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Recently Rojaset al. [J. Math. Phys43, 1390 (2002] obtained a closed analytical expression for the
coefficients of arbitrary order in the cumulant expansion of a one-dimensional periodic chain model with
nearest-neighbor interaction and spatial translation invariance; that approach can be applied equally well to
both nonintegrable and exact integrable models. Here, we obtain the exact analytic expressions for the six
lowest-order terms of the high-temperature expansion of the Helmholtz free energy per site of the noninte-
grable one-dimensional spin-XXZ Heisenberg model. Our analytical results for the specific heat and the
static magnetic susceptibility are compared, up to ogfeior the ferromagnetic and antiferromagnetic phases,
with the respective numerical results of a periodic chain with ten skes0) and numerical results in the
literature [Blote, Physica B79, 427 (1975]. A very good agreement is obtained for both phases in the
high-temperature regime.
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Integrable one-dimensional models can be solved exactltion of rings and chains of different sizes as functions of
through the algebraic Bethe ansatz methatg. the one- temperature, and extrapolated results to the thermodynamic
dimensional Hubbard model® and the spin-1/2XXZ  limit. Their numerical results agree with those contained in
model’® The thermodynamic quantities of these models areRef. 2. Baoet al. 14 applied the Green-function approach to
obtained from nonlinear integral equatiofLIE) valid for ~ get an approximation to the thermodynamics of this model in
whole range of8=1/kT, k being Boltzmann’s constant and whole range of temperature. They obtained a set of self-
T being the absolute temperatur®n the other hand, high- consistent equations, solved numerically to yield thermody-
temperature expansions of thermodynamic functions areamic quantities for the spin-XXZ model.
bona fidefor a finite region of values oB only. However, Our aim in this work is to derive an analyticgl expan-
those expansions are analytical, thus being easily handled &on of the Helmholtz free energy per site of the anisotropic
yield the thermodynamic properties of a chain model. In parspin-1XXZ model with single-ion anisotropy up to ord@r,
ticular, the cumulant serid¢shas the advantage of being where each coefficient in the expansion is exact.
equally applicable to both nonintegrable and exact integrable The Hamiltonian of the spin-1XXZ model with
models. Such a method has been widely applied to the studgnisotropy” is
of the high-temperature thermodynamic behavior of quantum
models inD-dimensional spacel=1,2,3). Recently Rojas N
et al' showed, for any one-dimensional chain model with H= 2 J(S'S 1+S S ) +ASS, ,—hS+D(S)?,
periodic boundary condition, invariance under spatial trans- =1
lation and interaction between nearest neighbors, that in the (1a
thermodynamic limit the coefficient of the high-temperature
expansion of arbitrary ordgs" can be derived from an aux-
iIiary function ¢. In Ref. 1 we applied this approach to the
spin- XXZ model and obtained the high-temperature expan@iS, andD is the single- |or; anisotropy parameter. ZThe
sion of the Helmholtz free energy per site up to or@ér In  SPin-1 operators” .S, andS;, written in the basis 05
the high-temperature regime, our analytical results agreegigenvectors, are
with the numerical solutions of the NLIE for its free energy
per sité and we corrected some of the coefficients of thgir 0 1 0 0
expansion derived from these NLIE. s'=|0 0 1|, s=|1

0 0 O 0

whereN is the number of sites in the periodic chainijs the
anisotropy constantj is the external magnetic field in tie

Contrary to previous examples, the spirkXZ model is !
nonintegrable and, therefore, cannot be solved by the alge-
braic Bethe ansatz method. In the 1970s;t&l@and Neet
studied the temperature dependence of the specific heat of 0
this model. More recently, Yamamoto and Miyashita>ap- ,
plied the Monte Carlo method to study numerically the spe- Si= 0 0. (1b)
cific heat, static magnetic susceptibility, and the magnetiza- 0
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The operatorsS” and S are defined asS™=1/y2(S
*=iSY). We do not fix the sign of any constant in E4a).
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The notation={, "
n;#0 fori=1,2,..

stands for the restrictioR™ ;n;=n and
. M. The indexm satisfies the condition

From Ref. 1 it is found that the thermodynamic limit of 1<m=n. Finally, we relate they traces to the normalized
the Helmholtz free energy per site of the present model cafaces

be written as

1
W(B)=—=[In(3) +In{1+&(B)}],

3 (2a)
where
§A=2 mrmi el eV her @D
and the auxiliary functiorp(B) is given by
o= 3 (;ﬁ) . (20

The functionsH(”) correspond to the “connected” strings
with n operatorsH,,,H (H= E,:lH,,,H) so thatm of them

are distinct, that is,
m n;
H H|I|+1
i=1 ny!
g

n
H&?%:{Z” (20)

it

n Nm
<H|1 ip+1 |22 i+l |m,im+l>9
nm
E <7)(H|1 l+l’ i | +17 ’Him,im+l)>’
(2¢)
where={" n;=n with n;#0 and the indice$,, k=1--
are all dlstlnct By def|n|t|on

(P(Hil,ilﬂ,HiZ,izﬂ, . ,Him'imﬂ)) represents the nor-
malized traces of all distinct permutations of theperators
inside the parentheses. We refer the reader to Ref. 1 for de-
tails on this approach; in Appendix D of that reference, the
reader may find the functiob{?), written in terms of the
normalized traces fon,m=1, ... 4.

The sums(2b) and (2¢) aIIow us to write down g3 ex-
pansion of the thermodynamic functiofi(8). In the Appen-
dix we present the expressions of the functmm%m for n
andm from 1 up to 6; using those in Eq&b) and(2¢), we
obtain theB expansion ofAV(B), up to the fifth order ing,

__ ) 2D 1D2 4J2 1h2 2A2 ! D3 4Ah2 4 A’D 4J D h2D 1J2A
WB)== =g+ 3D+ = gD gI* = gh* = gA%| B+ = 57D+ gANTH SoAD = 52D+ gh*D = g %A | 5°
101 1 13 1 7 5 10 1
T WA 4 4 2A2 T K202 o 2 2 2_TTA2KR2 T 122 3
e T 5at T3 T A e P 157) 27Ah D+ 57" 57Ah 570D )"3
7 1 1 1 11
23 T 14 5_ 212 2 2_ 4 2A2_ 213
+| 54592D% 183 A+ g-DS— —_DIh?+ 813 AD?- - DA‘~ ZZDIA 43A D
10 1 8 1 1 13 4
2A3__ 2 2 4 2120 32 2A3 4__ L4 4
+—81h A= ZPAR?— —Dh+ —A%n2D— 7D +—36J A%+ zoDI*~ —h A),B
1 16 5 13 1
T D2h272 4 D2h2A2 204_ 274 294 °T qap2 2 a2
+| = 7gD?M?0%+ TR~ DA%+ DA hA + gD oo =t D
7 53 1241 19 1 1
L N412_ "7 1274 4a2_ T 2 4 2LW4 . T N2LWA_ T N4A2
14580° 4860J A + h A" a0 324J "+ 54D M~ 72904
+ 2 hepia- h2 Aty Dpenznz 10 ppenzy 2 zpap Zpgps
243 81 1215 1215 81
2 7 13
i 4__ 6__ 6, " K2 2 5 6
8108 g7 asP 32207 " 23 740A 43 740J * 81h DAY B>+ O(B%). ©

We point out that this analytic expansion is valid for any XXZ model®~18These calculations have been implemented
arbitrary set of values of parameteksA, D, andh, in the 8 in the computational languageapLe.*®

interval where this expansion is sound. This equation applies In addition, from Eq.3), we see that the thermodynamic
equally well to any phase of the one-dimensional spin-Iproperties of this model are insensitive to the sign of the
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FIG. 1. Specific heat for the isotropic Heisenberg models with
parameter value3=1, D=0, h=0, andA==*1. Solid lines stand
for the specific heat calculated from the analytical expression of th
Helmholtz free energy per sifef. Eq.(3)]. Dotted lines correspond
to numerical calculations in a ring with= 10 sites.

FIG. 2. Magnetic susceptibility for anisotropic Heisenberg mod-
els with parameter value3=1, D=0, h=0, andA=+3. Solid
fines represent the magnetic susceptibility calculated from the ana-
lytical expression of the Helmholtz free energy per gite Eq. (3)].
Dotted lines correspond to numerical calculations in a ring \With
=10 sites.
constants) andh. The invariance upon changing the sign of
J comes from the fact that the thermodynamic properties ofipproach, the first 80 terms of tifkexpansion of the Helm-
any model result from the evaluation of traces. The functiondoltz free energy of the=1 Ising model in the absence of
H(ln% [Eq. (2d)] consist of traces of powers of the Hamil- the external magnetic fieldh&0). SubstitutingJ=0 and
tonian (1a); given its particular structure, only even powers h=0 in Eq.(3), we recover the results of Ref. 20 up to order
of J will contribute. The dependence on even powers of B°.

Eg. (3) comes from the isotropy of space. From now on we Yamamoto and Miyashita applied a Monte Carlo
take J=0; moreover, we can redefine all the parameters irmethod to study the temperature dependence of some ther-
Hamiltonian (1a) dividing them byJ and factorizing it out; modynamic quantitiegspecific heat, internal energy, and
expansion(3) then becomes an expansion in powers ofstatic magnetic susceptibilitfor the isotropics=1 Heisen-
(IB)", as it typically appears in the literature. berg model with no external magnetic field=¢ 0), for rings

From Eq.(3) we see that if we simultaneously change thecontaining 8—96 sites. From their graphs we see that for
signs:A——A and D— —D, only the coefficients of even BJ=0.3 all rings give the same numerical results irrespec-
powers 8™ (m=1,2,...) get anoverall sign. These tive of the number of sites in the ring. To compare those
changes in the sign lead us to a different phase of the modelesults with ours, including the contribution from the spin-

Due to the fact that Eq(3) is analytical in the parameters flipping term proportional toJ in Eq. (1a), we calculated
J,A,D of the XXZ model and the external magnetic figdd  numerically the temperature dependence of the specific heat
we may derive from it the thermodynamic functions throughand the static susceptibility of a ring with ten sites for
the definition of suitable derivatives a8/(8). For example, =0 andh=0. Once the expansions can be written in powers
directly from Eq.(3) we may obtain the following thermo- of 8J, we tookJ=1 in Figs. 1 and 2. In Fig. 1 we have the
dynamic quantities per site: the average energy, the specifig dependence of the specific heat
heat, the average of the square of theomponent of mag-
netization, the correlation of the component of spin be- ) 92
tween first neighbors, among others. The collection of these Cu(B)==8 ﬂ—ﬁz[BW(B)] 4)
guantities helps us to comprehend the behavior of the model
in all its different phasescharacterized by different sets of in the high-temperature region fak==+1, D=0, andh
values for the parameters of the madeh the high- =0. The dotted lines correspond to the specific heat for a
temperature region. ring with ten sites and the solid lines represent our analytical

Our aim here is to verify the correctness of {Bexpan-  expression derived from E@3) for the Helmholtz free en-
sion(3) and to do so, we apply several distinct tests. The firsergy W(B). From Fig. 1 we see that in both casésy +1,
verification is the casé=0, when we recover the=1 Ising  the analytical and numerical curves coincide in the high-
model. In a previous wofk we calculated, using the present temperature region. For the ferromagnetic pHase—1) the
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FIG. 3. Comparison of our analytical result of the specific heat
and Blae’s numerical result$Ref. 2 in the ferromagnetic phase. FIG. 4. Comparison of our analytic expression for the specific
We take the parameter valuds=—2, D=0, h=0 andJ=1,1.6, heat and Blte’s numerical resultéRef. 2 for the parameter values
and 1.9. Solid lines represent our analytical expression of the spgd=2, D=0, h=0 andJ=0,1.0, and 1.8. Solid lines show the spe-
cific heat and the dotted lines correspond to data from Ref. 2. cific heat of our analytical result and the dotted lines correspond to
data from Ref. 2.

relative error between the analytical and the numerical re-
sults is not greater than 1% f@e[0,0.31. In Fig. 2 we  Blote’s numerical results in the high-temperature region.

compare the static magnetic susceptibility From Fig. 5 and 6 we see that the interval ®fwhere our
solution(3) is bona fide gets smaller as the absolute value of
P*W(B) D increases.
X('B):_tho (5) Our analytical results for the specific heat, obtainable

from Eq. (3), fully agree in its isotropic limit with that of
of a uniaxial Heisenberg modeéh==+1/2) for aring withten  Sec. 5.2 of Ref. 2 in the high-temperature limit. We also
sites (dotted line$ and the analytical expression gf(8) recover the high-temperature static magnetic susceptibility
(solid lineg derived from the free energy per si®. For the  for the isotropic Heisenberg modgEq. (4.59 of Ref. 12.
ferromagnetic phas@A=-1/2) the difference between the However, we do not agree with the high-temperature limit of
analytical and numerical results is not greater than 1% fothe correlation function for the component of spin between
B<[0,0.87, while in the antiferromagnetic phagd=1/2)  nearest neighboréSiS}) of Ref. 14. The correct limit is
the same holds true fg8<[0,0.66. ) (S~ —$AB.

A beautiful numerical work by Bl® tabulates numerical  Finally, in Ref. 21 Fisher gets the classical limit of the
values for the specific heat at varied temperatiireduding  Helmholtz free energy of thes=1 isotropic Heisenberg
the high-temperature regipfor thes=1/2 ands=1 Heisen-  model W, ;. The relation between the parameters in our
berg models. In all his cglcula_tions Béohas seh=0. Com- Hamiltonian(1a) and that of Ref. 21 iggighe= —2J. Sub-
parison of the Hamiltonianl) in Ref. 2 and ours, given by tracting the lowest term i of our expression ofV(8) [up

Eqg. (1a), yields the following correspondence of parametersig the term—In(3)/8] from the classical free energWyass
Jj=—A/2 andJ, = —J/2. In Fig. 3 we compare our analyti- \ye get

cal expression for the specific heat derived from &j.for

anisotropic Heisenberg models in the absence of single-ion Wetass— W(B) = 328, (6)
anisotropy D=0) in the ferromagnetic case, while Fig. 4

focuses on the antiferromagnetic phase. In both figures, owhich means that the classical model is not recovered from
curves fit pretty well the Ble’s numerical results in the the quantum isotropic Heisenberg model even in the limit
high-temperature region. B—0.

From Figs. 5 and 6 we compare our results with those in  In summary, in this work we applied the method of Ref. 1
Ref. 2 for the isotropic Heisenberg models with distinct val-to a nonintegrable spin-XXZ model with single-ion anisot-
ues for the single-ion anisotropy parameferWe take both ropy. We obtained the analytic#l expansion of the Helm-
positive and negative values bf The ferromagnetic case is holtz free energy per site of the model up to orgér Each
depicted in Figs. @) and 5b); the antiferromagnetic case, in coefficient in expansioi) is exact and valid for any values
Figs. §a) and Gb). In all cases, our curves fit very well of the parameters in the Hamiltonidtha). Several thermo-
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FIG. 5. Comparison of our analytic expression for the specific 5 . comparison of our analytic expression for the specific

heat and Blte's numerical resultéRef. 2 for the parameter values o4t and Blee's numerical resultéRef. 2 for the parameter values
J=-2,A=-2, andh=0. Solid lines represent our results and the 3_5 ‘A—2 andh=0. Solid lines show our analytical results and

dotted lines correspond to data from Ref(@:D=0.5, 2 and 5(b) the dotted lines correspond to data from Refié2 D=2, 5, 10, and
D=-0.5,-5, and—10. 20; (b) D=—2, —5, —10, and—20.

dynamic quantities can be derived directly from suitable de-
rivatives of W(g) defined in terms of the parameters of the known in the literaturé™® about the isotropic spin-1 Heisen-
model and the external magnetic field. berg model. We correct the high-temperature limi{ 8§S;)

To verify our analytical results we have compared themof Ref. 14. We also show that the thermodynamics of the
with numerical results, including those of B&s2 Our  classical spin-1 isotropic Heisenberg model differ in or@er
curves in the high-temperature region fit well those numeri-of the quantum spin-1 model.

cal results for both isotropic and anisotrop{& Z models in Finally we should mention that the calculations involving
their ferromagnetic and antiferromagetic phases, even if th&gs. (2) have been implemented in the symbolic computa-
single-ion anisotropy term is taken into account. tional languagemapLE.'® Currently, refinements are being

From expansion(3) we recover the analytical results made so that the expansion of the Helmholtz free enépy
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for the s=1 Heisenberg model can be extended to higher
orders ing.
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APPENDIX: ANALYTICAL EXPRESSIONS OF THE H(lnr%
FUNCTIONS UP TO n=6

We have calculated thie{), functions in terms of an ar-
bitrary set of the parameters),A,h,D) and obtained the
following results. Fom=1

1
H®=— —J2AD?-

PHYSICAL REVIEW B 67, 115128 (2003

16 32 4
H{ =—DAh2+ —D?A%2+ —D?h?

22
7A ™+ g1 9
40 4
81D2J2+ 9D4 (A9)
16
H(l‘}gzs—lD“. (A10)

Forn=5

1 1 1
JZAh2+—DJ4+—DA4

2 36 36 36
H{J=2D (A1)
’ + ! DJ?A%+ — A2D3+ ! DJ?h%+ 1A2h2D
Forn=2 36 27 18 9
1 1 1 1
4 1 - 3 5, " M4 D3h2
1 1
4 — —J*A— —J?A3, (A11)
H(fz):§D2 (A3) 54 108
Forn=3
(1574552 214322922
> 5 1 Hl =§D +2—7Dh —@J AD +27 h "r@\] Ah
H(f’l):(—D——A J?+ —D3%+ -A’D+ -h?D, (A4)
9 9 9 3 35 213 53 212 > 22 43 213
+ﬁAD+1—62DJh+§AhD+@JD
HA=22120 4 azpy 2hep s 2pas 2 ane
vr 9 9 9 21 onss 2 anas Sanepes Zyias 22 g
(A5) ATt ANty 27" * 1 324
29 65 1
8 . 4 2A2__ 7 1243
H{%}=>-D? (A6) T 1P At 3paP AT 57 AN (A12)
Forn=4
10 2 4 8 20
1 2 H{?}=5-D%+ g Dh*— —=J°AD?+ 5D°h?+ 22 J%Ah?
£ 18 >4 27 64 32 104 56
L2 2 +=A%D3+ - DJI?h?+ —-A%h?D + - J°D3
£ 12D2+ S 32h24 = A2D2+ Azhz 81 81 81 81
7 27 80
1 1 1 +—h2A3+—Ah4+—Ah2D2+—DJ4
T R4 T h2M2. R4 81 243
+36h +6hD+36D, (A7)
4 ., 70
+ —DA*+ ——DJ?A?, (A13)
HE)=2 AND + 20 12D2+ 2h2D2— DA+ - 32’ o 4
1279 27 3 27 27
5 7 88 32
+_22+ 2124 4+_4+_22 (5) =254 25p3n24 - A2p34 25282
gAD -A%h 9h D 81AJ H{}=gD +81Dh+243AD+81AhD
16 2 104
+8—134+ 2—7A4, (A8) +273J2D3+ a1 h2A3+ 2—7Ah2D2 (A14)
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Forn=6

1 1
H=—-D?n%32+ ——-J%h*—

1 1
T AP312_ T2 2
45 270 135AD J 45h DAJ

1 1 1
+==D%h*+ —D*A%+ —J?D?A%+ —

i 21272
72 108 90 90‘J h"a

1 1 1 7
T oa4, T iona, T o4 4,2
7080 2 T 108" A T 120° Y T 1080° "

1 1 1 1
T N6 _ 6 . 4 2_ 4
T 70800 " 1080 T 720 M goPAY

1 1
DJ?A%+ —D%J%+ —D

1
= 2m2A2, T
135 270 18° A 108

1 1 1 1
T ABL T 164 T q2A4L - A274
T 16200 3247 "5a0° & T 1802

8
(6)— ~ Mh4 2 3 213
H1 2DhA+9h A+ hDA+ 570

a4 DAJ*— DJ2A3+ — %
405 205° 54

h2DA32
2h2A2

13 74
+ ——J%h?A%+ —J°D%A%—

—9AD3J2
810 405 270
217 23 5 25
T DPD2K212 2 4, T N2LW4 T Nn4A2
+810D h2J +540 h +18D h +108D A

7 29 559 217
_ M2A4 2A4 2 4 4142
T 360 AT 3" AT 3520 T 350" 1

5 59 35 8
D42+ —— D424 — h4A2 J2A4
+18 h+54ODJ+324hA+40 A

11 31 1 1 2
T A274, P76 T 64 A6 _6
+27OAJ+810D + h+81A + J

(A17)

(A15)

h*A?

(A16)

H

il

H{Y-

88
=—Dh4A+
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8h2DA3+ h2D3A+
81 81 81 243

359
— ——DAJ*~

hZDAJ2

68
DJPA®+ =

D2h2A2
2430 h"a

43
—— J?°D?A%—

59
372
1215 43AD J

194 2 16 200
2212 Ph*+ —D2h*+ ——D4A2
+243Dh.1+2 h+27 h+243DA
23 1271 269

113
LIS o4, 22 00a 244 42
T o3P AT g AT 53R 23 1

47
4A2 2A4
hA+1215JA

107
“ A6 6
A 1215J

(A18)

25 44 28
U H4R2 472, “°
+27Dh+81D‘]+81

68 2 1
214 6, — K6
+—1215AJ+9D+ h°+

104 . 8 80

6L — N2K4 4h2 4 213 4
5230°+ 37D+ g7 D2+ ghDA+ Dh*A
196 4o, a2y, 2204

2.
T AT a3 81° 243

+ g—iDzthz'i‘ %hZDAS— %ADSJZ
+ %hZDAJ2+ %h%ﬂ %DZJ‘UF z—gDZA“
+ 2i7J2h2A2+ i;gJZDZAZ, (A19)
2%06 %D4h2+ 222h2D3A+ 3—220432
+ %D4A2+ zi ’h2A%+ %hZDA3+ ;TzshZM,
(A20)
Hgg=%oﬁ. (A21)
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