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Bosonic sector of the two-dimensional Hubbard model studied within a two-pole approximation

Adolfo Avella,* Ferdinando Mancini,† and Volodymyr Turkowski‡
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The charge and spin dynamics of the two-dimensional Hubbard model in the paramagnetic phase is first
studied by means of the two-pole approximation within the framework of the composite operator method. The
fully self-consistent scheme requires: no decoupling, the fulfillment of both Pauli principle and hydrodynamic
constraints, the simultaneous solution of fermionic and bosonic sectors, and a very rich momentum dependence
of the response functions. The temperature and momentum dependencies, as well as the dependency on the
Coulomb repulsion strength and the filling, of the calculated charge and spin susceptibilities and correlation
functions are in very good agreement with the numerical calculations present in the literature.
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I. INTRODUCTION

The Hubbard model1–4 is capable to describe a rich var
ety of behaviors including a wide range of different spin a
charge dynamics.5 In particular, its interactions are though
to be responsible for strong antiferromagnetic correlation
half-filling and low temperatures.6 In the presence of doping
the antiferromagnetic correlations remain rather strong
though the correlation length can get smaller and smalle
increasing the doping. The possibility of charge order a
phase separation has also been widely investigated acco
to the fact that one of the mostly used derivative of the H
bard model, thet-J model, seems to present charge sepa
tion for a wide range of external parameters.6 However, re-
cent numerical results seems to indicate that the two mo
may have different behavior as far as charge correlations
concerned.7

In this manuscript, we first give a fully self-consiste
treatment of the charge and spin dynamics of the tw
dimensional Hubbard model in the two-pole approximat
within the framework of the composite operator meth
~COM!.8,9 The fermionic and bosonic sectors are solved
gether self-consistently, no decoupling approximation is u
and the explicit momentum dependence of the spectra
volves third nearest-neighbor sites that forces a rather c
plex and rich momentum dependence in all physical prop
ties.

The COM rightfully belongs to the family of the projec
tion methods5,10–24 and is based on two main ideas:25

strongly interacting systems should be described in term
the quasiparticles generated by the interactions and the
namics should be bounded to the right Hilbert space thro
the imposition of constraints coming from the Pauli pri
ciple. By Pauli principle we mean all the relations amo
operators dictated by the algebra.25 With respect to other
projection methods theCOM has some distinguishable pec
liarities. In particular, within theCOM, there is an absolute
freedom to choose, as asymptotic fields, those that are m
suitable with respect to the properties of the system we w
to describe. This means that we are not bound to any spe
recipe to choose them and that we can use this freedom
exploit at will the benefits coming from one choice or a
other. We can reproduce the results of the other method
0163-1829/2003/67~11!/115123~11!/$20.00 67 1151
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an unique framework and also go well beyond. For instan
by choosing suitable asymptotic fields and the closure
their equations of motion, we were able to describe the lo
est energy scale, which is not algebraic in the model par
eters, of impurity models.26,27 This result is absolutely pre
cluded to other projection methods that uniquely focus on
preservation of spectral moments of higher and higher or
According to this, the method is continuously developing
we are constantly seeking, one system after the other,
the most suitable asymptotic fields and the most effec
procedures to determine self-consistently the dynamics.

Once the fermionic propagator is known there are sev
ways to compute the response functions~i.e., the retarded
propagators of the two-particle excitations: charge, spin, p
etc.!. Many techniques are related to the possible diagra
matic expansions of the two-particle propagators in terms
the single-particle one~i.e., the fermionic propagator!. How-
ever, when operators with non-canonical commutations
involved the only feasible approach is based on the one-l
approximation. The complicated algebra of the compos
operators invalidates the Wick theorem and, conseque
does not allow any simple extension of decoupling schem
and more involved diagrammatic approximations.28,29 Ac-
cording to this, we have developed and widely applied
standard procedure to use, by means of the equations of
tion approach, the one-loop approximation for compos
operators.10

In this manuscript, we consider another way to tackle
problem: the two-particle excitations can be considered a
new sector in the dynamics of the system and we can cho
also for them a suitable asymptotic basis alike it has b
done for the fermions. This gives a new set of equatio
obeyed by the two-particle Green’s functions and the app
ance of zero-frequency constants and unknown correlat
Also in this case, the enforcement of the constraints deriv
from the Pauli principle allows to compute all the paramet
and to fix the representation of the Hilbert space.25

Within the framework of theCOM, both methods have
advantages and disadvantages. The one-loop approxim
becomes exact in the noninteracting limit, well describes
incoherent behavior of the two-particle propagators and
tablishes a tight connection between the one- and t
particle propagators. These are really relevant proper
©2003 The American Physical Society23-1
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once we wish to describe the bosonic excitations star
from its fundamental constituents: the electrons. The Fer
surface bending and nesting and the position of the van H
singularities strongly influence the charge and spin respo
functions. According to this, we managed to give an exp
nation for the spin magnetic incommensurability issue30 and
the overdoped transition of the cuprate superconducto31

On the other hand, the one-loop approximation is not
equate to describe the system in the proximity of orde
phases as the dynamics of the bosonic excitations is ma
described in terms ofscatteringof elementary electronic ex
citations. This practically induces so strong finite lifetim
effects to prevent any possible softening of the boso
modes. As discussed in the above, any possible exten
involves so complicated diagrammatic expansions to
practically unfeasible.

As regards the pole approximation for the two-partic
propagators we have obvious advantages such as the p
bility to easily get the spectra and the analytical expressi
of correlation functions and susceptibilities; the capability
study instabilities~i.e., the softening of the modes! in the
whole range of model and external parameters; the poss
ity to consider the bosonic excitations as the media of n
interactions among the electrons. In this paper, we show
it is possible to get spin antiferromagnetic correlations a
weak charge ordering tendency at commensurate filling
exceptionally good agreement with the numerical res
present in the literature. On the other hand, the pole appr
mation is based on a description of the bosonic excitation
true quasiparticles: the two-particle properties are entir
controlled by the dynamics, which is only weaklyrenormal-
ized by the fermions; the single-particle properties~e.g.,
Fermi surface shape, position of the van Hove singular
etc.! do not influence significatively the response functi
behaviors; the finite lifetime effects are completely neglec
and the tendency towards ordering~i.e., softening! is some-
time exaggerated. Anyway, the use of Green’s function f
malism for the bosonic sector opens the possibility to expl
another really relevant issue: the ergodicity of the boso
dynamics and the presence of zero-frequency constants i
expression of the casual Green’s function and of the corr
tion functions.25,32,33 In this manuscript, we decided not t
pursue this analysis and to fix the zero-frequency cons
values by means of ergodicity requirements in accorda
with the general understanding of bulk systems.

As we can see, the two methods are effectively comp
mentary and can be used to describe the spin and ch
dynamics of the system in different region of the parame
space according to the relevance and prevalence of loca
tion and ordering~two-pole! with respect to delocalization
and symmetry~one-loop!.

It is also worth noting that the pole approximation allow
at least in principle, to get a completely self-consistent so
tion putting together fermionic, spin, charge, and p
propagators.34 The Pauli principle could be then used to g
also the zero-frequency constants in self-consistency
definitely fix the Hilbert space, as described in Ref. 25.
11512
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II. THE HUBBARD MODEL AND THE FERMIONIC
SECTOR

The Hubbard model is described by the following Ham
tonian

H5(
ij

~ t ij 2md ij !c
†~ i !c~ j !1U(

i
n↑~ i !n↓~ i !, ~2.1!

wherec†( i )5„c↑
†( i )c↓

†( i )… is the electronic creation operato
in spinorial notation at the sitei @ i 5( i,t)# and ns( i )
5cs

†( i )cs( i ) is the number operator for spins at the sitei;
m is the chemical potential andU is the on-site Coulomb
repulsion.

The matrixt ij describes the nearest-neighbor hopping;
the 2D case we havet ij 524ta ij , where

a ij 5
1

N (
k

eik ~ i2 j !a~k! ~2.2!

is the projector on the nearest-neighbor sites anda(k)
5 1

2 @cos(kxa)1cos(kya)# anda is the lattice parameter.
We choose the following fermionic basis10–12

C~ i !5S j~ i !

h~ i !
D , ~2.3!

wherej( i )5@12n( i )#c( i ) andh( i )5n( i )c( i ) are the Hub-
bard operators.C( i ) satisfies the following equation of mo
tion

J~ i !5 i
]

]t
C~ i !5S 2mj~ i !24tca~ i !24tp~ i !

2~m2U !h~ i !14tp~ i !
D , ~2.4!

wherecg( i,t)5( jg ijc( j ,t) @g ij stands for any projector on
the j neighbor sites of i; see Appendix# and p( i )
5 1

2 smnm( i )ca( i )1c( i )@c†a( i )c( i )#. nm( i )5c†( i )smc( i )
are the charge (m50) and spin (m51,2,3) density opera-
tors, withsm5(1,sW ), sm5(21,sW ) andsW are the Pauli ma-
trices.

Let us project the sourceJ( i ) on the chosen basis

J~ i,t !>(
j

«~ i,j !C~ j ,t !. ~2.5!

Accordingly, the energy matrix«( i,j ) is defined through the
equation

m~ i,j !5(
l

«~ i,l!I ~ l,j !, ~2.6!

where them matrix and the normalization matrixI have the
following definitions:

m~ i,j !5^$J~ i,t !,C†~ j ,t !%&, ~2.7!

I ~ i,j !5^$C~ i,t !,C†~ j ,t !%&. ~2.8!

It is worth pointing out that in Eq.~2.7! J( i ) is the total
current given in Eq.~2.4! and not the approximated one
After Eq. ~2.5!, the Fourier transform of the thermal single
3-2
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particle retarded Green’s function G( i , j )
5^R@C( i )C†( j )#& satisfies the following equation

@v2«~k!#G~k,v!5I ~k!. ~2.9!

The straightforward application of this scheme10–12,35gives
that, in the paramagnetic phase,I (k) has diagonal form with
I 11512n/2 and I 225n/2 (^ns( i )&5n/2) and that the
m-matrix depends on three parameters: the chemical po
tial m and two correlators

D5^ja~ i !j†~ i !&2^ha~ i !h†~ i !&, ~2.10!

p5
1

4
^nm

a~ i !nm~ i !&2^@c↑~ i !c↓~ i !#ac↓
†~ i !c↑

†~ i !&.

~2.11!

The three parametersm, D andp are functions of the exter
nal parametersn, T, and U and can be determined sel
consistently through a set of three coupled equations

n52@12^c~ i !c†~ i !&#,

D5^ja~ i !j†~ i !&2^ha~ i !h†~ i !&,

^j~ i !h†~ i !&50. ~2.12!

The first equation fixes the particle number, the second
comes from the definition ofD and the third one assures th
the solution respects the Pauli principle~i.e., the local
algebra!.25 In this latter equation resides the main differen
with all the other two-pole approximations. This equatio
allows to fix the representation;25 implements the particle
hole symmetry in the solution;8 avoids uncontrolled decou
pling or further approximations on higher-order correlato
Using this procedure is possible to find two solutions: o
with a p positive and of order of the fillingn and another
with p mainly negative and rather small. The main differen
between these two solutions resides in the strength of
antiferromagnetic correlations.36,37

It is worth noting that this set of coupled self-consiste
equations gives the exact solution in the atomic and in
noninteracting cases as well as for the interacting two-
system.38 According to this, we are confident to reproduce
least the two most relevant scale of energies in the sys
the Coulomb repulsionU and the exchange energyJ. The
latter is already well defined on the two-site system tha
the minimal cluster whereJ becomes effective.

Within this calculation scheme, the fermionic solution
known in a fully self-consistent manner and without open
the bosonic sector. Once we have the electronic Gre
function we can get all single particle, local and thermod
namic properties straightforwardly. In the last years,
means of theCOM in the above described approximation, w
got results in excellent agreement with numerical and ex
solutions as regards many lattice and impur
systems.8,9,11,23,24,26,30,31,36,39–43
11512
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III. CHARGE AND SPIN RESPONSE PROPERTIES

As stated in the introduction we choose to compute
charge and spin response functions by studying the ca
Green’s function34 G(m)( i , j )5^T@nm( i )nm( j )#&. As we
widely discussed in Ref. 25, to obtain a correct description
the bosonic properties is necessary to compute first
causal Green’s function and then derive from this latter
other propagators and correlators. The reason for this lie
the fact that the zero-frequency constants do not explic
contribute to the retarded functions, although there is an
plicit dependence through the self-consistent determina
of the internal parameters. Starting from the retarded fu
tion would lead to ignore the zero-frequency constants
will give wrong results. Once we know the Fourier transfor
of G(m)( i , j ), that isG(m)(k,v), we can find spin and charg
susceptibilitiesx (m)(k,v)52F^R@nm( i )nm( j )#& and corre-
lation functionsC(m)(k,v)5F^nm( i )nm( j )& by means of the
well-known formulas

Re@x (m)~k,v!#52Re@G(m)~k,v!#, ~3.1!

Im@x (m)~k,v!#52tanh
v

2T
Im@G(m)~k,v!#, ~3.2!

C(m)~k,v!52S 11tanh
v

2TD Im@G(m)~k,v!#, ~3.3!

whereT, R, andF are the causal and retarded operators a
the Fourier transform, respectively.

As widely discussed in the introduction, in this man
script we will study the spin and charge channels of
bosonic sector by using a pole approximation. Let us w
the equation of motion for the operatornm( i )

i
]

]t
nm~ i !,524trm~ i !, ~3.4!

where

rm~ i !5c†~ i !smca~ i !2c†a~ i !smc~ i !. ~3.5!

The bosonic basis has to be chosen in order to be compa
with the fermionic one and with a nonlocal component as
wish to take into account, at least partially, the delocalizat
driven by the kinetic term of the Hamiltonian. According
this, the most natural choice is a two-component basis a
in particular, that directly generated by the hierarchy of t
equations of motion. This will assure that the first fo
bosonic spectral moments have the correct functional form44

Therefore, we take as bosonic basis the following one

Nm~ i !5S nm~ i !

rm~ i !
D . ~3.6!

The equation of motion ofrm( i ) is the following one

i
]

]t
rm~ i !524t l m~ i !1Ukm~ i !, ~3.7!

where the higher-order bosonic operators are defined by
3-3
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km~ i !5c†~ i !smha~ i !2h†~ i !smca~ i !

1h†a~ i !smc~ i !2c†a~ i !smh~ i !, ~3.8!

l m~ i !5c†~ i !smca2
~ i !1c†a2

~ i !smc~ i !22c†a~ i !smca~ i !,
~3.9!

and the definition ofca2
( i ) can be found in the Appendix.

Using the same procedure used for the fermions, we h

i
]

]t
Nm~ i,t !>(

j
« (m)~ i,j !Nm~ j ,t !, ~3.10!

where« (m)( i,j ) is given by

m(m)~ i,j !5(
l

« (m)~ i,l!I (m)~ l,j ! ~3.11!

and the normalization matrixI (m) and them(m) matrix have
the following definitions:

I (m)~ i,j !5^@Nm~ i,t !,Nm
† ~ j ,t !#&, ~3.12!

m(m)~ i,j !5 K F i
]

]t
Nm~ i,t !,Nm

† ~ j ,t !G L . ~3.13!

As it can be easily verified, in the paramagnetic phase
normalization matrixI (m) does not depend on the indexm;
charge and spin operators have the same weight. The
matricesI (m) and m(m) have the following form in momen
tum space34

I (m)~k!5S 0 I 12
(m)~k!

I 12
(m)~k! 0

D , ~3.14!

m(m)~k!5S m11
(m)~k! 0

0 m22
(m)~k!

D , ~3.15!

where

I 12
(m)~k!54@12a~k!#Ca, ~3.16!

m11
(m)~k!524tI 12

(m)~k!, ~3.17!

m22
(m)~k!524tI l mrm

~k!1UI kmrm
~k!. ~3.18!

The exact expressions of the normalization matrix ent
and the definition of the parameters they depend on can
found in the Appendix. The energy matrix« (m)(k) has off-
diagonal form with nonzero elements

«12
(m)~k!524t, ~3.19!

«21
(m)~k!5

m22
(m)~k!

I 12
(m)~k!

. ~3.20!

For the sake of simplicity, we will now extend the previo
used notation for the bosonic casual Green’s funct
G(m)( i , j )5^T@nm( i )nm( j )#& to the complete 232 matricial
one, that is, G(m)( i , j ) is hereafter defined a
^T@Nm( i )Nm

† ( j )#&. We will also use the accordingly ex
11512
ve
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tended notation for the correlation functionC(m)( i j ). They
have then the following expressions:

G(m)~k,v!52 i
~2p!3

a2
d (2)~k!d~v!Gm

1 (
n51

2

s (n,m)~k!
11 f B~v!

v2vn
(m)~k!1 id

2 (
n51

2

s (n,m)~k!
f B~v!

v2vn
(m)~k!2 id

,

~3.21!

C(m)~k,v!5
~2p!3

a2
d (2)~k!d~v!Gm

12p (
n51

2

d@v2vn
(m)~k!#

3@11 f B~v!#s (n,m)~k!, ~3.22!

where Gm is the zero-frequency constant25 and f B(v)
51/(ebv21) is the Bose-Einstein distribution function. I
this manuscript, we will use the ergodic value~i.e., G11m
5dm0n2) for the zero-frequency constant as explained in
introduction. The energy spectra are given by

vn
(m)~k!5~2 !nv (m)~k!, ~3.23!

v (m)~k!5A«12
(m)~k!«21

(m)~k!, ~3.24!

and the spectral functions have the following expression

s (n,m)~k!5
1

2
I 12

(m)~k!S «12
(m)~k!

vn
(m)~k!

1

1
«21

(m)~k!

vn
(m)~k!

D . ~3.25!

As it can be seen from the expressions given in the App
dix, the Green function and the correlation function depe
on various parameters, static correlation functions, that m
be self-consistently calculated. A subset of parameters,Ca,
Cl, Cm, Eb, and Eh, are of fermionic nature and can b
computed through the fermionic Green’s function. Thenega-
tive p solution will be used in order to get enhanced antif
romagnetic correlations. The remaining paramete
am ,bm ,cm , anddm , are of bosonic nature, but they cann
be expressed in terms of the bosonic Green’s function un
study as they belong to higher-order propagators. As in
fermionic sector, we can avoid studying complicated high
order propagators requiring the fulfillment of the Pauli pri
ciple and of other symmetry requirements. Four equati
will be used to fix these parameters: one equation com
from the Pauli principle and other three from the gene
properties of the bosonic spectravn

(m)(k) for small momenta
~i.e., for k→0, wherek5Akx

21ky
2). The Pauli principle25

gives
3-4
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FIG. 1. a3 anda0 as functions of the fillingn for T50 andU54 and 8.
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^n~ i !n~ i !&5n12D, ~3.26a!

^nk~ i !nk~ i !&5n22D, k51,2,3, ~3.26b!

whereD5^n↑( i )n↓( i )&5(n/2)2^h( i )h†( i )& is the double
occupancy. From the continuity equation45 it follows that

lim
k→0

vn
(m)~k!>cn

(m)ks, ~3.27!

wheres>1 andcn
(m) is the velocity. Let us analyze the ex

pression forvn
(m)(k). The functionm22

(m)(k) at smallk can be
cast in the following form:

m22
(m)~k!5m0

(m)1m1
(m)~ka!21m2

(m)~ka!4

1m3
(m)~ka!4sin2~2fk!1O„~ka!6

…, ~3.28!

where fk5arctanky /kx . The function I 12
(m)(k) behaves as

(ka)2Ca at smallk. Therefore, to satisfy the continuity equ
tion we must put

m0
(m)5m1

(m)50. ~3.29!
Moreover, as the susceptibility has to be single value

k50 we also have to require thatm3
(m)50. The coefficients

of m22
(m)(k) in the limit of smallk have the following expres

sions~see the Appendix!:

m0
(m)5US 2am1

1

4
bm1

1

2
cm1

1

4
dmD , ~3.30!

m1
(m)5

U

4
~2am2cm2dm22D22Eh!, ~3.31!

m3
(m)52

3

8
t~Ca22Cm1Cl!

1
U

48
~am1cm22dm2D16Eb27Eh!.

~3.32!

According to this, we can write the following algebraic rel
tions for the parametersbm , cm , anddm
11512
t

bm5am13D1Eh12Eb26
t

U
~Ca1Cl22Cm!,

~3.33!

cm5am2D1Eh22Eb16
t

U
~Ca1Cl22Cm!,

~3.34!

dm5am2D23Eh12Eb26
t

U
~Ca1Cl22Cm!,

~3.35!

and use the Eq.~3.26! to compute the parameteram self-
consistently. In Fig. 1, we report the behavior ofa3 anda0 as
functions of the fillingn for T50 and U54 and 8. The
behavior ofa3 reveals a strong dependence on both filli
and Coulomb repulsion of the intensity of spin correlation
In particular, at half-filling we have the maximum depe
dence onU. a0, instead, is practically featureless except f
a region near half filling, whose extension is controlled
the strength of the Coulomb repulsion, where rapidly a
enormously increases with a slope that again depends oU.
This latter behavior results in a strong enhancement of
charge correlations in the proximity of the Mott-Hubba
metal-insulator transition.

It is necessary to report that this analysis can be con
ered an extension and a completion of that done in Ref.
The main differences are related to the use of causal pro
gator in place of the retarded one and to the exploitation
the hydrodynamics constraints to fix the parameters com
in the energy spectra, whenever we wish to retain the co
plete dependence on the momentum.

IV. RESULTS

A. Spin and charge spectra

The spin and charge spectra, as functions of the mom
tum, are reported in Fig. 2 forn51, 0.9, 0.8,U54, and 8
and T50. As regards the spin spectrum,COM result is in
fair agreement with the quantum Monte Carlo data46 (10
310) except fork5(p,p)5Q. The very small value re-
ported by the numerical data atQ can be understood as
3-5
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FIG. 2. The spinv (3)(k) and chargev (0)(k) spectra as functions of the momentum (kx5ky) for n51, 0.9, 0.8,U54, and 8 andT
50; the qMC1 data (10310) for v (3)(k) at U54, n51 andT50 are from Whiteet al. ~Ref. 46!.
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consequence of overestimated antiferromagnetic correlat
~i.e., the antiferromagnetic correlation length actually e
ceeds the cluster size, see Fig. 9!. COM results, instead, are
obtained with paramagnetic boundary conditions. The m
mum atQ in the spin spectrum is the clearest possible e
dence that we have quite strong antiferromagnetic corr
tions in our solution. The doping is quite efficient in reduci
the intensity of them. On the contrary, they significative
increase with the Coulomb repulsion according to the str
ger and stronger influence of the exchange energyJ in the
strongly interacting regime. The charge spectrum shows
enhancement of thevelocitywith decreasing doping and in
creasing Coulomb repulsion, that is, in the proximity of
Mott-Hubbard metal-insulator transition, which would ha
as signature the divergency of the former.

B. Spin susceptibility

The dynamical spin susceptibilityxs(k,v) can be ob-
tained by Eqs.~3.1! and~3.2! with m53 and has the expres
sion

xs~k,v!52 (
n51

2 s11
(n,3)~k!

v2vn
(3)~k!1 id

. ~4.1!

FIG. 3. The uniform static spin susceptibilityx0 as function of
the temperatureT for U54, n51, 0.75, and 0.25; the qMC dat
(838) are from Moreo~Ref. 47!.
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n

According to this, the staticx(k)5 lim
v→0

xs(k,v) and the

static and uniformx05 limk→0x(k) spin susceptibility are
given by

x~k!5
$4@12a~k!#Ca%2

m22
(3)k

, ~4.2!

x052
~4Ca!2

24t~Ca2Cm!2U~c314Eb!
, ~4.3!

x0, as a function of the temperature, is reported in Fig. 3
U54 and n50.25, 0.75, and 1.COM results are in very
good agreement with the quantum Monte Carlo ones47 (8
38) for n50.25 and 0.75. Forn51 and low temperatures
our paramagnetic solution cannot reproduce the overe
mated antiferromagnetic correlations present in the num
cal results. Anyway, our spin susceptibilityx(k) and our spin
correlation functionS(k) ~see following section! present a
large enhancement atQ on reducing the doping~see Fig. 4!
and increasing the Coulomb repulsion~see Figs. 5 and 6!
showing that alsoCOM results present well-developed an
ferromagnetic correlations although they should be comp
ible with the chosen paramagnetic solution. It is worth noti
that the presented results are in better agreement with q

FIG. 4. The spin susceptibilityx(k) as function of the momen-
tum for U54, T50, andn51, 0.9 and 0.8.
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tum Monte Carlo data than the random-phase approxima
and theCOM within the one-loop approximation~see Ref.
10 and references therein!.

C. Spin correlation function

The spin correlation function is defined as

S~ i,j !5^n3~ i,t !n3~ j ,t !&5F21@S~k!#, ~4.4!

whereF21 stands for the Fourier antitransform and the str
ture factor reads as

S~k!52
2tI 12

(3)~k!

v (3)~k!
coth

v (3)~k!

2T
. ~4.5!

The behavior ofS(k), as function of the momentum, i
reported in Figs. 5–7 in comparison with some numeri
data46,48,49for different values of filling, Coulomb repulsion
and temperature. We have a very good agreement with
numerical results for sufficiently high values of the dopi
for all shown values of the Coulomb repulsion. In the pro
imity of half filling the numerical data suffer from a satur

FIG. 5. The spin correlation functionS(k) as function of the
momentum forU54, T50.2 andn50.8, 0.33, and 0.19; the qMC
data (838) are from Vilk et al. ~Ref. 48!.

FIG. 6. The spin correlation functionS(k) as function of the
momentum forU58, T50.2, andT50.57 andn51, 0.45, and
0.2; the qMC data (838) are from Vilk et al. ~Ref. 48!.
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tion of the antiferromagnetic correlation length46 that be-
comes comparable with the size of the cluster. ForU54 and
n50.8 ~see Fig. 5!, the correlation length is slightly smalle
than the size of the cluster: our solution results capable
describe this situation fairly well~the height of the peak atQ
is exactly reproduced and the momentum dependenc
qualitatively correct, again practically exact along the dia
onal! except for the exact value of the numerical data alo
the main axes. This is probably due again to an overesti
tion of the correlations by the numerical analysis owing
the finite size of the cluster. ForU58 andn51 ~see Fig. 6!
and 0.875~see Fig. 7!, in order to reproduce the numerica
data we need to increase the temperature as to decreas
value of the correlation length and match that of the num
cal analysis, which is stuck at the saturation value due to
finiteness of the clusters. The results of such a procedure
astonishing, we manage to exactly reproduce the nume
data for any value of the momentum, and not only atQ,
revealing the correctness and power of our approach and
limitations of the numerical analysis. According to this, w
wish to point out that the numerical data need to be caref
and cleverly interpreted in order to obtain from them sensi

FIG. 7. The spin correlation functionS(k) as function of the
momentum forn50.875, U58, andT50 and 0.17; the Lanczos
data (434) at T50 are from Fanoet al. ~Ref. 49!.

FIG. 8. The spin correlation function atQ „S(Q)… as function of
the inverse ofU for n50.875 andT50 and 0.17; the Lanczos dat
(434) at T50 are from Fanoet al. ~Ref. 49!.
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FIG. 9. The spin correlation functionS( i , j ) along the principal directions forU54, T50.1, and~left! n51 @~right! n50.5]; the qMC
data (10310) are from Whiteet al. ~Ref. 46!.
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and effective information. The behavior of the spin corre
tion function as a function of 1/U}J ~the exchange energy!
is shown in Fig. 8. Again, in order to obtain results comp
rable with the numerical ones49 we need to use an highe
temperature: atT50 and for high enough values ofU, our
results show a divergency in the correlation length tha
extraneous to the physics of a finite system. By using
same temperature of Fig. 7~the Lanczos data have the sam
source!, we get a very good agreement for any regime
interaction: our solution properly describes also the lo
energy dynamics of the spin system.

In Fig. 9, we report the behavior ofS( i , j ) along the three
principal directions in the lattice forU54, T50.1 and~top!
n51 @~bottom! n50.5]. The quantum Monte Carlo results46

at n51 present an antiferromagnetic correlation length
large as the size of the cluster. The correlation along
principal axes@(0,0)→( i x,0) and (5,0)→(5,i y)] is antiferro-
magnetic and is ferromagnetic along the diagonals@(0,0)
→( i ,i )# as in an ordinary two-dimensional Nee´l phase.
COM results show exactly the same behavior although
correlation length is much smaller: we analyze the param
netic phase and forU54 we still not have so well develope
antiferromagnetic correlations. The on-set of an antifer
magnetic phase~i.e., to have an antiferromagnetic correlatio
length as large as the size of the system! for a finite system
seems possible for any finite value ofU at half filling, while,
for an infinite system, it could be related to the existence
a critical value of the interactionU that, in our case, falls
between 4 and 8. Actually, our study of the antiferroma
netic phase9 confirm that our critical value isUc>6. At n
50.5 the agreement becomes quantitative as the strong
ferromagnetic correlations present at half filling complet
disappear.

D. Charge correlation function

The charge correlation function is defined as

N~ i,j !5^n~ i,t !n~ j ,t !&5F21@N~k!#, ~4.6!

whereN(k) reads as
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N~k!52
2tI 12

(0)~k!

v (0)~k!
coth

v (0)~k!

2T
, ~4.7!

N(k) is reported in Fig. 10, as a function of the momentu
for various fillings and temperatures andU58. We have
again a very good agreement with quantum Monte Ca
results50 for all shown values of the external parameters a
of the momentum. The enhancement atk5Q5M forn
50.5 can be interpreted as the manifestation of a rather w
ordering of the charge with a checkerboard pattern.COM
results manage to reproduce such double peak struc
showing a capability to quantitatively describe, also in
translational invariant phase, rather strong charge corr
tions.

In Figs. 11 and 12, we report the behavior ofN(r ), as a
function of the distancer 5Ai 21 j 2, for U54 and 12,T
50.01, andn58/9 andU58, T50.25, andn50.2, respec-
tively. COM results are in good quantitative agreement w
the numerical results7,50 showing once more that the charg
dynamics is really well described by our solution. In Fig. 1
N( i ,i ax) is shown as a function of the Coulomb repulsionU

FIG. 10. The charge correlation functionN(k) as a function of
the momentum forU58, T50.125, and 0.25 andn50.155, 0.2
and 0.5; the qMC data (838, 12312, 16316) are from Chen
et al. ~Ref. 50!.
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BOSONIC SECTOR OF THE TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 67, 115123 ~2003!
for n58/9 andT50. The agreement with Lanczos data7 is
quite good and gets better and better asU increases.

V. CONCLUSIONS

An analytical description of the charge and spin dynam
of the two-dimensional Hubbard model in the paramagn
phase has been presented within a two-pole approximatio
the framework of theCOM. The hydrodynamics constraint
as well as the Pauli principle requirements have been em
ded in the fully self-consistent solution by the very beginni
and any decoupling has been avoided. The antiferromagn
correlations are really well-described together with so
weak charge ordering tendency at commensurate filling. S
spectrum, static uniform spin susceptibility, spin and cha
correlation functions are in very good agreement with
numerical results present in the literature and clearly state
reliability of the proposed procedure.
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FIG. 11. The charge correlation functionN(r ) as a function of
the distance forn50.2, U58, and T50.25; the qMC data (16
316) are from Chenet al. ~Ref. 50!.
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APPENDIX

We have the following expressions for them(m)-matrix
entries

I l mrm
~k!5

3

4
@12a~k!#~12Ca1Cl16Cm!2

3

4
@12h~k!#

3~Ca1Cl12Cm!1
1

4
@12l~k!#Cl

1
3

2
@12m~k!#Cm23@12b~k!#~Ca1Cm!,

~A1!

I kmrm
~ i , j !522@12a~k!#D1@122a~k!#~2Eb1Eh!

1h~k!Eh12b~k!Eb1@122a~k!#am

1
1

4
@bm12b~k!cm1h~k!dm#. ~A2!

The following definitions have been used

Ca5^ca~ i !c†~ i !&, ~A3!

FIG. 13. The charge correlation functionN( i ,i ax) as a function
of U for n58/9 and T50; the Lanczos data (434) are from
Becca, Parola, and Sorella~Ref. 7!.
FIG. 12. The charge correlation functionN(r ) as a function of the distance forn58/9, U54 ~left! @U512 ~right!# and T50; the
Lanczos data (434) are from Becca, Parola, and Sorella~Ref. 7!.
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Cl5^cl~ i !c†~ i !&, ~A4!

Cm5^cm~ i !c†~ i !&, ~A5!

Eb5^cb~ i !h†~ i !&, ~A6!

Eh5^ch~ i !h†~ i !&, ~A7!

am52^c†~ i !smca~ i !c†~ i !smca~ i !&

2^ca†~ i !smslsmca~ i !nl~ i !&, ~A8!

bm52^c†~ i !smc†~ i !sm@c~ i !c~ i !#a&

2^c†~ i !smslsmc~ i !nl
a~ i !&, ~A9!

cm52^c†~ i !smc†~ i h!smc~ i a!c~ i a!&

2^c†~ i !smslsmc~ i h!nl~ i a!&, ~A10!

dm52^c†~ i !smc†~ i b!smc~ i a!c~ i a!&

2^c†~ i !smslsmc~ i b!nl~ i a!&, ~A11!

where we used the notation

i 5~ i x ,i y ,t !, ~A12!

i a5~ i x1a,i y ,t !, ~A13!

i h5~ i x12a,i y ,t !, ~A14!
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