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Conductivity in quasi-two-dimensional systems

K. Morawetz
Max-Planck-Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, D-01187 Dresden, Germany

~Received 11 October 2002; published 27 March 2003!

The conductivity in quasi-two-dimensional systems is calculated using the quantum kinetic equation. Lin-
earizing the Lenard-Balescu collision integral with the extension to include external field dependences allows
one to calculate the conductivity with diagrams beyond the GW approximation including maximally crossed
lines. Consequently the weak localization correction as an interference effect appears here from the field
dependence of the collision integral~the latter dependence sometimes called intra-collisional field effect!. It is
shown that this weak localization correction has the same origin as the Debye-Onsager relaxation effect in
plasma physics. The approximation is applied to a system of quasi-two-dimensional electrons in heterojunc-
tions which interact with charged and neutral impurities and the low-temperature correction to the conductivity
is calculated analytically. It turns out that the dynamical screening due to charged impurities leads to a linear
temperature dependence, while the scattering from neutral impurities leads to the usual Fermi-liquid behavior.
By considering an appropriate mass action law to determine the ratio of charged to neutral impurities we can
describe the experimental metal-insulator transition at low temperatures as a Mott-Hubbard transition.

DOI: 10.1103/PhysRevB.67.115125 PACS number~s!: 71.30.1h, 73.90.1f, 05.60.2k, 72.10.2d
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I. INTRODUCTION

The low-temperature conductivity of quasi-two
dimensional systems such as metal oxide semiconductor
effect transistor~MOSFET! structures or heterojunctions re
veals a surprising metal to insulator transition.1 This critical
review of the theoretical approaches has concluded that
phenomenon is insufficiently explained. The experimen
data shows a pronounced transition from insulating beha
at low densities to a metallic behavior at high densities. T
generic feature of the metal-insulator transition is the ra
change from insulating to conducting behavior when
density is increased very slightly at low temperatures. Th
density driven metal-insulator transitions are usually refer
to as Mott transitions.2 The characteristic feature of the Mot
Hubbbard transition is that an increase in the effective m
is directly responsible for increasing resistivityr5m/e2nt
while the Anderson scenario would assume a vanishing
laxation timent. Measurements of the effective mass3 seem
to support a Mott-Hubbard transition rather than the And
son transition quantitatively explained in Ref. 4.

In this paper we want to return to the original idea of t
Mott transition in that a bound state is resolved with incre
ing density due to pressure ionization. We will show tha
quantitative description of the experimental results can
achieved if one calculates the interplay of weak localizat
and trapping due to charged impurities as well as the sca
ing with neutral impurities on the same theoretical footin

Weak localization as a quantum interference effect is
tensively studied in the literature.5–9 The maximally crossed
diagrams lead to a diffusive pole which allows one to extr
weak localization corrections to the conductivity8,10–12 ~and
citations therein!. This paper is devoted to an alternativ
route to weak localization. We will linearize the quantu
kinetic equation derived at a lower level of approximati
but with external fields in order to create higher order d
grams. The main aim is to show that weak localization h
the same origin as the interference effect known from
0163-1829/2003/67~11!/115125~13!/$20.00 67 1151
ld

is
l

or
e
d
e
e
d

ss

e-

r-

-
a
e
n
r-

-

t

-
s
e

Debye-Onsager relaxation effect in plasma physics.
In the following part of the introduction we will outline

the model we want to use. This will give a summary abo
the kinetic approach adopted in this paper. The many-b
approximation to be applied in this paper is also specifi
and it is clarified how higher order diagrams are generated
linearization, which is presented in detail in Appendix A.
the second section we calculate the electrical conducti
from the kinetic equation approach and present results for
relaxation time and the relaxation function. This relaxati
function summarizes the quantum corrections to the cond
tivity due to interference effects. The Lenard-Balescu kine
equation used as a starting point in this section is derive
Appendix B. The third section discusses the resulting c
ductivity formulas and shows that the relaxation function
identical to the one calculated for the weak-localization c
rections. For comparison with experiment we include scat
ing from neutral impurities in addition to the scattering wi
charged impurities which are worked out in detail in Appe
dix C. The fourth section summarizes the results and gi
an outlook. In Appendix D we discuss the polarization fun
tion in quasi-two-dimensional systems. The additional A
pendixes E and F present calculations of the integrals u
during the paper.

A. Outline of the model

As a model, we assume a quasi two-dimensional C
lomb potential, where the field lines are three dimensio
but the motions of the particles are restricted to two dim
sions. The effective potential takes then the formVab

54peaeb\/Aqx
21qy

2, where, for instance,ea5e for elec-
trons andeb52Ze for charged ions. Our approach is co
veniently based on the kinetic equation for the one-part
distribution f a(k,t) normalized to the area density

sE dk

~2p\!2
f a~k,t !5na , ~1!
©2003 The American Physical Society25-1
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where the spin degeneracy is denoted bys. The kinetic equa-
tion for that distribution function is

] t f a1eaE•¹k f a5(
b

I@ f a , f b ,E#, ~2!

where correlations are covered by the corresponding c
sion integralI. This collision integral is explicitly field de-
pendent due to the distortion of two-particle correlations.
consider the conductivity in a system described by a lo
equilibrium distribution

f a~k,t !5S e[k2pa(t)] 22ma

2maTa
11D 21

~3!

with the mean mass-motion of the charged particlepa(t).
The center of mass motion is at rest, which means that
total sum of currents(bjb5(bnbebpb /mb50 with density
nb and massmb . In the following we will restrict ourselves
to a two-component system. The generalization towards m
ticomponent systems is straightforward.

From the collision integral~2! we have two sources o
linear response: A term proportional to the currentj
52eanapa /ma and a term proportional to the field. By mu
tiplying Eq. ~2! with k and integrating, the balance equatio
for the momentum reads

] t~napa!2naeaE5E dk

~2p\!2 kI52naeaE
dE

E
1napat21

~4!

such that the current balance takes the form

] tja2
naea

2

ma
S 12

dE

E DE52t21ja ~5!

and the stationary conductivityj5sE is

s5
naea

2

ma
t~12dE/E!. ~6!

According to the distortion of the Fermi function~3! we have
a linear response

f a82 f a52pa~]k
a8
2]ka

! f 0 ~7!

and we can represent the current relaxation time and
relaxation effect for a scattering with impurities~C4! with
the potentialVs as

S 1

t i

dEi

E

D 52
2ni

na\E dkdq

~2p\!4 ]ek
f 0~ek!Vs

2~q!q2cos2~q,E!

3S pd~ek2ek2q!

\

2

P8

ek2ek2q

D . ~8!

The relaxation timet is coming from the term proportiona
to the current in the collision integral. This is due to on-sh
11512
li-

e
l

e

l-

e

ll

scattering represented by the delta function in Eq.~8!. In
addition to this the conductivity becomes renormalized
the explicit field dependence of the collision integraldE/E
which is an interference effect and corresponds to an
shell scattering as expressed by the derivative of the pri
pal value in Eq.~8!. The latter effect has been the subject
various investigations for nondegenerate plasmas an
known as Debye-Onsager relaxation effect. The field dep
dence and quantum form is discussed in Ref. 13. Fo
plasma system this Debye-Onsager relaxation effect14–20was
first derived within the theory of electrolytes.21–25 ~Debye
derived a limiting law of electrical conductivity21 which
stated that the external electric fieldE on a single chargeZ
51 is diminished in an electrolyte solution by the amou
dE/E5ke2/6T wheree is the elementary charge,E the elec-
tric field strength,T is the temperature of the plasma, andk
is the inverse screening radius of the screening cloud. T
law is interpreted as a deceleration force which is caused
the deformed screening cloud surrounding the charge. L
it was shown by Onsager22 that this result has to be correcte
to dE/E5ke2/3(21A2)T if the dynamics of ions (Z51) is
considered. The linear response theory reproduce this
sager result.17,18,20 The kinetic theory leads to the Onsag
result if asymmetric screening13 is applied while the symmet
ric treatment leads to the Debye result.19,20,26!

The theoretical calculations of conductivity in reduced
mensions is the topic of intensive investigations. These c
cern rigid two-dimensional electron systems27 and quasi-
two-dimensional systems.28 In the latter study a three
dimensional system was considered, where the particles
only scatter in two dimensions leading to a cylindrical Fer
surface. The Born approximation and contact interaction
sult in a resistivity which has a leading low-temperature b
havior as 1/s}aT2(11b ln T). We will show that the Cou-
lomb interaction with the dynamical screening results in
linear order as the leading term. This has been repeat
reported in the literature both from an experimental and t
oretical point of view. Numerical calculations of Coulom
scattering rates from impurities predict a linear temperat
dependence of the mobility in silicon inversion layers.29,30

This was attributed to the collisional level broadening in t
screening function. Related results have been obtaine
Ref. 31, where a significant suppression of the tempera
dependence of the screening function was found. An ana
cal investigation of screening in quasi-two-dimensional s
tems was given in Ref. 32 where a linear temperature term
the conductivity was reported.

In this paper we want to investigate the effect of Coulom
screening on the conductivity. We will derive exact analytic
results which show that due to dynamical screening the le
ing low-temperature contribution to the conductivity is lin
ear. In contrast, the static screening leads to a quadratic
perature dependence typical for the Fermi liquid.

B. Many body approximation used in this paper

For the calculation of the conductivity we want to accou
for quantum interference effects such as weak localizat
This means we have to include maximally crossed diagra
5-2
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at least.5,7,12In addition to the direct calculation of diagram
we can employ the philosophy of variational techniques.
Ref. 33 it was described how one can use the variation
nonequilibrium Green’s functions with respect to an aux
iary external field to create higher order diagrams in the
sponse function. This makes use of the known variation te
nique summarized in Appendix A.

The response function can be given in terms of the p
ticle holeT matrix which in turn can be represented by t
sum of irreducible graphsJ according to Fig. 1. In turn,J
can be expressed as a variation of the self-energyS with
respect to the Green’s function~bare line! G. For the dynami-
cal screened approximation used here we give the co
sponding results in Fig. 1. One sees that in principle ma
mally crossed diagrams are accounted for.

Instead of the variation of the nonequilibrium Green
function we can use a proper reduction of the latter o
towards a kinetic equation. The linear response obtai
from this kinetic equation including all external field effec
is accounting then for higher order diagrams in a conven
way. As such, we obtain weak localization effects by pro
linearization of the collision integral.

II. KINETIC EQUATION AND CONDUCTIVITY

The kinetic equation corresponding to the dynami
screened approximation is the quantum Lenard-Bale
equation, which has been derived for high fields in Refs.
and 34. A sketch of the derivation is in Appendix B

]

]t
f a1eE

]

]ka
f a5I a

in~k,t !2I a
out~k,t !. ~9!

The collision-in integral is@ I out is given by f↔12 f and
L,↔L.]

FIG. 1. The density response function~first line! in terms of the
particle-holeT matrix. The latter one can be expressed in the sec
line as a sum of irreducible graphs which are given in terms of
self-energy. The latter one is used in screened potentialV5V
1VPV ~last line! approximation.
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I a
in~k,t !52(

b
sbE dq

~2p\!2
Vab

2 ~q!E
0

`

dt

3E dv

2p
cosF ~ek2q

a 2ek
a2\v!

t

\
1

eaE•qt2

2ma\ G
3 f a~k2q2eaEt,t2t!@12 f a~k2eaEt,t2t!#

3

Pbb
, S q,v,t2

1

2
t D

uES q,v,t2
1

2
t D u2

~10!

with the free density fluctuation~B4!

Pbb
, ~q,v,t !522E dp

~2p\!2E0

`

dt

3cosF ~\v2ep
b1ep1q

b !
t

\
1

ebE•qt2

2mb\ G
3 f bS p1q,t2

1

2
t D F12 f bS p,t2

1

2
t D G .

~11!

Here we use the sum over species explicitly.
The nested form of the Lenard-Balescu collision integ

~10! is computationally advantageous. It tells that the co
sion of particlea with momentumk on a particleb with
momentump into (a,k2q) and (b,p1q) can be represente
equivalently as a collision of the particlea with k on a hole
a with k2q by a dynamic plasmon emission which is co
sidered as a particle-hole fluctuation of particlesb. For static
screeningE(q,0,t), Eq. ~10! reduces to the kinetic equatio
for statically screened Coulomb potentials in high elect
fields ~C1!.34,35

Now we calculate the frequency integral in Eqs.~9! and
~10! analytically using the identity~E1!. We summarize the
result of the frequency integration in the momentum dep
dent functionW(q) which takes the explicit form~E10! for
quasi-two-dimensional systems.

Performing the balance equation for the current~4! we
obtain in linear response the interference term or relaxa
function

eana

dE

E
5

2ea

ma\4 (
b

sbE dq

~2p\!2 W~q!q2cos2~q,E!

3E
0

`

dtt2I s~a,t!S 2
1

2
Pbb

, ~q,0! D2~a↔b!

~12!

and the relaxation time as

t215(
b

S R~a,b!2
eamb

ebma
R~b,a! D ~13!

with

d
e

5-3
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naR~a,b!52
4sb

ma\4E dq

~2p\!2 W~q!q2cos2~q,E!

3E
0

`

dttI s~a,t!S 2
1

2
Pbb

, ~q,0! D . ~14!

Here the static free density fluctuation reads

Pbb
. ~q,0!5Pbb

, ~q,0!

52pE dq

~2p\!2 f p
b~12 f p

b!d~ep2ep1q! ~15!

and the integral

I s~a,t!5E dk

~2p\!2 f a~k!@12 f a~k2q!#sin~ek2q2ek!
t

\
~16!

will be calculated in Appendix F.
We remark that the interference effect~12! vanishes for

identical scattering partners, e.g., electron-electron corr
tions. When calculating the explicit form of the relaxatio
time and relaxation function we employ charge neutra
eana1ebnb50 and restrict ourselves to the case of sin
charge ionseb52e. The case of higher charged ions is al
available but is more involved. The generalization to syste
with additional particles species is straightforward.

A. Relaxation time by charged impurities

Introducing the dimensionless integration variableq
52pf ay we obtain the relaxation time to lowest order
temperature

t215(
b

maea
2pf asb

p\4na

kaS Tb2
eanaTa

ebnb
D j

j11

3E
0

1

dy
yka

~y1ka!

1

A12y2
, ~17!

where we have introduced the abbreviationj5mb
2eb

2/ma
2ea

2 .
Since the momentum integrationy<1 is restricted by the
low-temperature expansions to values below 2pf a the low-
temperature expansion of the inverse screening length~E11!
becomes a constant

k5(
c

2pec
2]mnc5

ea
2masa

\2 S 11Uebsb

easa
UAj D . ~18!

We distinguish here between the temperature of electronTa
and the temperature of the ionsTb which could mime non-
equilibrium effects.

The integral in Eq.~17! can be easily calculated

R5tab
21 ma

naea
2

ea
2

h
5

8sb

sa
3 S Ta

e f a
1

Tb

e f a
D j

11j
ka8ka

3S p

2
1

ka8

A12ka8
2

ln
ka8

~11A12ka8
2!
D , ~19!
11512
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where we will use the abbreviation

ka5
\k

2pf a
5

ea
2masa

2\pf a
5A sa

3ea
4ma

2

16p\4na

[A \

t0e f
~20!

with t0
215me4s2/8/\3 during the paper. Furthermore, w

distinguish in Eq.~20! between the inverse screening leng
where ions are includedka8 and where they are neglectedka

ka85kaS 11Aj
sb

sa
D . ~21!

We expand the above result for large and smallka which
corresponds also to the small and large density limits

R5
8sb

sa
3 S Ta

e f a
1

Tb

e f a
D j

11j
kaH 12

p

4ka8
1

2

3ka8
2 1o~ka8

23!,

p

2
ka1ka

2ln
ka

2
1o~ka

3!.

~22!

It is interesting to investigate the limit of large ion masse
j→` and Tb50, which would correspond to the charge
impurity limit. One gets from Eq.~22! for largeka

R5
8sb

sa
3

Ta

e f a
ka . ~23!

If we compare this with the neutral electron-impurity scatt
ing result ~C10!, we see significant differences. While th
statically screened result shows a Fermi-liquid behavior
const andT2 terms, the dynamically screened result~23!
leads to a linear temperature dependence.

B. Relaxation function by charged impurities

Interference effects from the relaxation function~12! can
be calculated analogously

dE

E
5

eama
2sb

2ppf a\3na

~ebTa2eaTb!
j

j11

3E
0

`

dy
ka8

y~y1ka8!
]y

2Ay221Q~y216h!. ~24!

The smallh has been introduced to perform the princip
value integrationP according to Eq.~F9!. It should be noted
that Q functions of the denominator and numerator can
exactly and no restriction ony integration remains.

We have now to carefully consider the structure

I65E
0

`

dy fy

]2

]y2 @gyQ~y216h!#

3 lim
h→0

S E
17h

`

dy fygy91~ f ygy82 f y8gy!uy517hD ~25!

with f y5ka8/y/(y1ka) andgy5Ay221. Performing the in-
tegral one sees that the divergent contribution ath→0 is
cancelled exactly by thef g82 f 8g term. We obtain
5-4
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I65
ka8

12ka8
2 6

p

2
1

arcoshka8

~ka8
221!3/2

. ~26!

The principal value in Eq.~17! is calculated from (I1

1I2)/2 and we obtain~with chargeeb52ea)

dE

E
52

2sb

sa
2 S Ta

e f a
1

Tb

e f a
Dka

j

11j S ka8

12ka8
2 1

arcoshka8

~ka8
221!3/2D .

~27!

The low density~large ka) expansion as well as the hig
density~small ka) expansion read

dE

E
52

2sb

sa
2 S Ta

e f a

1
Tb

e f a
D ka

j

11j

35 2
1

ka8
1~ ln~2ka8!21!

1

ka8
3

1o~ka8
24!,

2
p

2
12ka82

3p

4
ka8

21o~ka8
3!.

~28!

It is clear that for the impurity limit with infinite massesj
→` we have from Eqs.~21! and ~28!

S dE

E D
i

50 ~29!

in agreement with the physical picture that if the ions can
move the screening cloud cannot deform during the mo
of the electrons and cannot induce a relaxation effect. Th
different if the charged impurities do not contribute to t
screening,ka5ka8 in Eq. ~21!, and we obtain a finite result
This case is anticipated here since the neutral static re
ation function already lead to finite results~C14!.

III. DISCUSSION

For further progress we use the expansions for largeka or
low densities. Collecting Eqs.~22! and ~28! we obtain the
conductivity in an analogous form to the Bloch-Gru¨neisen
formula

s5
e2

h

12
dE

E
~n!

R~n!
, ~30!

where the dynamic parts comes from the scattering fr
charged impurities~22!, and~28!

R5
8sb

sa
3 S Ta

e f a
1

Tb

e f a
DkaS 12

p

4ka
1

2

3ka
2 1o~ka

23! D ,

dE

E
5

2sb

sa
2 S Ta

e f a
1

Tb

e f a
D S 12@ ln~2ka!21#

1

ka
2 1o~ka

24! D .

~31!

We find that both the relaxation time as well as the relaxat
function have a linear temperature dependence for temp
11512
t
n
is

x-

n
ra-

tures lower than the Fermi energy. This is in agreement w
the experimental and theoretical works mentioned in the
troduction.

A. Relation to weak localization

The low density or weak potential limit~30! is now inter-
esting to discuss. Using Eq.~20! we can rewrite Eq.~30! into
a net relaxation effect@sa5sb52,Ta5Tb#

s

s0
512

dE

E
5122

T

e f
F11

t0e f

2\
lnS t0e f

4\ D G
5122

T

e f
2

\

te f
lnS \

4tTD , ~32!

where we have introduced the temperature dependent re
ation time 1/t5e fTt0 /\258e f\T/me4s2. This is precisely
the localization correction to the conductivity.6,7 Therefore
we understand now the physical meaning of the relaxa
function at low temperatures. Please note that it vanis
here for small temperatures in contrast to the static re
~C14!.

B. Comparison with experiments

In order to describe realistic experiments, we extend
model with scattering from static neutral impurities~treated
in Appendix C!. In addition to Eq.~30! we have static con-
tributions coming from the scattering from neutral impuriti
~C10!,~C14! as

Ri5
23/2sini

sana
S a0

2r 0
D 2H 12

p

2k i
2

p2

24

T2

ef a
2

p3

16k i
1o~k i

24!J ,

dEi

dE
5

ni

na
S a0

2r 0
D 2H 11

423 ln 2k i

k i
2

1o~k i
24!J . ~33!

We can safely use the largeka limit since typical densities of
Ref. 36 are 731010 cm22 and we have

ka5
284.9

Ana/7310210 cm22

m*

m
~34!

which is a large parameter.
Now we have two unknown fit parameters in the theo

These are the energy levelEb5Ec2ED of the impurities
determining the ratio of impurity density to electro
densities37,4

ni

na
5naS 2p\2

maT DebEb ~35!

and the ratio of the scattering length to the scattering ra
of neutral impuritiesz5(a0 /r 0)2e f a . From Eq.~30! we can
write the final conductivity formula in the form
5-5
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s

s0
512

z

2T
eEb /T2

T

2e f a
1

T

2e f aka
2

ln
2ka

e
,

s05
e2

h F z

A2T
eEb /T1

T

e f a
S ka2

p

4 D G , ~36!

where we have used the spin degeneracy of the heavy im
rities sb51 and the temperatureTb50. The best fits to the
experimental results36 are plotted in Fig. 2.

We see in Fig. 2 a clear insulator to metal transition
low temperatures when the density is increased very sligh
The fitting formula~36! works quite well at all experimenta
densities for low temperatures, however, the formula fails
higher temperatures. This is because we used the low
perature Sommerfeld expansion and the Fermi energ
1.9 K3na/731010 cm22 in this case, such that at 0.8 K w
expect deviations from the leading low-temperature beh
ior. Despite this imperfect agreement with the data, it is qu
satisfying that the metal to insulating transition can be
scribed completely by the scattering with charged and neu
donor impurities supplemented by a mass action law. T
strongly favors the Mott-Hubbard transition picture.

The best fit parameter are shown in Fig. 3. We see that
effective binding energy of the electrons to the impurities
well as the scattering strength decrease rapidly when pas
through the critical density. This is in agreement with t
picture that we have pressure ionization, i.e., a crossing

FIG. 2. The conductivity versus temperature according to
~36! as dashed lines. The experimental curves are the solid l
~Ref. 36!. From top to bottom they correspond to densities ofna

56.85, 7.17, 7.25, 7.57, 7.8531010 cm22.

FIG. 3. The fit parameterEb andz from Eq.~36! versus density.
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tween continuum and bound state levels. Therefore, this
derlines the Hubbard-Mott transition which we have se
already in the increase of the effective mass3 as described in
Ref. 4.

A remark concerning the formula~36! should be made
here. Instead of the trapping at charged impurities resul
in the mass action law~35!, one could assume in principl
any other trapping mechanism. In particular, we have sho
that three-particle bound states can describe the experim
data as well.38 The underlying conductivity formula is pre
cisely Eq. ~36! where the number of three-particle boun
states diminishes the charged impurity density correspo
ingly. So the basic transport mechanisms outlined in this
per here remain the same. The only mechanism that is
possible to extract so far is that of actual trapping.

IV. SUMMARY AND OUTLOOK

Linearizing the Lenard-Balescu collision integral inclu
ing all external field dependences allows one to derive
conductivity on the level of an infinite series of diagram
including maximally crossed lines. The field dependence
the collision integral yields an interference effect which
shown to describe just the weak localization correctio
This has the same formal origin as the Debye-Onsager re
ation effect in plasma and electrolyte systems.

For the low-temperature regime, it was possible to cal
late the conductivity analytically. It was found that the d
namical screening by charged impurities leads to a lin
temperature dependence of the conductivity, while neu
impurities give rise to the usual Fermi liquid behavior. Th
finding is general for any scattering of light particles fro
heavy particles. Therefore it might also be of use for scat
ing rates in high-Tc cuprates.39

The comparison with experiment is performed assum
an appropriate mass action law between the charged d
impurities and the neutral ones which are considered to
captured electrons. The experimental metal-insulator tra
tion can be described quantitatively by fitting the effecti
binding energy and the unknown scattering strength.

As noted, a similar quality of description of the expe
mental data was achieved assuming a three particle clu
ing instead of trapping of electrons. The latter process, h
ever, relies on the same transport picture as outlined in
paper. Only the composition of neutral and charged impu
ties is determined differently. So far we cannot determ
which process is actually happening. In order to achieve
we must study the magnetic field dependence, which sh
quite unique and remarkable features in the experiment. T
is left for further work. To conclude, we suggest that t
metal insulator transition found in experiments can be
scribed within a Mott-Hubbard transition scenario in agre
ment with the effective mass measurements.4
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cially indebted for suggesting to me the problem of meta
insulator transition.

APPENDIX A: VARIATIONAL TECHNIQUE
OF LINEAR RESPONSE

Assuming in addition to the interaction potentialV118 a
coupling of an external potentialU118 where the numbers
sign cumulative indices such as space time, etc., coordin
we can express the two particle Green functionG121828
51/i 2^Ta1a2a2

1a1
1& by a variation of the one particle Gree

function G1251/i ^Ta1a2
1& with respect to the externa

potential40,41 as

G1218285G118G2287
dG118

dU282

, ~A1!

where the upper sign denotes the Fermi and the lower
Bose functions. Using the Dyson equation

G215G0
212S2U ~A2!

we can calculate the derivative in Eq.~A1! and with the help
of the chain rule anddG52GdG21G, one can express th
fluctuation function as

L1218285G1218282G118G228

57G128G2187G13

dS34

dU282

G418

57G128G2181G13

dS34

dG56
L52628G418 . ~A3!

Double occurring indices are understood as integrated o
With the definition of the occurring vertex function we ca
express this graphically:

~A4!

Sometimes it is of advantage to express this density fluc
tion function by theT matrix. Defining

~A5!
11512
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we can express

~A6!

With the help of Eq.~A1!, the density response to a
external potential can be expressed in terms of the den
fluctuation functionL of Eq. ~A3!. Therefore we remark tha
the density is given byiG1115^a1

1a1&5^n̂1&5n1 and we
have from Eqs.~A1! and ~A3! for the response functionx

x125
dn1

dU22
57 iL 1211256 i ^~ n̂12n1!~ n̂22n2!&.

~A7!

The last identity follows from the definition ofL and under-
lines the names density fluctuation function. We see now
the linear density variation due to an external potential c
be expressed as

1

i
n1

157L121121
0 U25

1

i
x12U22, ~A8!

where the upper index indicates the order of external fi
dependence. Graphically we can express it as

~A9!

where we will design the external field as a dotted line e
ing with a cross. According to Eqs.~A8! and ~A9! we can
express the first order response function as

~A10!

where we have used the definition of theT matrix in theu
channel@Eq. ~A5!#. Equations~A4! and~A10! constitute the
bases for approximation used in this paper.

APPENDIX B: DYNAMICAL SCREENED
APPROXIMATION IN NONEQUILIBRIUM

The self-energy is given in terms of the dynamical pote
tial V according to Fig. 1

Sa
,~k,t,t8!5E dq

~2p\!2
V aa

, ~q,t,t8!Ga
,~k2q,t,t8!,

~B1!
5-7
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where the dynamical potential is expressed within Coulo
potentialsVab(q)

V aa
, ~q,t,t8!5(

dc
Vad~q!L dc

, ~q,t,t8!Vca~q! ~B2!

via the density-density fluctuation

L ab
, ~q,t,t8!

5dabE d t̄d t̄̄~E r !21~q,t, t̄ !Paa
, ~q, t̄ , t̄̄ !~E a!21~q, t̄̄ ,t8!.

~B3!

HereP is the free density fluctuation or polarization functio

Paa
, ~q,t,t8!5E dp

~2p\!2
Ga

,~p,t,t8!Ga
.~p2q,t8,t !

~B4!

andE r /a the retarded/ advanced dielectric function

E r /a~q,t,t8!5d~ t2t8!6 iQ@6~ t2t8!#(
b

Vbb~q!

3@P.~q,t,t8!2P,~q,t,t8!#. ~B5!

One easily convince oneself that this set of equations~B1!–
~B5! is gauge invariant. The correlation or Green’s functi
can be related to the Wigner distributionf a by the GKB
ansatz42

G,~k,t,t !5expH 2
i

\ S ekt1
e2E2

24m
t3D J

3 f S k2
eEutu

2
,t2

utu
2 D ~B6!

and analogously forG. by replacingf↔(12 f ).
With the help of the gauge invariant formulation

Green’s function, we can write the kinetic equation for t
Wigner functionf (p,t)5G,(p,R,t,t50) finally35

]

]t
f ~k,t !1eE•¹k f ~k,t !

5E
0

t2t0
dtF H G.S k2

eE

2
t,t,t2

t

2D ,

S,S k2
eE

2
t,2t,t2

t

2D J
1

2H G,S k2
eE

2
t,t,t2

t

2D ,

S.S k2
eE

2
t,2t,t2

t

2D J
1
G . ~B7!

This kinetic equation is exact in time convolutions. This
necessary because gradient expansions in time are conn
11512
b

ted

with linearization in electric fields and consequently fail43

The gradient approximation in space has been applied
suming slow varying processes in space and we h
dropped allR dependence for simplicity. Introducing Eq
~B1! into the equation for the Wigner function~B7! one ob-
tains the kinetic equation~9! with the explicit form of colli-
sion integral~10!.

APPENDIX C: STATICALLY SCREENED OR FINITE
RANGE IMPURITY SCATTERING

Using the static approximation for the dielectric functio
E(q,0,t) in Eq. ~10!, the kinetic equation for statically
screened Coulomb potentials in high electric fiel
appears35,44

]

]t
f a1eE]kaf a5(

b
I ab

I ab5
2sb

\2 E dka8dkbdkb8

~2p\!4
d~ka1kb2ka82kb8!Vs

2~ka2ka8 ,t !

3E
0

`

dt cosH ~ea1eb2ea82eb8!
t

\

2
Et2

2\ S eaka

ma
1

ebkb

mb
2

eaka8

ma
2

ebkb8

mb
D J

3$ f a8 f b8~12 f a!~12 f b!2 f af b~12 f a8!~12 f b8!%

~C1!

describing the scattering of particlesa ~electrons! with other
speciesb with the distribution functionf b5 f b(kb2ebEt,T
2t). The potential turns out to be the static Debye one

Vs~q!5
2peaeb\

~q1\k!
~C2!

with the static screening lengthk given by

k5(
c

2pec
2]mnc ~C3!

and the chemical potentialm.
We will now use this statically screened result in order

describe the scattering neutral impurities if we use the ra
of potentialr 051/k and replace the charges by the scatter
strengthgab5eaeb .

The calculation of the impurity scattering in quasi tw
dimensions is now analogously to the Brooks-Hearing re
for three dimensions and starts from the Born collision in
gral ~C1! which takes for infinite heavy ions@mb /ma→`#
5-8
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I ab~ka!5
2sb

\2 E dka8dkbdkb8

~2p\!4
d~kb2kb8!Vs

2~ka2ka8 ,t !

3E
0

`

dt cosH ~ea2ea8!
t

\
2

Et2

2\ S eaka

ma
2

eaka8

ma
D J

3 f b$ f a82 f a%. ~C4!

We assume parabolic bandse5k2/2m.
The relaxation functiondE/E would correspond to linear

ization of the cos function in Eq.~C4! with respect to the
field while the relaxation time is obtained taking into accou
the linearization with respect to the momentumpa of the
displaced distributions~3!. Cross terms such aspaE are al-
ready of second order response. The result can be writte
the concise form~8!.

1. Relaxation time by neutral impurity scattering

In the following we give an explicit calculation. Employ
ing the Yukawa or Debye potential~C2! one obtains for the
relaxation part

I ab
R ~ka!52pa

] f 0

]ka

2pma

\
gab

2 E
0

`

da
cos~a2f!2cosf

S 2kaUsin
a

2 U1\k D 2

~C5!

with the angle betweenka and the field directionpa denoted
by f.

The current relaxation time is now obtained by

napatei
215E dka

~2p\!2 kaI ab~ka! ~C6!

from which one gets@kp5\/2r 0p#

t i
215

magab
2

23/2\3

nbsb

na
E

0

`

dp]pf 0
F 1

kp
221

1

lnS 11A12kp
2

kp
D

~kp
221!3/2

G .

~C7!

This current relaxation time in the low-temperature Somm
feld expansion leads to@k i5\/2r 0pf a#

t i
215

magab
2

23/2\3

nbsb

na

S 1

k i
221

1

lnS 11A12k i
2

k i
D

~k i
221!3/2

1
p2

24

T2

e f
2 ]k i

2 F 1

k i
221

1k i
4

lnS 11A12k i
2

k i
D

~k i
221!3/2

G D .

~C8!
11512
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The second temperature correction is negative and dim
ishes the positive first part. As long asT,e f the net relax-
ation time is positive and continously falling to zero fork i
→`.

The high density expansion reads

Ri5t i
21 ma

naea
2

ea
2

h
5

23/2sbnb

sana
S magabr 0

\2 D 2

k i8
2~11Aj!2

3H 212 ln
k i

2
2S 516 ln

k i

2 D k i
2

4

2
p2

24

T2

ef
2 F21S 19112 ln

k i

2 Dk i
2G1o~k i

3!J ~C9!

and the low density expansion or short range expansion

Ri5
23/2sbnb

sana
S magabr 0

\2 D 2

k i8
2~11Aj!2

3H 1

k i
2 2

p

2k i
3 2

p2

24

T2

e f
2

p3

16k i
3 1o~k i

24!J . ~C10!

2. Relaxation effect by neutral impurity scattering

The relaxation function is now obtained if we lineariz
Eq. ~C4! with respect to the external field. We obtain

E dka

~2p\!2 kaI ab
dE~ka!

52E
nie

m\3E dkdq

~2p\!4 f 0~ek!Vs
2~q!q2

3cos2~q,E!E
0

`

dtt2sinS q212k•q

2m\
t D

~C11!

from which one gets

dE

E
5

ni

4p\5mna
E

0

`

dqq3Vs
2~q!E

0

`

dtt2I s

5
ni

na
ka

2S mgabr 0

\2 D 2E
0

` dy

~y1ka!2 ]y
2Ay221Q~y21!,

~C12!

where we have used Eq.~F9! for the last line. Employing the
same regularization due to the principal value~25! we end up
with

dE

E
5

ni

na
S mgabr 0

\2 D 2H 2ka
21ka

4

~ka
221!2 1

3ka
3ln~ka2Aka

221!

~ka
221!5/2 J .

~C13!

The T2 dependent term could be given analogously. T
needed low density or short range expansion now reads
5-9
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dEi

E
5

ni

na
S mgabr 0

\2 D 2H 11
423 ln2ka

ka
2 J 1o~k24!.

~C14!

APPENDIX D: POLARIZATION FUNCTION IN 2D

Here we discuss the properties of low-temperature po
ization function

P~v,q!5E dp

~2p\!2

3
f @~p1q/2!2/2m#2 f @~p2q/2!2/2m#

p•q

m
2v2 i0

.

~D1!

The imaginary part is easily rewritten as

ImP~v,q!5pE
0

` dpp

~2p\!2 f S p2

2mD E
0

2p

df

3H dS pq

m
2

q2

2m
2v D2dS pq

m
1

q2

2m
2v D J

5
m3/2

23/2p\2q
E

0

` de

Ae
F f S e1

~q/21mv\/q!2

2m D
2 f S e1

~q/22mv\/q!2

2m D G . ~D2!

The energy shifts in the distribution function we absorb in
an effective chemical potential which should be positive
order to obtain nonzero contribution at Sommerfeld exp
sion

meff5e f2

S 6
q

2
1

mv\

q D 2

2m
>0. ~D3!

The low-temperature Sommerfeld expansion reads t
f 0(e)5n@(e2meff)/T#

E
0

` de

Ae
nS e2meff

T D52E
meff /T

`

dxn~x!]xATx1meff

52E
meff /T

`

dxn~x!@12n~x!#ATx1meff

52AmeffS 12
p2T2

24meff
D

52S 12
p2T2

12

]

]e f
DAmeff. ~D4!

Therefore it is enough to know the zero temperature re
since theT2 correction are given simply by derivatives wit
respect toe f .

Introducing dimensionless coordinates as in28
11512
r-

-

n

lt

x5
q

2pf
, x05

\v

4e f
, ~D5!

we get finally for the imaginary part of the polarization fun
tion

ImP~v,q!5
m

4p\2x H Q~x2ux01x2u!A12S x1
x0

x D 2

2Q~x2ux02x2u!A12S x2
x0

x D 2J ~D6!

which is of course the result given in Ref. 28. The cor
sponding real part is given by the Hilbert transform acco
ing to Eq.~D1!

ReP~v,q!522E dv8

2p

ImP~v8,q!

v2v8
. ~D7!

Using the integral

F~a!5E
21

1 A12z2

a2z
5pH a 1>uau

a2sgn~a!Aa221
~D8!

we obtain

ReP52
m

4p2\2x H FS x0

x
1xD2FS x0

x
2xD J . ~D9!

The real and imaginary part is plotted in Fig. 4.

APPENDIX E: INTEGRALS OVER
DIELECTRIC FUNCTIONS

In order to perform the frequency integration in~9! we
use a very useful relation, which has been given in45

E dv

2p

H~v!

v
ImE 21~q,v!5

H~0!

2
ReS 12

1

E~q,0! D .

~E1!

For the integration of Eq.~9! we set H(v)5cos(vt
1A)cos(vt81B)v/ImE with A andB are the remaining con
tent of the cosine functions of Eqs.~10! and ~11!.

Lets first prove the relation~E1!. We consider the follow-
ing integral including the dielectric function

I 5E dv

2p

H~v!

v
ImE 21~v!

5E dv

4p i S 1

v1 ih
1

1

v2 ih DH~v!~ f 22 f 1!, ~E2!

wheref 15121/E and f 25( f 1)* . In the following we will
assume that the functionH(v) is analytical. Sincef 6(v)
has no poles in the lower/upper half plane and vanishes w
;v22 for largev we have the identity

E dv

2p i
H~v!

f 6~v!

~v6 ih!
57 f 6~0!H~0! ~E3!
5-10
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and all other combinations of signs vanish. With the help
the relation~E3! we compute easily for Eq.~E2!

I 5
1

2
H~0!ReS 12

1

E~0! D ~E4!

which proves relation~E1!.

1. Regularization of integration

We are now going to give explicit forms including th
dielectric functionE512V(q)P(q,v) where the polariza-
tion function P was discussed in the previous chapter. T
forms appearing throughout the paper are

I 5E dv

2p

h~v!

uE~v!u2
52E dv

2p

vh~v!/ImE~v!

v
ImE 21~v!

~E5!

FIG. 4. The real~solid! and imaginary~dashed! part of the po-
larization 4p\2/m3P versusx0 for x50.5 ~above!, x51 ~middle!
andx52 ~below! according to Eq.~D5!.
11512
f

e

such that we can apply Eq.~E4! with H(v)
5vh(v)/ImE(v). In the case where ImE50 appears an
ambiguity which we have to remove. We add an infinitesim
small classical process to the particle-hole fluctuation wh
modifies the polarization in the following way:

dImP5hve2cv2
'h@v1o~v3!#. ~E6!

This will make the imaginary part of the polarization no
zero everywhere and will not introduce additional poles
the upper half plane. Therefore we can apply the integra
~E4!. The corresponding real part according to Eq.~E4! will
be }h and drop out in the final form~E4!.

2. Specific forms

Now we write down the required forms for Eq.~E4!. One
gets the static result from Eqs.~D6! and ~D9! at low
temperatures28

P~0,q!52
]

]m
nH 1, q,2pf ,

12A12S 2pf

q D 2

, q.2pf

~E7!

with the chemical potentialm and from Eq.~D2!

ImP~v,q!52
m2v\Q~2pf2q!

p\2qA4pf
22q2 S 11

8p2T2m2

~4pf
22q2!2D

1o~v2,T4!. ~E8!

The region where ImPÞ0 correspond exactly to the uppe
case of Eq.~E7!. Using this expansion we obtain

H~0!5 lim
v→0

\v

ImE R
52

\q2

(
b

mb
2eb

2

A4pf b
2 2q2

S 11
8p2mb

2Tb
2

~4pf b
2 2q2!2D

,

~E9!

where we have to keep in mind that the above procedur
calculating the frequency integral works only for finite ImP
or finite particle-hole fluctuations. According to Eq.~D2! this
restricts the laterq integration to values smaller than 2pf b ,
respectively.

We get finally for Eq.~E1!

W~q!5V~q!2
1

2
lim
v→0

\v

ImE R
ReS 12

1

E R~0,q! D
52

2pea
2eb

2\4k~q!

q1\k~q!

3
1

(
b

mb
2eb

2

A4pf b
2 2q2 S 11

8p2mb
2Tb

2

~4pf b
2 2q2!2D ,

~E10!
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where the screening length is from Eq.~E7!

k5(
b

2peb
2]mnbH 1, q,2pf b ,

12A12S 2pf b

q
D 2

, q.2pf b

~E11!

and since n5(s/4p\2)pf
21o(e2e f /T) one has ]mn

5mbsb/2p\2.

APPENDIX F: LOW-TEMPERATURE EXPANSION
OF INTEGRALS

The integrals occurring in Eqs.~12!, ~14!, and ~16! will
now be calculated. Using*0

`dt cosxt5pd(x) we can write
for Eqs.~B4! and ~15!

2
1

2
P,~q,v50!

5E dp

~2p\!2 f b~p!~12 f b~p1q!!

3E
0

`

dt8cos~ep1q2ep!
t8

\

5E dp

~2p\!2 f b~p!@12 f b~p!#p\d~ep1q2ep!

5
m

4p\qE0

`

dp fb~p!~12 f b~p!!E
21

1 dx

A12x2

3FdS x1
q

2pD1dS x2
q

2pD G
5

mb
2Tb

p\q Eq2/8mbTb2e f b /Tb

`

dx
n~x!@12n~x!#

A8mb~Tbx1e f b!2q2
, ~F1!

where we usedx5p2/2mbTb2e f b /Tb andn(x)51/(ex11)
ande f b is the Fermi energy. The last integral is only non-ze
for negative lower integration limits implying 2pf b.q. Ex-
panding the square root in terms of the temperatureTb we
obtain finally

2
1

2
P,~q,v50!52

1

2
P.~q,v50!

5
mb

2TbQ~2pf b2q!

p\qA4pf b
2 2q2

S 11
8p2mb

2Tb
2

~4pf b
2 2q2!2D .

~F2!

The integrals~12!, ~14! can be tremendously simplified ob
serving that Eq.~16! can be written
11512
I s~a,t!5E dk fk~12 f k2q!sin~ek2q2ek!
t

\

5E dk~ f k2q2 f k!gek2q2ek
sin~ek2q2ek!

t

\

5E dk fkS gek1q2ek
sin~ek2ek1q!

t

\

2gek2ek2q
sin~ek2q2ek!

t

\ D
5E dk fksin~ek2ek2q!

t

\
~gek2q2ek

1gek2ek2q
!

5E dk fksin~ek2q2ek!
t

\
, ~F3!

wheregx51/(ex/T21) and we have usedk→2k transfor-
mation in coming from the third to the fourth equality.

The time integral~14! can be now represented as a deriv
tive of a d function with respect tok. A partial integration
leads than to

E
0

`

dttI s~a,t!5E dk

~2p\!2 f kE
0

`

dtt sin~ek2q2ek!
t

\

52
ma

2

4pq2E
q/2

` dk

k
]k@k fa~k!#

3E
21

1 dx

xA12x2 FdS x2
q

2p D2dS x1
q

2p D G

52
ma

2

pq3E
q/2

`

dk]k@k fa~k!#
k

Ak22
q2

4

5
ma

3/2

4A2pq
E

2a/Ta

`

dxn~x!@12n~x!#

3
Q~2pf a2q!

ATax1a
~F4!

with a5e f a2q2/8ma . Expanding the argument in terms o
Ta one arrives analogously to Eq.~F2! at the result

E
0

`

dttI s~a,t!5
ma

2

4pqA4pf a
2 2q2 S 11

8p2ma
2Ta

2

~4pf a
2 2q2!2D

3Q~2pf a2q!. ~F5!
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The integral~12! requires some more care. We use the pr
cipal value identity*0

`dt sintx5P/x and write

E
0

`

dtt2I s~a,t!52
ma

3\

p2q3PE
0

`

dk fa~k!]q
2E

0

2p df

q

2k
2cosf

.

~F6!

Using

E
0

2p df

a2cosf
5

2p

Aa221
Q~a21! ~F7!

we can write after one partial integration
od

.

a

11512
- E
0

`

dtt2I s~a,t!5
ma

3\P
pq3

]q
2E

2e f a /T

q2/8maTa2e f a /Ta
dxn~x!

3@12n~x!#Aq228maTax24pf a
2 .

~F8!

Expanding again the argument in terms ofTa we arrive at

E
0

`

dtt2I s~a,t!5
ma

3\P
pq3

]2

]q2 FAq224pf a
2

3S 12
8p2ma

2Ta
2

3~q22pf a
2 !2D Q~q22pf a!G .

~F9!
o
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