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Bosonic sector of the two-dimensional Hubbard model studied within a two-pole approximation
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The charge and spin dynamics of the two-dimensional Hubbard model in the paramagnetic phase is first
studied by means of the two-pole approximation within the framework of the composite operator method. The
fully self-consistent scheme requires: no decoupling, the fulfillment of both Pauli principle and hydrodynamic
constraints, the simultaneous solution of fermionic and bosonic sectors, and a very rich momentum dependence
of the response functions. The temperature and momentum dependencies, as well as the dependency on the
Coulomb repulsion strength and the filling, of the calculated charge and spin susceptibilities and correlation
functions are in very good agreement with the numerical calculations present in the literature.
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[. INTRODUCTION an unique framework and also go well beyond. For instance,
by choosing suitable asymptotic fields and the closure of

The Hubbard modéf“is capable to describe a rich vari- their equations of motion, we were able to describe the low-
ety of behaviors including a wide range of different spin andest energy scale, which is not algebraic in the model param-
charge dynamic3.In particular, its interactions are thought eters, of impurity model?” This result is absolutely pre-
to be responsible for strong antiferromagnetic correlations atluded to other projection methods that uniquely focus on the
half-filling and low temperature’in the presence of doping, preservation of spectral moments of higher and higher order.
the antiferromagnetic correlations remain rather strong alAccording to this, the method is continuously developing as
though the correlation length can get smaller and smaller owe are constantly seeking, one system after the other, both
increasing the doping. The possibility of charge order andhe most suitable asymptotic fields and the most effective
phase separation has also been widely investigated accordipgocedures to determine self-consistently the dynamics.
to the fact that one of the mostly used derivative of the Hub- Once the fermionic propagator is known there are several
bard model, thé-J model, seems to present charge separaways to compute the response functidns., the retarded
tion for a wide range of external parametBidowever, re-  propagators of the two-particle excitations: charge, spin, pair,
cent numerical results seems to indicate that the two modekstc). Many techniques are related to the possible diagram-
may have different behavior as far as charge correlations amatic expansions of the two-particle propagators in terms of
concerned. the single-particle oné.e., the fermionic propagatorHow-

In this manuscript, we first give a fully self-consistent ever, when operators with non-canonical commutations are
treatment of the charge and spin dynamics of the twoinvolved the only feasible approach is based on the one-loop
dimensional Hubbard model in the two-pole approximationapproximation. The complicated algebra of the composite
within the framework of the composite operator methodoperators invalidates the Wick theorem and, consequently,
(COM).2® The fermionic and bosonic sectors are solved to-does not allow any simple extension of decoupling schemes
gether self-consistently, no decoupling approximation is usednd more involved diagrammatic approximatiéfé’ Ac-
and the explicit momentum dependence of the spectra incording to this, we have developed and widely applied a
volves third nearest-neighbor sites that forces a rather constandard procedure to use, by means of the equations of mo-
plex and rich momentum dependence in all physical propertion approach, the one-loop approximation for composite
ties. operators?®

The COM rightfully belongs to the family of the projec- In this manuscript, we consider another way to tackle the
tion methods'°?* and is based on two main ide&s: problem: the two-particle excitations can be considered as a
strongly interacting systems should be described in terms afew sector in the dynamics of the system and we can choose
the quasiparticles generated by the interactions and the dgiso for them a suitable asymptotic basis alike it has been
namics should be bounded to the right Hilbert space througbdone for the fermions. This gives a new set of equations
the imposition of constraints coming from the Pauli prin- obeyed by the two-particle Green’s functions and the appear-
ciple. By Pauli principle we mean all the relations amongance of zero-frequency constants and unknown correlators.
operators dictated by the algelffaWwith respect to other Also in this case, the enforcement of the constraints deriving
projection methods th€OM has some distinguishable pecu- from the Pauli principle allows to compute all the parameters
liarities. In particular, within theCOM, there is an absolute and to fix the representation of the Hilbert spate.
freedom to choose, as asymptotic fields, those that are most Within the framework of theCOM, both methods have
suitable with respect to the properties of the system we wisladvantages and disadvantages. The one-loop approximation
to describe. This means that we are not bound to any specifttecomes exact in the noninteracting limit, well describes the
recipe to choose them and that we can use this freedom facoherent behavior of the two-particle propagators and es-
exploit at will the benefits coming from one choice or an-tablishes a tight connection between the one- and two-
other. We can reproduce the results of the other methods iparticle propagators. These are really relevant properties
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once we wish to describe the bosonic excitations starting Il. THE HUBBARD MODEL AND THE FERMIONIC
from its fundamental constituents: the electrons. The Fermi- SECTOR

surface bending and nesting and the position of the van Hove
singularities strongly influence the charge and spin responsg
functions. According to this, we managed to give an expla-
nation for the spin magnetic incommensurability isSwnd o ] .
the overdoped transition of the cuprate superconductors. H:Z (tii_ﬂ5ii)CT(')C(J)+U§i: ni(iny (), (2.1

On the other hand, the one-loop approximation is not ad- :

equate to describe the system in the proximity of orderetherecT(i)=(c%r(i)c1r(i)) is the electronic creation operator
phases as the dynamics of the bosonic excitations is mainiyn spinorial notation at the sité [i=(i,t)] and n.(i)
described in terms dfcatteringof elementary electronic ex- =cf,(i)c(,(i) is the number operator for spin at the sitel;
citations. This practically induces so strong finite lifetime u is the chemical potential and is the on-site Coulomb
effects to prevent any possible softening of the bosonigepulsion.

modes. As discussed in the above, any possible extension The matrixt; describes the nearest-neighbor hopping; in
involves so complicated diagrammatic expansions to béhe 2D case we havg = —4ta;, where

practically unfeasible.

As regards the pole approximation for the two-particle
propagators we have obvious advantages such as the possi-
bility to ea_sny get the spectra and the. fa_nal.ytlcal EXPrESSION: the projector on the nearest-neighbor sites ar{é)
of correlation functions and susceptibilities; the capability to ™ ; . -
study instabilities(i.e., the softening of the mode# the = 2[coska) +coskA)] anda 1S th_e Ia_lttlce parameter.

y = 9 ... We choose the following fermionic ba&is*?
whole range of model and external parameters; the possibil-
ity to consider the bosonic excitations as the media of new &)
interactions among the electrons. In this paper, we show that \If(i)z( . ) ,
it is possible to get spin antiferromagnetic correlations and 7(i)
weak charge ordering tendency at commensurate filling invhere&(i)=[1—n(i)]c(i) and»(i)=n(i)c(i) are the Hub-
exceptionally good agreement with the numerical resulthard operators¥ (i) satisfies the following equation of mo-
present in the literature. On the other hand, the pole approxiion
mation is based on a description of the bosonic excitations as
true quasiparticles: the two-particle properties are entirely 0 [T pé(i)—atet(i) —4tm(i)
controlled by the dynamics, which is only weakinormal- J) =i )= —(u—=U)p(i)+4tm(i) |’ 24
ized by the fermions; the single-particle propertiés.g., i ) i
Fermi surface shape, position of the van Hove singularityVherec”(i,t) ==;¥;c(j,t) [y; stands for any projector on
etc) do not influence significatively the response functionN® I ne_|gh§)c_)r sites ?J'_; see Appendik Ta_nd (i)
behaviors: the finite lifetime effects are completely neglected™ 27" Nu(1)c”(1) +c()fc(D)e()]. n,(i)=c (i)o,c(i)
and the tendency towards orderifige., softening is some- are thg charge;(fO) and Sp'nszl’%’?’) density opera-
time exaggerated. Anyway, the use of Green’s function forors, witho,=(1,0), o*=(—1,0) ando are the Pauli ma-
malism for the bosonic sector opens the possibility to explordlCes- , . ,
another really relevant issue: the ergodicity of the bosonic L€t US project the sourc&(i) on the chosen basis
dynamics and the presence of zero-frequency constants in the
expression of the casual Green’s function and of the correla- iD= e(i,j)V(j,t). (2.5
tion functions?®%233|n this manuscript, we decided not to I
pursue this analysis and to fix the zero-frequency constariccordingly, the energy matrix(i,j) is defined through the
values by means of ergodicity requirements in accordancgquation
with the general understanding of bulk systems.

As we can see, the two methods are effectively comple- . , )
mentary and can be used to describe the spin and charge m("J):Z e(L,DI(L),
dynamics of the system in different region of the parameter
space according to the relevance and prevalence of localizdthere them matrix and the normalization matrixhave the
tion and ordering(two-pol® with respect to delocalization following definitions:
and symmetry(one-loop. . . .

It is also worth noting that the pole approximation allows, m(i,j)= ({360, 97G0}), 2.7
at least in principle, to get a completely self-consistent solu- S . 0
tion putting together fermionic, spin, charge, and pair (L) = {0, ¥1G.0)).
propagators? The Pauli principle could be then used to getlt is worth pointing out that in Eq(2.7) J(i) is the total
also the zero-frequency constants in self-consistency ancurrent given in Eq.2.4) and not the approximated one.
definitely fix the Hilbert space, as described in Ref. 25. After Eq. (2.5), the Fourier transform of the thermal single-

The Hubbard model is described by the following Hamil-
nian

1

=y ; ek(i-D g (k) (2.2

(2.3

(2.6

(2.9
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particle retarded Green'’s function G(i,j) Ill. CHARGE AND SPIN RESPONSE PROPERTIES

— . T . . . . .
(R{W(i)w'(j)]) satisfies the following equation As stated in the introduction we choose to compute the

charge and spin response functions by studying the causal
[o—e(k)]G(k,w)=1(k). (29 Green's functiof GUW(i,j)=(T[n,()n,())]). As we
_ L i 1235 . widely discussed in Ref. 25, to obtain a correct description of
The straightforward application of this ;che]&é' 9IVeS  the bosonic properties is necessary to compute first the
that, in the paramagnetic phasek) has diagonal form with 5,53 Green’s function and then derive from this latter all
l11=1-n/2 and I,=n/2 ((n,(i))=n/2) and that the oiher propagators and correlators. The reason for this lies in
mrmatrix depends on three parameters: the chemical potefne fact that the zero-frequency constants do not explicitly

tial . and two correlators contribute to the retarded functions, although there is an im-
plicit dependence through the self-consistent determination
A=<§"(i)g*(i))—(n“(i)n““(i», (2.10 of the internal parameters. Starting from the retarded func-

tion would lead to ignore the zero-frequency constants and
1 will give wrong results. Once we know the Fourier transform
p= Z(nz(i)n#(i»—([q(i)cl(i)]”cf(i)chi)). of GW(i,j), that isG(¥(k,w), we can find spin and charge
21 susceptibilitiesy ) (k,w) = — F(R[n,,(i)n,,(j)]) and corre-
1D ation functionsC(k,w)=F(n ,(i)n,(j)) by means of the

The three parameteys, A andp are functions of the exter- well-known formulas

nal parameters, T, and U and can be determined self- R ¥ (k,w)]=—RgGM(k,®)] 3.1)
consistently through a set of three coupled equations ’ T

n=2[1—(c())c ()], ImLx®(k,w)]= ~tanh Am[GW(k,0)],  (32)

w
1+tan|’~2—_|_

- T . _
(&(i)n'(i))=0. (212 \yhereT, R, andF are the causal and retarded operators and

] ) ) ) the Fourier transform, respectively.
The first equation fixes the particle number, the second one g widely discussed in the introduction, in this manu-

comes from the definition of and the third one assures that gcript we will study the spin and charge channels of the
the solution respects the Pauli principlee., the local posonic sector by using a pole approximation. Let us write
algebra.?® In this latter equation resides the main differencepe equation of motion for the operatoy;(i)
with all the other two-pole approximations. This equation:
allows to fix the representatidii;implements the particle- 9 _
hole symmetry in the solutiohavoids uncontrolled decou- =rnu(), = —4tp, (i), (3.4
pling or further approximations on higher-order correlators.
Using this procedure is possible to find two solutions: onewhere
with a p positive and of order of the fillingh and another
with p mainly negative and rather small. The main difference p(i)=cl(i)o,cui)—c(i)o,cli). (3.5
between these two solutions resides in the strength of th
antiferromagnetic correlatiori&:’

It is worth noting that this set of coupled self-consistent

Phe bosonic basis has to be chosen in order to be compatible
with the fermionic one and with a nonlocal component as we

wish to take into account, at least partially, the delocalization

equations gives the exact solution in the atomic and in th%riven by the kinetic term of the Hamiltonian. According to

nonin;%gacting cases as well as for the interacting tWO'S‘it(?his, the most natural choice is a two-component basis and,
system.”According to this, we are confident to reproduce atir_1 particular, that directly generated by the hierarchy of the

least the two most relevant scale of energies in the SySterTé‘quations of motion. This will assure that the first four

the Coulomb repulsion) and the exchange energy The . bosonic spectral moments have the correct functional férm.

latter is already well defined on the two-site system that ISrherefore we take as bosonic basis the following one
the minimal cluster wherd@ becomes effective. '

Within this calculation scheme, the fermionic solution is n,(i)
known in a fully self-consistent manner and without opening N#(i):( “ (3.6
the bosonic sector. Once we have the electronic Green's pull)

function we can get all single particle, local and thermody-The equation of motion o (i) is the following one
namic properties straightforwardly. In the last years, by a

means of th&€OM in the above described approximation, we 9 _ _

got results in excellent agreement with numerical and exact rpu()=—4tl, (1) +Ur,(D), 3.7
solutions as regards many lattice and impurity

systemg)9:11:23.24,.26,30,31,36,39-43 where the higher-order bosonic operators are defined by
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k() =c'(i)a,n%()—7n'(i)o,ci) tended notation for the correlation functi@{*)(ij). They
tars _ o ) have then the following expressions:
+7'%()o,e()—c'(Do,ni), (3.8

2 2 GM(k __'@5(2) K)S( )T
| (h=cl(i)o,co() + e (i) o ,cli) — 2¢T(i) o ,c(i), (k,w)=—i—5= 7K o),
(3.9 ,
and the definition of:“z(i) can be found in the Appendix. + E O(n,ﬂ)(k)M
Using the same procedure used for the fermions, we have n=1 w— oW (k)+is
N2 o 2 fa(w)
i—N,(i,0)=2> e"™(i,j)N,(,1), (3.10 =S gy B2
at : =1 w— oW (k)—is
wheree®)(i,j) is given by (3.21)
W(j )= Wi N 2m)3
m#(lvj) EI 8'”‘(I,|)| #(l,]) (31]) C(”)(k,w)=( ;) (5\(2)(1()5((0)1—‘#

and the normalization matrik*) and them(*) matrix have
the following definitions:

10930, j) =([N,(i,t),NL(j,0)1), (3.12

2
+27721 o— (k)]

X[1+fg(@)]ot™(k), (3.22

m(")(i,j)=<[i£NM(i,t),NL(j,t)}>. (313 where I', is the zero-frequency constantand fg(w)

o =1/(ef®—1) is the Bose-Einstein distribution function. In
As it can be easily verified, in the paramagnetic phase théhis manuscript, we will use the ergodic valdee., I'y,,
normalization matrix *) does not depend on the index = 5ﬂon2) for the zero-frequency constant as explained in the
charge and spin operators have the same weight. The twatroduction. The energy spectra are given by

matricesl *) andm(®) have the following form in momen-

tum spac¥ o (k)= (=)0 (K), (3.23
0 1k (k) = Ve B Rk
I(ﬂ)(k):( 5 15 >>’ (.14 oK)= e (K)e 2 (K), (3.24
1%5'(k) 0 and the spectral functions have the following expression:
(1)
myy’ (k) 0 () (k
m(”)(k)z( p () ) (3.19 etz (1)
o mel YN YR I oL
M = —
where a (k) 5112 (k) o0 | (3.25
21
15 (k) =4[1-a(k)]C, (3.16 00 (K)
(1) (k)= — 4t ) (k 31 As it can be seen from the expressions given in the Appen-
iz (k) 12/ (k), (.17 dix, the Green function and the correlation function depend
i) (k) = — 4t Lo (O HUL (k). (3.1g  On various parameters, static correlation functions, that must

be self-consistently calculated. A subset of parametefs,
The exact expressions of the normalization matrix entrie€*, C*, Ef, andE”, are of fermionic nature and can be
and the definition of the parameters they depend on can bgomputed through the fermionic Green’s function. Tiega-
found in the Appendix. The energy matr&¢“)(k) has off-  tive psolution will be used in order to get enhanced antifer-

diagonal form with nonzero elements romagnetic correlations. The remaining parameters,
a,,b,,c,, andd,, are of bosonic nature, but they cannot

e (k)=—4t, (38.19  be expressed in terms of the bosonic Green’s function under

study as they belong to higher-order propagators. As in the

() m(zfz‘)(k) 32 fermionic sector, we can_avoid stud.ying complicated higher—
ez (k)= W) (3.20  order propagators requiring the fulfillment of the Pauli prin-

ciple and of other symmetry requirements. Four equations
For the sake of simplicity, we will now extend the previous will be used to fix these parameters: one equation comes
used notation for the bosonic casual Green’s functiorfrom the Pauli principle and other three from the general
GU(i,j)=(T[n,(i)n,(i)]) to the complete 2 matricial ~ properties of the bosonic specis)(k) for small momenta
one, that is, GY(i,j) is hereafter defined as (ie. fork—0, wherek=ki+k3). The Pauli principl&’
(T[NM(i)NL(j)]). We will also use the accordingly ex- gives
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35

30F
25}

20 F

FIG. 1. a; andag as functions of the fillingh for T=0 andU=4 and 8.

n(i)n(i))=n+2D, 3.26 t
(nn( (3263 b, =a,+3D+E"+2Ef— 6 (C+C*~2C"),
(ningi)y=n—2D, k=123, (3.260 (3.33
whereD=(nT(i)nl(i)>:(n/2)—<n(i)n*(i)) is the double i
occupancy. From the continuity equatfdit follows that c,=a,~D+E"—2EF+ 6U(C“+CX—ZC“),
lim % (k)=c{ks, (3.27 (3.39
k—0
t
wheres=1 andc!* is thevelocity. Let us analyze the ex- d,=a,—D—3E"+ ZEE—GU(C% ch—2CcH),
pression forw*(k). The functionmy(k) at smallk can be (3.35

cast in the following form:
» () 1 () 2 () . and use the Eq(3.26 to compute the parameter, self-
m33’ (k) =mg* +my™ (ka)“+my“(ka) consistently. In Fig. 1, we report the behavioraafanda, as
() 4o 6 functions of the fillingn for T=0 andU=4 and 8. The
+my(ka)'sin(2¢y) +O((ka)®), (328 behavior ofa; reveals a strong dependence on both filling
where ¢, =arctark, /k.. The function 19 (k) behaves as @and Coulomb repulsion of the intensity of spin correlations.

(ka)2C® at smallk. Therefore, to satisfy the continuity equa- In particular, at half-filling we have the maximum depen-
tion we must put dence onJ. a,, instead, is practically featureless except for

a region near half filling, whose extension is controlled by
m(()u):m(lu)zo_ (3.29 the strength.of the Coullomb repulsion, wh_ere rapidly and
normously increases with a slope that again depends.on
his latter behavior results in a strong enhancement of the
charge correlations in the proximity of the Mott-Hubbard

metal-insulator transition.
It is necessary to report that this analysis can be consid-
1 1 1 ered an.extgnsion and a completion of that done in Ref. 34.
my¥=U _aﬂ+4_1 b“+§ C“+Z dﬂ), (3.30 The main differences are related to the use of caus_,al propa-
gator in place of the retarded one and to the exploitation of
the hydrodynamics constraints to fix the parameters coming
in the energy spectra, whenever we wish to retain the com-
plete dependence on the momentum.

Moreover, as the susceptibility has to be single value
k=0 we also have to require that{"’=0. The coefficients
of m{(k) in the limit of smallk have the following expres-
sions(see the Appendix

u
m(lM):Z(gaM_CM—dM—ZD—ZE”), (3.31

3
m(sli): _g t(Ca_ 2CH+ C)\) IV. RESULTS

A. Spin and charge spectra

The spin and charge spectra, as functions of the momen-
tum, are reported in Fig. 2 far=1, 0.9, 0.8,U=4, and 8
(3.32 and T=0. As regards the spin spectru@OM result is in

' fair agreement with the quantum Monte Carlo 44610
According to this, we can write the following algebraic rela- X 10) except fork=(m,7)=Q. The very small value re-
tions for the parametets, , c,, andd,, ported by the numerical data & can be understood as a

u
+ E(aﬂ+cﬂ—2d#—D+6Ef’3—7E”).
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U_'8n=0.8 /./ 1 [ ---n=09 ‘4‘// \\\ :

15—_.__.n=1 e = u an=08 7 ® oS ]

—_ Vs ] o = s SN e J
85 v ] 5“’10-—-—‘n=1,'/ L ~ .4
V31 s ] 8 '/’ LT~ 1
ok . E - - -~
7 E ./ ._/‘/ ~
S 7 aemmmm T 1 [ Y a e
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°F g e T et ] L =3
,/ ,T_’.--"' 1 F ‘/ 4
S e 1 V4 L
0 = 0.0
(0,0) Kk (m,m) (0,0) K (n,m)

FIG. 2. The spinw®(k) and chargen(®)(k) spectra as functions of the momentuky€k,) for n=1, 0.9, 0.8,U=4, and 8 andr
=0; the qMC" data (10< 10) for »®)(k) atU=4, n=1 andT=0 are from Whiteet al. (Ref. 48.

consequence of overestimated antiferromagnetic correlationsccording to this, the statig(k) =lim__ xs(k,») and the
(i.e., the antiferromagnetic correlation length actually ex-

. . . static and uniformyy=Ilim,_ ox(k) spin susceptibility are
ceeds the cluster size, see Fi@. @OM results, instead, are Xo c—ox(K) sp pHbIYY

obtained with paramagnetic boundary conditions. The mini—glven by

mum atQ in the spin spectrum is the clearest possible evi- [4[1— a(k)]C2

dence that we have quite strong antiferromagnetic correla- x(k)= @ , 4.2
tions in our solution. The doping is quite efficient in reducing m37'K

the intensity of them. On the contrary, they significatively

increase with the Coulomb repulsion according to the stron- (4C9)?

ger and stronger influence of the exchange enédrgy the Xo= ™~ 24t(C*— CH)— U(cq+ 4EP) ' 4.3

strongly interacting regime. The charge spectrum shows an

enhancement of theelocitywith decreasing doping and in- y, as a function of the temperature, is reported in Fig. 3 for
creasing Coulomb repulsion, that is, in the proximity of au=4 andn=0.25, 0.75, and 1COM results are in very
Mott-Hubbard metal-insulator transition, which would have good agreement with the quantum Monte Carlo 8h¢8

as signature the divergency of the former. % 8) for n=0.25 and 0.75. Fon=1 and low temperatures,
our paramagnetic solution cannot reproduce the overesti-
B. Spin susceptibility mated antiferromagnetic correlations present in the numeri-

cal results. Anyway, our spin susceptibilipfk) and our spin
correlation functionS(k) (see following sectionpresent a
large enhancement & on reducing the dopingsee Fig. 4

and increasing the Coulomb repulsi¢see Figs. 5 and)6

2 G(ﬂﬁ)(k) showing that als&€COM results present well-developed anti-
xs(k,w)=— 2 @ a (4.1  ferromagnetic correlations although they should be compat-
=1 w— o, (k)+id ible with the chosen paramagnetic solution. It is worth noting
that the presented results are in better agreement with quan-

The dynamical spin susceptibilitys(k,») can be ob-
tained by Eqs(3.1) and(3.2) with =3 and has the expres-
sion

0.9

o.si— L | COoM — 1
E 10 F

©
T

1(K)

- N W A O N ™
T

0.0:.|;I.|.I|‘.I|‘.I».:Ix.:l.::l.:»l::.l::.:

R e T e e |

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 20  Ewme- i

(0,0) (m,m) (r,0) (0,0)

k
FIG. 3. The uniform static spin susceptibiligy as function of

the temperatur@ for U=4, n=1, 0.75, and 0.25; the gMC data £ 4. The spin susceptibility(k) as function of the momen-
(8x8) are from MoredRef. 47. tum forU=4, T=0, andn=1, 0.9 and 0.8.
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6.3

_LI__j =32 n=0.875
16 F =0. 3 56 | = ]
: ° COoM u=8
F n=0.80 ] soF T=0
: ---n=033 ——COM
12F pan n=0.19 3 42F ® Lanczos ]
F a ] T=017
ok ® n=0.80] 35 - —- .
= ° A n=033 3 CON
9D o8k o ° v n=0.19 3 N L8[ h
: ° o
06 | L E 21 F A ]
F \
04 A -A-k-ax- A A A _, ® 14 | ]
02k /& Vv.--%--Ww---w--- W e - - ~ 7 B S -~ .
y -/_A L0 REE ZEE ZEEL TEL ARE ARRrvig NS 07 e____ .
0.0 -3 ool B <
(0,0) (m,m) (m,0) (0,0) (0,0 (m,m) (n,0) (0,0)

FIG. 5. The spin correlation functioB(k) as function of the FIG. 7. The spin correlation functioB8(k) as function of the
momentum fold =4, T=0.2 andn=0.8, 0.33, and 0.19; the gMC momentum fom=0.875,U=8, andT=0 and 0.17; the Lanczos
data (8<8) are from Vilk et al. (Ref. 48. data (4<4) atT=0 are from Fancet al. (Ref. 49.

tum Monte Carlo data than the random-phase approximatiotion of the antiferromagnetic correlation lengftrithat be-
and theCOM within the one-loop approximatiofsee Ref. ~comes comparable with the size of the cluster. Ber4 and
10 and references thergin n=0.8 (see Fig. 5, the correlation length is slightly smaller
than the size of the cluster: our solution results capable to
describe this situation fairly we(the height of the peak &@
) _ o ] is exactly reproduced and the momentum dependence is
The spin correlation function is defined as qualitatively correct, again practically exact along the diag-
. . . _ onal) except for the exact value of the numerical data alon
S(1,j) = (n(i,ng(j, 1) =F [ S(k)], 44 the main £<es. This is probably due again to an overestimg-
whereF ~? stands for the Fourier antitransform and the struc-ion of the correlations by the numerical analysis owing to
ture factor reads as the finite size of the cluster. F&f=8 andn=1 (see Fig. 6
and 0.875(see Fig. 7, in order to reproduce the numerical
2“(3)('() 0®(K) data we need to inc_rease the temperature as to decrease.our
1227 coth (4.5 value of the correlation length and match that of the numeri-
»®)(k) 2T cal analysis, which is stuck at the saturation value due to the
The behavior ofS(k), as function of the momentum, is finiteness of the clusters. The results of such a procedure are
reported in Figs. 5—7 in comparison with some numericalastonishing, we manage to exactly reproduce the numerical
datd®*84%for different values of filling, Coulomb repulsion data for any value of the momentum, and not onlyCat
and temperature. We have a very good agreement with thi@vealing the correctness and power of our approach and the
numerical results for sufficiently high values of the dopinglimitations of the numerical analysis. According to this, we
for all shown values of the Coulomb repulsion. In the prox-wish to point out that the numerical data need to be carefully
imity of half filling the numerical data suffer from a satura- and cleverly interpreted in order to obtain from them sensible

C. Spin correlation function

S(k)=—

3.0

4.2 N /‘\I
] u=8 [ n=0.875
39 ¢ CcoM [ @ @ T=0
36 F T=02 3 251 I
33f n=1.00 - N con
ok == in=045 ] b < ® Lanczos
<---n=0.20 3 20 @ T=0.17 7
ATE T=057 3 .
b ) oo ---COM
= BHE .. ——n=100 T o Sf
X 21F 7N, qmMC 3 g 15|
» ek / \ T=02 3 a [
) A\ ® n=1.00 J [ ! !
15 / o A n=0457 101 ]
12 S v n=020 "'
gz— P O 3 05! ]
! ~ KA A-A _A_ 2 F [
NN oo~ (N
00 B= -V v v v v V= 0oL 1 1 1 1 1 1 1 1 1
©0,0) (n,7) (n,0) (0,0) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

11U

FIG. 8. The spin correlation function & (S(Q)) as function of
the inverse ol for n=0.875 andT =0 and 0.17; the Lanczos data
(4%x4) atT=0 are from Fancet al. (Ref. 49.

FIG. 6. The spin correlation functio8(k) as function of the
momentum forU=8, T=0.2, andT=0.57 andn=1, 0.45, and
0.2; the gMC data (& 8) are from Vilket al. (Ref. 48.

115123-7



AVELLA, MANCINI, AND TURKOWSKI PHYSICAL REVIEW B 67, 115123(2003

050 — , , —
045 .
0.40; i: /
0.00 / /&
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002 F E n N /

E ? A - /-\ . I-\ & II- & ./.
=] E @ NARNARN A ]
9 ooaf 3 PN W \A'/ ]

b n=1 7]

005 F Uza i U=4
-0.06 | T=0.1 3 T=0.1 h
007 F —e—COM ] —e—COM ]
' -4A- gMC -4- gMC
-0.08 ] 0.3
(0,0) (4.0) . (44 (0.0 (0.0 (5.0 (6.5) (0.0)

(i) (i.j)

FIG. 9. The spin correlation functio®(i,j) along the principal directions fdd =4, T=0.1, and(left) n=1 [(right) n=0.5]; the gMC
data (10 10) are from Whiteet al. (Ref. 46.

and effective information. The behavior of the spin correla- 2tl(%)(k) (k)
tion function as a function of U«J (the exchange energy N(k)=— coth ,
is shown in Fig. 8. Again, in order to obtain results compa- o @(k) 2T
rable with the numerical on&swe need to use an higher

temperature: aT=.O and for.hlgh enough \(alues of, our . N(Kk) is reported in Fig. 10, as a function of the momentum,
results show a divergency in the correlation length that Sor various filings and temperatures ant=8. We have

e e e & 8 Mgain . very good areement wih quantum Morte Carl
P 9. results® for all shown values of the external parameters and

source, we get a very good agreement for any regime ofof the momentum. The enhancement kat Q=M forn

interaction: our solution p_roperly describes also the low-_ 0.5 can be interpreted as the manifestation of a rather weak
en?r:ggi dygavTe'Cfeo;rTﬁ]:FEthgjﬁn&i i) along the three ordering of the charge with a checkerboard patt€2@M

fiNGi a?l.di}ectioné)in the lattice fer—4’JT—O 1gand(to ) results manage to reproduce such double peak structure
princip AR P showing a capability to quantitatively describe, also in a

n=1[(bottom n=0.5]. '!'he quantum Monte C"’?”O resdfts translational invariant phase, rather strong charge correla-
at n=1 present an antiferromagnetic correlation length 3Sions

large as the size of the cluster. The correlation along the In Figs. 11 and 12, we report the behavior\fr), as a

principal axeg (0,0)— (i4,0) and (5,0)-(5.i,)] is antiferro- . . N _
magnetic and is ferromagnetic along the diagor(3,0) nggﬁnazgiegg;s;gﬁezg IT;L{).'ZSfO;r?ijéanrelszp'eTc-

—(i,i)] as in an ordinary two—dlmensmne}l Nephase. tively. COM results are in good quantitative agreement with
COM results show exactly the same behavior although the, 1 | 10 ical resuif€? showing once more that the charge

ﬁg:ircelart]lggelzr:]%t? dlj :m: wessrgﬁllrlgtz r\]’\; i:gil)xgltgg\/%?;a;n?gdynamics is really well described by our solution. In Fig. 13,
Icp . . b N(i,i*) is shown as a function of the Coulomb repulsian
antiferromagnetic correlations. The on-set of an antiferro- '

magnetic phasé.e., to have an antiferromagnetic correlation

(4.7)

length as large as the size of the syskdar a finite system 045

seems possible for any finite value @dfat half filling, while, a40 | A A i
for an infinite system, it could be related to the existence of | i A AT 1
a critical value of the interactiok that, in our case, falls -l A Ata ]
between 4 and 8. Actually, our study of the antiferromag- 0% Af eAa ]
netic phase confirm that our critical value i¥),=6. At n _oas| ; AL ]
=0.5 the agreement becomes quantitative as the strong ant> ool A . A i
ferromagnetic correlations present at half filing completely "t - .o"" """ T s Ty ]
disappear. 015 - ; ]
0.10 | CcOoM qMC ~

. n=0.155,T=0.125 m 16x16

D. Charge correlation function 0.05 & .‘.T.‘ZZS@?ZS?? 2 ?3?12
The charge correlation function is defined as R ” ) * T

N(i,j)={(n(i,t)n(j,t))= F IN(K)], (4.9 FIG. 10. The charge correlation functidi(k) as a function of

the momentum fotU =8, T=0.125, and 0.25 and=0.155, 0.2

and 0.5; the gMC data (88, 12x12, 16<16) are from Chen
whereN(k) reads as et al. (Ref. 50.q ® )
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0.17 . . . ; . . . 0.80 T T
0.16}, n=02 j;
u=8
000 | 1 e L
T=0.25
—e— COM
- A- gMC = 7
0.005 | 4 >
s *
0.000 Py i
Z -~
n=_8/9
-0.005 | . T=0
——COM
® Lanczos -
-0.010 1 1 1 1 1 1 1 0.65 PSS IN ST S U (U T W U [NV W W S S S S U U W T W W T S S S S A ST U S S (S S Y
0 1 2 3 4 5 6 7 0 2 4 6 8 10 12 14 16 18 20

FIG. 11. The charge correlation functidi(r) as a function of
the distance fon=0.2, U=8, andT=0.25; the gMC data (16
X 16) are from Cheret al. (Ref. 50.

FIG. 13. The charge correlation functidi(i,i *x) as a function
of U for n=8/9 and T=0; the Lanczos data (44) are from
Becca, Parola, and Sorel(Ref. 7).

for n=8/9 andT=0. The agreement with Lanczos data APPENDIX
quite good and gets better and bettelUascreases.
We have the following expressions for tmel*)-matrix

V. CONCLUSIONS entries

An analytical description of the charge and spin dynamics 3 R, 3

of the two-dimensional Hubbard model in the paramagnetic'lﬂpﬂ(k): Z[l_ a(k)](12C*+CH+6CH) — Z[l_ (k)]
phase has been presented within a two-pole approximation in
the framework of theCOM. The hydrodynamics constraints
as well as the Pauli principle requirements have been embed-
ded in the fully self-consistent solution by the very beginning
and any decoupling has been avoided. The antiferromagnetic
correlations are really well-described together with some
weak charge ordering tendency at commensurate filling. Spin
spectrum, static uniform spin susceptibility, spin and charge
correlation functions are in very good agreement with the C
numerical results present in the literature and clearly state the Lo, (1)) = =21~ a(k)]D+[1~ 2a(k)}(2EP+E7)

reliability of the proposed procedure. n n(k)E”zﬁ(k)EﬁJr[l_za(k)]aM

1
X(C*+CM+2CM) + Z[1-A(K)]CH

3
+5[1=p(k)]C*=3[1-B(k)J(C*+CH),

(A1)
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pitality. Co=(c*(i)c'(i)), (A3)
O 92 T T T T T T T T T T T T T T 1 Oo T T T i i T i T ' T T ! ! i
' A
o %J, A8 0982
0.795 [ / 3 079 | _-0—0—0—0—0—0—0—0—0—0—0.__
__omof _eo—8—0—0—0—0—0—0—0—e—o_ | =07%r
E; 0785 [ A ot
0780 | n=28/9 3 076 £ n=8/9
U=12 F U=4
0775 | T=0 1 075 'I T=0
0770 | e—COM  J o74f J ¢—COM
- A- Lanczos L - A~ |anczos
0.765 1 1 1 1 1 1 1 — 1 L 1 L L L 1 073 L 1 1 1 ] 1 1 1 — 1 1 1 1 i 1 1
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FIG. 12. The charge correlation functidf(r) as a function of the distance for=38/9, U=4 (left) [U=12 (right)] and T=0; the
Lanczos data (X 4) are from Becca, Parola, and SorglRef. 7).
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Ch=(cMi)cT(i)), (A4)
Cr=(c#(i)c'(i)), (A5)
EF=(c’(i)n' (i), (A6)
E7=(c™(i)7'(i)), (A7)
a,=2(c'(i)o,c*(i)ct(i)o,ci))
—(c*(i)o, oM a,coi)ny(i)), (A8)
b,=2(c()o,c"(i)o,[c(i)e(i)])
—(c'(Dhouoto,e(ni(i), (A9)
c,=2(c'(i)o,c'(iMo,c(i*)c(i)
—(cM()o,a a,e(iNn, (i), (A10)
d,=2(c(i)o,cl(iP)a,ci®)civ)
—(c"()o,ora,c(iPn (i), (A11)
where we used the notation
i=(iy,iy,0), (A12)
= (i t+aiy,b), (A13)
i7=(i,+2a,i,1), (A14)

PHYSICAL REVIEW B 67, 115123(2003

if=(ixta,iy+a,t). (A15)

The functionsg;;, 7, wij, and\;;, the projectors on
the second, third, fourth, and fifth nearest neighbors, respec-
tively, have the following expression in momentum space

1
B(K) = 5icoga(k,tk,)]+coda(k—k,)]}, (A16)
n(k)= %[cos{ 2ak,)+cog2aky)], (A17)

(k)= %{cos{a(Zkﬁ ky)]+coga(k,+2k,)]

+cog a(2ky—ky) ]+ cog a(k,—2k,) 1}

(A18)
NKk)= ;[cog3akx)+ cog3ak,)], (A19)
The following relations hold
c“z(i)z%[c(i)+20'g(i)+c’7(i)], (A20)
3. 1 . . .
c” (|)=1—6[9c“(|)+c”(|)+6c”“(|)]. (A21)
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