite stringent conditions are met. Fir
the orbital effect of the magnetic fieldB on WL ~Ref. 8! is
needed to be small in the range of fieldsB*T/gmB , where
the spin polarization is significant. The orbital effect dom
nates over the spin scattering, ifDAB2/F0

2&G(«.T), see
Eq. ~4!. This condition defines the upper bound~a dashed
line in Fig. 1! for the domain of fieldsB in which the spin
polarization noticeably affects the WL correction. In gener
to avoid the undesirable orbital effect, measurements ar
be done on thin wires at low temperature.

Second, the spin-orbit scattering must be sufficien
weak. This condition limits the range of host conductors
materials with sufficiently low atomic numbers.1 In heavier
materials, the spin-orbit interaction suppresses the triplet
of the WL correction to the conductivity, represented by t
first term in Eq.~1!. Polarization of local moments does n
eliminate the randomness of the effective magnetic field
duced by spin-orbit interaction, and the triplet contribution
the WL remains suppressed. At the same time, the sin
part of the WL correction@the second term in Eq.~1!# re-
mains suppressed by scattering off magnetic impurities e
at their full polarization, see Sec. IV.

The effect of spin polarization on the mesoscopic cond
tance fluctuations is not subject to the two restrictions d
cussed above. In other words, the manifestation of the
polarization in the conductance fluctuations and in the ‘‘h/e’’
Aharonov-Bohm effect is much more robust than that in
WL. The presence of magnetic impurities suppresses
conductance fluctuations only due to the spin dynamics
the impurity system. If the measurement time is significan
longer than the characteristic time of the variation of imp
rity spin configuration, then the conductance fluctuations
averaged out. Quenching of the spin configuration by
applied magnetic field decreases the effect of the cond
tance averaging and restores the fluctuations. In the limi
full polarization, magnetic impurities no longer affect th
conductance fluctuations.8

We concentrate on the amplitude of the Aharonov-Bo
‘‘ hc/e’’ conductance oscillations, since they are expone
tially sensitive to the polarization of impurity spins
Magnetic-field fluxF threading the ring of radiusR changes
electron wave functions and, consequently, the conducta
gF of the ring. The conductance statistics is characterized
the correlation function:

^^gFgF1DF&&5 (
k50

`

KkcosS 2pk
DF

F0
D , ~9!

whereF5pR2B is the magnetic flux through the ring.
We find the amplitude of oscillations of the conductan

correlation function:

Kk5a
e4

32\2

D3/2

R3T2E e22pkRAG(«)/D

AG~«!

d«

cosh4«/2T
, ~10!
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where

G~«!5F12
^Ŝz&

21^Ŝz&tanh~«1gmBB!/2T

S~S11!
G 1

ts
~11!

is the phase relaxation rate to the second order in the
change interactionJ, anda is a dimensionless geometry de
pendent factor. As the magnetic field increases,G(«) de-
creases exponentially and at fieldB* , given by Eq.~8!, the
higher-order term in the exchange interaction, Eq.~7!, pre-
vails.

Equation~10! is valid at G(«.T)!T. This condition is
always satisfied at a sufficiently strong magnetic field, sin
G(«.T)→0 asB increases and the impurity spins becom
almost polarized, see Eqs.~7! and ~11!. Here again we dis-
regarded other mechanisms of phase relaxation, such a
electron-electron interaction.1,22

We emphasize that Eq.~11! contains the averagêSz&
2

instead of the term̂Sz
2& in Eq. ~5!. The two equations are

different because of the nature of the electron dynamics p
ducing the WL correction to the conductivity and condu
tance fluctuations. The difference can be understood in
following way.

The weak-localization correction to the conductivi
originates from the electron passage along the same tra
tory twice. The time difference between the two passa
does not exceed the time of phase relaxation,@G(«;T)#21

in our case. In the derivation of Eq.~5! we assumed this time
being shorter than the Korringa relaxation time7 tT , see Eq.
~18!. Hence the instantaneous spin-spin correlator^Sz

2& en-
ters Eq. ~5!. The origin of the correlations in mesoscop
conductance is also due to passage of electrons along
same trajectory. Here, however, the relevant time differe
is defined by the time between the measurements, and
nificantly exceedstT . That is why the conductance correla
tion function is described bŷSz&

2 correlator, characterizing
a nonfluctuating component of impurity spins.

Note that in the case of low concentration of magne
impuritiesns&nT the Korringa relaxation time may becom
shorter than@G(«;T)#21. In this case Eq.~11! rather than
Eq. ~5! defines the phase relaxation rate in the WL correct
to the conductivity. The corresponding modification of t
WL correction atB50 was considered earlier in Ref. 18.

To summarize, we studied the effect of magnetic field
the weak-localization correction and on the magnitude
mesoscopic conductance fluctuations in a conductor w
magnetic impurities. Our results are valid at an arbitra
level of the spin polarization. We demonstrate that the el
tron phase relaxation rate acquires energy dependence d
the Zeeman splitting. Such energy dependence is abse
the limits of no impurity polarization,B50, and strong po-
larization, gmBB@T. However, in the experimentally rel
evant intermediate regime,gmBB;T, the effect of spin po-
larization cannot be accounted for by assigning a sin
phase relaxation rate to all electron states.

III. MODEL

We consider a metal with isotropic elastic scattering
electrons by impurities, characterized by the mean scatte
0-3



u

a

iv
i

-

o

ri-

u

ts
re-
on

the

ge

-

-
tes.

s.
a
l
the

the
avy

lax-
on-

al.
ith

he
ring

is
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rate of electrons 1/te52pnneU
2. Heren is the electron den-

sity of states at the Fermi surface per spin state,ne is the
concentration of impurities, andU is the Born amplitude of
elastic scattering by an impurity.

The scattering of conducting electrons off magnetic imp
rities is described by the Hamiltonian

Ĥm5JSŴ sŴ , ~12!

whereSŴ is the spin operator of a magnetic impurity, andJ is
the exchange constant. The electron scattering rate by m
netic impurities is

1

ts
52pnnsJ

2S~S11!. ~13!

Herens is the magnetic impurity concentration, andS is the
total impurity spin. The exchange constantJ is renormalized
due to the Kondo effect:J→2/(n ln T/TK) at temperaturesT
exceeding bothTK and gmBB. In stronger fields, B
.max$T,TK%/gmB , temperatureT under the logarithm is
replaced bygmBB.

We study the effect of magnetic impurities on conduct
ity of metals. In order to evaluate the interference effects
electron transport we will need instantaneous,^Sz& and^Sz

2&,
and time delayed spin-spin correlation functions:

xz~t!5
^Ŝz~ t !Ŝz~ t2t!&

S~S11!
, ~14a!

x'~t!5
^@Ŝ1~ t !,Ŝ2~ t2t!#1&

S~S11!
. ~14b!

Here Ŝz(t) and Ŝ6(t)5Ŝx(t)6 iŜy(t) are parallel and per
pendicular spin components of a magnetic impurity,@•,•#1

is an anticommutator, and

^A&5
1

Z (
m52S

S

AmmemvS /T, Z5 (
m52S

S

emvS /T ~15!

stands for the thermodynamic average in the presence
magnetic field B, producing the Zeeman splittingvS
5gmBB of the magnetic impurity states;g is the impurity
spin gyromagnetic factor.

For a metal with dilute noninteracting magnetic impu
ties, functionsxz(t) andx'(t) have the form

xz~t!5
^Sz&

21$^Sz
2&2^Sz&

2% f z~t!

S~S11!
, ~16a!

x'~t!5
$S~S11!2^Sz

2&% f'~t!

S~S11!
. ~16b!

The functionsf z(t) and f'(t) describe spin relaxation. In
a dilute system of magnetic impurities, relaxation occurs d
to the Korringa mechanism7 and is exponential:

f'~t!5e2utu/t'1 ivSt, f z~t!5e2utu/tz. ~17!
11531
-

g-

-
n
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e

Heret' andtz are the spin relaxation times for componen
perpendicular and parallel to the applied magnetic field,
spectively. In a weak magnetic field the two spin relaxati
times coincide and are equal to the Korringa timetT :

1

tT
5

1

t'

5
1

tz
5

2p

3
~Jn!2T. ~18!

The applied magnetic field produces Zeeman splitting«Z
of energy states of transport electrons. When estimating
Zeeman energy«Z in metals with magnetic impurities, it is
important to notice that the sign of the exchange constantJ is
fixed by the nature of the pair of host and impurity13 atoms.
Polarization of magnetic impurities results in the exchan
contribution nsJ^Sz&/mB to the effective magnetic field
which causes the Zeeman splitting«Z of spin states of trans
port electrons with the gyromagnetic factorge

«Z5gemBB22nsJ^Sz&. ~19!

Equation~19! shows that magnetic impurities may signifi
cantly affect the Zeeman splitting of transport electron sta

In the case of antiferromagnetic exchange,J.0, the de-
pendence of«Z on B is not monotonic at low temperature
As we will see below, Eq.~19! provides a mechanism for
nonmonotonic inB interference contribution to the meta
conductivity, similar to the Jaccarino-Peter mechanism of
reentrant superconductivity.23,24

We also consider the effect of spin-orbit scattering on
conduction of electric current. For the specific case of he
element impurities of concentrationnso, the corresponding

term of the Hamiltonian has the form25 Ĥso5Uso@pW 3pW 8#sŴ ,
and the spin-orbit scattering rategso52pnnsoUso

2 pF
4 .

In this paper we assume that the shortest electron re
ation time is due to elastic scattering and calculate the c
ductivity to the lowest order integs and tegso, using the
standard diagrammatic technique for a disordered met26

Nevertheless, the results are valid even for conductors w
strong spin-orbit interaction in their host material, when t
spin-orbit scattering rate is comparable with elastic scatte
rate.

IV. WEAK-LOCALIZATION CORRECTION TO THE
CONDUCTIVITY

The weak-localization correction to the conductivity
given by the following expression:

Ds~B!52
e2D

p\ E d«

4T cosh2«/2T

3E ddq

~2p!d (
i 51

4

a iCi~«,v50,q!, ~20!

where the CooperonC(«,v,q) is

Ci~«,v,q!5
1

iv1Dq21G i~«!
. ~21!
0-4
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The Cooperon components, corresponding to different in
ces i, represent possible spin configurations: indicesi 51,2
are assigned to the Cooperon components with nonzero
projections on the direction of magnetic field,mc561 and
Sc51; index i 53 is assigned to the Cooperon withSc51
and zero-spin projectionmc50; and indexi 54 stands for a
singlet component,Sc5mc50, see Table I.

Performing the integration over momentumq, we obtain
a general result in the form

Ds52
e2

p\ (
i 51

4

a iFd~B,G i !. ~22!

FunctionsFd(B,G) have different form depending on th
conductor geometry (d52 for a metal film andd51 for a
wire!, while parametersa i and phase relaxation ratesG i(B)
are determined by details of electron scattering proces
First we present functionsFd(B,G) for different conductor
geometries and then discuss the effect of spin-flip scatte
on the weak-localization correction to the conductivity.

A. Geometry dependence

The weak-localization correction to the conductivity of
quasi-two-dimensional metal is determined by the followi
expression:

F2~B,G i !52
1

4p FcS 1

2
1

G i1gorb

4DeB' /\cD1 ln
4eB'Dte

\c G ,
~23!

wherec(x) is the digamma function andG i is the dephasing
rate for thei th component of the Cooperon. HereG i includes
dephasinggorb by the applied magnetic field parallel to th
film gorb5e2Bi

2Da2/12\2c2, where B' and Bi are the
magnetic-field components, perpendicular and parallel to
film. In weak perpendicular magnetic field we usec(1/2
1x)' ln x11/24x2 and obtain

F2~B,G i !5
1

4p F ln
1

~G i1gorb!te
2

2~DeB' /\c!2

3~G i1gorb!
2 G .

~24!

The terms withte in Eqs. ~23! and ~24! originate from the
ultraviolet logarithmic divergence of the momentum integ

TABLE I. The Cooperon phase relaxation factors for vario
components corresponding to different spin configurations.
components withi 51,2,3 represent a spin states with total sp
one,SC51. These spin configurations form a triplet in an isotrop
system. Anisotropy due to the applied magnetic field splits the
generacy. Thei 54 component is a singlet spin configuration wi
zero total momentum,SC50.

i uSC ,mC& G its a i

1 SC51,mC511 12^Sz
2&/S2 11

2 SC51,mC521 12^Sz
2&/S2 11

3 SC51,mC50 2^Sz
2&/S2 11

4 SC50,mC50 2 21
11531
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for the weak-localization correction to the conductivity in th
two-dimensional case. The existence of this term complica
analysis of the magnetoresistance measurements.

In the quasi-one-dimensional case the integral over m
mentum gives

F1~B,G i !5
1

2
A D

G i1gorb
. ~25!

The denominator of Eq.~25! contains the sum of electro
phase relaxation rates due to scattering off magnetic imp
ties and due to the orbital effect of the applied magnetic fi
gorb. For a magnetic field of strengthB and applied in direc-
tion n, the orbital contribution to the phase relaxation rate

gorb5q~n!
e2B2DA

\2c2
, ~26!

where the functionq(n) of the directionn is of the order of
unity, andA is the area of the wire cross section.

In the following subsections we focus on properties of t
phase relaxation rateG i due to scattering off magnetic impu
rities. To be specific, we will present the WL correction
the conductivity of a thin wire. Since the phase relaxati
factorsG i do not depend on the sample geometry, the res
for the WL correction to the conductivity of the next tw
subsections can be easily generalized to other geomet
such as a film, a metal ring, or an open quantum dot.27

B. Effect of classical spin impurities

Even in the absence of spin-orbit interaction, there
five parameters affecting the WL correction to the cond
tivity, including system temperatureT, the applied magnetic
field B, impurity spin-relaxation timetT , the electron scat-
tering rate off magnetic impurities 1/ts52pnnsJ

2S(S11)
@where the factor (S11) may be replaced byS in the clas-
sical limit S@1], and the phase relaxation rate due to t
orbital effect of the applied magnetic fieldgorb. It is easier to
establish the role of these parameters in the case of clas
(S@1) spins, considered in this subsection.

The explicit matrix form of the equation for the Coopero
in the case of classical spins is given in Appendix A, see E
~A2! therein. For an arbitrary relation between the electr
dephasing rateG i and the impurity spin-relaxation rate 1/tT ,
the solution of this equation is cumbersome. Here we c
sider only the limiting cases of long (tTG i@1) and short
(tTG i!1) spin-relaxation time. Usually~for not too small
concentration of magnetic impuritiesns*nT) the first con-
dition is satisfied; the second condition may become relev
only at very lowns. In the first case one may neglect6 the
dynamics of localized spins settingt50 in the correlation
functions Eq.~A2b!. In the second case, we need to set
→` in Eq. ~A2b!. In both limits we obtain the following
expressions for the parameters of Eq.~22!:

a1,251, a351
x'

Zts
, a452

x'

Zts
~27!

and for the phase relaxation rates

e

-

0-5



s.

-

a

e

t

th

n
ld
a
m
o

.

m
io
.

lec-
de-

the

s,

on

lax-
in-
h

tic

e
.
e-

ch
iza-
he

he
e-
n

f

tic
w

M. G. VAVILOV AND L. I. GLAZMAN PHYSICAL REVIEW B 67, 115310 ~2003!
G1,25~12xz!
1

ts
, ~28a!

G35~11xz!
1

ts
1 ivS2Z, ~28b!

G45~11xz!
1

ts
1 ivS1Z. ~28c!

Here

Z5Ax'
2

ts
2

2~«Z1vS!2;

xz and x' are the impurity spin correlators given by Eq
~16! and ~17! with proper substitutiont50 or t→`. The
correlation functionŝSz& and^Sz

2& of classical spins are de
scribed by the following functions:

^Sz&5Scoth
SvS

T
2

T

vS
, ~29a!

^Sz
2&5S22

2T

SvS
coth

SvS

T
12S T

vS
D 2

. ~29b!

The weak-localization correction to the conductivity of
wire may be represented as

Ds152
e2

2p\
ADts Y~B,T!. ~30!

The functionY(B,T) has different forms, depending on th
relations between parameters of the system.

In the limit of long spin relaxation time (tTG i@1) and
weak magnetic field (vSts!1 and«Zts!1) all four Coop-
eron modes contribute to the weak-localization correction
the conductivity,

Y~B,T!5
2

A12^Sz
2&/S21gorbts

1
1

A2^Sz
2&/S21gorbts

2
1

A21gorbts

. ~31!

The first term in Eq.~31! is due to the Cooperon modes wi
i 51,2. It is the first term of the functionY(B,T) which is
responsible for a nonmonotonic magnetic-field depende
of the WL correction to the conductivity. As magnetic fie
increases and impurity spins become polarized, the ph
relaxation rate for modesi 51,2 decreases, and the first ter
in Eq. ~31! grows. The combination of the remaining tw
terms, representing Cooperon componentsi 53,4, constitutes
0.17Ds1 of the full value ofDs1 at zero magnetic field and
monotonically decreases as the magnetic field increases

We notice that the contribution ofi 53,4 Cooperon com-
ponents diminishes not only as magnetic impurities beco
polarized, but also as the Zeeman splitting of conduct
electrons and impurity spins («Z1vS) increases, see Eqs
11531
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~20! and ~27!. At strong magnetic field,uvS1«Zuts@1, the
contribution of i 53,4 Cooperon components toDs1 van-
ishes, since both the Zeeman splitting of the conduction e
trons and the energy transferred in the spin-flip process
stroy the interference of time-reversed paths in
Cooperon. If the spin-relaxation time is still long,tTG i@1,
we have

Y~B,T!5
2

A12^Sz
2&/S21gorbts

. ~32!

For a system with short relaxation time of impurity spin
tTG i!1, the Cooperon modes withi 53,4 do not contribute
to Ds1 again. In this case, the weak-localization correcti
to the conductivity is given by Eq.~30! with

Y~B,T!5
2

A12^Sz&
2/S21gorbts

. ~33!

We notice that as magnetic field increases, the phase re
ation rate decreases, and the condition of short sp
relaxation time (tTG1,2!1) may be reached, even thoug
initially system was in the opposite regime,tT@ts.

We conclude from Eqs.~31!–~33! that the WL correction
to the conductivity depends on the polarization of magne
impurities through the thermodynamic averages^Sz& and
^Sz

2&. The polarization is significant in an applied field of th
order ofB5T/gmBS, shown as a straight solid line in Fig. 1

The orbital effect of the applied magnetic field is repr
sented by the termgorbts in Eqs. ~31!–~33!. The orbital ef-
fect and the impurity spin polarization compete with ea
other: the orbital effect suppresses, while the spin polar
tion enhances the WL correction to the conductivity. T
phase relaxation ratesgorb andG1 become equal,gorb5G1,
at magnetic fieldBo(T):

Bo~T!5
F0

ADtsA
A12

^Sz&B5Bo

2

S2
. ~34!

The effect of spin scattering prevails over orbital effect of t
magnetic field atB&Bo(T). On the other hand, the enhanc
ment of the WL correction due to impurity spin polarizatio
is significant atB*T/gmBS. These two limitations are met i
the wire temperatureT&To , where

To5gmBS
F0

ADtsA
. ~35!

At higher temperature,T*To , the effect of the spin polar-
ization is concealed by the orbital effect.

In Fig. 2 we illustrate the effect of an applied magne
field on the WL correction to the conductivity. We sho
dependence of the functionY(B,T) on the applied magnetic
field B at temperaturesT50.3To and T50.03To . At low
temperatureT50.03To , the effect of impurity spin polariza-
tion is significant, but already at temperatureT50.3To it
fades away.
0-6
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The spin-orbit interaction modifies the WL correction
the conductivity. Using Eqs.~A2! in Appendix A we find

a1,251, ~36a!

a35
2gso/32x' /ts

A~2gso/32x' /ts!
22«Z

2
, ~36b!

a452
2gso/32x' /ts

A~2gso/32x' /ts!
22«Z

2
~36c!

and the phase relaxation rates are

G1,25~12xzz!
1

ts
1

4gso

3
, ~37a!

G35
11xzz

ts
1

2gso

3
1AUx'

ts
2

2gso

3 U2

2«Z
2, ~37b!

G45
11xzz

ts
1

2gso

3
2AUx'

ts
2

2gso

3 U2

2«Z
2. ~37c!

Here we assumedvS!G i for simplicity.
According to Eqs.~37!, in metals with strong spin-orbi

scattering,gsots@1, the terms withi 51,2,3 are suppresse
and the interference correction to the conductivity is d
scribed by the singlet antilocalization termi 54. In the limit
of long impurity spin-relaxation timetT@ts, the weak-
localization correction to the conductivity depends onts and
the Zeeman energy«Z :

Y~B,T!52
1

A213«Z
2ts/4gso1gorbts

, ~38!

FIG. 2. Dependence of the weak-localization correction on
applied magnetic field in a metal with classical spin impurities. T
plot shows functionY(B,T) at two temperature valuesT50.3To

andT50.03To for both short (tT!ts) and long (tK@ts) impurity
spin relaxation timetT . The subplot shows the WL correction t
the conductivity forS51/2 impurities atT5To . HereTo is given
by Eq. ~35!.
11531
-

while in the opposite limittT!ts the correction also depend
on the polarization of impurity spins:

Y~B,T!52
1

A11^Sz&
2/S213«Z

2ts/4gso1gorbts

. ~39!

The termsgorbts}A in the denominator of Eqs.~38! and
~39! originate from the orbital magnetic-field effect, see E
~26!. If the areaA is sufficiently small so that the orbital pa
is not important, and the temperature is low enough, then
antilocalization may show a nonmonotonic field depende
due to the Jaccarino-Peter mechanism,23 see Eq.~19!.

From the above analysis performed in the approximat
of large impurity spins we make two conclusions. First, t
polarization of impurity spins hardly affects the weak antil
calization correction to the conductivity in metals wi
strong spin-orbit interaction. Indeed, the only surviving co
tribution to the conductivity correction originates from th
singlet spin configuration of the Cooperon, which is not se
sitive to the impurity spin polarization. Second, in meta
without spin-orbit interaction, the Cooperon modes w
zero-spin projection on the magnetic field (i 53,4) give only
a small (;0.17Ds) contribution to the total WL correction
to the conductivity, and their contribution vanishes at mo
erately strong (vSts;1) magnetic field. In the next subsec
tion we neglect these terms and calculate the WL correc
to the conductivity, originating from Cooperon modesi
51,2 at such fields thatvSts*1. We perform the calcula-
tions for an arbitrary value ofS.

C. Effect of quantum spin impurities

We notice that the semiclassical description is applica
only ~i! for a large spinS@1, when linear inScontributions
to the dephasing rates can be neglected, and~ii ! at high tem-
peratureT@vS , so that the discreteness of spin energy le
els can be disregarded. In this subsection we consider q
tum spins with arbitrary value ofS and for arbitrary ratio of
vS /T. As we discussed in the previous subsection, o
componentsi 51,2 of the Cooperon with parallel spins, se
Table I, are important at strong magnetic field. The ter
with i 53,4 are small at relatively strong magnetic field
uvS1«Zuts*1. Moreover, even at weak fields, modesi
53,4, give rise only to a small portion ofDs1, equal to
0.17Ds1 at zero magnetic field and monotonically decrea
ing at stronger fieldsB. To avoid cumbersome expression
we omit the terms withi 53,4 in our further analysis.

The contribution to the Cooperon self-energy due to
scattering off magnetic impurities is shown in Fig. 3. Deta
of our calculations are presented in Appendix B. We find t
the WL correction to the conductivity may be represented
the form of Eq.~30! with function Y(B,T) replaced by

YS~B,T!5E
2`

1` d«

2T cosh2«/2T

1

A~G~«!1gorb!ts

, ~40!

where the phase relaxation rate due to scattering off m
netic impurities is

e
e

0-7
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FIG. 3. The Cooperon decay rate is determined by diagrams of the second order in the exchange constantJ. The two left diagrams
represent the electron self-energy contribution from processes with and without~not shown! spin flip. The right diagram represents the vert
correction.
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G~«!5F12
^Ŝz

2&1^Ŝz&tanh~«1vs!/2T

S~S11!
G 1

ts
, ~41!

provided that the impurity spin-relaxation time is larg
tTG(«;T)@1. We remind thatts

2152pnnsJ
2S(S11).

Spin-correlation functionŝŜz& and ^Ŝz
2& in Eq. ~41! are

defined by Eqs.~15!. We notice that in strong fieldsvS*T
the impurity spins are polarized and the phase relaxation
of electrons close to the Fermi surfaceu«u&T vanishes, in
agreement with Ref. 8.

We consider the special case of magnetic impurities w
S51/2 in more details. First, we discuss the meaning of
energy-dependent relaxation rateG(«), Eq. ~41!. In the S
51/2 case,G(«) can be rewritten in the form

G~«!5
4

3ts
$p↓@12n~«1vS!#1p↑n~«1vS!%, ~42!

wherep↑(↓)5(2 coshvS/2T)21exp(6vS/2T) is the probabil-
ity for the spin impurity to be parallel~antiparallel! to the
direction of the magnetic field andn(«)5@11exp(«/T)#21 is
the Fermi occupation number for electrons with energy« at
temperatureT. We interpret Eq.~42! in the following way.
Two processes contribute to the electron phase relaxa
rate:~i! an electron with spin up and energy« is scattered by
an impurity with spin down to the electron state with sp
down and energy«1vS ; ~ii ! a hole with spin up and energ
« is scattered by an impurity with spin up to the electr
state with spin down and energy«1vS . The probabilities of
these processes are determined by the first and second
in Eq. ~42!, respectively.

In the limit of short impurity spin-relaxation time
tTG(«.T)@1, the functionY1/2

(B,T) has the form

Y1/2
~B,T!5E

2`

1` dx

cosh2x
F 2 coshx

3 coshvS/2T cosh~x1vS/2T!

1gorbtsG21/2

. ~43!

We illustrate the behavior of functionY1/2
(B,T) in the inset

of Fig. 2 at temperatureT50.3To , whereTo is defined by
Eq. ~35! with S51/2.
11531
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If the orbital effect of the magnetic field is small,gorb
50, we have

Y1/2
~B,T!5A8

3

sinh~3vS/4T!

tanh~vS/2T!Acosh~vS/2T!
, ~44!

and the weak-localization correction to the conductivity
given by Eq.~30! with Y1/2

(B,T) in the form of Eq.~44!. In
the opposite limit, when the orbital effect of the magne
field on WL dominates over the effect of spin scattering,
may expand functionY1/2

(B,T) in (tsgorb)
21 and obtain

Ds1~B!52
e2

p\
A D

gorb
S 12

1

3

1

tsgorb

vS

T sinhvS /TD .

~45!

We notice that the second term in Eq.~45! has the same
structure as the phase relaxation rate suggested in Ref. 1
describe the WL correction to the conductivity. Therefore t
expansion, presented in Eq.~45!, establishes the condition
of applicability of the suggested formula.18

Expression for the phase relaxation rate in Eq.~41! was
derived in the limit of long impurity spin-relaxation time
tTG(«;T)@1. In the opposite limit, the spins at differen
moments of time are not correlated, and we have to sub
tute ^Sz&

2 for ^Sz
2& in Eq. ~41!. Then, the functionY1/2

(B,T)
acquires the form

Y1/2
~B,T!5E F12

1

3
tanh2

vS

2T
2

2

3
tanhS x1

vS

2TD
3tanh

vS

2T
1gorbtsG21/2 dx

cosh2x
. ~46!

We observe from Eq.~41!, that at strong magnetic field
the phase relaxation rate exponentially vanishes. Con
quently, higher-order terms in the exchange constantJ may
become important. The fourth-order diagrams for the Co
eron phase relaxation rate are shown in Fig. 4 and the co
sponding analytical calculations, presented in Appendix
yield
0-8
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G~«!5
1

2p

n

nsts

p2T21«2

vS
2~S11!2

1

ts
. ~47!

We emphasize that Eq.~47! represents theJ4 contribution to
the electron phase relaxation rate, while Eq.~41! represents
the J2 contribution. The corresponding small parameter
the expansion in powers ofJ2 may be written asn/(nsts).

As the applied magnetic field increases, both theJ2 and
J4 contributions may become comparable, since theJ2 con-
tribution decreases exponentially, while theJ4 contribution
at energyu«u;T decreases much slower, cf. Eqs.~41! and
~47!. The small factorn/(nsts) is compensated at stron
enough magnetic fieldB* , which we estimate from exp
(2vS/T)5n/(nsts). We obtain

B* ~T!5
T

gmB
ln

n

nsts
. ~48!

At small fields,B&B* , the relaxation rate decreases e
ponentially with the increase ofB, whereas at higher field
this dependence is replaced by a slower power lawG(«
;T)}T2/vS

2 . The counterpart of Eq.~45! at B.B* reads

Ds1~B!52
1

p2

e2

\c
A D

gorb
S 12

p

3

n

nsts

1

tsgorb

T2

~S11!2vS
2D .

~49!

In conclusion of this subsection we notice that the m
netic field modifies the phase relaxation rate of the sing
component of the Cooperon. This rate isG4(B50)52/ts at
zero magnetic field, and it remains finite,G(B@T/gmB)
5@S/(S11)#G4(B50), at strong magnetic field.28

V. CONDUCTANCE FLUCTUATIONS

In this section we study the effect of the impurity sp
polarization on conductance fluctuations of a metal ri
weakly connected to the leads.29 Magnetic fluxF piercing
the ring changes wave functions of electrons in the ring a

FIG. 4. The Cooperon self-energy diagrams to the fourth or
in the exchange constantJ. The spin-spin correlation function
~wavy line! acquires correction due to the electron scattering off
spin.
11531
f
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d,

consequently, the ring conductance. The fluctuations of
conductance are usually characterized by the correla
function K(Dt,DF):

K~Dt,DF!5^^gF~0!gF1DF~Dt !&&F , ~50!

where F5pR2H is the magnetic flux through the ring o
radiusR, andDt is the time lapse between the measureme
of gF andgF1DF . The dc conductance, Eq.~50!, is defined
in terms of the currentI (t), averaged over measurement tim
Tm,

gF~ t !5E
t

t1Tm]I F~ t !

]V
uV50dt8, ~51!

whereV is the applied bias. During the measurement timeTm
the magnetic flux should be constant, otherwise the meas
conductance is already averaged over different realizatio

We assume that the system satisfies the ergodic hypoth
and the averaging over the magnetic field is equivalen
averaging over impurity configurations.2,30 To calculate the
conductance correlation function, Eq.~50!, we apply the con-
ventional averaging technique.26 We consider only the cas
of short relaxation timetT!Dt. In this case the spin-
correlation functions in Eqs.~16! should be taken in the limit
t→`, so thatx'(t→`)50 andxz(t→`)5^Sz&

2.
The conductance correlation function contains all h

monics,

K~DF!5 (
k50

`

KkcosS 2pk
DF

F0
D . ~52!

The amplitudesKk consist of two parts,29 originating from
the fluctuations of the diffusion coefficient, Fig. 5~a!, and the
fluctuations of the electron density of states, Fig. 5~b!:

Kk5a
e4

~2p\!2

D2

R4E d«d«8

16T2
cosh22

«

2T
cosh22

«8

2T

3(
i 51

4

~A k
( i )~«,«8!1B k

( i )~«,«8!!, ~53!

see Appendix D. Herea is a geometry dependent dimensio
less factor of order of unity; functionsA k

( i )(«,«8) and
B k

( i )(«,«8) are defined by

A k
( i )~«,«8!52E UDi S «,«8,

x

RD U2

cos~2pkx!dx,

~54a!

B k
( i )~«,«8!5E ReHD i

2S «,«8,
x

RD J cos~2pkx!dx

~54b!

in terms of the diffuson components:

Di~«,«8,q!5
1

i ~«2«81§ i«Z!1Dq21gw1G i~«,«8!
.

~55!

r

e
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FIG. 5. Diagrams~a! and ~b! give the main contribution to the conductance correlation function. Diagram~a! originates from the
fluctuations of the diffusion coefficient and decreases only as 1/T at high temperature. Diagram~b! is referred to as the contribution from th
fluctuations of the electron density of states and exponentially vanishes at high temperature, see Ref. 29. The Hikami box~black square! is
the sum of two diagrams, shown in~c!.
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The indexi in Eqs.~54! runs over different spin configu
rations of the diffusonDi(«,«8,q), which are related to the
common classification of spin-wave functions of two sp
1/2 particles in terms of triplet and singlet states, see Tabl
In our notations, modesi 51,2 correspond to total spinSd
51 with nonzero projections on the magnetic fieldmd5
61, modei 53 represents total spinSd51 with zero projec-
tion on the magnetic field,md50, and modei 54 is a singlet
spin configuration. Energies§ i«Z represent the effect of th
Zeeman splitting of conduction electron states on vari
diffuson modes. Coefficients§ i are given in Table II.

We explicitly separated two additive componen
G i(«,«8) andgw , to the diffuson decay rate in Eq.~55!. The
componentG i(«,«8) corresponds to the contributions fro
spin-orbit interaction and scattering off magnetic impuritie
The componentgw takes into account other processes, su
as electron escape through the leads and scattering caus
the electron-phonon and electron-electron interactions.17,22,29

A. Effect of classical spin impurities

Following the spirit of Sec. IV, we first analyze condu
tance fluctuations in the presence of classicalS@1 spins.
This analysis allows us to explore the effect of the impur
spin polarization at various relations between parameter

TABLE II. The decay rates of various components of the diff
son in a metal without spin orbit interaction. The components w
i 51,2,3 represent a spin states with total spin one,Sd51. These
spin configurations form a triplet in an isotropic system. Anisotro
due to the applied magnetic field lifts the degeneracy. Thei 54
component is a singlet spin configuration,Sd50. The last column
shows coefficients§ i for the Zeeman splitting of conduction elec
trons.

i uSd ,md& G i(H)ts § i

1 Sd51,md511 11^Sz&
2/S2 11

2 Sd51,md521 11^Sz&
2/S2 21

3 Sd51,md50 12^Sz&
2/S2 0

4 Sd50,md50 12^Sz&
2/S2 0
11531
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h
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of

the system. In the next subsection we calculate the amplit
of conductance correlation function, Eqs.~54!, for spinsS
;1 in a metal with strong spin-orbit interaction.

We consider systems with fast spin relaxation timetT
!Dt, whereDt is the time lapse between the current me
surements, see Eq.~50!. In this case the solution of the dif
fuson equation, Eq.~A4!, is described by the following
energy-independent decay rates:

G1,25~11^Sz&
2/S2!

1

ts
1

4

3
gso, ~56a!

G35~12^Sz&
2/S2!

1

ts
1

4

3
gso, ~56b!

G45~12^Sz&
2/S2!

1

ts
. ~56c!

Here ^Sz& is defined by Eq.~29a! and depends only on th
ratio of the magnetic field and temperatureB/T.

The i 51,2 modes represent the interference of elect
states with opposite spin orientations. The exchange field
magnetic impurities produces different~opposite! contribu-
tions to the phases of these two states. Because the p
contributions for different electron trajectories fluctuate, t
interference of electron states with opposite spins is s
pressed even if all spins of magnetic impurities are fu
polarized. Thus the polarization of impurity spins does n
suppress the effect of electron phase relaxation due to
scattering off magnetic impurities for diffuson modesi
51,2. According to Eq.~56a!, the diffuson decay ratesG1,2
actually increase as the applied magnetic field increases

On the other hand, thei 53,4 modes stand for the inter
ference of two electron states with parallel spins. At stro
magnetic fieldB@T/gmBS, when all spins are polarized, th
scattering off magnetic impurities provides equal phase sh
to both states and does not affect diffuson relaxation ra
G3,4. That is why the contribution toG3,4, caused by the
scattering off magnetic impurities, vanishes as impurity sp
become polarized, see Eqs.~56b! and ~56c!.

h
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CONDUCTANCE OF MESOSCOPIC SYSTEMS WITH . . . PHYSICAL REVIEW B67, 115310 ~2003!
Substituting the diffuson decay times from Eqs.~56! into
Eqs. ~53!–~55!, we can describe the harmonics of the co
ductance correlation function Eq.~52! at an arbitrary value of
magnetic field, ranging fromB50 to B@T/gmBS. To ana-
lyze this crossover, we first consider a metal without sp
orbit interaction,gso50, and evaluate the integrals over e
ergies« and «8 in Eq. ~53! for two limiting cases of low
(T!G i1gw) or high temperature (T@G i1gw).

In the low-temperature limit we have:29

Kk5
3pa

2

e4

~2p\!2 (
i 51

4 Li
3

R3 S 2pk
R

Li
11De22pkR/Li

~57!

with

Li5A D

G i1gw
. ~58!

For simplicity, we omitted the Zeeman splitting of the co
duction electron states, which actually modifies thei 51,2
terms in Eq.~57!. We emphasize that at low temperature bo
diagrams in Figs. 5~a! and~b! contribute to the conductanc
correlation function.

In the limit of high temperatureT@G i1gw , the
contribution of the diagram in Fig. 5~b! is small as
exp@2(2p)3/2kR(T/D)1/2# and may be disregarded. The co
tribution due to fluctuations of the diffusion coefficient, di
gram in Fig. 5~a!, decays only as 1/T at high temperatureT:

Kk5a
p2

3

e4

~2p\!2 (
i 51

4

f S § i«Z

2T DLT
2Li

R3
e22pkR/Li, ~59!

whereLT5AD/T is the thermal length, and coefficients§ i
are presented in Table II. The function

f ~z!53
z coshz2sinhz

sinh3z
~60!

takes into account the Zeeman splitting;f (0)51 and f (z)
'12(z21)e22z for z@1.

Regardless of scattering off magnetic impurities, the Z
man splitting destroys the contribution of modesi 51,2 to
the conductance correlation functionK at «Z@T, see Eq.
~59!. From Eq. ~59! we conclude that at strong magnet
field, «Z@T andSvS@T, the amplitude of conductance fluc
tuations is no longer determined by the scattering rate
magnetic impurities, 1/ts. Since modesi 51,2 are also sup-
pressed at«Z@T even in a metal without spin impurities, w
conclude that a strong magnetic field restores the amplit
of conductance fluctuations up to the amplitude in the sa
ring as if magnetic impurities were absent.

We also discuss another effect of the Zeeman splitting
the conductance correlation function. If the exchange c
stantJ is antiferromagnetic,J.0, the Zeeman splitting van
ishes not only atB50 but also at some finiteB, see Eq.~19!,
and thus produces another wrinkle in the dependence oKk
on the applied magnetic field. This nonmonotonic behav
11531
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ff

e
e
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r

of the amplitude of the conductance oscillations is remin
cent to the reentrance effect in superconductors.23

To illustrate the effects of the Zeeman splitting«Z , we
plot amplitudeK1 of the principal harmonic,k51, as a func-
tion of B in Fig. 6. We choose the following values of th
system parameters:gwts52 and R5AD/gw. The dashed
line corresponds to the case of equalg factors for the con-
duction electrons and impurity spins, i.e.,«Z5vS , and neg-
ligibly small exchange contribution in Eq.~19!, nsJ^S&
!vS . The limit of «Z@T, when only termsi 53,4 in Eq.
~59! survive, is represented by the solid line. Finally, t
dotted line demonstrates the reentrance effect due to the
tiferromagnetic impurities at some specific value ofnsJ
53.5T with T being the temperature.

Now we notice, see Eqs.~56!, that the spin-orbit interac-
tion suppresses the contribution to the amplitude of the c
ductance fluctuations, originating from the diffuson mod
with i 51,2,3 (Sd51). In the limit of strong spin-orbit inter-
action (gso@D/R2) only the contribution from the single
(Sd50 andi 54) mode survives:

Kk5a
p2

3

e4

~2p\!2

LT
2L4

R3
e22pkR/L4, ~61!

with lengthL4 defined by Eqs.~56c! and ~58!. The function
Kk for a metal with strong spin-orbit scattering monoton
cally increases as a function ofB/T, providedgw remains
constant. At strong magnetic field,SvS@T, magnetic impu-
rities do not affect the conductance fluctuations.

We emphasize that the nonmonotonic behavior of the a
plitudes Kk of the conductance correlation function orig
nates from the diffuson modes withi 51,2, which do not
contribute to the correlation function in metals with stro
spin-orbit interaction. Thus the monotonic or nonmonoto
behavior of the amplitudesKk distinguishes materials with o
without spin-orbit coupling.

FIG. 6. AmplitudeK1(B) as a function of the applied magnet
field B for a metal with classical (S@1) magnetic impurities in the
absence of spin-orbit interaction. A nonmonotonic behavior ofK1

due to the Zeeman splitting of the conduction electron state
illustrated for two cases:~i! «Z5vS ~dashed line!, ~ii ! «Z5vS

27T^Sz& ~dotted line!, here the second term represents the aver
exchange field 2nsJ^Sz& with nsJ53.5T. The limit «Z→` is pre-
sented by a solid line. We choosegwts52 andR5AD/gw.
0-11
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B. Effect of quantum spin impurities

In this subsection we perform a quantum calculation
analyze the effect of polarization of impurity spins withS
;1, when the semiclassical description of electron scat
ing off magnetic impurities is not applicable. We consid
metals with strong spin-orbit interaction,gso@D/R2, so that
only the singlet component of the diffuson survives. In th
case the calculation of the diffuson self-energy is similar
the calculation of the proper quantity for the Cooperon,
Sec. IV C. Details of calculations and the expression for
amplitude of the conductance fluctuations are presente
Appendix E.

Below we focus on the high-temperature case,T
@G(«,«8.T), which is reached at sufficiently strong ma
netic field even iftsT!1. At high temperature, the integra
over the difference of« and «8 converges fast,u«2«8u
&G(«,«8.T). This observation allows us to perform inte
gration over the energy difference. We obtain

Kk5a
p2

8

e4

~2p\!2

ADLT
2

R3 E e22pkRAG(«)1gw/AD

AG~«!1gw

d«/T

cosh4«/2T
,

~62!

with the dephasing rate in the form of

G~«!5F12
^Ŝz&

21^Ŝz&tanh~«1vs!/2T

S~S11!
G 1

ts
. ~63!

We represent the corresponding curves ofK1 as a function of
the applied magnetic fieldB in Fig. 7 for several values ofS,
assumingtsT@1 and for the following values of the syste
parameters:gwts51/2 andR5AD/gw. The shapes of the
curves corresponding to various values of the impurity spiS
are different from each other. Particularly, we conclude t
the conductance fluctuations are faster restored by mag
field in metals with a larger value ofS. The fitting of experi-
mental results by the curvesKk(B) given by Eq.~62!, may
provide the impurity spin parameters, such as its valueSand
the gyromagnetic factorg.

FIG. 7. The dependence of conductance oscillationsK1(B) as a
function of the applied magnetic fieldB for four values of impurity
spins: S51/2 ~solid line!, S53/2 ~dashed line!, S55/2 ~dotted
line!, S57/2 ~dash-dotted line!. We choosegwts51/2 and R
5AD/gw.
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As the polarization̂ Sz& and the Zeeman splittingvS in-
crease, the diffuson decay rateG(«.T) to the second orde
in the exchange constantJ becomes exponentially small, se
Eq. ~63!. In this case we have to take into account high
order contribution inJ, which is represented by Eq.~47!. The
crossover from the phase relaxation rate in the form of
~63! to the form of Eq.~47! takes place at magnetic fieldB
;B* (T), see Eq.~8!.

VI. CONCLUSIONS

The main question addressed in this paper is how
polarization of magnetic impurities in a metal affects t
interference contribution to its conductance. It is well know
that at weak magnetic field, which does not cause such
larization, the electron scattering off localized spins results
suppression of the weak-localization correction to the c
ductivity and in suppression of the mesoscopic conducta
fluctuations. If these interference contributions can be
stored by an application of a stronger spin-polarizing fie
then a transport measurement may serve as a test for
presence of magnetic impurities in a sample. This possib
was the main motivation of the presented study.

We obtained analytical results for the WL correction
the conductivity and for the amplitude of conductance flu
tuations valid for an arbitrary magnetic field. We found th
the conditions for the restoration of weak-localization corre
tion are quite stringent. The weak-localization correction c
be substantially enhanced by an application of a magn
field only in samples of very small size~to avoid the orbital
effect of the magnetic field! and made of a light-elemen
material, to make the spin-orbit scattering negligible. If the
conditions are met, the spin polarization may complet
eliminate the effect of magnetic impurities. At intermedia
fields B, the weak-localization correction depends on the
tio B/T, and we find the corresponding crossover functi
spanning the full range of spin polarizations.

The effect of spin polarization on the mesoscopic cond
tance fluctuations is much more robust. The amplitude
fluctuations is restored if variations of a spin configuration
time are suppressed by the external magnetic field. At
same time, there is no detrimental orbital influence of
applied magnetic field on mesoscopic fluctuations. The sp
orbit interaction also does not spoil the effect of spin pol
ization on the amplitude of fluctuations. We evaluated
amplitude of the ‘‘h/e’’ Aharonov-Bohm oscillations of the
conductance correlation function. In a metal with stro
spin-orbit interaction, the polarization of magnetic impuriti
restores this amplitude up to its value characteristic for
host material in the absence of magnetic impurities. We fi
the full crossover function, which describes the amplitude
fluctuations at arbitrary value ofB/T. The use of our results
for the analysis of transport measurements may, in princi
yield such characteristics of magnetic impurities as the v
ues of their spin andg factor, which are hard to access d
rectly.
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APPENDIX A: COOPERON AND DIFFUSON IN A METAL
WITH CLASSICAL MAGNETIC IMPURITIES

In calculations of the weak-localization correction to t
conductivity of a metal with classical magnetic moments,
use the Cooperon which is formally defined as an averag
electron Green’s functions

C gd
abS t1

12t1
2

2
,
t2

12t2
2

2
,t1

11t1
2 ;r ,r 8D d~ t1

11t1
22t2

12t2
2!

5^Gab
(R)~ t1

1 ,t2
1 ;r ,r 8!Ggd

(A)~ t1
2 ,t2

2 ;r ,r 8!&. ~A1!
11531
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After the standard procedure1 we obtain the following ex-
pression for the Cooperon:

F S ]

]t
1Dq2D 1̂1Ĥ0

C1Ĥs
C~t!G Ĉ~t,t8,T;q!51̂d~t2t8!,

~A2a!

whereĤ0
C is a matrix in spin space representing the Zeem

splitting of conduction electron states and spin-orbit inter
tion:

Ĥ0
C5S 0 0 0 0

0 2i«Z 0 0

0 0 22i«Z 0

0 0 0 0

D 1
2gso

3 S 2 0 0 0

0 1 1 0

0 1 1 0

0 0 0 2

D ,

~A2b!

andĤrms
C describes scattering off magnetic impurities:
and
Ĥs
C~t!5

1

tsS @12xzz~t!# 0 0 0

0 @11xzz~t!# 2x'~t! 0

0 2x'
* ~t! @11xzz~t!# 0

0 0 0 @12xzz~t!#

D ~A2c!

The solution of Eqs.~A2! yields the Cooperon in the form of Eq.~21!.
The diffuson appears in this paper in calculations of the conductance correlation function and is defined as

D gd
abS t1

11t1
2

2
,
t2

11t2
2

2
,t1

12t1
2 ;r ,r 8D d~ t1

12t1
22t2

11t2
2!5^Gab

(R)~ t1
1 ,t2

1 ;r ,r 8!Gdg
(A)~ t2

2 ,t1
2 ;r 8,r !&. ~A3!

It satisfies the following equation:

@~ iv1Dq2!1̂1Ĥ0
D1Ĥs

D~t!#D̂q~v,t!51̂, ~A4a!

where the matrixĤ0
D does not depend on time variablet and describes the Zeeman splitting of conduction electron states

spin-orbit interaction:

Ĥ0
DS 0 0 0 0

0 2i«Z 0 0

0 0 22i«Z 0

0 0 0 0

D 1
2gso

3 S 1 0 0 1

0 2 0 0

0 0 2 0

1 0 0 1

D , ~A4b!

andĤs
D(t) represents scattering off magnetic impurities:

Ĥs
D~t!5

1

tsS @12xzz~t!# 0 0 2x'~t!

0 @11xzz~t!# 0 0

0 0 @11xzz~t!# 0

2x'
* ~t! 0 0 @12xzz~t!#

D . ~A4c!

Solving Eqs.~A4!, we obtain the diffuson in the form of Eq.~55!.
0-13
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APPENDIX B: COOPERON DECAY RATE DUE TO
SCATTERING OFF QUANTUM MAGNETIC

IMPURITIES

In this appendix we derive the Cooperon decay rate i
metal with quantum (S;1) impurity spins. The Hamiltonian
of interaction of conduction electrons with magnetic impu
ties, Eq.~12!, has the form

Hm5J~Ŝzŝz1Ŝ2ŝ11Ŝ1ŝ2!, ~B1!

whereŝx , ŝy , and ŝz are the Pauli matrices andŝ65(ŝx

6 i ŝy)/2. We notice that the first term in Eq.~B1! represent
scattering without spin flip, while two other terms corr
spond to spin-flip scattering.

We will follow the standard Keldysh formalism: first, w
define electron and spin operators on the forward and b
ward parts of the Keldysh contour, see Fig. 8, and then
form rotation in the Keldysh space. As the result, we obt
the standard form of the electron Green’s function in ter
of the retarded G(R)(«,p), advanced G(A) («,p), and
Keldysh G(K) («,p) components. The spin operator in th
rotated basis acquires the form

Ŝi~ t !5
1

2 S Ŝi
s~ t ! Ŝi

a~ t !

Ŝi
a~ t ! Ŝi

s~ t !
D , ~B2!

whereŜi
s,a(t)5Ŝi(t f)6Ŝi(tb). In our calculations of the im-

purity average conductivity, we work in the Born approxim
tion, therefore the scattering is completely characterized
the bilinear spin correlators:

L i j
k ~ t !5

1

4
^Ŝi

s~ t !Ŝj
s~ t !&, ~B3a!

L i j
r ~ t !5

1

4
^Ŝi

s~ t !Ŝj
a~0!&, ~B3b!

L i j
a ~ t !5

1

4
^Ŝi

a~ t !Ŝj
s~0!&, ~B3c!

which are counterparts of the Keldysh Green’s function of
interaction field, see Ref. 31.

For the Zeeman HamiltonianHspin5gmBBŜz , spin cor-
relator components withi 5 j 5z have only the Keldysh ele
mentL zz

k (t):

L zz
k ~ t !5^Ŝz

s~ t !Ŝz
s~0!&5^Ŝz

2&, ~B4!

FIG. 8. The Keldysh contour allows us to take into account ti
ordering of quantum operators. The time subscriptst f,b mean that
the operator is taken at timet at the forward (t f) or backward (tb)
part of the Keldysh contour.
11531
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and L zz
r,a(t) vanish due to the commutation relations of t

spin operator along thez axis and the HamiltonianHspin.
Now we present correlators of the spin components p

pendicular to the magnetic field:

L21
a ~ t !5u~2t !eivst^Ŝz&, ~B5a!

L21
r ~ t !52u~ t !eivst^Ŝz&, ~B5b!

L21
k ~ t !5eivst@S~S11!2^Ŝz

2&#. ~B5c!

Using the formal definitions of Eqs.~B4! and ~B5!, we
calculate the Cooperon decay rate, which has the meanin
the Cooperon self-energy, see Eq.~21!. The diagrams which
contribute to the decay rates of Cooperon modesi 51,2 are
shown in Figs. 3~a! and ~b! and correspond to the electro
self-energy due to magnetic impurities:

S r~«!5E dpW

~2p!dE dv

2p
$~L21

k ~v!1L zz
k ~v!!Gr~«1v,p!

1~L21
r ~v!1L zz

r ~v!!Gk~«1v,p!%, ~B6a!

Sa~«!5E dpW

~2p!dE dv

2p
$~L21

k ~v!1L zz
k ~v!!Ga~«1v,p!

1~L21
a ~v!1L zz

a ~v!!Gk~«1v,p!%. ~B6b!

The elastic part of the self-energy is expressed only in te
of the retarded and advanced Green’s function and is
affected by the electron distribution, while the inelastic p
of the self-energy contains also the Keldysh componen
the electron Green’s function. Consequently, for inelas
processes the electron distribution is important, since s
processes should satisfy the fermion exclusion principle. T
contribution to the Cooperon decay rate from diagrams
Figs. 5~a! and ~b! is Gab(«)5 insJ

2@Sa(«)2Sb(«)# and can
be written as

Gab~«!5
1

ts
F12E tanh

«1v

2T

Im$L21
r ~v!%

S~S11!

dv

2pG .
~B7!

The first term in Eq.~B7! originates from terms in Eqs
~B6b!, containing the Keldysh components of the spin co
elatorsL zz

k (v) andL21
k (v). We used the property of thes

correlatorsL zz
k (t50)1L21

k (t50)5S(S11), arising from
their definitions, see Eqs.~B3!. We observe that the first term
in Eq. ~B7! is the total electron scattering rate on magne
impurities 1/ts. The second term represents the rate of
elastic scattering processes, accompanied by the en
transfer. Particularly, this term explicitly contains the ele
tron distribution function in the form 122n(«)
5tanh«/2T, which takes into account the Pauli exclusio
principle for electrons.

We identify the diagram in Fig. 3~c! with the vertex cor-
rection to the Cooperon self-energy. For the Cooperon co

e

0-14
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ponent with parallel electron spins, only the component
the scattering off magnetic impurities without spin flip r
mains:

Gc~«!5
1

ts

^Ŝz
2&

S~S11!
. ~B8!

The decay rate of Cooperon modesi 51,2 is given by the
sum ofGab(«) andGc(«):

G~«!5
1

ts
F12

^Ŝz
2&1^Ŝz&tanh~«1vs!/2T

S~S11!
G . ~B9!

When deriving Eq.~B9! we assumed that the conductio
electron spins and average impurity spins are parallel, so
vs.0 and^Ŝz&.0. The opposite case is also described
Eq. ~B9! with vs,0 and^Ŝz&,0. Equation~B9! determines
the energy-dependent phase relaxation rate in the WL cor
tion to conductivity, see Eq.~30!.

APPENDIX C: THE J4-ORDER CONTRIBUTION
TO THE ELECTRON SELF-ENERGY

In this appendix we derive the correction to the Coope
self-energy to the fourth order in the exchange constanJ.
For this purpose we will use the rules of the Keldysh d
grammatic technique, outlined in Sec. IV C.

The contribution to the Cooperon self-energy is shown
Fig. 4. The electron-hole loops can be treated as the s
energy%̂ of the spin-spin Keldysh Green’s function, respo
sible for the spin relaxation as a result of the electron ine
tic scattering. The imaginary part of this electron-hole lo
determines the Korringa spin-relaxation rate.7 In the Keldysh
formalism, we can distinguish three components of the s
energy, related to the advanced, retarded, and Keldysh
ments of the spin-spin Green’s function.

We have for the difference of retarded and advanced c
ponents of the spin-spin self-energy the following expr
sion:

% r~v!2%a~v!52pn2J2v, ~C1!

and the Keldysh component is

%k~v!5coth
v

2T
@% r~v!2%a~v!#. ~C2!

This result is of no surprise. Indeed, the self-energy is
related to the type of interaction, since it is uniquely det
mined by the electron-hole loop, rather than the interact
lines.

Here we are interested in the strong magnetic field lim
vS@T, so that only two impurity spin states withSz5S and
Sz5S21 are involved. Under this condition, the diagrams
Fig. 4 can be represented in terms of the modified spin-s
correlators, which to the second order in the exchange c
stantn2J2 have the form
11531
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L 1
r,a~v!5L12

(0)r,a~v!% r,a~v!L12
(0)r,a~v!, ~C3!

L 1
k~v!5L12

(0)r~v!%k~v!L12
(0)a~v!, ~C4!

whereL 1
(0)r,a(v)5^S&/(v2vS6 i0) are the bare spin-spin

correlation functions, defined by Eq.~B5!. Using this nota-
tions, we reduce diagrams in Fig. 4 to diagrams in Figs. 3~a!
and ~b!. Then, after the standard calculations, we obtain

G4~«!52pnsn
3J4S2

p2T21«2

vS
2

. ~C5!

Using the definition ofts, we rewrite Eq.~C5! in the form of
Eq. ~47!.

APPENDIX D: CONDUCTANCE CORRELATION
FUNCTION

In this appendix we outline the calculation of the condu
tance correlation functionK(DF), see Eq.~52!. The contri-
butions toK(DF) originate from two diagrams, shown i
Fig. 5. We have

K~DF!5K (a)~DF!1K (b)~DF!, ~D1!

where the first termK (a)(DF) is the contribution from fluc-
tuations of the diffusion coefficient

K (a)~DF!5a
e4

~2p\!2

D2

R4E d«d«8

16T2

1

cosh2«/2T

1

cosh2«8/2T

32 (
n52`

1`

(
i

UDi S «,«8,qn2
DF

RF0
D U2

, ~D2!

and second term in Eq.~D1! originates from fluctuations o
the electron density of states:

K (b)~DF!5a
e4

~2p\!2

D2

R4E d«d«8

16T2

1

cosh2«/2T

1

cosh2«8/2T

3 (
n52`

1`

(
i

ReHD i
2S «,«8,qn2

DF

RF0
D J . ~D3!

HereDi(«,«8,q) is the i th diffuson component and the sum
over n runs through all discrete values of momentumqn
5n/R. We apply the Poisson summation formula

(
n52`

1`

f ~n!5 (
k52`

` E f ~n!e2p ikndn

to Eqs.~D2! and ~D3! and obtain Eq.~52! with amplitudes
Kk defined by Eqs.~53! and ~54!.

APPENDIX E: DIFFUSON DECAY RATE DUE TO
SCATTERING OFF QUANTUM MAGNETIC IMPURITIES

We consider the singlet contribution to the conductan
fluctuations in the limit of short spin-relaxation timetT , so
that the components of spin perpendicular to magnetic fi
0-15
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are not correlated at the characteristic timeDt between con-
ductance measurements,f'(Dt)→0 in Eqs.~16!. In this case
the diffuson self-energy is defined by diagrams similar
ones shown in Fig. 3, but with the opposite direction of t
advanced Green’s function.

The diffuson self-energy consists of three terms; two
them coincide with the self-energiesS r(«) andSa(«) of re-
tarded and advanced electron Green functions, respecti
and the third term is the vertex correctionSv(«). Using the
formalism, presented in Appendix B, we obtain the followi
expression for the self-energy of electron Green functio
see Eqs.~B6b!:

S r,a~«!5
1

2ts
F12

^Ŝz&
21^Ŝz&tanh~«1vs!/2T

S~S11!

6 i
^Ŝz&

S~S11!
E tanh~«1v!/2T

v1vs

dv

2p
G . ~E1!

The vertex correction to the diffuson originates from the i
purity spin correlator, taken at time differenceDt, see Eq.
~50!. Since we assume that the impurity spin-relaxation ti
is much smaller than the delay timeDt, the spin correlator is
xz5^Sz&

2 and we have

Sv~«!5
1

ts
^Sz&

2. ~E2!

Combining the electron self-energy part and the ver
correction given by Eqs.~E1! and~E2!, we obtain the diffu-
son self-energy in the form
r-

bb
,

C

.
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G~«,«8!5
1

ts
F12

^Ŝz&
2

S~S11!
2

^Ŝz&
2S~S11!

3S tanh
«1vs

2T
1tanh

«81vs

2T D
1 i ^Ŝz&E tanh~«1v!/2T2tanh~«81v!/2T

v1vs

dv

2p
G .

~E3!

For the calculation of the conductance fluctuations, we h
to consider a finite difference between the energies« and«8,
transferred along the advanced and retarded Green’s f
tions. The last term in Eq.~E3! originates from the real par
of the electron self-energy and vanishes if«5«8. This term
represent renormalization of the electron density of state

The amplitude of thekth harmonic of the conductanc
correlation function is expressed in terms ofA k

(4) andB k
(4) ,

see Eqs.~53! and ~54!:

A k
(4)5AD

R2

2p

«2«81ImG~«,«8!

3ImH exp~22pkRAgw1G~«,«8!1 i ~«2«8!/AD !

Agw1G~«,«8!1 i ~«2«8!
J

~E4a!

B k
(4)5ADp3

8R2 ReH S 112pk
RAD

Agw1G~«,«8!1 i ~«2«8!
D

3expS 22pkR
Agw1G~«,«8!1 i ~«2«8!

AD
D J .

~E4b!
,
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-
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