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Analytical results for the high-temperature expansion of the one-dimensionalsÄ1 XXZ model
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Recently Rojaset al. @J. Math. Phys.43, 1390 ~2002!# obtained a closed analytical expression for the
coefficients of arbitrary order in the cumulant expansion of a one-dimensional periodic chain model with
nearest-neighbor interaction and spatial translation invariance; that approach can be applied equally well to
both nonintegrable and exact integrable models. Here, we obtain the exact analytic expressions for the six
lowest-order terms of the high-temperature expansion of the Helmholtz free energy per site of the noninte-
grable one-dimensional spin-1XXZ Heisenberg model. Our analytical results for the specific heat and the
static magnetic susceptibility are compared, up to orderb6 for the ferromagnetic and antiferromagnetic phases,
with the respective numerical results of a periodic chain with ten sites (N510) and numerical results in the
literature @Blöte, Physica B79, 427 ~1975!#. A very good agreement is obtained for both phases in the
high-temperature regime.

DOI: 10.1103/PhysRevB.67.115128 PACS number~s!: 02.50.2r, 05.50.1q, 05.30.Fk
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Integrable one-dimensional models can be solved exa
through the algebraic Bethe ansatz method,3 e.g. the one-
dimensional Hubbard model4–6 and the spin-1/2XXZ
model.7,8 The thermodynamic quantities of these models
obtained from nonlinear integral equations~NLIE! valid for
whole range ofb51/kT, k being Boltzmann’s constant an
T being the absolute temperature!. On the other hand, high
temperature expansions of thermodynamic functions
bona fidefor a finite region of values ofb only. However,
those expansions are analytical, thus being easily handle
yield the thermodynamic properties of a chain model. In p
ticular, the cumulant series9 has the advantage of bein
equally applicable to both nonintegrable and exact integra
models. Such a method has been widely applied to the s
of the high-temperature thermodynamic behavior of quan
models inD-dimensional space (D51,2,3). Recently Rojas
et al.1 showed, for any one-dimensional chain model w
periodic boundary condition, invariance under spatial tra
lation and interaction between nearest neighbors, that in
thermodynamic limit the coefficient of the high-temperatu
expansion of arbitrary orderbn can be derived from an aux
iliary function w. In Ref. 1 we applied this approach to th
spin-12 XXZ model and obtained the high-temperature exp
sion of the Helmholtz free energy per site up to orderb3. In
the high-temperature regime, our analytical results agr
with the numerical solutions of the NLIE for its free energ
per site8 and we corrected some of the coefficients of theib
expansion derived from these NLIE.

Contrary to previous examples, the spin-1XXZ model is
nonintegrable and, therefore, cannot be solved by the a
braic Bethe ansatz method. In the 1970s, Blo¨te2 and Neef10

studied the temperature dependence of the specific he
this model. More recently, Yamamoto and Miyashita11–13ap-
plied the Monte Carlo method to study numerically the s
cific heat, static magnetic susceptibility, and the magnet
0163-1829/2003/67~11!/115128~8!/$20.00 67 1151
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tion of rings and chains of different sizes as functions
temperature, and extrapolated results to the thermodyna
limit. Their numerical results agree with those contained
Ref. 2. Baoet al.14 applied the Green-function approach
get an approximation to the thermodynamics of this mode
whole range of temperature. They obtained a set of s
consistent equations, solved numerically to yield thermo
namic quantities for the spin-1XXZ model.

Our aim in this work is to derive an analyticalb expan-
sion of the Helmholtz free energy per site of the anisotro
spin-1XXZ model with single-ion anisotropy up to orderb5,
where each coefficient in theb expansion is exact.

The Hamiltonian of the spin-1XXZ model with
anisotropy15 is

H5(
i 51

N

J~Si
1Si 11

2 1Si
2Si 11

1 !1DSi
zSi 11

z 2hSi
z1D~Si

z!2,

~1a!

whereN is the number of sites in the periodic chain,D is the
anisotropy constant,h is the external magnetic field in thez
axis, and D is the single-ion anisotropy parameter. Th
spin-1 operatorsSi

1 ,Si
2 , andSi

z , written in the basis ofSz

eigenvectors, are

Si
15F 0 1 0

0 0 1

0 0 0
G , Si

25F 0 0 0

1 0 0

0 1 0
G ,

Si
z5F 1 0 0

0 0 0

0 0 21
G . ~1b!
©2003 The American Physical Society28-1
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The operatorsSi
1 and Si

2 are defined asSi
651/A2(Si

x

6 iSi
y). We do not fix the sign of any constant in Eq.~1a!.

From Ref. 1 it is found that the thermodynamic limit o
the Helmholtz free energy per site of the present model
be written as

W~b!52
1

b
@ ln~3!1 ln$11j~b!%#, ~2a!

where

j~b!5 (
n50

`
1

~n11!!

]n

]ln
@w~l!n11#ul51 ~2b!

and the auxiliary functionw(b) is given by

w~l!5 (
m51

`

(
n5m

`
~2b!n

lm
H1,m

(n) . ~2c!

The functionsH1,m
(n) correspond to the ‘‘connected’’ string

with n operatorsH i ,i 11 (H5( i 51
N H i ,i 11) so thatm of them

are distinct, that is,

H1,m
(n) 5( 9

$ni %

n K )
i 51

m H i ,i 11
ni

ni !
L

g

. ~2d!
ny

lie
n-

11512
n

The notation($ni %
n 9 stands for the restriction( i 51

m ni5n and

niÞ0 for i 51,2, . . . ,m. The indexm satisfies the condition
1<m<n. Finally, we relate theg traces to the normalized
traces

^H i 1 ,i 111
n1 H i 2 ,i 211

n2
•••H i m ,i m11

nm &g

[
n1•••nm!

n! (P ^P~H i 1 ,i 111
n1 ,H i 2 ,i 211

n2 , . . . ,H i m ,i m11
nm !&,

~2e!

where( i 51
m ni5n with niÞ0 and the indicesi k , k51•••m

are all distinct. By definition,
^P(H i 1 ,i 111 ,H i 2 ,i 211 , . . . ,H i m ,i m11)& represents the nor
malized traces of all distinct permutations of then operators
inside the parentheses. We refer the reader to Ref. 1 for
tails on this approach; in Appendix D of that reference, t
reader may find the functionH1,m

(n) written in terms of the
normalized traces forn,m51, . . . ,4.

The sums~2b! and ~2c! allow us to write down ab ex-
pansion of the thermodynamic functionW~b!. In the Appen-
dix we present the expressions of the functionsH1,m

(n) for n
andm from 1 up to 6; using those in Eqs.~2b! and~2c!, we
obtain theb expansion ofW~b!, up to the fifth order inb,
W~b!52
ln~3!

b
1

2

3
D1S 2

1

9
D22

4

9
J22

1

3
h22

2

9
D2Db1S 2

1

81
D31

4

9
Dh21

4

27
D2D2

4

27
J2D1

1

9
h2D2

1

9
J2D Db2

1S 1

36
h42

1

54
D41

1

324
D41

13

81
J2D21

1

54
h2D21

7

162
J42

8

27
Dh2D1

5

27
J2h22

10

27
D2h21

1

27
J2D2Db3

1S 7

243
J2D31

1

18
J4D1

1

972
D52

1

27
DJ2h21

1

81
J2DD22

1

81
DD42

11

162
DJ2D22

4

243
D2D3

1
22

81
h2D32

10

27
J2Dh22

1

36
Dh41

8

27
D2h2D2

1

162
D3h21

1

36
J2D31

13

162
DJ42

4

27
h4D Db4

1S 2
1

18
D2h2J21

16

81
Dh4D2

2

81
D2h2D21

5

243
D2D42

77

486
h2D41

13

1620
D2J42

31

324
J4h22

5

1944
D4h2

2
7

14 580
D4J22

53

4860
J2D41

29

81
h4D22

1241

14 580
D2J42

19

324
J2h41

1

648
D2h42

1

729
D4D2

1
8

243
h2D3D2

52

243
h2DD31

26

81
J2h2D22

76

1215
J2D2D21

2

1215
DD3J22

2

81
DJ2D3

1
2

81
DDJ42

7

87 480
D62

13

3240
h61

173

43 740
D62

131

43 740
J61

14

81
h2DDJ2Db51O~b6!. ~3!
ted

ic
the
We point out that this analytic expansion is valid for a
arbitrary set of values of parametersJ, D, D, andh, in theb
interval where this expansion is sound. This equation app
equally well to any phase of the one-dimensional spi
s
1

XXZ model.16–18These calculations have been implemen
in the computational languageMAPLE.19

In addition, from Eq.~3!, we see that the thermodynam
properties of this model are insensitive to the sign of
8-2
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constantsJ andh. The invariance upon changing the sign
J comes from the fact that the thermodynamic properties
any model result from the evaluation of traces. The functio
H1,m

(n) @Eq. ~2d!# consist of traces of powers of the Ham
tonian ~1a!; given its particular structure, only even powe
of J will contribute. The dependence on even powers ofh in
Eq. ~3! comes from the isotropy of space. From now on
take J>0; moreover, we can redefine all the parameters
Hamiltonian~1a! dividing them byJ and factorizing it out;
expansion~3! then becomes an expansion in powers
(Jb)n, as it typically appears in the literature.

From Eq.~3! we see that if we simultaneously change t
signs: D→2D and D→2D, only the coefficients of even
powers b2m, (m51,2, . . . ) get anoverall sign. These
changes in the sign lead us to a different phase of the mo

Due to the fact that Eq.~3! is analytical in the parameter
J,D,D of the XXZ model and the external magnetic fieldh,
we may derive from it the thermodynamic functions throu
the definition of suitable derivatives ofW~b!. For example,
directly from Eq.~3! we may obtain the following thermo
dynamic quantities per site: the average energy, the spe
heat, the average of the square of thez component of mag-
netization, the correlation of thez component of spin be
tween first neighbors, among others. The collection of th
quantities helps us to comprehend the behavior of the m
in all its different phases~characterized by different sets o
values for the parameters of the model! in the high-
temperature region.

Our aim here is to verify the correctness of theb expan-
sion~3! and to do so, we apply several distinct tests. The fi
verification is the caseJ50, when we recover thes51 Ising
model. In a previous work20 we calculated, using the prese

FIG. 1. Specific heat for the isotropic Heisenberg models w
parameter valuesJ51, D50, h50, andD561. Solid lines stand
for the specific heat calculated from the analytical expression of
Helmholtz free energy per site@cf. Eq.~3!#. Dotted lines correspond
to numerical calculations in a ring withN510 sites.
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approach, the first 80 terms of theb expansion of the Helm-
holtz free energy of thes51 Ising model in the absence o
the external magnetic field (h50). SubstitutingJ50 and
h50 in Eq.~3!, we recover the results of Ref. 20 up to ord
b5.

Yamamoto and Miyashita11 applied a Monte Carlo
method to study the temperature dependence of some
modynamic quantities~specific heat, internal energy, an
static magnetic susceptibility! for the isotropics51 Heisen-
berg model with no external magnetic field (h50), for rings
containing 8–96 sites. From their graphs we see that
bJ&0.3 all rings give the same numerical results irresp
tive of the number of sites in the ring. To compare tho
results with ours, including the contribution from the spi
flipping term proportional toJ in Eq. ~1a!, we calculated
numerically the temperature dependence of the specific
and the static susceptibility of a ring with ten sites forD
50 andh50. Once the expansions can be written in pow
of bJ, we tookJ51 in Figs. 1 and 2. In Fig. 1 we have th
b dependence of the specific heat

Cv~b!52b2
]2

]b2
@bW~b!# ~4!

in the high-temperature region forD561, D50, and h
50. The dotted lines correspond to the specific heat fo
ring with ten sites and the solid lines represent our analyt
expression derived from Eq.~3! for the Helmholtz free en-
ergy W~b!. From Fig. 1 we see that in both cases,D561,
the analytical and numerical curves coincide in the hig
temperature region. For the ferromagnetic phase~D521! the

h

e

FIG. 2. Magnetic susceptibility for anisotropic Heisenberg mo
els with parameter valuesJ51, D50, h50, and D56

1
2. Solid

lines represent the magnetic susceptibility calculated from the a
lytical expression of the Helmholtz free energy per site@cf. Eq.~3!#.
Dotted lines correspond to numerical calculations in a ring withN
510 sites.
8-3
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relative error between the analytical and the numerical
sults is not greater than 1% forbP@0,0.31#. In Fig. 2 we
compare the static magnetic susceptibility

x~b!52
]2W~b!

]h2
uh50 ~5!

of a uniaxial Heisenberg model~D561/2! for a ring with ten
sites ~dotted lines! and the analytical expression ofx~b!
~solid lines! derived from the free energy per site~3!. For the
ferromagnetic phase~D521/2! the difference between th
analytical and numerical results is not greater than 1%
bP@0,0.87#, while in the antiferromagnetic phase~D51/2!
the same holds true forbP@0,0.66#.

A beautiful numerical work by Blo¨te2 tabulates numerica
values for the specific heat at varied temperatures~including
the high-temperature region! for thes51/2 ands51 Heisen-
berg models. In all his calculations Blo¨te has seth50. Com-
parison of the Hamiltonian~1! in Ref. 2 and ours, given by
Eq. ~1a!, yields the following correspondence of paramete
Ji52D/2 andJ'52J/2. In Fig. 3 we compare our analyt
cal expression for the specific heat derived from Eq.~3! for
anisotropic Heisenberg models in the absence of single
anisotropy (D50) in the ferromagnetic case, while Fig.
focuses on the antiferromagnetic phase. In both figures,
curves fit pretty well the Blo¨te’s numerical results in the
high-temperature region.

From Figs. 5 and 6 we compare our results with those
Ref. 2 for the isotropic Heisenberg models with distinct v
ues for the single-ion anisotropy parameterD. We take both
positive and negative values ofD. The ferromagnetic case i
depicted in Figs. 5~a! and 5~b!; the antiferromagnetic case, i
Figs. 6~a! and 6~b!. In all cases, our curves fit very we

FIG. 3. Comparison of our analytical result of the specific h
and Blöte’s numerical results~Ref. 2! in the ferromagnetic phase
We take the parameter valuesD522, D50, h50 and J51,1.6,
and 1.9. Solid lines represent our analytical expression of the
cific heat and the dotted lines correspond to data from Ref. 2.
11512
-

r
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n

ur

n
-

Blöte’s numerical results in the high-temperature regio
From Fig. 5 and 6 we see that the interval ofb where our
solution~3! is bona fide gets smaller as the absolute value
D increases.

Our analytical results for the specific heat, obtaina
from Eq. ~3!, fully agree in its isotropic limit with that of
Sec. 5.2 of Ref. 2 in the high-temperature limit. We al
recover the high-temperature static magnetic susceptib
for the isotropic Heisenberg model@Eq. ~4.5a! of Ref. 12#.
However, we do not agree with the high-temperature limit
the correlation function for thez component of spin betwee
nearest neighborŝS0

zS1
z& of Ref. 14. The correct limit is

^S0
zS1

z&'2 4
9 Db.

Finally, in Ref. 21 Fisher gets the classical limit of th
Helmholtz free energy of thes51 isotropic Heisenberg
model Wclass. The relation between the parameters in o
Hamiltonian~1a! and that of Ref. 21 isJFisher522J. Sub-
tracting the lowest term inb of our expression ofW~b! @up
to the term2ln~3!/b# from the classical free energyWclass
we get

Wclass2W~b!5 1
2 J2b, ~6!

which means that the classical model is not recovered fr
the quantum isotropic Heisenberg model even in the li
b→0.

In summary, in this work we applied the method of Ref
to a nonintegrable spin-1XXZ model with single-ion anisot-
ropy. We obtained the analyticalb expansion of the Helm-
holtz free energy per site of the model up to orderb5. Each
coefficient in expansion~3! is exact and valid for any value
of the parameters in the Hamiltonian~1a!. Several thermo-

t

e-

FIG. 4. Comparison of our analytic expression for the spec
heat and Blo¨te’s numerical results~Ref. 2! for the parameter values
D52, D50, h50 andJ50,1.0, and 1.8. Solid lines show the sp
cific heat of our analytical result and the dotted lines correspon
data from Ref. 2.
8-4
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ANALYTICAL RESULTS FOR THE HIGH-TEMPERATURE . . . PHYSICAL REVIEW B 67, 115128 ~2003!
dynamic quantities can be derived directly from suitable
rivatives ofW~b! defined in terms of the parameters of t
model and the external magnetic field.

To verify our analytical results we have compared th
with numerical results, including those of Blo¨te’s.2 Our
curves in the high-temperature region fit well those num
cal results for both isotropic and anisotropicXXZ models in
their ferromagnetic and antiferromagetic phases, even if
single-ion anisotropy term is taken into account.

From expansion~3! we recover the analytical result

FIG. 5. Comparison of our analytic expression for the spec
heat and Blo¨te’s numerical results~Ref. 2! for the parameter value
J522, D522, andh50. Solid lines represent our results and t
dotted lines correspond to data from Ref. 2:~a! D50.5, 2 and 5;~b!
D520.5, 25, and210.
11512
-

i-

e

known in the literature2,12 about the isotropic spin-1 Heisen
berg model. We correct the high-temperature limit of^S0

zS1
z&

of Ref. 14. We also show that the thermodynamics of
classical spin-1 isotropic Heisenberg model differ in ordeb
of the quantum spin-1 model.

Finally we should mention that the calculations involvin
Eqs. ~2! have been implemented in the symbolic compu
tional languageMAPLE.19 Currently, refinements are bein
made so that the expansion of the Helmholtz free energy~3!

c FIG. 6. Comparison of our analytic expression for the spec
heat and Blo¨te’s numerical results~Ref. 2! for the parameter values
J52, D52, andh50. Solid lines show our analytical results an
the dotted lines correspond to data from Ref. 2:~a! D52, 5, 10, and
20; ~b! D522, 25, 210, and220.
8-5
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for the s51 Heisenberg model can be extended to hig
orders inb.

O.R. thanks CLAF for financial support. E.V.C.S. than
CNPq for financial support. S.M. de S. thanks FAPEMIG
partial financial support. M.T.T. thanks CNPq and FAPE
for partial financial support. W.A.M.M. acknowledge
FAPEMIG and CNPq for partial financial support.

APPENDIX: ANALYTICAL EXPRESSIONS OF THE H 1,m
„n…

FUNCTIONS UP TO nÄ6

We have calculated theH1,m
(n) functions in terms of an ar

bitrary set of the parameters (J,D,h,D) and obtained the
following results. Forn51

H1,1
(1)5

2

3
D. ~A1!

For n52

H1,1
(2)5

4

9
J21

2

9
D21

1

3
h21

1

3
D2. ~A2!

H1,2
(2)5

4

9
D2. ~A3!

For n53

H1,1
(3)5S 2

9
D2

1

9
D D J21

1

9
D31

2

9
D2D1

1

3
h2D, ~A4!

H1,2
(3)5

14

27
J2D1

10

27
D2D1

4

9
h2D1

4

9
D31

4

9
Dh2,

~A5!

H1,3
(3)5

8

27
D3. ~A6!

For n54

H1,1
(4)5

1

27
D2J21

1

18
J41

1

54
D42

2

27
DJ2D

1
2

27
J2D21

2

27
J2h21

1

9
D2D21

1

9
D2h2

1
1

36
h41

1

6
h2D21

1

36
D4, ~A7!

H1,2
(4)5

8

9
Dh2D1

13

27
J2D21

2

3
h2D22

4

27
DJ2D1

5

27
J2h2

1
5

9
D2D21

5

27
D2h21

1

9
h41

7

27
D41

8

81
D2J2

1
16

81
J41

2

27
D4, ~A8!
11512
r

r
J

H1,3
(4)5

16

27
DDh21

8

27
D2h21

32

81
D2D21

4

9
D2h2

1
40

81
D2J21

4

9
D4 ~A9!

H1,4
(4)5

16

81
D4. ~A10!

For n55

H1,1
(5)52

1

36
J2DD22

1

36
J2Dh21

1

36
DJ41

1

54
DD4

1
1

36
DJ2D21

1

27
D2D31

1

18
DJ2h21

1

9
D2h2D

1
1

54
J2D31

1

180
D51

1

36
Dh41

1

18
D3h2

2
1

54
J4D2

1

108
J2D3, ~A11!

H1,2
(5)5

1

9
D51

7

27
Dh42

55

324
J2DD21

14

27
D3h21

29

324
J2Dh2

1
35

81
D2D31

53

162
DJ2h21

5

9
D2h2D1

43

162
J2D3

1
2

9
h2D31

4

27
Dh41

8

9
Dh2D22

2

27
J4D1

85

324
DJ4

1
29

162
DD41

65

324
DJ2D22

1

27
J2D3, ~A12!

H1,3
(5)5

10

27
D51

2

9
Dh42

4

27
J2DD21

8

9
D3h21

20

81
J2Dh2

1
64

81
D2D31

32

81
DJ2h21

104

81
D2h2D1

56

81
J2D3

1
20

81
h2D31

8

27
Dh41

40

27
Dh2D21

80

243
DJ4

1
14

81
DD41

70

243
DJ2D2, ~A13!

H1,4
(5)5

32

81
D51

32

81
D3h21

88

243
D2D31

32

81
D2h2D

1
104

243
J2D31

16

81
h2D31

16

27
Dh2D2, ~A14!
8-6



hy

le

at.

ys

ld

tat.

.

ANALYTICAL RESULTS FOR THE HIGH-TEMPERATURE . . . PHYSICAL REVIEW B 67, 115128 ~2003!
H1,5
(5)5

32

243
D5. ~A15!

For n56

H1,1
(6)5

1

45
D2h2J21

1

270
J2h42

1

135
DD3J22

1

45
h2DDJ2

1
1

72
D2h41

1

108
D4D21

1

90
J2D2D21

1

90
J2h2D2

1
1

108
D2D41

1

108
h2D41

1

120
D2J41

7

1080
J4h2

1
1

1080
D61

1

1080
h61

1

72
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