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We use the radial gauge to calculate the recently proposed ansatz for the physical electron propagator in such
effective models of strongly correlated electron systems as the QED3 theory of the pseudogap phase of the
cuprates. The results of our analysis help to settle the recent dispute about the sign and the magnitude of the
anomalous dimension that characterizes the gauge-invariant amplitude in question and set the stage for com-
puting other, more physically relevant, observables.
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I. INTRODUCTION

As a generic property, one-dimensional Fermi syste
with short-range~screened! repulsive interactions routinely
demonstrate algebraic decay of all correlation functions g
erned by nonuniversal~coupling-dependent! anomalous ex-
ponents. A possibility of the emergence of a similar behav
commonly referred to as the ‘‘Luttinger liquid,’’ in higher
dimensional strongly correlated electron systems has b
extensively discussed in recent literature.

Thus far, however, no solid consensus has been rea
even on the necessary criteria that have to be fulfilled for
Luttinger behavior to set in, much less on whether or no
occurs in any specific example of a strongly correlated e
tron system. It was largely for this reason that attention
recently been drawn to the class of effective models
scribed by ~possibly, spatially anisotropic and/or Loren
noninvariant! deformations of the standard action of Qua
tum electrodynamics.

Motivated by the puzzling properties of the quasi-tw
dimensional high-temperature copper-oxide superconduc
most interest has been focused on the three-dimensional~3D!
case described by either the ordinary~parity-even! QED3 or
the Abelian 3D Chern-Simons theory,1,2 where the finite den-
sity problem of nonrelativistic~massive! fermions has be-
come the main subject of scrutiny. However, the latter w
found to fall into a rather different class of non-Fermi-liqui
that bear little resemblance to the 1D Luttinger liquid.3

Recently, the idea of the conjectured Luttinger-like beh
ior has been rekindled in recent theories of the pseudo
phase of underdoped superconducting cuprates.4–8Albeit de-
scribing rather different physics, all these approaches re
to the same effective description in terms of the pseudor
tivistic QED3 theory of the gapless nodal fermion excitatio
that retain theird-wave symmetrical gap well above the crit
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cal temperatureTc regarded merely as the onset of glob
phase coherence.

Above Tc the fermionic excitations experience stron
scattering by both thermal and quantum fluctuations of
incipient ordering, such as a flux of the gauge field meas
ing a local spin chirality4,5 or vortex-antivortex pairs of the
pairing order parameter.6–8 The latter scenario has recent
received new experimental support from the observation
the vortex matter is present at temperatures well in exces
Tc , as revealed by the measurements of the Nernst effe9

As another important ingredient, the QED3 theory of the
pseudogap phase was aimed at explaining the ubiquitous
struction of the coherent quasiparticles aboveTc , which was
observed in angular-resolved photoemission and tunne
experiments.

To this end, the authors of Ref. 5 conjectured that
electron propagator in question may, in fact, exhibit the L
tinger behavior

G~x!} x̂/uxu31h, x̂5gmxm , ~1!

characterized by a positive anomalous exponenth.0. They
also attempted to fit the angle-resolved electron photoem
sion spectra~ARPES! while claiming good agreement with
experiment~unless explicitly stated otherwise, througho
this paper we use the notationn̂[gmnm for vectorsnm con-
tracted with the Dirac matricesgm).

The conclusions drawn in Ref. 5 were based on the us
the following heuristic form of the gauge-invariant electro
propagator

G~x2y!5^0uc~x!expF2 i E
G
dzmAm~z!G c̄~y!u0&, ~2!

where the line integral was taken along the contourG chosen
as the straight-line segment connecting the end points. L
the calculations of Ref. 5 were carried out by a number
©2003 The American Physical Society01-1
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other authors, and the results for the anomalous expo
appeared to vary not only between the different authors@h
532/3p2N ~Ref. 5! versus232/3p2N ~Ref. 10!# but also
from one to another work of the same authors@h5
216/3p2N ~Ref. 6! versus 16/3p2N ~Ref. 11! and h
532/3p2N ~Ref. 7! versus264/3p2N ~Ref. 12!#.

While some of the calculations were performed in t
conventional covariant gauges,10,12other authors made use o
the potentially problematic axial gauge@(x2y)mAm(z)50,
wherex,y are arbitrarily chosen points that are taken to c
incide with the end points of the contourG#,5,6,10 which
spurred a debate over the issue of a true~versus limited, see
Ref. 13! gauge invariance of Eq.~2!, as opposed to its sur
rogate functions proposed in Ref. 11~see the Summary for a
more extended discussion!. While seemingly being an issu
of secondary importance, a proper construction of the ph
cal electron propagator is, in fact, imperative, as far as as
taining the status of the conjectured Luttinger-like behav
in the QED-like theories is concerned.

In light of the present controversy, in this paper we u
dertake yet another attempt to settle the dispute about
physically motivated form of the electron propagator and
actual value ofh ~if any! by resorting to the so-called radia
~Fock-Schwinger! gauge@(z2x)mAm(z)50 andx is an ar-
bitrary fixed point#. The radial gauge is known to be free
the potential problems that might exist in the axial gau
which, according to some authors, may even require on
introduce ghost fields.14 In addition, we also set out to ex
plore the dependence of the previously conjectured form
the electron propagator~2! on the choice of the contourG.

II. GAUGE-INVARIANT FERMION PROPAGATOR
IN THE FOCK-SCHWINGER GAUGE

We start with the 3D relativistic theory of massless Dir
spinors coupled to a massless U~1! gauge field, whose Eu
clidean action is

S@c,c̄,A#5E d3x(
i 51

N

c̄ igm~]m2 iAm!c i , ~3!

where c̄[c†g0 and theN-flavored Dirac fermions are de
scribed by four-component bi-spinors that belong to a red
ible representation of theg matrices satisfying the Clifford
algebra$gm ,gn%52dmn~m,n50,1,2!. The latter can be cho
sen in the form of the direct productgm5s3^ (s3 ,s2 ,s1)
of the standard triplet of the Pauli matricessm .

In all of the above-mentioned condensed matter-insp
QED-like models the number of fermion flavorsN52. Nev-
ertheless, in what follows we choose to treatN as a param-
eter that can assume arbitrary values, depending on the p
lem in question.

The dynamics of the U~1! gauge field is generated by th
effective action obtained after tracing out the fermionic d
grees of freedom

Seff@A#5
1

2E dnxE dnyAm~x!Dmn
21~x2y!An~y!1•••,

~4!
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where the ellipsis stands for the higher-order terms~non-
Gaussian!, which we hereafter neglect, following all of th
previous works on the subject. Intending to subsequently
the method of dimensional regularization, for evaluati
Feynman diagrams we formulated Eq.~4! in n532e dimen-
sions. Also, in Eq.~4! we neglected the bare Maxwell term
;(]mAn2]nAm)2, which turns out to be irrelevant in th
low-energy, long-distance limit.

The previously proposed candidate for the physical el
tron propagator~2! studied in Refs. 5–7 and 10–12 can b
cast in the following form:

Ginv~x2y!5K G@x,y;A#expF2 i E
y

x

dzmAm~z!G L , ~5!

whereG@x,y;A# is a fermion propagator for a given fixe
configuration of the gauge fieldAm , and the angular bracket
stand for the~normalized! functional average over the gaug
field, which is described by the action, Eq.~4!.

In the Euclidean momentum space, the kernelDmn
21 of the

quadratic operator has the form

Dmn
21~q!5

NAq2

8 S dmn2
qmqn

q2 D . ~6!

Introducing a source field

Jm~z!5~x2y!mE
0

1

dadn
„z2y2~x2y!a…, ~7!

we can write the straight-line integral that appears in Eq.~2!
as

E
y

x

dzmAm~z!5E dnzJm~z!Am~z!. ~8!

In the Fock-Schwinger~FS! gauge

~x2x0!mAm~x!50, ~9!

the line integral in Eq.~5! vanishes if one chooses the refe
ence pointx0 at the ‘‘center of mass’’x05X5(x1y)/2
@for the proof, see the Appendix, which also contains
derivation of the photon propagator in the FS gau
Dmn

FS(z11X,z21X)].
We compute the first-order 1/N correction to the fermion

propagator ~3! by expanding the inverse Dirac operat
1/(]̂2 iÂ)51/]̂1(1/]̂)( iÂ)(1/]̂)1••• in powers ofAm(z),
thus obtaining

Ginv~x,y!5S~x2y!1dG~x,y!, ~10!

whereS(x2y) anddG(x,y) are the bare fermion propagato
and the correction to it, respectively. The latter is given
the expression

dG~x,y!52E dnz1E dnz2S~x2z12X!gmS~z12z2!

3gnS~z21X2y!Dmn
FS~z11X,z21X!, ~11!
1-2
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where it is natural to decompose the propagatorDmn
FS for the

gauge fields in the Fock-Schwinger gauge into four con
butions,

Dmn
FS~x,y!5(

i 51

4

Dmn
( i ) ~x,y!, ~12!

as is done explicitly in Eqs.~A20!–~A23!. By choosing the
reference point in the Fock-Schwinger gauge to be the ce
of massX, one verifies by inspection of Eqs.~A20!–~A23!
that the contributiondG can only depend on the relativ
coordinatex̄5x2y:

dG~ x̄!52E dnz1E dnz2S~ x̄/22z1!gmS~z12z2!

3gnS~z21 x̄/2!Dmn
FS~z11X,z21X!. ~13!

Taking the Fourier transform~FT! of Eq. ~13! FT@dG( x̄)#
5 idG(p), FT@S( x̄)#5 iS(p), S(p)51/p̂, we obtain

dG( i )~p!5E dnq1

~2p!n

dnq2

~2p!n
S~p1q1/21q2/2!

3gmS~p2q1/21q2/2!gnS~p2q1/22q2/2!

3Dmn
( i ) ~q1 ,q2!. ~14!

In the above equation, the indexi 51, . . . ,4 labels the
Fourier transformsDmn

( i ) (q1 ,q2) of the componentsDmn
( i ) (z1

1X,z21X) given by Eqs.~A20!–~A23!

Dmn
(1)~q1 ,q2!5~2p!ndn~q11q2!dmnD~q1!, ~15!

Dmn
(2)~q1 ,q2!5E

0

1

daq1m

]

]q1n
D (a)~q1 ,q2!, ~16!

Dmn
(3)~q1 ,q2!5E

0

1

dbq2n

]

]q2m
D (b)~q2 ,q1!, ~17!

Dmn
(4)~q1 ,q2!5E

0

1

daE
0

1

dbq1mq2n

3
]

]q1l

]

]q2l
D (a,b)~q1 ,q2!, ~18!

where

D~q!5
8

N

1

Aq2
, ~19!

D (a)~q1 ,q2!5~2p!ndn~q11aq2!D~q1 /a!, ~20!

D (a,b)~q1 ,q2!5~2p!ndn~bq11aq2!D~q1 /a!. ~21!

The first contribution to the anomalous dimension ste
from dG(1)(p) given by Eqs.~14! and ~15!. Since the Fou-
rier transform of the propagator Eq.~1! is proportional to
p̂/p22h, it proves convenient to multiplydG(1)(p) by p̂ in
11520
i-

ter

s

order to deduce the exponenth that we are after. Now taking
the trace we arrive at the following result

1

4
Tr@ p̂dG(1)~p!#5

1

4E dnq

~2p!n
Tr@ p̂S~p!

3gmS~p2q!gmS~p!#D~q!

52
8~n22!

N E dnq

~2p!n

p22p•q

Aq2p2~p2q!2

52
4

3p2N

upu2e

e
, ~22!

where we used dimensional regularization nearn532e in
the divergent integral

E dnq

~2p!n

p22p•q

Aq2p2~p2q!2
5

1

6p2

upu2e

e
. ~23!

Notably, Eq.~22! coincides with the result for the anomalou
dimension of the ordinary~gauge-variant! fermion propaga-
tor performed in the covariant Feynman gauge.

Next, we compute the termdG(2)(p) given by Eqs.~14!
and ~16!:

dG(2)~p!5E
0

1

daE dnq1

~2p!n

dnq2

~2p!n
S~p1q1/21q2/2!

3gmS~p2q1/21q2/2!gnS~p2q1/22q2/2!

3q1m

]

]q1n
~2p!ndn~q11aq2!D~q1 /a!.

~24!

Integrating by parts we castdG(2)(p) in the form

dG(2)~p!52E
0

1

daE dnq1

~2p!n

dnq2

~2p!n
~2p!ndn

3~q11q2a!DS q1

a D ]

]q1n
H FSS p2

q1

2
1

q2

2 D
2SS p1

q1

2
1

q2

2 D GgnSS p2
q1

2
2

q2

2 D J , ~25!

where we made use of the Ward-Takahashi identity~WTI!
for the bare propagators

S~k1q!q̂S~k!5S~k!2S~k1q!. ~26!

Multiplying Eq. ~25! by p̂ and taking the trace we obtain
1-3
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1

4
Tr@ p̂dG(2)~p!#

52E
0

1

daE dnq1

~2p!n

dnq2

~2p!n

3~2p!ndn~q11q2a!D~q1 /a!

3H 2
~n22!

2

~2p22p•q1!

~p2q1/21q2/2!2~p2q1/22q2/2!2

1
~n22!

2

~p•q11p•q2!

~p2q1/22q2/2!2~p1q1/21q2/2!2J .

~27!

Being an odd function of the momentaq1,2 the last term in
Eq. ~27! vanishes. Thus, we obtain

1

4
Tr@ p̂dG(2)~p!#5

4~n22!2n

N E
0

1

daE dnq

~2p!n

3
~p21p•qa!

Aq2@p1q~11a!#2@p2q~12a!#2
.

~28!

The momentum integral can be evaluated by virtue of
Feynman parametrization

I 15E dnq

~2p!n F ~p21p•qa!

Aq2@p1q~11a!#2@p2q~12a!#2G
5

p2

~12a2!3

3

4E0

1

dxE
0

1

dy
x

A12x

3@12~2xy2x!a2~12x!a2#E
0

` dq

2p2

qn21

@q21c#5/2

5
p2

~12a2!3

3

4E0

1

dxE
0

1

dy
x

A12x

3@12~2xy2x!a2~12x!a2#
c(n25)/2

6p2
, ~29!

where the argumentc takes the form

c5
p2x

~12a2!2
@12x~122y!2

12~12x!~122y!a1~12x!a2#. ~30!

The leading divergence of the integral overa can be
extracted by making an approximation similar to that
Ref. 16:
11520
e

f

c(n25)/2

'F p2

~12a2!2G (n25)/2

3
1

x@12x~122y!212~12x!~122y!a1~12x!a2#
.

~31!

In this way, we obtain

I 1'
1

8p2~12a2!
F upu

~12a2!
G2e

I ~a!, ~32!

where

I ~a!5E
0

1

dxE
0

1

dy

3
~12x!21/2~12~2xy2x!a2~12x!a2!

@12x~122y!212~12x!~122y!a1~12x!a2#
.

~33!

The expression fordG(2) now reads

1

4
Tr@ p̂dG(2)~p!#5

4upu2e

p2N
E

0

1

da
I ~a!

~12a2!12e

'I ~1!E
0

1

da
1

2~12a!12e
5

4

Np2

upu2e

e
,

~34!

where we used the integral

I ~1!5E
0

1

dxE
0

1

dy
x~12x!21/2

2@11x~y21!#
52. ~35!

It can be readily shown that Eq.~34! is also identical to the
result for Tr@ p̂dG(3)(p)#, given by Eqs.~14! and ~17!.

Lastly, the expression fordG(4)(p) given by Eqs.~14!
and ~18! reads as

dG(4)~p!5E
0

1 da

an22E0

1/a

dtE dnq1

~2p!n

dnq2

~2p!n
~2p!n

3dn~q1t1q2!D~q1!
]

]q1
l

]

]q2
l FSS p1

q1

2
1

q2

2 D
3q̂1SS p2

q1

2
1

q2

2 D q̂2SS p2
q1

2
2

q2

2 D G , ~36!

wheret5b/a. First, we make use of the WTI given by Eq
~26! to simplify the product of the free fermion propagato
1-4
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SS p1
q1

2
1

q2

2 D q̂1SS p2
q1

2
1

q2

2 D q̂2SS p2
q1

2
2

q2

2 D
5SS p1

q1

2
1

q2

2 D2SS p2
q1

2
1

q2

2 D
1SS p1

q1

2
1

q2

2 D q̂1SS p2
q1

2
2

q2

2 D . ~37!

As a result, Eq.~36! assumes the following form:

dG(4)~p!5E
0

1 da

an22E0

1/a

dtE dnq1

~2p!n

dnq2

~2p!n
~2p!n

3dn~q1t1q2!D~q1!
]

]q1
l

]

]q2
l

3FSS p1
q1

2
1

q2

2 D2SS p2
q1

2
1

q2

2 D G ,
~38!

where we have dropped the last term in Eq.~37!, which
vanishes upon angular integration. Next, we pull the deri
tives to the front of the integral,

dG(4)~p!5
1

4

]

]pl

]

]pl
E

0

1 da

an22E0

1/a

dtE dnq1

~2p!n

dnq2

~2p!n

3~2p!ndn~q1t1q2!D~q1!@S~p1q1/21q2/2!

1S~p2q1/21q2/2!#, ~39!

and carry out the momentum integration overq2 followed by
rescaling of the remaining momentum variableq1 which
yields

dG(4)~p!5
1

4

]

]pl

]

]pl
E

0

1 da

an22 E0

1/a

dt E dnq

~2p!n

3D~q!@S„p1q~12t!/2…1S„p2q~11t!/2…#

5
2n

N

]

]pl

]

]pl
E

0

1 da

an22 E0

1/a

dt

3@~12t!12n1~11t!12n#

3E dnq

~2p!n

~ p̂1q̂!

Aq2~p1q!2
'

4

p2N

upu2e

e
, ~40!

where we have invoked Eq.~23! to compute the integral

E dnq

~2p!n

~ p̂1q̂!

Aq2~p1q!2
5

p̂

6p2

upu2e

e
~41!

and used then→3 asymptotic

E
0

1 da

an22E0

1/a

dt@~12t!12n1~11t!12n#.2
1

e
. ~42!
11520
-

Notably, a singular~1/e! term, which is present in the gaug
propagatorDmn

(4)(q1 ,q2) and the origin of which is discusse
in the Appendix, gets canceled in Eq.~40!.

Combining the contributions~22!, ~34!, and ~40!, we fi-
nally obtain

1

4
Tr@ p̂dG~p!#5

1

4
Tr$ p̂@dG(1)~p!12dG(2)~p!1dG(4)~p!#%

5
32

3p2N

upu2e

e
, ~43!

which implies that in the momentum space Eq.~2! acquires
the form

Ginv~p!5S~p!1dG~p!5
p̂

p2
@12h~1/e2 lnupu!#,

~44!

thus allowing one to read off the anomalous dimension

h52
32

3p2N
. ~45!

This result corroborates the earlier calculations performed
the covariant and axial gauges in the framework of both
path-integral approach of Ref. 10 and the direct perturba
expansion of Ref. 13.

III. GAUGE-INVARIANT PROPAGATOR
WITH SEMI-INFINITE STRINGS

In this section we set out to investigate the dependenc
the amplitude~2! on the choice of the contourG. Specifically,
we consider the contour consisting of two~anti!parallel
semi-infinite strings attached to the end points, in which c
the source currentJm(z) in the line integral~8! is given by
the expression

Jm~z!5nmE
0

`

da@dn~z2x2na!6dn~z2y6na!#,

~46!

wherenm is a unit vector in a direction of strings. The upp
~lower! signs in Eq.~46! correspond to the cases of parall
and antiparallel strings, respectively.

In the former case, despite the fact that the strings do
form a closed contour, the corresponding amplitude rema
gauge invariant, as long as all the infinitely remote points c
be compacted into a single one. This customary assump
always holds in the perturbative sector of the gauge the
where all the fields vanish at infinity.

The correction to the free fermion propagator has
form
1-5
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dG~x2y!52
1

2E dnz1dnz2Jm~z1!Dmn~z12z2!Jn~z2!

3S~x2y!1E dnz1dnz2S~x2z1!gmS~z12y!

3Dmn~z12z2!Jn~z2!2E dnz1dnz2S~x2z1!

3gmS~z12z2!gmS~z22y!Dmn~z12z2!. ~47!

Making use of the amplitudeG(x2y) being explicitly gauge
invariant, we choose to compute it in the Feynman ga
where the gauge propagator takes a particularly simple f

Dmn~x!5dmn

A

~x2!(n21)/2
, A5

4

N

m32nG„~n21!/2…

p (n11)/2
.

~48!

The last term in Eq.~47! corresponds to the standard fermio
self-energy in the Feynman gauge

dG(3)~x2y!.
4~22n!G„~n21!/2…

Np (n11)/2~2n23!

ux2yu32n

32n
S~x2y!.

~49!

The first term in Eq.~47! containing two source currents
given by the integral

dG(1)~x2y!52
1

2E dnz1dnz2Jm~z1!Dmn~z12z2!Jn~z2!

52
A

2E0

`

daE
0

`

dbF 2

ua2bun21

2
1

$@x2y1n~a2b!#2%(n21)/2

2
1

$@2x1y1n~a2b!#2% (n21)/2G . ~50!

The integral overb is convergent for 1,n,2. However, the
remaining integration overa diverges with the upper limitL
which we impose as a cutoff.

Rescaling the integration variablesa→aux2yu,b→bux
2yu and introducing the angleu according to the relation
cosu5(x2y)n/ux2yu, we rewrite Eq.~50! as

dG(1)~x2y!52
Aux2yu32n

2 E
0

L/ux2yu
daE

0

`

dbF 2

ua2bun21

2
1

@112 cosu~a2b!1~a2b!2# (n21)/2

2
1

@122 cosu~a2b!1~a2b!2# (n21)/2G .

~51!
11520
e
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In the integral overb, we consider separately the interva
from 0 to a and froma to `. First we compute the integra
from a to `, which, upon shifting the integration variabl
b→b1a, acquires the form

I 15E
2`

`

dtF 1

~t2!(n21)/2
2

1

@122t cosu1t2# (n21)/2G .

~52!

After exponentiating the denominators and carrying out
integral overt, one obtains

I 15
Ap

G„~n21!/2…E0

`

dssn/222@12e2s sin2u#

52
ApG~n/221!

G„~n21!/2…
~sin2u!12n/2. ~53!

In turn, the integral overb from 0 to a takes the form

I 25E
0

a db

@112 cosu~a2b!1~a2b!2# (n21)/2

5aE
0

1 db

@112ab cosu1a2b2# (n21)/2
, ~54!

where we made a change of variablesb→a2b, followed by
rescalingb→ab.

Next, we represent the last expresion as the differe
between the integrals taken from 0 tòand that from 1 tò :

I 25E
0

` db

@b212b cosu11# (n21)/2

2~a212 a cosu11!12n/2

3E
0

` db

@b212b cosg11# (n21)/2
, ~55!

where

cosg5
a1cosu

Aa212a cosu11
. ~56!

The integrals in Eq.~55! are evaluated with the use of th
formula

E
0

` dx

~x262x cosg11!r
5

1

2
~sin2g!1/22r

ApG~r21/2!

G~r!

7~cosg!FS 1,r;
3

2
;cos2g D .

~57!

Hence the sum of the two integrals reads
1-6
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I 2~cosu!1I 2~2cosu!

5~a1cosu!~a212 a cosu11!(12n)/2

3FS 1,
n21

2
;
3

2
;cos2g D1~cosu→2cosu!,

~58!

which can be further transformed by using the relation
tween the hypergeometric functions of complementary ar
ments,

F~a,b;c;z!5
G~c!G~c2a2b!

G~c2a!G~c2b!
F~a,b;a1b2c11;12z!

1~12z!c2a2b
G~c!G~a1b2c!

G~a!G~b!

3F~c2a,c2b;c2a2b11;12z!, ~59!

thus resulting in the expression

I 2~cosu!1I 2~2cosu!

5
ApG~n/221!

2 G„~n21!/2…
~sin2u!12~n/2!

3S a1cosu

ua1cosuu
1

a2cosu

ua2cosuu D
1

1

22n F ~a1cosu!~a212a cosu11!(12n)/2F

3S 1,
n21

2
;
n

2
;sin2g D1~cosu→2cosu!G . ~60!

Invoking the formula for the derivatives of the hypergeom
ric function,

F~a1n,b;c;z!5
z12a

~a!n

dn

dzn
@za1n21F~a,b;c;z!#, ~61!

we can rewrite the expression in Eq.~58! as a total deriva-
tive. Then the integration overa becomes trivial and we
finally get the expression for the double-source term

dG(1)~x2y!5
AApG~n/221!

G„~n21!/2…
@L2 1

2 ux2yucosu#

3ux2yu22n~sin2u!12n/2

2
Aux2yu32n

~22n!~32n!
FS 1,

n23

2
;
n

2
;sin2u D ,

~62!

which behaves as

dG(1)~x2y!.
4

Np2

~mux2yu!32n

32n
, ~63!

nearn53, independent of the cutoffL.
11520
-
-

-

The second term in Eq.~45! containing one insertion o
the source current is given by the integral

dG(2)~x2y!5E
0

`

daE dnzS~x2z!n̂S~z2y!

3@D~z2y2an!2D~z2x2an!#.

~64!

This expression can be readily computed in the momen
space where it reads as

dG(2)~x2y!52E dnp

~2p!n
e2 ip(x2y)E

0

`

daE dnq

~2p!n

3eiaqn@S~p!n̂S~p2q!

2S~p1q!n̂S~p!#D~q!. ~65!

First, we consider the integral

J5E dnq

~2p!n
eiaqnS~p2q!D~q!

5
8

NE dnq

~2p!n
eiaqn

p̂2q̂

~p2q!2

1

Aq2
, ~66!

which, upon exponentiating the denominators and integra
over q, takes the form

J5
8

NAp~4p!n/2E0

`

dsE
0

` dt

At

1

~s1t !n/211

3e2p2st/(s1t)1 ias/(s1t)pn2a2/4(s1t)S p̂t2
ian̂

2 D .

~67!

Thus Eq.~63! can be written as

dG(2)~x2y!52
8

NAp~4p!n/2E dnp

~2p!n
e2 ip(x2y)

3E
0

`

daE
0

`

dsE
0

` dt

At

1

~s1t !n/211

3e2p2st/(s1t)2a2/4(s1t)

3Feia[s/(s1t)] pnS~p!n̂S p̂t2
ian̂

2 D
2e2 ia[s/(s1t)] pnS p̂t1

ian̂

2 D n̂S~p!G .
~68!

After inserting into the integrand the identity*0
`drd(r2s

2t)51 and rescaling the variabless→sr,t→tr one can
readily perform the integration overs.
1-7
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The integration overr results in the table integral

E
0

`

dxxa21e2px2q/x52S q

pD a/2

Ka~2Apq!, ~69!

thus yielding

dG(2)~x2y!52
32i

NAp~4p!n/2E dnp

~2p!n

3e2 ip(x2y)~2upu!(n23)/2

3E
0

`

daa (32n)/2E
0

1

dt@ t~12t !# (n23)/4

3@A12t sin~atpn!S~p!n̂p̂K (32n)/2

3„aupuAt~12t !…2upuS~p!At cos~atpn!

3K (12n)/2„aupuAt~12t !…#. ~70!

The remaining integrals overa are given by the formulas
~6.699.3! and ~6.699.4! from the Integral Tables.15

Thus, we arrive at the formula

dG(2)~x2y!52
i252n

Np (n11)/2E dnp

~2p!n
e2 ip(x2y)upun24

3E
0

1

dtt(n23)/2~12t !(n24)/2

3FS~p!n̂p̂•
pn

upu
GS 52n

2 DF

3S 1,
52n

2
;
3

2
;2

t~pn!2

~12t !p2D 2
1

2
upuS~p!G

3S 32n

2 DFS 1,
32n

2
;
1

2
;2

t~pn!2

~12t !p2D G ,

~71!

where the integration overt can be performed by changin
the variablet5u/(11u) and comparing the result with th
integral representation for the hypergeometric function3F2

of a certain argument.
However, one can notice that atn→3 the main contribu-

tion stems from the second term in the square brackets

dG(2)~x2y!.
2G~n23/2!G„~32n!/2…m32n

Npn11/2G„~52n!/2…

3
x̂2 ŷ

@~x2y!2#n23/2

5
8G~n23/2!

Np (n11)/2G~n/2!

~mux2yu!32n

32n
S~x2y!,

~72!
11520
where we restored the dependence on the dimensiona
rameterm and also used

S~x!5
G~n/2!

2pn/2

x̂

~x2!n/2
. ~73!

Combining Eqs.~47!, ~61!, and ~70!, we find the overall
correction to the fermion propagator

G~x2y!'F11
32

3p2N

~mux2yu!32n

32n GS~x2y!, ~74!

from which one can read off the anomalous dimension. R
markably, the latter appears to be still given by Eq.~45!, as
in the case of the original ‘‘short-cut’’ contour studied in th
previous section.

Furthermore, a similar calculation shows that the nega
anomalous dimension Eq.~45! also pertains to the case of th
parallel strings, which corresponds to choosing the up
sign in Eq.~46!. Taken at their face value, these observatio
suggest that the gauge-invariant amplitude Eq.~2! may even
be largely independent of the choice of the contourG.

IV. SUMMARY

In this work, we carried out a direct calculation of th
previously conjectured form of the physical electron prop
gator in such effective QED-like models as the theory of
pseudogap phase of the cuprates. In contrast to the ea
work, we performed our calculations in the reliable rad
gauge and confirmed the result~45! obtained in Refs. 10,13

In the course of our analysis, we also investigated
dependence of the amplitude~2! on the choice of the contou
G by considering the case of two~anti!parallel semi-infinite
strings attached to the end points. The corresponding ga
invariant amplitude is given by Eq.~2! with the current, Eq.
~46!, entering the line integral~8!. Remarkably, the algebrai
behavior~1! controlled by the same negative anomalous
ponent~45! appears to be valid for these functions as we

In addition to the possible dependence on the choice
the contourG ~or a lack thereof!, the anomalous dimensio
may strongly depend on the massless fermion amplitud
question. For instance, when computed in one of the cov
ant gauges, the amplitude

Gj~x2y!5

^0uc~x!expF i ~j21!E
y

x

dzmAm~z!G c̄~y!u0&

^0uexpF i jE
y

x

dzmAm~z!G u0&

~75!

exhibits a positive anomalous dimension

hj5
16

3p2N
~3j22! ~76!

for any j.2/3,13 including the case ofj51 which has been
claimed11 to provide an identical representation of the orig
nal functionG0(x) given by Eq.~2!.
1-8
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However, for anyjÞ0 the amplitudeGj(x) given by Eq.
~75! is not truly gauge-invariant, and, in particular, i
anomalous dimension computed in a noncovariant ga
may differ from Eq.~76! ~for an extended discussion of th
subtle point, see Ref. 13!. For instance, when computed
the radial gauge applied in this paper the anomalous dim
sion of the functionGj(x) turns out to be independent ofj
and is given by Eq.~45!. This makes it clearly impossible t
substitute any of the surrogate amplitudesGj(x) with j.2/3
@e.g., G1(x), as in Ref. 11# for the original one,G0(x),
which is the only truly gauge-invariant member of the fam
of functions~75!.

Evidently, the negative anomalous dimension manifes
by the function~2! contradicts the anticipated behavior of
viable candidate to the role of the physical electron propa
tor, since in all of the previously discussed effecti
QED3-like models the repulsive electron interactions are
pected to result in further suppression, rather than enha
ment, of any amplitude describing propagation of physi
electrons. In particular, the algebraic decay of the gau
invariant fermion amplitude~1! would only result in the
sought-after Luttinger-like~stronger-than-linear! vanishing
density of statesn(e);ueu11h if h were positive. By the
same token, a pseudogap theory can only be reconciled
the experimentally established absence of well-defined n
quasiparticles if a branch-cut singularity of the electr
propagator that occurs atpm

2 50 appears to be weaker~not
stronger! than a simple pole.

We defer a further discussion of the construction of
physical electron propagator until future work~see, however,
Refs. 10 and 13 for an alternative form that demonstrate
faster-than-algebraic decay, thus further diminishing
chances that the conjecture about the Luttinger-like beha
in QED3 may still be ‘‘right, albeit for a wrong reason’’!.
Instead, we suggest that the negative anomalous dimen
~45! of the heuristically chosen gauge-invariant amplitu
~2! may pertain not so much to the physical electron pro
gator per se, but rather to the vertex corrections that al
control the behavior of various gauge-invariant two-parti
amplitudes~‘‘susceptibilities’’!.

In this regard, we quote the earlier result of Ref. 17 o
tained for the susceptibility associated with the four-ferm
scalar vertex

^0uc̄~x!c~x!c̄~y!c~y!u0&}
1

ux2yu42(64/3p2N)
, ~77!

which features a negative anomalous dimension 2h. In the
context of the QED3 theory of the pseudogap phase of c
prates, formula~77! describes the divergence of the sta
gered spin susceptibility at the antiferromagnetic order
vector QW 5(p,p).18 We emphasize that one encounters
above problem with the unphysical~slower than}1/x2) de-
cay of the amplitude~2! only in the massless case, while fo
a finite fermion mass this function decays as}e2muxu.

In the case of the QED3 theory of the pseudogap phase,
has been argued that one may indeed expect a dynam
mass generation corresponding to the intrinsic instability
11520
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wards a spin and/or charge density wave ordering.8,11 The
question remains, though, as to whether or not the ch
symmetry breaking can at all occur for the physical num
of fermion flavors (N52). Even in the fully Lorentz-
invariant situation there exist some analytical19 and
numerical20 results that suggest the upper boundNcr,2 for
the critical number of flavors below which the chiral sym
metry gets broken.

In the ~non-Lorentz-invariant! QED3 theory of the
pseudogap phase of Refs. 4–8, the role of the strong sp
anisotropy of the quasiparticle dispersion and, in particu
its effect on a possible universality~or a lack thereof! of the
critical value ofNcr still remain to be ascertained~see Ref.
21 for a discussion of the weakly anisotropic case!. It is
worth mentioning, however, that in the extreme non-Loren
invariant limit of the QED3-like theory describing the prob
lem of layered graphite the estimated value ofNcr was found
to be even lower than that in the original Lorentz-invaria
case.22

We conclude by stressing that the problem of construct
the true physical electron propagator in the effective ma
less QED-like theories still remains unresolved. Nevert
less, our calculation confirms once and for all that the na
ansatz~2! is inadequate, thereby eliminating the current ba
for the theoretical predictions of the Luttinger-like behavi
in the underdoped cuprates.5–7 It is, however, conceivable
that, while being unrelated to the actual behavior of the el
tron propagator, the negative anomalous dimension~45!
manifests the same properties of the gauge-invariant ve
corrections as those exhibited by the physically relevant tw
fermion amplitudes such as Eq.~77!.
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APPENDIX FOCK-SCHWINGER PHOTON PROPAGATOR

In this appendix we demonstrate that the line integral
Eq. ~2! vanishes in the so-called radial or Fock-Schwing
~FS! gauge. We also derive the expression for the pho
propagator in this gauge.

The FS gauge is defined as

~x2x0!mAm~x,x0!50. ~A1!

In contrast to such widely used gauges as the Lan
]mAm(x)50, the Coulomb] iAi(x)50 (i 51,2), and the
axial nmAm(x)50 gauges, the FS gauge may break the tra
lational invariance because of the presence of a fixed p
x0. However, an important advantage of the Fock gauge
the explicit relation between the potentialAm(x,x0) and the
field strengthFmn :
1-9
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Am~x,x0!5E
0

1

daa~x2x0!nFnm„a~x2x0!1x0 ,x0….

~A2!

In order to derive Eq.~A2! we differentiate Eq.~A1!,

Am~x,x0!1~x2x0!n]mAn~x,x0!50, ~A3!

and then useFmn5]mAn2]nAm to write

Am~x,x0!1~x2x0!n@Fmn~x,x0!1]nAm~x,x0!#50.
~A4!

Upon changing the variablex→a(x2x0)1x0 the last ex-
pression turns into

d

da
@aAm„a~x2x0!1x0 ,x0…#

5a~x2x0!nFnm„a~x2x0!1x0 ,x0…. ~A5!

Integrating over a and using the boundary conditio
Am(x0 ,x0)50 @see Eq.~A3!#, which assumes the regularit
of Am(x,x0) at x5x0, we arrive at Eq.~A2!. Note that the
boundary conditionAm(x0 ,x0)50 is essential for eliminat-
ing a residual gauge freedom that remains even after im
ing the gauge condition~A1!.

Indeed, in addition to the solution~A2!, Eq. ~A1! can be
satisfied by any function

Am
0 ~x,x0!5]m

x f ~x2x0!, ~A6!

where f is an arbitrary homogeneous function ofx2x0 of
zero degree. Any such function would necessarily be sing
at x5x0, though. Hence, the regularity condition atx2x0
can be used to fix the residual gauge freedom in Eq.~A1!.

Under the translationUa
21Fmn(x)Ua5Fmn(x2a) the so-

lution ~A2! transforms as

Ua
21Am~x,x0!Ua5Am8 ~x,x0!5Am~x2a,x02a!. ~A7!

When expressed in terms of the center of massX5(x
1y)/2 and the relativex̄5x2y coordinates, the line integra
in Eq. ~2! takes the following form

I ~ x̄,X;x0!5E
y

x

dzmAm~z!

5~x2y!mE
0

1

daAm„a~x2y!1y,x0…

5 x̄mE
21/2

1/2

daAm~a x̄1X,x0!. ~A8!

Under translations, Eq.~A8! transforms according to the rul
I ( x̄,X;x0)5I ( x̄,X2a;x02a).

We can further restrict the gauge condition~A1! by choos-
ing the fixed pointx0 at the center of mass, i.e.,x05X

~x2X!mAm~x,X!50 ~A9!

@hereafter, we simplify the notationAm(x,x05X)[Am(x)].
11520
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It can be readily seen that in the gauge~A9! the line
integral vanishes, i.e.,I ( x̄,X;X)50. Indeed, from Eqs.~A8!
and ~A2! we obtain

I ~ x̄,X;X!5 x̄mE
21/2

1/2

daAm~a x̄1X!

5 x̄mx̄nE
21/2

1/2

daE
0

1

dbbFnm~ab x̄1X!50,

~A10!

due to the antisymmetry ofFnm .
Furthermore, performing a translation witha5X we can

cast the gauge condition~A9! in the form

~x2X!mAm~x2X!50, ~A11!

which is identical to

xmAm~x!50. ~A12!

Next, we derive the photon propagator in the gauge~A12!,
where Eq.~A2! reads as

Am~x!5E
0

1

daaxnFnm~ax!. ~A13!

Thus, we find

Dmn
FS~x,y!5^0uTAm~x!An~y!u0&

5E
0

1

dadbabxsyr^0uTFsm~ax!Frn~by!u0&.

~A14!

Since the field strengthFmn is a gauge-invariant quantity, th
correlator ^0uTFsm(x)Frn(y)u0& can be calculated in any
gauge, including, e.g., the Feynman gauge, where it beco

xsyr^0uTFsm~x!Frn~y!u0&

5xsyr~dmn]s
x ]r

y2dmr]s
x ]n

y2dsn]m
x ]r

y1dsr]m
x ]n

y!D~x2y!

[Hmn~x,y!D~x2y!. ~A15!

HereD(x) is the photon propagator in the Feynman gaug

D~x!5
A

~x2!(n21)/2
, A5

4

N

m32nG„~n21!/2…

p (n11)/2
.

~A16!

With the use of the relationxm]m5uxu] uxu the operator
Hmn(x,y) can be written in the form

Hmn~x,y!5dmn] uxu] uyuuxuuyu2]m
x xn] uyuuyu

2]n
yym] uxuuxu1]m

x ]n
yx•y. ~A17!

Now, making use of the identity
1-10
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] uxu E
0

1

dauxu f ~ax!5] uxu E
0

1

dauxu f ~auxux̂!

5] uxu E
0

uxu
db f ~b x̂!5 f ~x!, ~A18!

wherex̂5x/uxu is the unit vector, we obtain

Dmn~x,y!5^0uTAm~x!An~y!u0&

5E
0

1

dadbHmn~ax,by!D~ax2by!

5Hmn~x,y!E
0

1

dadbD„~ax2by!2
…

5dmnD~x2y!2E
0

1

da]m
x xnD~ax2y!

2E
0

1

db]n
yymD~x2by!

1E
0

1

dadb]m
x ]n

yx•yD~ax2by! ~A19!

~cf. Refs. 23 and 24!.
While the first term in Eq.~A19! depends solely onx̄, the

others have a more complicated dependence; hence the
ton propagator computed in an arbitrary FS gauge is
,

l-

.

11520
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necessarily translationally invariant. Moreover, the last te
in Eq. ~A19! displays a divergence atn53 that forces one to
use the method of dimensional regularization when comp
ing various quantities. As pointed out in Ref. 24@see also Eq.
~40!#, the divergence of the free FS gauge propagator an
53 dimensions is, in fact, necessary for obtaining the corr
results.

Finally, in order to return to the gauge~A9! we replace
x→x2X, y→y2X in Eq. ~A19!, thus obtaining the FS
gauge propagatorDmn

FS(x,y) as a sum of the four terms~here
the argumentsx andy are unrelated to the end points in th
line integral!

Dmn
(1)~x,y![dmnD~x2y!, ~A20!

Dmn
(2)~x,y![2E

0

1

da]m
x ~x2X!nD„ax2y1~12a!X…,

~A21!

Dmn
(3)~x,y![2E

0

1

db]n
y~y2X!mD„x2by2~12b!X…,

~A22!

Dmn
(4)~x,y![E

0

1

dadb]m
x ]n

y~x2X!•~y2X!

3D„ax2by2~a2b!X…. ~A23!
y,

ys.
1I. Affleck and J. B. Marston, Phys. Rev. B39, 11538~1989!; J. B.
Marston, Phys. Rev. Lett.64, 1166~1990!.

2N. Dorey and N. E. Mavromatos, Nucl. Phys. B386, 614~1992!;
I. J. R. Aitchison and N. E. Mavromatos, Phys. Rev. B53, 9321
~1996!.

3D. V. Khveshchenko and P. C. E. Stamp, Phys. Rev. Lett.71,
2118~1993!; Phys. Rev. B49, 5842~1994!; J. Gan and E. Wong
Phys. Rev. Lett.71, 4226 ~1993!; C. Nayak and F. Wilczek,
Nucl. Phys. B417, 359 ~1994!; 430, 534 ~1994!; L. B. Ioffe, D.
Lidsky, and B. L. Altshuler, Phys. Rev. Lett.73, 472 ~1994!; B.
L. Altshuler, L. B. Ioffe, and A. Millis, Phys. Rev. B50, 14048
~1994!; Y. B. Kim, A. Furusaki, X.-G. Wen, and P. A. Lee,ibid.
B50, 17917~1994!; S. Chakravarty, R. E. Norton, and O. Sy
juasen, Phys. Rev. Lett.74, 1423~1995!.

4D. H. Kim and P. A. Lee, Ann. Phys.~N.Y.! 272, 130 ~1999!.
5W. Rantner and X.-G. Wen, Phys. Rev. Lett.86, 3871 ~2001!;

cond-mat/0105540.
6Z. Tesanovic and M. Franz, Phys. Rev. Lett.87, 257003~2001!.
7J. Ye, Phys. Rev. Lett.87, 227003~2001!.
8I. F. Herbut, Phys. Rev. Lett.88, 047006~2002!; Phys. Rev. B66,

094504~2002!.
9Y. Wang, N. P. Ong, Z. A. Xu, T. Kakeshita, S. Uchida, D. A

Bonn, R. Liang, and W. N. Hardy, cond-mat/0205299.
10D. V. Khveshchenko, Phys. Rev. B65, 235111~2002!.
11M. Franz, Z. Tesanovic, and O. Vafek, Phys. Rev. Lett.89,
157003 ~2002!; Phys. Rev. B66, 054535 ~2002!; cond-mat/
0204536.

12J. Ye, preceding paper, Phys. Rev. B67, 115104~2003!.
13D. V. Khveshchenko, Nucl. Phys. B642, 515 ~2002!.
14H. Cheng and E.-C. Tsai, Phys. Rev. Lett.57, 511 ~1986!.
15I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series, and

Products~Academic Press, London, 1994!.
16N. G. Stefanis, Nuovo Cimento Soc. Ital. Fis., D83, 205 ~1984!.
17V. P. Gusynin, A. Hams, and M. Reenders, Phys. Rev. D63,

045025~2001!.
18W. Rantner and X.-G. Wen, Phys. Rev. B66, 144501~2002!.
19T. Appelquist, A. G. Cohen, and M. Schmaltz, Phys. Rev. D60,

045003~1999!.
20S. J. Hands, J. B. Kogut, and C. G. Strouthos, Nucl. Phys. B645,

321 ~2002!.
21O. Vafek, Z. Tesanovic, and M. Franz, Phys. Rev. Lett.89,

157003~2002!; D. Lee and I. Herbut, Phys. Rev. B66, 094512
~2002!.

22D. V. Khveshchenko, Phys. Rev. Lett.87, 246802~2001!; E. V.
Gorbar, V. P. Gusynin, V. A. Miransky, and I. A. Shovkov
Phys. Rev. B66, 045108~2002!.

23N. B. Skachkov, I. L. Solovtsov, and O. Yu. Shevchenko, Z. Ph
C: Part. Fields29, 631 ~1985!.

24S. Leupold and H. Weigert, Phys. Rev. D54, 7695~1996!.
1-11


