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We use the radial gauge to calculate the recently proposed ansatz for the physical electron propagator in such
effective models of strongly correlated electron systems as the;Q@iEddry of the pseudogap phase of the
cuprates. The results of our analysis help to settle the recent dispute about the sign and the magnitude of the
anomalous dimension that characterizes the gauge-invariant amplitude in question and set the stage for com-
puting other, more physically relevant, observables.
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[. INTRODUCTION cal temperaturel . regarded merely as the onset of global
phase coherence.

As a generic property, one-dimensional Fermi systems Above T, the fermionic excitations experience strong
with short-range(screenell repulsive interactions routinely scattering by both thermal and quantum fluctuations of an
demonstrate algebraic decay of all correlation functions govincipient ordering, such as a flux of the gauge field measur-
erned by nonuniversaktoupling-dependeptanomalous ex- ing a local spin chiralit§® or vortex-antivortex pairs of the
ponents. A possibility of the emergence of a similar behaviorPairing order parametér.® The latter scenario has recently
commonly referred to as the “Luttinger liquid,” in higher- received new exp_erlmental support from the obse_rvatlon that
dimensional strongly correlated electron systems has bedf€ vortex matter is present at temperatures well in excess of
extensively discussed in recent literature. T., as revea_lled by the_ meas_urements of the Nernst éffect.

Thus far, however, no solid consensus has been reachéf another important ingredient, the QECheory of the

even on the necessary criteria that have to be fulfilled for th@seudogap phase was aimed at explaining the ubiquitous de-

Luttinger behavior to set in, much less on whether or not itstruction Of the coherent quasiparticles Qbf‘_\fe which was .
; o ' observed in angular-resolved photoemission and tunneling
occurs in any specific example of a strongly correlated elecéxperiments

tron system. It was largely for this reason that attention has To this end, the authors of Ref. 5 conjectured that the

regently been drlawn to the clasg of effectlve models deélectron propagator in question may, in fact, exhibit the Lut-
scribed by (possibly, spatially anisotropic and/or Lorentz tinger behavior

noninvariant deformations of the standard action of Quan-
tum electrodynamics. G(X)xR/|X[3H7, k= 1y,X,, 1)
Motivated by the puzzling properties of the quasi-two-
dimensional high-temperature copper-oxide superconductor
most interest has been focused on the three-dimengidbal

characterized by a positive anomalous expongn0. They
also attempted to fit the angle-resolved electron photoemis-

; : . : sion spectrgd ARPES while claiming good agreement with
case degcrlbed by elthgr the ordlr;lrzgpﬁnty—even QED3 OF  experiment(unless explicitly stated otherwise, throughout
the Abelian 3D Chern-Simons thedrywhere the finite den- this paper we use the notatide= y,n,, for vectorsn,, con-

sity problem of nonrelativistimassive fermions has be- {5cted with the Dirac matrices,)
) -

come the main subject of scrutiny. However, the latter was The conclusions drawn in Ref. 5 were based on the use of

found to fall into a rather different class of non-Fermi-liquids e following heuristic form of the gauge-invariant electron
that bear little resemblance to the 1D Luttinger liggid. propagator

Recently, the idea of the conjectured Luttinger-like behav-
ior has been rekindled in recent theories of the pseudogap ]
phase of underdoped superconducting cupratéalbeit de- G(x—y)=(0| llf(X)eXF{ —i frdZ“A,L(Z)
scribing rather different physics, all these approaches resort
to the same effective description in terms of the pseudorelanhere the line integral was taken along the contidehosen
tivistic QED; theory of the gapless nodal fermion excitationsas the straight-line segment connecting the end points. Later,
that retain theid-wave symmetrical gap well above the criti- the calculations of Ref. 5 were carried out by a number of

w(y)o), (2
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other authors, and the results for the anomalous exponemthere the ellipsis stands for the higher-order terfmsn-
appeared to vary not only between the different autfigrs Gaussiaj which we hereafter neglect, following all of the
=32/3m°N (Ref. 5 versus—32/37°N (Ref. 10] but also  previous works on the subject. Intending to subsequently use

from one to another work of the same authdrg= the method of dimensional regularization, for evaluating
—16/3m°N (Ref. 6 versus 16/&°N (Ref. 11 and »  Feynman diagrams we formulated E4) in n=3— e dimen-
=32/37°N (Ref. 7) versus— 64/37°N (Ref. 12]. sions. Also, in Eq(4) we neglected the bare Maxwell term

va(x—y)=<G[x,y;A]ex;{—iLxdzﬂAﬂ(z)

(6)

While some of the calculations were performed in the~(r7#AV—p7,,AM)2, which turns out to be irrelevant in the
conventional covariant gaug&'?other authors made use of low-energy, long-distance limit.
the potentially problematic axial gaugéx—y),A,(2)=0, The previously proposed candidate for the physical elec-
wherex,y are arbitrarily chosen points that are taken to co-tron propagato(2) studied in Refs. 5-7 and 10-12 can be
incide with the end points of the contodif],>%° which  cast in the following form:
spurred a debate over the issue of a tiwgrsus limited, see
Ref. 13 gauge invariance of Eq2), as opposed to its sur- > )
rogate functions proposed in Ref. (dee the Summary for a '
more extended discussipriWhile seemingly being an issue
of secondary importance, a proper construction of the physiwhere G[X,y;A] is a fermion propagator for a given fixed
cal electron propagator is, in fact, imperative, as far as ascefonfiguration of the gauge fiel,,, and the angular brackets
taining the status of the conjectured Luttinger-like behaviorstand for the(normalized functional average over the gauge
in the QED-like theories is concerned. field, which is described by the action, Ed).

In light of the present controversy, in this paper we un- In the Euclidean momentum space, the kemgﬂ of the
dertake yet another attempt to settle the dispute about thguadratic operator has the form
physically motivated form of the electron propagator and the
actual value ofy (if any) by resorting to the so-called radial 1 N\/? 4.9,
(Fock-Schwinger gauge[ (z—x) ,A,,(z)=0 andx is an ar- Du(@)=—5—| 0w~ 2|
bitrary fixed point. The radial gauge is known to be free of
the potential problems that might exist in the axial gaugelntroducing a source field
which, according to some authors, may even require one to
introduce ghost field&! In addition, we also set out to ex- 1 N
plore the dependence of the previously conjectured form of JM(Z)Z(X_V)MJO dad'(z—y—(x=y)a), )
the electron propagat@®) on the choice of the contodr.

we can write the straight-line integral that appears in 5.

Il. GAUGE-INVARIANT FERMION PROPAGATOR as
IN THE FOCK-SCHWINGER GAUGE «
We start with the 3D relativistic theory of massless Dirac L dZ”A,L(Z):f d"zJ(2)A*(z). (8
spinors coupled to a massless$llgauge field, whose Eu-
clidean action is In the Fock-Schwinge(FS) gauge

N
— — _ (X=X0) ,AL(X)=0, C)
SuaAl= [ &3 G0 -A0n,. @ WA=
=1 the line integral in Eq(5) vanishes if one chooses the refer-

— 4 ) ) ence pointx, at the “center of mass™y=X=(x+y)/2
where =4y, and theN-flavored Dirac fermions are de- ror the proof, see the Appendix, which also contains a

scribed by four-component bi-spinors that belong to a reducgerivation of the photon propagator in the FS gauge
ible representation of the matrices satisfying the Clifford DFS(2,+X,2,+ X)]
nv ! :

algebrzat{r]y#f, 7V}:$t5ﬁV(g.’”:to’l'2)d The latter can be cho- “\ye compute the first-order l/correction to the fermion
sen in the form of the direct produgl, = o3®(03,07,01) propagator(3) by expanding the inverse Dirac operator

of the standard triplet of the Pauli matrices . A Al o o b .
In all of the above-mentioned condensed matter-inspire%éﬁi‘()‘ﬁé;]%/g+(1/<9)(IA)(1/0)+ -+ - in powers ofA,(2),

QED-like models the number of fermion flavdss=2. Nev-
Gin(X,y) =S(x—Yy) + 6G(x,y), (10)

ertheless, in what follows we choose to tréats a param-

eter that can assume arbitrary values, depending on the prob-

lem in question. whereS(x—y) and8G(x,y) are the bare fermion propagator
The dynamics of the (1) gauge field is generated by the and the correction to it, respectively. The latter is given by

effective action obtained after tracing out the fermionic de-the expression

grees of freedom

I s60y)= | d' | d'zSx-2-X) yS(z- 22
SulAl=5 [ @ @A, 00D lx-y)am+ o,

@) X y'S(z,+X=y)DENZz+ X, 2,+X),  (11)
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order to deduce the exponenthat we are after. Now taking

gauge fields in the Fock-Schwinger gauge into four contrithe trace we arrive at the following result

butions,

4
DLS(%y) =2 DY), (12)

as is done explicitly in Eqs/A20)—(A23). By choosing the

reference point in the Fock-Schwinger gauge to be the center

of massX, one verifies by inspection of Eq§A20)—(A23)

that the contributiondG can only depend on the relative

coordinatex=x—y:

5G(EZ_J dnzlf anQS(WZ_ Zl) y'“S(Zl—Zz)

13

Taking the Fourier transforntFT) of Eq. (13) FT[ 6G(X)]
=i6G(p), FTS(X)]=iS(p), S(p)=1/p, we obtain

X ¥'S(2,+X12)DF (21 + X, 2,+ X).

5G(i)(p):f d'q, d'a; S(p+q1/2+q2/2)
(2m" (2m)"
XyHS(P—01/2+Qp/2) y"S(p—01/2—0,/2)
XD)(a1,02). (14
In the above equation, the indeix=1, ... ,4 labels the

Fourier transforme))(a;,q,) of the component®{)(z;
+X,z,+ X) given by Egs.(A20)—(A23)

D{(A1,02)=(2m)"6"(1+02) 8,,D(ay), (15
&) ' J
D,uv(Ql!qZ):fO daql;f,ED(a)(qlqu)l (16)
(3) ' J (B)
D,W(QL%):I dBdy, D¥(d2,d1),  (17)
0 P
(4)(Q1,Q2)—f daj dBd1,0z,
° % pehiga), (19
aql)\ &q d1,02
where
D(g)= 8 (19
q —
\/—Z
D((qy,02)=(2m)"8" (0, + ad,)D(qy /@), (20)
D(A)(qy,qz) = (2m)"8"(BUs+ @) D(dy /a). (21)

n

1 1
7 MpoGH(p)]= f T pS(p)

(2)
X y*S(p—q)y*S(p)1D(q)
:_8(n—2)f d'qa  p*-p-q
N (2m)" Ja?p2(p—q)?
4 |p|” ¢

=— , (22)
37N €

where we used dimensional regularization near3— e in
the divergent integral

p’-p-q 1

[ R
(2m)" \g%p?(p—q)?

62 €

(23

Notably, Eq.(22) coincides with the result for the anomalous
dimension of the ordinarygauge-variantfermion propaga-
tor performed in the covariant Feynman gauge.
Next, we compute the terriG(®)(p) given by Eqs.(14)
and (16):
dnql n

8G3(p)= f J(Z) 2

X y*S(P—01/2+0,/2) y"S(p—q1/2—q,/2)

2 S(p+qy/2+03/2)

Jd
quu(yq (2m)"6"(q,+ @q2)D(q;/ a).

(24)

Integrating by parts we cagiG(®)(p) in the form

G (p)=— f f

d"q, d"g;
(2m)" (2m)"

(2m)"8"

where we made use of the Ward-Takahashi idertt4T1)
for the bare propagators

The first contribution to the anomalous dimension stems

from 6GM)(p) given by Eqs(14) and(15). Since the Fou-
rier transform of the propagator Eql) is proportional to
p/p2~7, it proves convenient to multiplpG™)(p) by p in

S(k+a)qS(k) = S(k) — S(k+q). (26)

Multiplying Eq. (25) by p and taking the trace we obtain
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(n—5)/2
ZTpOGEp)] ‘
4 0? (n—5)/2
—— [laa [ S 2R %Ll—azfl
2m)" 2m)" 1
n X .
X (2m)"8"(01+ G22) D (s / @) X[1—x(1—2y)%+2(1—x)(1—2y) a+(1—x) a?]
X{_(n—2> (2p*~p-qy) (31)
2 (P~ Qy/2+02/2)%(p—dx/2-Gol2)? In this way, we obtain
+(n_2) (P-q1t+p-dz) .
2 —qu/2—,/2)2 12+0,/2)%) 1 Id
(P—01/2—0x/2)"(p+q1/2+0,/2) Ilm8 21 | 1 a2 I(a), (32)
27) m(1-a)[(1-a)
where

Being an odd function of the momentg , the last term in
Eq. (27) vanishes. Thus, we obtain

_Tr[pge(Z)(p)]_MJ J'

(p*+p-qa)

l(a)= fdxf dy

(1—x) " Y(1—(2xy—x)a—(1—Xx)a?)
[1-x(1-2y)2+2(1—-x)(1—2y)a+(1—-x)a?]

(2m)"

X . 33
VP + a1+ @) Ap—q(1-a) 33
(28)  The expression fopG®) now reads
The momentum integral can be evaluated by virtue of the 1 - 4lp|=€ (1 (@)
Feynman parametrization —Tr oG f
y p izati [P (P1= 2N a(l—az)“f
d"q (p?+p-qa) 1 4 |p|”¢
l= n 2 2 2 ~I(1) | de - 2 '
2m" [ Va’lp+a(l+a) P [p—q(l-a)] 0 2(1-a)t"c Nm? €
31 (34)
-2 x
(1-a?34Jo Jo where we used the integral
= dq gt 12
a2 1 x(l x)

=—"  “ | dx/[ d It can be readily shown that E¢34) is also identical to the
23 4 y (3 :
(1—-a®3%4Jo  Jo " {1-x result for TEpSG®)(p)], given by Eqs(14) and(17).
Lastly, the expression fo6G*)(p) given by Eqgs.(14)

(n 5)/2
X[1—(2Xy—X)a— (1~ X)az] (29 and (18) reads as
1’“ d"q; d"gz
G (p)= (2m)"
where the argument takes the form (p)= (2" (2m)" (27)
2y Jd d
I 2 X 8"(qy 7+ Gp)D ——[s( %
. azz[l x(1-2y) (Q17+02) (ql)ﬁqi P 22
+2(1-x)(1-2y)a+(1-x)a?]. (30) . di1 2|, SECF:
0z anar =] <ausp- 2+ Llasp-T-F| | @0

The leading divergence of the integral over can be
extracted by making an approximation similar to that ofwhere r=g/a. First, we make use of the WTI given by Eg.
Ref. 16: (26) to simplify the product of the free fermion propagators
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Q1 Q2 q Q2 Q1 a2
q: Q2 q: Q2
= S( p+ + 2 ) S( — ? + ?
d: Q2 i Q2
+S(p+—+2)q18(p > 2). (37

As a result, Eq(36) assumes the following form:
l/a an dan
J J g: d'0z (2m)"
(2m" (277)”

J
X 8"(qqT+ Q2)D(Q1)_ —

sGM(p)= fol

gy dq5
i Q2 q: 02
XSp+7+? _S<p_7+?},

(39)

where we have dropped the last term in E§7), which

PHYSICAL REVIEW B 67, 115201 (2003

Notably, a singulaKl/e) term, which is present in the gauge
propagatorDEfV)(ql ,02) and the origin of which is discussed
in the Appendix, gets canceled in E40).

Combining the contribution$22), (34), and (40), we fi-
nally obtain

2 TPSG(p)] =3 THALAG(p) + 2662)p) + 56 p) )

a2 |l
37N €

: (43

which implies that in the momentum space E2). acquires
the form

Gino(P) = S(p) + 3G (p) = %[1— n(Le—nlp))],
(44

thus allowing one to read off the anomalous dimension

vanishes upon angular integration. Next, we pull the deriva-

tives to the front of the integral,

1d Ua dan dan
8G(4)(p)_——— o J dTJ’ d1 op)
4 9py dprJo (2m)" (2m)"

X (2m)"6"(q17+ 02)D(ay)[ S(p+q1/2+q,/2)
+S(p—01/2+0,/2)], (39

and carry out the momentum integration oggrfollowed by
rescaling of the remaining momentum varialge which
yields

J 1 da l/a

5GH(p)== — —
(P) 4 &p)\ &p)\ (277)”

XD(Q)[S(p+a(1-7)/2)+S(p—q(1+7)/2)]

N dpy dp\ Jo a"2

2" 9 9 1 da flf&

0

X[(1=7 "+ (1+7)1 "

XJ dq (p+ta) 4 [p[°
(2m" Jo?(p+a)? @N €

where we have invoked E@23) to compute the integral

., (40

[ da (e _ bl

2m" Vo’ (p+q)? 67 €

and used the— 3 asymptotic

1 da (Y« 1
f — | dd@-n'"+ 1+ =——. (42
0o a" 0 €

B 32 45
K 3m3N’

This result corroborates the earlier calculations performed in
the covariant and axial gauges in the framework of both the
path-integral approach of Ref. 10 and the direct perturbative
expansion of Ref. 13.

Ill. GAUGE-INVARIANT PROPAGATOR
WITH SEMI-INFINITE STRINGS

In this section we set out to investigate the dependence of
the amplitudg2) on the choice of the contoli. Specifically,
we consider the contour consisting of tw@ant)parallel
semi-infinite strings attached to the end points, in which case
the source currenl, (2) in the line integral(8) is given by
the expression

J“(z)=n”f:da[ N(z—x—na)x8M(z—y*na)],
(46)

wheren* is a unit vector in a direction of strings. The upper
(lower) signs in Eq.(46) correspond to the cases of parallel
and antiparallel strings, respectively.

In the former case, despite the fact that the strings do not
form a closed contour, the corresponding amplitude remains
gauge invariant, as long as all the infinitely remote points can
be compacted into a single one. This customary assumption
always holds in the perturbative sector of the gauge theory
where all the fields vanish at infinity.

The correction to the free fermion propagator has the
form
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1 In the integral overB, we consider separately the intervals
OG(x—y)=— EJ d"z,d"2,3,,(21)D (21— 2,)3,(22) from 0 to  and froma to . First we compute the integral
from « to o, which, upon shifting the integration variable

ne an B— B+a, acquires the form
><S(x—y)+f d"z,d"z,S(x—24) v, S(z,—Y)

= 1 1
XDMV(Zl—Zz)JV(Zz)—f d"z,d"z,S(x~2;) = focd{(#)("—l)’?_ [1-27cosf+ 2]~ V72
(52)

X7MS(21_ZZ)yMS(ZZ_y)DMV(Zl_ZZ)' (47) L. . i
After exponentiating the denominators and carrying out the
Making use of the amplitud€(x—y) being explicitly gauge integral overr, one obtains
invariant, we choose to compute it in the Feynman gauge

where the gauge propagator takes a particularly simple form \/; w
| :—f dS§/2_2[1—e_SSin20]
Y T((n—-1)/2) o

A 4 412 "T((n—1)/12)
Dﬂv(x):(sﬂ"(XZ)(n—l)IZ’ A=N JECEEI- I Jal(n2—1)

(48) = Tan-m) SO (53

The last term in Eq(47) corresponds to the standard fermion

. In turn, the integral ovep from 0 to « takes the form
self-energy in the Feynman gauge

42-mT((n—1)/2) |x—y|3~" | :j“ ds
NAD2on—g) 3-n oY) 0 [1+2 cost(a— B)+(a— 2" D2
(49

The first term in Eq(47) containing two source currents is
given by the integral

SGB(x—y)=

—w f ' dé (54)

0 [1+2aBcosh+ a?B?](n- D2’

where we made a change of variabfes a— g, followed by

oG x—y) =~ %f 0"2,0"203,(20)D (21~ 22)3,(22) resﬁzi?,gevzc:gﬁresent the last expresion as the difference
Ik fdﬁ{;_
2Jo o T la—p"t
1

between the integrals taken from Ostcand that from 1 toe:

= f ’ ap
2 Jo [B2+2Bcosf+1](~ D72

{[x—y+n(a—pg)2n-172 —(a?+2 acosf+1)t "2
1 - dg
{[—x+y+n(a—p)3n-DR] 0 Xfo [B2+2p cosy+ 1] D72’ 59

The integral ove is convergent for £¥n<2. However, the where
remaining integration ovew diverges with the upper limit

which we impose as a cutoff. a+cosh
Rescaling the integration variables— a|x—y|,8— B|x cosy=——= ) (56)
—y| and introducing the anglé according to the relation va®+2acosf+1

cosf=(x—y)n/|x—y|, we rewrite Eq.(50) as

The integrals in Eq(55) are evaluated with the use of the

. Alx—y[3" [Lix-y] " 2 formula
5G( )(X—y)=— Tf daf dﬂ W
0 0 a— " _
f dx =1(sir?y)l/2*9ﬁr(p 1/2)
1 0 (x?x2xcosy+1)? 2 I'(p)

_[1+2Cosﬂ(a—ﬁ)+(a_5)2](n71)/z ,
I(COSY)F(l,p;E;COSZy).

1
[1-2 Cosﬂ(a—ﬁ)+(a—,8)2]‘”_1)’2]' ®7
(52 Hence the sum of the two integrals reads
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I,(cosf)+1,(—cosh) The second term in Eq45) containing one insertion of
( V(a2 1) the source current is given by the integral
=(a+cosh)(a“+2 acosh+ -

n-1 3 6G(2)(x—y):f daJ d"zSx—2z)AS(z—y)
SEFIEY 0

XF :coSy | + (cosf— —cosh),

(58) X[D(z—y—an)—D(z—x—an)].

which can be further transformed by using the relation be- (64)
tween the hypergeometric functions of complementary argurpis expression can be readily computed in the momentum
ments, space where it reads as

I'(c)I'(c—a—h)

F(a,b;c;z)=—r(c_a)r(c_b)F(a,b;a+b—c+1;1—z) 5G(2)(x—Y):_f e y)f d“f
(2m )n (2m)"
c_a_pl (@I (a+b—c) A
+(1-2) T (a)(b) xe'*[S(p)AS(p—0q)
XF(c—a,c—b;c—a—b+1;1-2), (59 —S(p+0q)nS(p)]D(q). (65)
thus resulting in the expression First, we consider the integral
[,(cosh)+1,(—cosb) an _
_ iagn —g)D
_\/;F(H/Z—l) 212 f(zw)ne S(p—q)D(q)
= 2T (n=1yi2) 59 .
+cosé —cosf :_J el edn p—qz_! (66)
[ atcosé | acos ) <2w>” (p—a)? Va2
|ae+cosf|  |a—cosd)

which, upon exponentiating the denominators and integrating

—f = (at cosh)(a’+2a cosh+ 1)~ M2 overg, takes the form

2
n—1n J= f f - -
x| 1—==i3 :siny | +(cosf— —cosb) |. (60) N\/—(47r)“/2 \/_(s+t)”’2+1
Invoking the formula for the derivatives of the hypergeomet- « @ P?st(s+1) +ias/(s+t)pn- a2/4(s+t)( pt— @)
ric function, 2 )
1-a 4n (67)
+ 1
F(a+n,biciz)= - (@) dz —LZTTF@bie2)], (61 Thys Eq.63) can be written as
we can rewrite the expression in E®8) as a total deriva- 3 dp
tive. Then the integration oves becomes trivial and we 5GP (x—y)=— nIZJ ne"p(x‘y)
finally get the expression for the double-source term N(4m) (2m)
AJwT(n/i2—1) f q f f
Dy Ve ) _ a
SGH(x—y)= (=172 [L—3|x—y|cosh] \/’ S+t)n/2+1
><|x—y|2_”(sin29)1_”/2 Xe—pzsu(sﬂ)—azm(sﬂ)
Alx—y[®" n— 3 n i iah
_ a[s/(s+t)]pn Al At
IR sm20 x| € S(p)A| pt——
(62) i
eia[s/(sﬂ)]pn( Bt + _) A }
which behaves as P 2 S(p)
(68)
" A (ux=ypir
OGH(X—y)= NaZ  3-n (63 After inserting into the integrand the identifigdp8(p—s
—t)=1 and rescaling the variables—sp,t—tp one can
nearn= 3, independent of the cutok. readily perform the integration over
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The integration ovep results in the table integral

0 a/2
fodxxalepxqﬂ:z(%) K.(2Vpa), (69)

thus yielding

8G@(x—y)=—

32 J' d"p
Nym(4m)™2)  (2m)"
X e—ip(x—y)(2| pl)(n—3)/2

o 1
xf daa“*“)’zf dfft(1—t)]n-3r4
0 0

X[V1-tsin(atpn)S(p)APK 3_n)2
X (a|p|Nt(1=1))~|p|S(p) vt cog atpn)
XK (1-ny2e|p[Vt(1—1))]. (70)

The remaining integrals ovex are given by the formulas
(6.699.3 and (6.699.4 from the Integral Table¥
Thus, we arrive at the formula

9GP (x—y) =~ e P |p|n e

j25—n J dnp
N7T(n+l)/2 (27T)n

1
X j dtt(n—3)/2(1_t)(n—4)/2
0

(71

where the integration ovdrcan be performed by changing
the variablet=u/(1+u) and comparing the result with the
integral representation for the hypergeometric functigy
of a certain argument.

However, one can notice that at>3 the main contribu-
tion stems from the second term in the square brackets

2I'(n—3/2T(3—Nn)/2)u>"

SGP)(x—y)=
(x=y) N7" Y21 ((5—n)/2)

X Xy
[(x—y)?]" 32
. 8I(n—=3/2)  (u|x—y)*"
C N#(D2r(p2) 3-n

S(x—y),

(72)
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where we restored the dependence on the dimensional pa-
rametery and also used
I'(ni2) %
o2 (x2)"2’

Combining Egs.(47), (61), and (70), we find the overall
correction to the fermion propagator

(73

(u|x=yp3"
372N 3—n

G(x—y)~| 1+ S(x—y), (74

from which one can read off the anomalous dimension. Re-
markably, the latter appears to be still given by &p), as

in the case of the original “short-cut” contour studied in the
previous section.

Furthermore, a similar calculation shows that the negative
anomalous dimension E¢5) also pertains to the case of the
parallel strings, which corresponds to choosing the upper
sign in Eq.(46). Taken at their face value, these observations
suggest that the gauge-invariant amplitude g .may even
be largely independent of the choice of the contbur

IV. SUMMARY

In this work, we carried out a direct calculation of the
previously conjectured form of the physical electron propa-
gator in such effective QED-like models as the theory of the
pseudogap phase of the cuprates. In contrast to the earlier
work, we performed our calculations in the reliable radial
gauge and confirmed the res@) obtained in Refs. 10,13.

In the course of our analysis, we also investigated the
dependence of the amplitu@® on the choice of the contour
I' by considering the case of tw@ntiparallel semi-infinite
strings attached to the end points. The corresponding gauge-
invariant amplitude is given by E@2) with the current, Eq.
(46), entering the line integrdB). Remarkably, the algebraic
behavior(1) controlled by the same negative anomalous ex-
ponent(45) appears to be valid for these functions as well.

In addition to the possible dependence on the choice of
the contourl” (or a lack thereof the anomalous dimension
may strongly depend on the massless fermion amplitude in
guestion. For instance, when computed in one of the covari-
ant gauges, the amplitude

<0|w<x)exp[i<§—1> f:dz#A,xz) (y)|0)

Ge(x—y)= -
<0|ex+§f dz"AM(z)}|0)
y
(79
exhibits a positive anomalous dimension
16
7]§:3W—2N(3§_2) (76)

for any £>2/3 2 including the case of=1 which has been
claimed! to provide an identical representation of the origi-
nal functionGy(x) given by Eq.(2).
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However, for anyé#0 the amplitudeG,(x) given by Eq.  wards a spin and/or charge density wave ordefitgrhe
(75 is not truly gauge-invariant, and, in particular, its question remains, though, as to whether or not the chiral
anomalous dimension computed in a noncovariant gaugsymmetry breaking can at all occur for the physical number
may differ from Eq.(76) (for an extended discussion of this of fermion flavors N=2). Even in the fully Lorentz-
subtle point, see Ref. 13For instance, when computed in invariant situation there exist some analytidaland
the radial gauge applied in this paper the anomalous dimemumericaf’ results that suggest the upper boug<2 for
sion of the functionG,(x) turns out to be independent gf  the critical number of flavors below which the chiral sym-
and is given by Eq(45). This makes it clearly impossible to metry gets broken.
substitute any of the surrogate amplitudggx) with £&>2/3 In the (non-Lorentz-invariant QED; theory of the
[e.g., Gi(X), as in Ref. 11 for the original one,Gy(x), pseudogap phase of Refs. 4—8, the role of the strong spatial
which is the only truly gauge-invariant member of the family anisotropy of the quasiparticle dispersion and, in particular,
of functions(75). its effect on a possible universalifgr a lack theregfof the

Evidently, the negative anomalous dimension manifestedritical value of N, still remain to be ascertainedee Ref.
by the function(2) contradicts the anticipated behavior of a 21 for a discussion of the weakly anisotropic dade is
viable candidate to the role of the physical electron propagaworth mentioning, however, that in the extreme non-Lorentz-
tor, since in all of the previously discussed effectiveinvariant limit of the QER-like theory describing the prob-
QEDs-like models the repulsive electron interactions are exdem of layered graphite the estimated valueNgf was found
pected to result in further suppression, rather than enhancés be even lower than that in the original Lorentz-invariant
ment, of any amplitude describing propagation of physicacase?
electrons. In particular, the algebraic decay of the gauge- We conclude by stressing that the problem of constructing
invariant fermion amplitudg1l) would only result in the the true physical electron propagator in the effective mass-
sought-after Luttinger-like(stronger-than-linearvanishing less QED-like theories still remains unresolved. Neverthe-
density of states/(e)~|e|**” if 7 were positive. By the less, our calculation confirms once and for all that the naive
same token, a pseudogap theory can only be reconciled withinsatz2) is inadequate, thereby eliminating the current basis
the experimentally established absence of well-defined nodbr the theoretical predictions of the Luttinger-like behavior
quasiparticles if a branch-cut singularity of the electronin the underdoped cuprates. It is, however, conceivable
propagator that occurs qui:O appears to be weakénot  that, while being unrelated to the actual behavior of the elec-
strongey than a simple pole. tron propagator, the negative anomalous dimendib)

We defer a further discussion of the construction of themanifests the same properties of the gauge-invariant vertex
physical electron propagator until future wadee, however, corrections as those exhibited by the physically relevant two-
Refs. 10 and 13 for an alternative form that demonstrates #ermion amplitudes such as E(.7).
faster-than-algebraic decay, thus further diminishing the
phances that thg conjec.ture abou.t the Luttinger-like behavior ACKNOWLEDGMENT
in QED; may still be “right, albeit for a wrong reason.”

Instead, we suggest that the negative anomalous dimension This research was supported in part by the National Sci-
(45) of the heuristically chosen gauge-invariant amplitudeence Foundation under Grants No. PHY-0070986°.G)

(2) may pertain not so much to the physical electron propaand DMR-0071362D.V.K) and by the SCOPES projects 7
gator per se but rather to the vertex corrections that alsolP 062607 and 7UKPJ062150.00/1 of Swiss N&P.G).
control the behavior of various gauge-invariant two-particleOne of the authoréD.V.K.) achnowledges hospitality at As-
amplitudes(“susceptibilities”). pen Center for Physics and NORDITi&openhagen, Den-

In this regard, we quote the earlier result of Ref. 17 ob-mark), where part of this work was carried out.
tained for the susceptibility associated with the four-fermion
scalar vertex APPENDIX FOCK-SCHWINGER PHOTON PROPAGATOR
1 In this appendix we demonstrate that the line integral in
<0|J(X) lﬂ(X)E(Y) Y(y)|0)ot —————— (77) Eqg. (2) vanishes in the so-called radial or Fock-Schwinger

|x—y| 4 (6413*N) (FS gauge. We also derive the expression for the photon
propagator in this gauge.

which features a negative anomalous dimensign 12 the The FS gauge is defined as
context of the QED theory of the pseudogap phase of cu-
prates, formula(77) describes the divergence of the stag- (X—X0)#A,,(X,Xo) =0. (A1)

gered spin susceptibility at the antiferromagnetic ordering

vec:tor(jz(w,v-r).18 We emphasize that one encounters theln contrast to such widely used gauges as the Landau
above problem with the unphysicadlower than=1/x?) de- A, (x)=0, the Coulombd;A;(x)=0 (i=1,2), and the
cay of the amplitudé2) only in the massless case, while for axialn,A,(x)=0 gauges, the FS gauge may break the trans-
a finite fermion mass this function decaysoae*m‘x‘. lational invariance because of the presence of a fixed point

In the case of the QEpPtheory of the pseudogap phase, it xo. However, an important advantage of the Fock gauge is
has been argued that one may indeed expect a dynamictie explicit relation between the potenti),(x,x,) and the
mass generation corresponding to the intrinsic instability tofield strengthF ,, :
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1
AM(X,XO)=I0 daa(X—Xo)"F,,(a@(X—Xo) +Xg,Xop)-
(A2)
In order to derive Eq(A2) we differentiate Eq(Al),
A/.L(XIXO) + (X_XO) Va,uAV(X!XO):Ov (A3)
and then usé& ,,=dJ,A,—d,A, to write

A (X, Xg) + (X—=Xo) "[F ,,(X,Xg) + 3,A ,(X,X0) ] = 0.
(Ad)

Upon changing the variable— a(Xx—Xg) +X, the last ex-
pression turns into

d
a[aA#(a(x— X0) +X0,X0)]

= a(X—Xo)"F,,(@(X—X0) +Xg,Xo)- (A5)

Integrating over a« and using the boundary condition
A,.(X0,X0) =0 [see Eq(A3)], which assumes the regularity

of A,(X,Xg) at x=X,, we arrive at Eq(A2). Note that the
boundary conditiom ,(Xq,X) =0 is essential for eliminat-

PHYSICAL REVIEW B7, 115201 (2003

It can be readily seen that in the gau@®) the line
integral vanishes, i.el(x,X;X)=0. Indeed, from Eq9A8)
and(A2) we obtain

112 o
daA,(ax+X)
1/2

|(7,X;X)=Wf

172 1
ZWWJ daf dBBF,,(aBx+X)=0,
—-1/2 0

(A10)

due to the antisymmetry d@%,,, .
Furthermore, performing a translation wigh=X we can
cast the gauge conditio®\9) in the form

(x=X)*A,(x—X)=0, (A11)
which is identical to
xXHA,(X)=0. (A12)

Next, we derive the photon propagator in the ga(g#2),
where Eq.(A2) reads as

ing a residual gauge freedom that remains even after impos-

ing the gauge conditiofAl).
Indeed, in addition to the solutiof®A2), Eq. (Al) can be
satisfied by any function
AD(X,X0) = 7% F(X—Xo), (A6)

wheref is an arbitrary homogeneous function xf x, of

zero degree. Any such function would necessarily be singular

at X=X, though. Hence, the regularity condition »at X,
can be used to fix the residual gauge freedom in(B4,).

Under the translatiohJ;lFW(x) U.=F,,(x—a) the so-
lution (A2) transforms as

A, (xX)= foldaaX”F,,M(aX). (A13)

Thus, we find

DES(X,y)=(0| TA,(X)A,(y)[0)

1
_ jo dadBaBx?y?(0|TF, (ax)F,,(By)|0).

(A14)

Since the field strength ,, is a gauge-invariant quantity, the
U;lAM(x,xo)UazAl’L(x,xo)=AM(x—a,xo—a). (A7)  correlator(0|TF,,(x)F,,(y)|0) can be calculated in any
) gauge, including, e.g., the Feynman gauge, where it becomes
When expressed in terms of the center of m3ss(x
+y)/2 and the relativec=x—y coordinates, the line integral x?yP(0|TF, . (X)F,,(y)|0)
in Eq. (2) takes the following form eI . .
=XYP(8,,050% = 8,050y — 84,0, 00+ 85,0, 33)D(X—Y)

wp%a%v op%n
EHW(X,Y)D(X_Y)- (A15)

HereD(x) is the photon propagator in the Feynman gauge

(X, X;Xg) = fyxdz#AM(z)

1
— (x—y)* fo daA , (a(x—y)+y.Xo)

172
=Wj daAIu(a/Y-I-X,XO).
—1/2

(A8)

A 4 13 "T((n—121)/2
Dx)e A An (n=1)/2)
(XZ)(n—l)IZ N (12
(A16)

Under translations, EGA8) transforms according to the rule With the use of the relatiorx,d,=[x|d)y the operator

(X, X;X0) =1 (X, X—a;Xy—a).
We can further restrict the gauge conditi@i) by choos-
ing the fixed pointxy at the center of mass, i.&g=X
(X=X)*A,(x,X)=0 (A9)

[hereafter, we simplify the notatioA,(X,xo=X)=A,(x)].

H,..(x,y) can be written in the form

H . (6Y) = 8,919y X[y = 83X, 01y ||
=Y .0 X+ T Xy (A17)

Now, making use of the identity

115201-10



ANOMALOUS DIMENSIONS OF GAUGE-INVARIANT . ..
1 1 ~
aMJ’Oda|x|f(ax)=(9|x|JOda|x|f(a|x|x)

[x]
=a|x|fo daf(BX)=f(x), (A18)
whereX=x/|x| is the unit vector, we obtain

D,.,(%,Y)=(0[TA,(X)A,(y)[0)

1
= fO dadﬁHuv(axaﬁy)D(aX_By)
1
:H;w(an) jO dadBD((aX—By)Z)
1
=5MVD(x—y)—f dad, x,D(ax—y)
0
1
- fo dBadYy,.D(x—By)
1
+ fo dadBd),@x-yD(ax—By)  (A19)

(cf. Refs. 23 and 24
While the first term in Eq(A19) depends solely or, the

PHYSICAL REVIEW B 67, 115201 (2003

necessarily translationally invariant. Moreover, the last term
in Eg. (A19) displays a divergence at=3 that forces one to
use the method of dimensional regularization when comput-
ing various quantities. As pointed out in Ref. [Zke also Eq.
(40)], the divergence of the free FS gauge propagatar at
=3 dimensions is, in fact, necessary for obtaining the correct
results.

Finally, in order to return to the gaug@9) we replace
x—X—X, y—y—X in Eq. (A19), thus obtaining the FS
gauge propagatdd’>(x,y) as a sum of the four ternbere
the argumentx andy are unrelated to the end points in the
line integra)

DO(x,y)=8,,D(x~-Y), (A20)

DZ)(x,y)=- foldaa’;(x—X)VD(ax—er (1—a)X),
(A21)

1
DE)xy)=— [ Bty -X),00-y-(1-B)X)
(A22)

DW(xy)= foldadﬂaza¥<x—X>-<y—X>

others have a more complicated dependence; hence the pho-

ton propagator computed in an arbitrary FS gauge is not

XD (ax—By—(a—B)X). (A23)
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