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Conductivity in quasi-two-dimensional systems
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The conductivity in quasi-two-dimensional systems is calculated using the quantum kinetic equation. Lin-
earizing the Lenard-Balescu collision integral with the extension to include external field dependences allows
one to calculate the conductivity with diagrams beyond the GW approximation including maximally crossed
lines. Consequently the weak localization correction as an interference effect appears here from the field
dependence of the collision integi(@he latter dependence sometimes called intra-collisional field gfféds
shown that this weak localization correction has the same origin as the Debye-Onsager relaxation effect in
plasma physics. The approximation is applied to a system of quasi-two-dimensional electrons in heterojunc-
tions which interact with charged and neutral impurities and the low-temperature correction to the conductivity
is calculated analytically. It turns out that the dynamical screening due to charged impurities leads to a linear
temperature dependence, while the scattering from neutral impurities leads to the usual Fermi-liquid behavior.
By considering an appropriate mass action law to determine the ratio of charged to neutral impurities we can
describe the experimental metal-insulator transition at low temperatures as a Mott-Hubbard transition.
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I. INTRODUCTION Debye-Onsager relaxation effect in plasma physics.
In the following part of the introduction we will outline

The low-temperature conductivity of quasi-two- the model we want to use. This will give a summary about
dimensional systems such as metal oxide semiconductor fielfie kinetic approach adopted in this paper. The many-body
effect transisto MOSFET) structures or heterojunctions re- approximation to be applied in this paper is also specified
veals a surprising metal to insulator transitiofihis critical ~ and it is clarified how higher order diagrams are generated by
review of the theoretical approaches has concluded that thig1earization, which is presented in detail in Appendix A. In
phenomenon is insufficiently explained. The experimentathe second section we calculate the electrical conductivity
data shows a pronounced transition from insulating behaviolfom the kinetic equation approach and present results for the
at low densities to a metallic behavior at high densities. Thé€laxation time and the relaxation function. This relaxation
generic feature of the metal-insulator transition is the rapidunction summarizes the quantum corrections to the conduc-
change from insulating to conducting behavior when thelivity due to interference effects. The Lenard-Balescu kinetic
density is increased very slightly at low temperatures. Thesgquation used as a starting point in this section is derived in
density driven metal-insulator transitions are usually referred\ppendix B. The third section discusses the resulting con-
to as Mott transitiond The characteristic feature of the Mott- ductivity formulas and shows that the relaxation function is
Hubbbard transition is that an increase in the effective masilentical to the one calculated for the weak-localization cor-
is directly responsible for increasing resistiviy=m/e?n7  rections. For comparison with experiment we include scatter-
while the Anderson scenario would assume a vanishing redg from neutral impurities in addition to the scattering with
laxation timenr. Measurements of the effective massem charged impurities which are worked out in detail in Appen-
to support a Mott-Hubbard transition rather than the Anderdix C. The fourth section summarizes the results and gives
son transition quantitatively explained in Ref. 4. an outlook. In Appendix D we discuss the polarization func-

In this paper we want to return to the original idea of thetion in quasi-two-dimensional systems. The additional Ap-
Mott transition in that a bound state is resolved with increasPendixes E and F present calculations of the integrals used
ing density due to pressure ionization. We will show that aduring the paper.
guantitative description of the experimental results can be
achieved if one calculates the interplay of weak localization A. Outline of the model

and trapping due to charged impurities as well as the scatter- A 4 model. we assume a quasi two-dimensional Cou-

ing with neutral impurities on the same theoretical footing. |, potential, where the field lines are three dimensional
Weak localization as a quantum interference effect is iny, s the motions of the particles are restricted to two dimen-

tensively studied in the literature® The maximally crossed sions. The effective potential takes then the folg,

diagrams lead to a diffusive pole which allows one to extract o2 . B
weak localization corrections to the conductifit§—*? (and = 4meqeyh/ VO T 0y, where, for instanceg,=e for elec

citations therein This paper is devoted to an alternative tron's ande,=—Ze for charggd lons. Qur approach is con-
route to weak localization. We will linearize the quantum v_enlgntly based on the kl_netlc equation for thg one-particle
kinetic equation derived at a lower level of approximationd'smbunonfa(k’t) normalized to the area density

but with external fields in order to create higher order dia-

grams. The main aim is to show that weak localization has Sf
the same origin as the interference effect known from the
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where the spin degeneracy is denotedsbihe kinetic equa- scattering represented by the delta function in EB). In

tion for that distribution function is addition to this the conductivity becomes renormalized by
the explicit field dependence of the collision integf#l/E
which is an interference effect and corresponds to an off-
=+ . =
Afat € Vifa % Aoty El @ shell scattering as expressed by the derivative of the princi-

h lati d by th di II.paI value in Eq(8). The latter effect has been the subject of
where correlalions are covered by the corresponding Coilly g s investigations for nondegenerate plasmas and is
sion integralZ. This collision integral is explicitly field de-

; . ; . known as Debye-Onsager relaxation effect. The field depen-
pendent due to the distortion of two-particle correlations. Wi y g P

. o : ence and quantum form is discussed in Ref. 13. For a
consider the conductivity in a system described by a loc lasma system this Debye-Onsager relaxation éffetwas
equilibrium distribution

first derived within the theory of electrolyté$:2® (Debye
-1 derived a limiting law of electrical conductivity which
f(k t)=(— +1 (3)  stated that the external electric fiefilon a single charg&
a ' 2m T _ . e . .
ala =1 is diminished in an electrolyte solution by the amount

with the mean mass-motion of the charged partiglét). ~ OE/E=«€’/6T whereeis the elementary charggthe elec-

The center of mass motion is at rest, which means that thiic field strength.T is the temperature of the plasma, and
total sum of current pj,= S yNyepPy/My=0 with density 1S the inverse screening radius of the screening cloud. This
n, and massn, . In the following we will restrict ourselves law is interpreted as a deceleration force which is caused by

to a two-component system. The generalization towards muf—he deformed screening cloud surrounding the charge. Later
ticomponent systems is straightforward. it was shown by Onsag@rthat this result has to be corrected

From the collision integral2) we have two sources of 0 0E/E=«xe€’/3(2+2)T if the dynamics of ionsZ=1) is
linear response: A term proportional to the current considered. 7'I'lgezollnear response theory reproduce this On-
= —e,n,p./m, and a term proportional to the field. By mul- Sager result’*#2°The kinetic theory leads to the Onsager

tiplying Eq. (2) with k and integrating, the balance equation 'esult if asymmetric screenifitjs applied while the symmet-
for the momentum reads ric treatment leads to the Debye resdit®%9

The theoretical calculations of conductivity in reduced di-
dk mensions is the topic of intensive investigations. These con-
<9t(napa)—naeaE=f WKI=—na9aEf+napaf cern rigid two-dimensional electron systéthand quasi-

(4)  two-dimensional systen®. In the latter study a three-
dimensional system was considered, where the particles can
only scatter in two dimensions leading to a cylindrical Fermi
surface. The Born approximation and contact interaction re-

elk—Pa(01%~ 4,

such that the current balance takes the form

2
Oja— Ne€al, oE E=—-7Y, (5)  sultin a resistivity which has a leading low-temperature be-
Ma E havior as 1#=aT?(1+bInT). We will show that the Cou-
and the stationary conductivify= oE is I_omb interaction with thg dynamical ;creening results in a
linear order as the leading term. This has been repeatedly
n,e2 reported in the literature both from an experimental and the-
o=——7(1-SE/E). (6)  oretical point of view. Numerical calculations of Coulomb
a scattering rates from impurities predict a linear temperature
According to the distortion of the Fermi functi¢8) we have  dependence of the mobility in silicon inversion lay&ts°
a linear response This was attributed to the collisional level broadening in the
, screening function. Related results have been obtained in
fa—fa=—Paldk; = di) o (7)  Ref. 31, where a significant suppression of the temperature

dependence of the screening function was found. An analyti-
Cal investigation of screening in quasi-two-dimensional sys-
tems was given in Ref. 32 where a linear temperature term in
the conductivity was reported.

and we can represent the current relaxation time and th
relaxation effect for a scattering with impuriti€€4) with
the potentialV as

1 In this paper we want to investigate the effect of Coulomb
— screening on the conductivity. We will derive exact analytical
7 | _ 2ni ( dkdg 5 ol €)VE(Q)G2c0L(a.E) results which show that due to dynamical screening the lead-
SE, |~ ngh) (2mh)?7ac 0K Vs a4 9 ing low-temperature contribution to the conductivity is lin-
E ear. In contrast, the static screening leads to a quadratic tem-

perature dependence typical for the Fermi liquid.
’775( €Ex— Ek—q)
x{ & P . (8)

- B. Many body approximation used in this paper
2 €E— Ek,q

For the calculation of the conductivity we want to account
The relaxation timer is coming from the term proportional for quantum interference effects such as weak localization.
to the current in the collision integral. This is due to on-shellThis means we have to include maximally crossed diagrams
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X = i<>~ ;i T in q 2 foc
1J(k,t)=22, s \ dr
a( ) Eb: b (27Tﬁ)2 ab(Q) 0
2
T =T=] 4= T fdw a a T eE-qr
27003 (G ko)t =
= =3 _ | 5 g Xfak—g—eErt—7)[1—-f(k—eErt—17)]
| — | 5G - E' a q a 1 a a 1
. ——s o 1
=+ <+ +E + I, q,w,t—za-)
! ) ——6 nnm
X (10
1€l g,w,t— = 7|2
, 2
IR . . .
with the free density fluctuatio(B4)
FIG. 1. The density response functitfirst line) in terms of the
particle-holeT matrix. The latter one can be expressed in the second - dp o
line as a sum of irreducible graphs which are given in terms of the Hpp(g,@,t)=—-2 (Zwﬁ)g 0
self-energy. The latter one is used in screened poteiiaV
+VIIV (last line approximation. . b b T e,E-q72
X o ( w—6p+€p+q)%+m
at least"*?In addition to the direct calculation of diagrams, L L
we can (_employ the phllosophy of variational technlqut_as. In X fol p+gt— _T) 1_fb<p:t_ _T) _
Ref. 33 it was described how one can use the variation of 2 2
nonequilibrium Green’s functions with respect to an auxil- (11)

iary external field to create higher order diagrams in the re- . o

sponse function. This makes use of the known variation techtiere we use the sum over species explicitly.

nique summarized in Appendix A. The nested form of the Lenard-Balescu collision integral
The response function can be given in terms of the par(?o) is comp_utationglly advantageous. It tells _that thg colli-

ticle hole T matrix which in turn can be represented by the Sion of particlea with momentumk on a particleb with

sum of irreducible graphg according to Fig. 1. In turnz momentunp into (a,k—q) and b, p-+q) can be represented

can be expressed as a variation of the self-endrgyith equivalently as a collision of the partickewith k on a hole

respect to the Green'’s functidbare ling G. For the dynami- a with k—q by a dynamic plasmon emission which is con-

cal screened approximation used here we give the Corres_idered as a particle-hole fluctuation of partidie$or static

sponding results in Fig. 1. One sees that in principle maxi_screening&(q,O,t), Eq. (10) reduces to the kinetic equation

mally crossed diagrams are accounted for. ;prldstag(ialglxsgcreened Coulomb potentials in high electric
Instead of the variation of the nonequilibrium Green’s ields (C1).

function we can use a proper reduction of the latter onezloNOW ‘I’Vf callllculafce t?ﬁ fr_zqu?_?ce/ 1|nt\?vgral n EQ@L) arlﬂ
towards a kinetic equation. The linear response obtaine ) analytically using the identityE1). We summarize the

from this kinetic equation including all external field effects result of the frequency integration in the momentum depen-

is accounting then for higher order diagrams in a convenienf€Nt functionW(q) which takes the explicit forntE10) for
uasi-two-dimensional systems.

way. As such, we obtain weak localization effects by pro ed ; .
y y prop Performing the balance equation for the curréfjit we

linearization of the collision integral. N, . .
obtain in linear response the interference term or relaxation
function

II. KINETIC EQUATION AND CONDUCTIVITY SE 2e,

dq 5
The kinetic equation corresponding to the dynamical eanaf— myh* % Sbf (27rh)2W(q)q cos(q.E)

screened approximation is the quantum Lenard-Balescu

equation, which has been derived for high fields in Refs. 13 J‘” _ 1 < _
and 34. A sketch of the derivation is in Appendix B X 0 drr’l(a, ) Zbe(q,O) (a—b)
(12)
d d . . .
—f o+ eE—— =11k, 1) — 12K, 1). ©) and the relaxation time as
ot JKq
e.m
7 1= |R@b)- —"R(b,a) (13
b epMy

The collision-in integral ig[1°* is given by f«1—f and
L<«L"7] with
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where we will use the abbreviation

hik  elmgs, sdetm? h

Pfa Pta 167h N, To€f
with 7, '=me’s?/8/4° during the paper. Furthermore, we

Here the static free density fluctuation reads distinguish in Eq.(20) between the inverse screening length
where ions are included’ and where they are neglect
M5(0,0) = 115(9,0 g y are neglected

S
1+ & 2
Sa

We expand the above result for large and smallwhich
corresponds also to the small and large density limits

4s d
n.R(a,b)=— Kf?“f ﬁw(q)qzcosz(qf)

Xde | —EH< 0 ) 14
0 TT S(aiT) 2 bb(ql ) . ( )

. (21

r_
Ka= Ka

dq
=2wf ng(l—fg)5(ep—ep+q) (15)

and the integral

dk T
= — — — i —e)— T 2
@)= [ G faTL~ falk- @i e g )7 LT 2 s,
19 g f(Ta T £ o
- a
will be calculated in Appendix F. Sa \€fa €ral 1HE K K2|HE+O(K3)
. . 2 a a 2 a’"
We remark that the interference effgdt2) vanishes for
identical scattering partners, e.g., electron-electron correla- (22

tions. When calculating the explicit form of the relaxation it i interesting to investigate the limit of large ion masses,
time and relaxation function we employ charge neutralityz . and T,=0, which would correspond to the charged

€aNat+€,Np,=0 and restrict ourselves to the case of singlejmpyrity limit. One gets from Eq(22) for large «,
charge ione,= —e. The case of higher charged ions is also

available but is more involved. The generalization to systems 8sy T,
with additional particles species is straightforward. -3 aka- (23)
a
A. Relaxation time by charged impurities If we compare this with the neutral electron-impurity scatter-

_ ) _ ) _ . ing result(C10), we see significant differences. While the
Introducing the dimensionless integration variaie  seatically screened result shows a Fermi-liquid behavior of
=2psay We obtain the relaxation time to lowest order in -onst andT? terms, the dynamically screened res(26)

temperature leads to a linear temperature dependence.
2
1= m _ €aNaTa i B. Relaxation function by charged impurities
5 mhtn, oL 0 epnp [ E+1 . .
a Interference effects from the relaxation functiti®) can
1 VK 1 be calculated analogously
x f dy—xe , (17
o (Ytka) J1-y? oE €aM3Sy (6T ) 3
. e oo L3 &lamealp)
where we have introduced the abbreviationmZe2/m2e?. E  2mpphidn, =~ 0 2 UE+L
Since the momentum integration<1 is restricted by the . ,
low-temperature expansions to values belop 2the low- < | d Ka 2210 (y—1+ 7). (24
X ; ! y N oyVY y—1xmn).
temperature expansion of the inverse screening le(igth) 0 “Y(ytky)

becomes a constant The small» has been introduced to perform the principal

e2m.s es value integratior? according to Eq(F9). It should be noted
G oo Jé hat® functi f the d i d |
72 &5, §]. (18  that® functions of the denominator and numerator cance
a~a exactly and no restriction oy integration remains.

We distinguish here between the temperature of elecfigns ~ We have now to carefully consider the structure
and the temperature of the ioilg which could mime non- 2

o . P
equilibrium effects. L:j dvi - e o1
The integral in Eq(17) can be easily calculated == )oY yﬁyZ[gy v 7]

Kzg 27Te§&“ncz (14—

2 oo
m, €2 88T, Tp| & - J : ¢
_-1Ma ®a_ %% la b} & X lim dyfy,gy+(fy9y—fy9))ly-15,| (25
R Tab naeez1 h sg (Efa €m 1+§KaKa 70 159 y y y n
- ! ! with f,= k2/y/(y+ «,) andg,= y?— 1. Performing the in-
x| =+ a ,2In a —1, (19 tegral one sees that the divergent contributionpat O is
2 1-k? (1+V1-k?) cancelled exactly by thég’ —f’g term. We obtain
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I Ka LT
ir_l—Ké'lz_Z

arcoshk),

(KQZ_ 1)3/2'

(26)

The principal value in Eq.17) is calculated from T,
+7_)/2 and we obtainwith chargee,= —e,)

arcoshx;

(Ké"Z_ 1)3/2 )
(27)

SE 2Sb( Ta Tb) f K;
— = | =4+ — K .
E Si €fa  €ra) 1tHE|1- Kaz

The low density(large ;) expansion as well as the high

density(small ;) expansion read

SE 23b< T, T, £
— ==+ —| ke
E Sa €fa €fa 1+§
1 1
— —+(In(2kp) —1) —5 +o(xy ™),
Ka Ka
X (28

T ) 3 s s

- E+2Ka— TKa +0(ky>).

It is clear that for the impurity limit with infinite masses
—o0 we have from Eqs(21) and (28)

SE
(— =0 (29)

E

in agreement with the physical picture that if the ions cann
move the screening cloud cannot deform during the motio
of the electrons and cannot induce a relaxation effect. This i
different if the charged impurities do not contribute to the
screeningx,= x4 in Eq. (21), and we obtain a finite result.

This case is anticipated here since the neutral static relax-""

ation function already lead to finite resul§14).

Ill. DISCUSSION

For further progress we use the expansions for latger

low densities. Collecting Eqg22) and (28) we obtain the
conductivity in an analogous form to the Bloch-@aisen

formula

1 OoE
e? _f(n)

O= 1T~ — =, <~

h R(n) (30

where the dynamic parts comes from the scattering fron){vh

charged impuritie$22), and(28)

83b<Ta+Tb) 1 T . 2 N _3
=3 | 7T ————+t7—5*1O0 s
ss \€ra €ra Ka 4k, 3k2 (ka ™)
OB _2%(Ta Tol( oo 1,
—=—|—+—]|({1-[In -1]—+o .
R P ES LTINS VLR

31
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tures lower than the Fermi energy. This is in agreement with
the experimental and theoretical works mentioned in the In-
troduction.

A. Relation to weak localization

The low density or weak potential lim{80) is now inter-
esting to discuss. Using ERO) we can rewrite Eq(30) into
a net relaxation effedts,=s,=2,T,= Ty ]

015E12T
o T E T e

1+ ——In a7

21

To€f (Toff)

(32)

where we have introduced the temperature dependent relax-
ation time 1f=e;T7o/h?=8¢#T/me*s?. This is precisely

the localization correction to the conductivity. Therefore

we understand now the physical meaning of the relaxation
function at low temperatures. Please note that it vanishes
here for small temperatures in contrast to the static result
(C14.

B. Comparison with experiments

In order to describe realistic experiments, we extend our
model with scattering from static neutral impuritiéseated

ributions coming from the scattering from neutral impurities
C10,(C19 as

{n Appendix Q. In addition to Eq.(30) we have static con-

2%2%sn, [ ag |2 1 T w T? 4

o 2rg) |12 2462 166 O]
SEi ni[ag)? . 4_3ln2K‘+ 4 23
BE " .\ 21, 2 o(ki ). (33

We can safely use the largg limit since typical densities of
Ref. 36 are X 10'° cm 2 and we have

284.9 m*

Ka= — (34)
? nJ7x10 0 e 2 m

ich is a large parameter.

Now we have two unknown fit parameters in the theory.
These are the energy levEl,=E.—Ep of the impurities
determining the ratio of impurity density to electron
densitied”*

Ny

n; (2’77;12
Na (35)

eBEb
]

and the ratio of the scattering length to the scattering range

We find that both the relaxation time as well as the relaxatiorof neutral impurities; = (a,/r ) ?€s, . From Eq.(30) we can
function have a linear temperature dependence for temperawrite the final conductivity formula in the form
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tween continuum and bound state levels. Therefore, this un-
derlines the Hubbard-Mott transition which we have seen
already in the increase of the effective nass described in
Ref. 4.

A remark concerning the formulé36) should be made

[h/e?] . ) o .
g 3 here. Instead of the trapping at charged impurities resulting
1§ i in the mass action law35), one could assume in principle

any other trapping mechanism. In particular, we have shown
that three-particle bound states can describe the experimental
data as welf® The underlying conductivity formula is pre-
K| | ' cisely Eq.(36) where the number of three-particle bound
states diminishes the charged impurity density correspond-
FIG. 2. The conductivity versus temperature according to Eqingly. So the basic transport mechanisms outlined in this pa-

(36) as dashed lines. The experimental curves are the solid ”neﬁer here remain the same. The only mechanism that is not
(Ref. 3. From top to bottom toheyiczorrespond to densitiesgf possible to extract so far is that of actual trapping.
=6.85,7.17,7.25,7.57,7.8510'° cm 2,

o g et T T 2K, IV. SUMMARY AND OUTLOOK

—=1--—e + . . L :
o 2T 2€5, 26fa:<§ e Linearizing the Lenard-Balescu collision integral includ-

ing all external field dependences allows one to derive a
¢ - conductivity on the level of an infinite series of diagrams
——eB/T+ —( Ka— —) , (36) including maximally crossed lines. The field dependence of
V2T €fa 4 the collision integral yields an interference effect which is

where we have used the spin degeneracy of the heavy impﬁ-h‘?wn to describe just thg yveak localization corrections.
rities s,=1 and the temperaturg,=0. The best fits to the This has the same formal origin as the Debye-Onsager relax-

experimental result& are plotted in Fig. 2. ation efLectl in plasma and electrolyte systems. I |
We see in Fig. 2 a clear insulator to metal transition for FOr the low-temperature regime, it was possible to calcu-

low temperatures when the density is increased very slightlyat€ the conductivity analytically. It was found that the dy-
The fitting formula(36) works quite well at all experimental namical screening by charged |mpur|t|es. Igads tp a linear
densities for low temperatures, however, the formula fails fof€MPerature dependence of the conductivity, while neutral
higher temperatures. This is because we used the low tenii“p_l‘r't"?s give rise to the usual Fermi liquid behavior. This
perature Sommerfeld expansion and the Fermi energy i nding is general for any §cat_ter|ng of light particles from
1.9 KX n,/7x 10'° cm™2 in this case, such that at 0.8 K we heavy partlclgs. Therefore |t9m|ght also be of use for scatter-
expect deviations from the leading low-temperature behayi"d "ates in hight, cuprates.

ior. Despite this imperfect agreement with the data, it is quite The comparison with experiment is performed assuming
satisfying that the metal to insulating transition can be de&n @ppropriate mass action law between the charged donor
purities and the neutral ones which are considered to be

scribed completely by the scattering with charged and neutrd!" ; ; .
donor impurities supplemented by a mass action law. Thigaptured electrons. The experimental metal-insulator transi-

strongly favors the Mott-Hubbard transition picture. tion can be described quantitatively by fitting the effective

The best fit parameter are shown in Fig. 3. We see that thBinding energy and the unknown scattering strength.
effective binding energy of the electrons to the impurities as S noted, a similar quality of description of the experi-
well as the scattering strength decrease rapidly when passirﬂger_‘tal data was aghleved assuming a three particle cluster-
through the critical density. This is in agreement with the!Nd instead of trapping of electrons. The latter process, how-

picture that we have pressure ionization, i.e., a crossing b2Vl relies on the same transport picture as outlined in this
paper. Only the composition of neutral and charged impuri-

ties is determined differently. So far we cannot determine

e2

O'OZF

1 which process is actually happening. In order to achieve this
- > we must study the magnetic field dependence, which shows
) quite unique and remarkable features in the experiment. This
0.6 is left for further work. To conclude, we suggest that the
Fit [K] metal insulator transition found in experiments can be de-
0.4 scribed within a Mott-Hubbard transition scenario in agree-
0.2 ment with the effective mass measureméhnts.
Ep
0
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APPENDIX A: VARIATIONAL TECHNIQUE L| =% >< + T
OF LINEAR RESPONSE

(A6)
Assuming in addition to the interaction potentM], a . )
coupling of an external potentidl,; where the numbers ~ With the help of Eq.(Al), the density response to an

sign cumulative indices such as space time, etc., coordinate@xternal potential can be expressed in terms of the density

— 1% Tayaa; a;') by a variation of the one particle Green the density is given byG i+ =(a; a;)=(n;)=n, and we
function Gy,=1/i(Taja;) with respect to the external have from Eqs(Al) and(A3) for the response functiog
potentiaf®*' as
ong . A -
5G1y Xlzzm:+||—121+2:i'((”l—nl)(nz—n2)>-
G212/ =G11Gox + , (A1) (A7)
5U2/2

The last identity follows from the definition df and under-
fines the names density fluctuation function. We see now that
the linear density variation due to an external potential can

where the upper sign denotes the Fermi and the lower th
Bose functions. Using the Dyson equation

Gflzeal_E_U (A2) be expressed as
we can calculate the derivative in E&1) and with the help 1, _ o 3
of the chain rule andG=—G&G G, one can express the TN1=F Lo U= x1U22, (A8)

fluctuation function as
where the upper index indicates the order of external field

L1o1720r=G1212r — Gy Gox dependence. Graphically we can express it as
— _ 52 34 x 2
:+G]_216217+G137G417
2'2
_ 023, 1 n1 —_ - — L°
:+G12'621'+G13556L5262'G41'- (A3) iy - @ = <+
1
Double occurring indices are understood as integrated over. 1
With the definition of the occurring vertex function we can (A9)
express this graphically:
P grap y where we will design the external field as a dotted line end-
, i 2 2 ing with a cross. According to Eq$A8) and (A9) we can
2 2 2 2 L express the first order response function as
- 5 6 2 2
L - + + 5
- X, = Fil L| = +i Fi| T
1 1 1 1 - (S - 12 + I I + I
1 3 4 1 : .
(A10)
8—° o 23 _ where we have used the definition of tfiematrix in theu
= = ———34 = o 3645 channelEqg. (A5)]. Equations/A4) and(A10) constitute the
3 a 8 Gse bases for approximation used in this paper.
(A4)

APPENDIX B: DYNAMICAL SCREENED

Sometimes it is of advantage to express this density fluctua- APPROXIMATION IN NONEQUILIBRIUM

tion function by theT matrix. Defining

The self-energy is given in terms of the dynamical poten-

T tial V according to Fig. 1
= | = +
T p— E< r\ dq < ’ < _ !
L:d a(k!tlt )_ (Zﬂﬁ)zvaa(q,t,t )Ga(k qytat )1
(A5) (B1)
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where the dynamical potential is expressed within Coulomlwith linearization in electric fields and consequently fdil.
potentialsV,,(q) The gradient approximation in space has been applied as-
suming slow varying processes in space and we have
dropped allR dependence for simplicity. Introducing Eqg.
(B1) into the equation for the Wigner functidi37) one ob-
tains the kinetic equatiof®) with the explicit form of colli-

V§a<q,t,t'>=§ Vad @)L 3,11 )WVea(q)  (B2)

via the density-density fluctuation sion integral(10).
E;b(qvtit,)
L . L _ APPENDIX C: STATICALLY SCREENED OR FINITE
= abf dtdt(€N) " Yq,t,t)I5(9,t,1)(EY " Xq,t,t"). RANGE IMPURITY SCATTERING
(B3) Using the static approximation for the dielectric function

&(q,0t) in Eg. (10), the kinetic equation for statically
Herell is the free density fluctuation or polarization function screened Coulomb potentials in high electric fields

. appear®**
p
(27h)?

Gy (p.t,t)G; (p—a,t’,t)

H;(q,t.t’):f
J

(B4)  —f +eEdk,fa=2, lap
ot )

and £"2 the retarded/ advanced dielectric function

2s, [ dk.dkydk}

E3(q,t,t)=8(t—t")=iO[=(t—t")]X Vpu(q) =
b K2 (27rh)4

S8(Ka+Kp—ki—kp)Va(Ka—kj 1)
X[T17(q,t,t") —T=(q,t,t')]. (B5)

“ T
: . . . X | drco +ep—€r—€)
One easily convince oneself that this set of equati®@ig— fo 7 4(65‘ €~ € Eb)h

(B5) is gauge invariant. The correlation or Green'’s function

can be related to the Wigner distributidy by the GKB _Er’[elka  eky €Ki enky
ansat#? 2h\m,  my m, my
i 2p2 forfpr (1= ) (1= ) — Fafp(1—Fa)(1—Fp)}
< —expl — - eE X{farfo a b) — fafp a b
G (k,r,t)—exp[ 7 €T+ >am T 1)
eElr |7
X fl k— == (B6) - . . .
2 2 describing the scattering of particlagelectrong with other

speciesb with the distribution functionf,=f,(k,—e,E7,T

> i _
and analogously foG™ by replacingf (1 ~f). — 7). The potential turns out to be the static Debye one

With the help of the gauge invariant formulation of
Green'’s function, we can write the kinetic equation for the

Wigner functionf(p,t)=G~(p,R,t,7=0) finally*® 2me el
Vs(q) = Q*hin) (C2
d
—f(k,t)+eE-Vf(k,t)
at with the static screening length given by
t—tg eE T
:f dT[G>(k——7',T,t——>,
0 2 2
KIE ZWega#nc (C3
Cc

eE T
S k— 77’,—T,t— E
* and the chemical potential.
- eE T We will now use this statically screened result in order to
—1G7| k= o Tt= 5 describe the scattering neutral impurities if we use the range
of potentialr ;= 1/x and replace the charges by the scattering

E>( . ﬁT o Z)] . strengthgay,=e4€ - ' ' o '
2 bt The calculation of the impurity scattering in quasi two
* dimensions is now analogously to the Brooks-Hearing result
This kinetic equation is exact in time convolutions. This isfor three dimensions and starts from the Born collision inte-
necessary because gradient expansions in time are connectgdl (C1) which takes for infinite heavy ionam,/m,— ]

(B7)
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25 dkdk,dk. The second temperature correction is negative and dimin-
lp(Ky) = ZbJ b —kp)V2(ka— k2, 1) ishes the positive first part. As long @s<e; the net relax-
fi (27h) ation time is positive and continously falling to zero fey
Er? ek, eak. -r . .
cho (€4~ )__ —_ | BE The high density expansion reads
€a 2h \ m, m,
2 3/ 2
m, e 2%%s.n, ([ m,g.ur
X fp{fa—fa} C4 e B T bib[ a%ab 0) 2 2
b{ a a} ( ) RI i n 2 h SaN, ( ﬁ,z ) Ki (1+\/E)
We assume parabolic bands-k?/2m. Ki Ki\| K2
The relaxation functio®E/E would correspond to linear- Xy —1- |n5— 5+6 In§> 7
ization of the cos function in Eq.C4) with respect to the
field while the relaxation time is obtained taking into account w2 T2 K;
the linearization with respect to the momentyy of the — 542 |2t| 19+ 12In7 K? +0(Ki3)] (C9)
displaced distribution$3). Cross terms such gs,E are al- &

ready of second order response. The result can be written ifnd the low density expansion or short range expansion
the concise form(8).

23/23bnb MaQan 0 ,2 1+\/— 2
1. Relaxation time by neutral impurity scattering i~ SN, 52 ( )
In the following we give an explicit calculation. Employ- 1 212 3
ing the Yukawa or Debye potentiC2) one obtains for the % T T T o(k"? c10
relaxation part 2 263 24 21668 o(xi ). (C10
IR (k)= dfg 2mm, , J’w coy a— ¢) — Ccosp 2. Relaxation effect by neutral impurity scattering
o
abiha pa& 5 Ja 0 okl si a v : The relaxation function is now obtained if we linearize
a S'”E K Eqg. (C4) with respect to the external field. We obtain
(CH
i ield directi —— o kal 35(Ka)
with the angle betweek, and the field directiomp, denoted (27h)2 @ ablfa
by ¢.
The current relaxation time is now obtained by nie [ dkdg
== mﬁS (2 ﬁ)4f0(€k)v (Q)q
n T—.1=f T aslke (C6) » 9°+2k-q
aPaTei W alab\a XCOSz(q,E)f dr72sin ’T)
0 2mh
from which one get$ x,=7%/2ryp] (C1)

from which one gets

1+\/1—K§>

MaGab NpSh " K i n J dgoPVa( )f d
-1__a%a P —_—=—5—— q q 772
L= dpd,f + 5
T 231243 n, fo Pplo K'2)_1 (K’Z)_l)g,z E  4ah°mn
:_'g( gazbo)J 22y =10 (y—1),
This current relaxation time in the low-temperature Sommer- Na fi o (Y+Ka)
feld expansion leads fox; =7%/2r gpsal (C12
1+ J1— <2 where we ha\_/e u_sed E(F9) for the_z Ia_st line. Employing the
In SN same regularization due to the principal val@6) we end up
2 1 i
1 MaGap NpSh N Ki with
i 2323 n, KiZ_]_ (Ki2_1)3/2 , .
5 OE N [MQaplo| | 2ratH Ky N 3i3IN(ka— VK2~ )
viTa Eonl a2 | |(E-17 2 1)
2 T2 1 In a ( )
Tl bt Ki (C13
24 & M| ki—1 T (k2—1)%2 '

The T? dependent term could be given analogously. The
(CH needed low density or short range expansion now reads
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2
SE;  nj [ Mgulo 4-31In2k, . q ho
! I — - X==——, Xg=-—, D5
(C14 we get finally for the imaginary part of the polarization func-
tion

APPENDIX D: POLARIZATION FUNCTION IN 2D

m
Here we discuss the properties of low-temperature polar- ImIl(w,q)= —ﬁz—[ O(x—|xo+x?)

2
Xo
- x+_)
ization function X

2 Xo|*
M(w,q) = f( i —O(X—|xg—x)\/1- X—— (D6)
7T
2 B . 2 which is of course the result given in Ref. 28. The corre-
Xf[(p+q/2) f2m]—f[(p—a/2) /2m]. sponding real part is given by the Hilbert transform accord-
ﬂ_w_lo ing to Eq.(D1)
m
do' Imll(w’,
(DD Rell(w,q) = —2 [ 4 Imitle’.a) q). (D7)

. . . . . 27 —
The imaginary part is easily rewritten as T -

_(» dpp [P\ (2~
ImIl(w,q)=" 0(27T—ﬁ)2f(ﬁ o d¢

Using the integral

1\/@ a 1=|a
F(a)—f—l a-z " a—sgna)ya’—1 (D8)

we obtain
X X
—O+x> —F(—O—x”. (D9)
X X

The real and imaginary part is plotted in Fig. 4.

124+ mw#/q)?
f(6+(q ® q))
2m

m3/2 f de m
" 2%2an2q)o e Rell=— 12 [ F
f( +(q/2—mwﬁ/q)2)
- €T — | |-

2m (B2)

The energy shifts in the distribution function we absorb into APPENDIX'E: INTEGRALS OVER
. . . . e DIELECTRIC FUNCTIONS
an effective chemical potential which should be positive in

order to obtain nonzero contribution at Sommerfeld expan- |n order to perform the frequency integration (@) we

sion use a very useful relation, which has been giveéh in
2
(ig+_m;"ﬁ) B KO, s = PO e(l_g( o)
B WL A w qa,
Meff— €f 2m =0. (D3) (El)
The low-temperature Sommerfeld expansion reads thaRor the integration of Eq.(9) we set H(w)=cosr
fo(€)=n[(e— per)/T] +A)cos(7 +B)w/ImE with A andB are the remaining con-
tent of the cosine functions of Eg&l0) and (11).
© de [€— pes o Lets first prove the relatiofE1). We consider the follow-
—n( = - ):ZJ dXN(X) I VT X+ peft ing integral including the dielectric function
0 \/; reiIT
o . (w) 1
=2J dxn(X)[1=n()INTX+ et I= ET"ng (@)
et/ T
72T2 _ J do (1 N ) -
=2\/Meﬁ(1— 24:U~efr) A7i\w+in o-—i Hlw)(f7=17), (B2

T2 9 wheref*=1-1/£ andf~=(f")*. In the following we will
:2(1— >\/M_eﬁ (D4)  assume that the functioH () is analytical. Sincef*(w)
12 de has no poles in the lower/upper half plane and vanishes with
Therefore it is enough to know the zero temperature result @~ for large w we have the identity
since theT? correction are given simply by derivatives with .
respect toe; . f 49 @ 0)H(0) (E3)
Introducing dimensionless coordinates &€ in 2mi ¢ (w*+im) 1 (
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3 such that we can apply Eq.(E4 with H(w)
=wh(w)/IM&(w). In the case where |60 appears an
2 ambiguity which we have to remove. We add an infinitesimal

small classical process to the particle-hole fluctuation which
modifies the polarization in the following way:

SimIl = nwefc‘”ZN o+o(wd)]. (E6)

This will make the imaginary part of the polarization non-
zero everywhere and will not introduce additional poles in
the upper half plane. Therefore we can apply the integration
25 3 (E4). The corresponding real part according to Eeg) will

be o« % and drop out in the final forn(E4).

2. Specific forms

4 Now we write down the required forms for E@E4). One
gets the static result from Eq$D6) and (D9) at low
2 temperatured
of ; 5 |t q<2ps,
P < 1(0g)=—-—n 2
, \\ﬁ——’— (0.9) E 1- 1_(%) g>2p
0 1 2 3 4 5 6 (E7)

with the chemical potentigk and from Eq.(D2)

3 mIl(e.q) mzwﬁ®(2pf—q)( 872T?m? )
mil(w,q)=—

2 a mh2q\api—q? (4pi—0?)?

1 +o(w? T4. (E8)

The region where Ifl#0 correspond exactly to the upper
case of Eq(E7). Using this expansion we obtain

-2 . hoe 19>
H(0)= lim i > > o2
0 2 4 6 8 10 wﬁ0|m5 mbeb 8’77' mbTb
FIG. 4. The realsolid) and imaginary(dashed part of the po- b [ An2 _ 2 Ap2. — g?)2
larization 4m#2/mx I1 versusx, for x=0.5 (above, x=1 (middle) 4Pib—d (4pin—d )(E9)

andx=2 (below) according to Eq(D5).
where we have to keep in mind that the above procedure in

calculating the frequency integral works only for finitelllm

and all o_ther combinations of sig_ns vanish. With the help of; finite particle-hole fluctuations. According to E@2) this
the relation(E3) we compute easily for EqE2)

restricts the lateq integration to values smaller thampg,,
1 1 respectively.
= EH(O)Re( 1- m) (E4) We get finally for Eq.(E1)

which proves relatioE1).

W) =V(q)? 1 i hw e( 1 1 )
= 5 lim Re 1—-

B meR 1 €00

1. Regularization of integration

We are now going to give explicit forms including the _ 2melefh x(q)
dielectric function€=1-V(q)II(q,w) where the polariza- g+%x(Q)
tion functionIT was discussed in the previous chapter. The
forms appearing throughout the paper are % 1

mze? 8mmiT: |’
_ do h(w) - do oh(w)/Im&(w) o1 > 2( 5 5 2)
_IZ &2 m o mE (w) b V4ph—d (4ptp—a°)
(E5) (E10
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where the screening length is from E&7) _ pe
fan= [ dki1-f, gsinie -0

1! q<2pfb’ T
k=, 2meld n / 2psp | 2 ZJ dk(fr—q=fi)de, e SIN(€—q— €7
b bfuT 1— 1—(— . 9>2pgy ke h
q T
(E1) = f dkfk( gEHq_Eksin(ek— 6k+q)%
and since n=(s/4rh?)pZ+o(e “'T) one has d,n ;
:mbSb/Z’JThZ. _gfk_fquin(Gk_q_Ek)g)
APPENDIX F: LOW-TEMPERATURE EXPANSION _ L 7
OF INTEGRALS _f dkfisin(ec— €-a)7 (e _q-e T 9o ey
The integrals occurring in Eq$12), (14), and (16) will ] T
now be calculated. Usindsdrcosxr=m&x) we can write :J dkfks'”(fqu_fk)g’ (F3

for Egs.(B4) and(15)

whereg,=1/(e/T—1) and we have usek— —k transfor-
- 1H<(q,w=0) mation in coming from the third to the fourth equality.
2 The time integral(14) can be now represented as a deriva-
tive of a § function with respect tk. A partial integration

dp
_ _ leads than to
X de7,0016p+q_6p)% fmd77| (a,7)= f —dk f J'wdTTSin(é' —€ )1
0 o s\ (27Tﬁ)2 k 0 k—q k A
—f dp f 1-f hé
= (277—ﬁ)2 b(P)[ b(P) ] (fp+q ép) — 477-q 3k[kfa(k)]
- i | apt o) [ Jld_ixz xf dx 5(X_i)_5(x+i ”
~1 X1 X2 2p 2p
q q
X| 6 X+2p +0 X—Z—p”
m2 (e k
T, LI EL Co R, - [ akadkiy 01 ———
) 2 2! wq°J g2 2
TG J g?/8my Ty~ eqp, /Ty \/8mb(TbX+Efb)_q kz_q_
4
where we used= p?/2m,T,— €;,/ T, andn(x) = 1/(e'+ 1) P
ande;y, is the Fermi energy. The last integral is only non-zero — a f dxn(x)[1—n(x)]
for negative lower integration limits implying®,>q. Ex- 4\/§7rq —alT,
panding the square root in terms of the temperafyave
obtain finally 0(2p;a—Qq) -
X —— F4
VT x+a
1 1

—517(a,0=0)= =~ 117(q,0=0)
with a= e;,—q%/8m,. Expanding the argument in terms of

mbTb®(2pfb q) 872m -|-2 ) T, one arrives analogously to E(2) at the result
mhq \/4pfb q° 4pf q?)?
2 22712
F2 2 m 8mmiT
. o 0 4mq\4p7,—d (4pfa—a?)
The integrals(12), (14) can be tremendously simplified ob-
serving that Eq(16) can be written XO(2pia—1ad). (F5)
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The integral(12) requires some more care. We use the prin-

cipal value identityf yd 7 sin="P/x and write

% m3# % 27 d
fdwzls(a,r)z—%ff dkfa(k)agf 4
0 Tq 0 o a
5K COS¢
(F6)
Using
FW a0 il 1 F
o a—C0Sh JaZ_1 ®(a-1) (F7)

we can write after one partial integration

PHYSICAL REVIEW B67, 115125 (2003

3
mP 2/8m, T o era /T
a q=/em, Ef

(?zf e T dxn(x)

77'q3

X[1-n(x)]Vg?

J drrl((a,7)=
0

*efa/T

8ma aX 4pfa
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