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Calculation of conduction electrong factor in metals: Comparison of electron-spin dynamics
and local g-factor approaches
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We analyze and compare two approaches to calculations af thetors of electron semiclassical orbits in
metals. The first, exact approach takes into account a dynamics of the electron spin when the Bloch electron
moves in a magnetic field. The second, more simple approach is based on the concept of the so-cafjed local
factor and completely neglects this dynamics. It is pointed out that the second approach is approximately valid
not only at a weak spin-orbit interaction in crystals but also at an arbitrary strength of this interaction if the
Fermi level of electrons lies near an edge of the electron energy band under consideration or if the electron
spectrum specifying the semiclassical orbit can be well described by a two-band model. As an example of the
spectrum with more than two bands and with the strong spin-orbit interaction, we consider the electron
spectrum of bismuth when the direction of the magnetic field is close to the trigonal-binary plane of the crystal
and calculate thg factors of the appropriate electron orbits.
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. INTRODUCTION g(k). This concept was introduced in Ref. 30 to describe the
g factors forpointsk on the Fermi surface, and in the above-
As known Well,l the g factor of conduction electrons in mentioned pub“cations thg factor for the orbitl” was ob-
metalsg specifies the splitting of the Landau energy levelsigined by the averaging a@f(k) over thisI". However, as it
c_aused by an interaction of the electror} spin with.a magnetigy|ows from Refs. 7 and 8, only thg factors of closed
field, AE=g(en/2mc)H, and can considerably differ from g hits have a strict physical meaning, while the concept of

Its free—felectrlon valugzzr]. Heree anldm are thef_cr;grge gmg the localg-factor can be applied only approximately when a
mass of an electrom is the external magnetic field, and the strength of the spin-orbit interaction in the metal is suffi-

crystal is implied to have a center of inversi¢and only ciently wealk® The exact formulas for thg factor® are ap-

such crystals are considered bejouwn this paper we shall . . - .

) ) . plicable at any strength of the spin-orbit coupling, but they
discuss they factors which are experimentally found from licated than in the locafact ho
oscillation effects in the semiclassical limit when there are aa}:r.e more complica gd an'm € low E:.CC r?r at)proac -n
lot of the Landau levels under the Fermi surface of the metalt!'S P2Per, we consider various types of the electron energy-

Besides this, we do not consider the situations when th@and structure in crystals and point out situations, for which
magnetic breakdown occurs. As well knowin this case an ©One may expect an essential difference in results obtained in
electron in the crystal in a magnetic field may be consideredn® framework of the exact approach and of the approach
as a wave packet, with the wave vector of the pa&ketov- based on the concept of the logpfactor. Since the electron
ing in a semiclassical orblt in the Brillouin zone. The orbit SPectrum of bismuth provides an example of such a situation,
is the intersection of the constant-energy surface of the eleave analyze the factors of extremal orbits lying on the elec-
tron in the absence of the magnetic fieddk) is equal to a  tron ellipsoids of the Fermi surface of bismuth and show that
const, with the plané, is equal to a const, whelg, is the  for directions of the magnetic field near the plane containing
component of the wave vector in the direction of the externathe trigonal and the binary axes, the exgdactors do no-
magnetic fieldH. In this approach the semiclassicpfactor ~ ticeably differ from values derived on the basis of local
appears in the well-known quantization rtifé for electron ~ g-factor approximation. We also demonstrate that the ob-

energye in a magnetic field tained r3esu|ts for thg factors well agree with the experimen-
tal data
le|H g(e,ky)m* The paper is organized as follows: In Sec. Il, we briefly
S(e k) =2m he \MTYE T ’ (1) describe the theoretical results for thdactor. We also ex-

plain distinctions between the exact approach togtfiector

whereSis the cross-sectional area of tblesedorbitI', nis  calculation and the locaj-factor approximation, and point
a large integer, the cyclotron mas® = (%2/27)(9S(e,k,)/ out situations for which the approaches may lead to different
de), the constanty is always equal to 1/2 when the spin- results. In Sec. Il the necessary information on the electron-
orbit interaction is taken into account,and theg factor  band structure of bismuth is presented, andgHactors of
g(e,ky) depends on a location of theebit I" in the Brillouin  the orbits lying on the electron ellipsoids are calculated in
zone. the framework of both the approaches. We also compare the

Calculations of they factors were carried out for various derived exact results for thg factor with the appropriate
metals® ?°It is necessary to stress that all these calculationgxperimental dat&: Some mathematical details of our analy-
were based on the concept of the so-called Igrdhictor  sis are presented in Appendices A and B.
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Il. TWO APPROACHES TO THE g FACTOR
CALCULATIONS
A. Formulas for the g factor

The g factor in the quantization rulél) can be expressed

in terms of matrix elements of the effective one-band Hamil-
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In 1969, De Graaf and Overhau¥®introduced the con-
cept of the localy factor associated with thgointsk of the
Fermi surface of a metal. In our notations their quantity is
described by the expression

g(k)=—(4m/%) o 14(K). (6)

tonian He¢; of a Bloch electron in a magnetic field. Since |n this approach, the factor of the orbitl’ is obtained by
electron bands are twofold degenerate in crystals with th@yeragingg(k) overI’

inversion symmetry,the Hamiltonian is a X2 matrix in a

spinor space. According to Refs. 32 and 33, this Hamiltonian

to first order in the magnetic field has the form

N .. e .
Herr=go(k) 1+ EHMo(kan), (2

wheren is the unit vector directed along the magnetic field Wherev.
H, eo(k) is the electron dispersion relation for the band be-

ing investigatedfrom here on we denote this band by the
subscript 0),k=K —(e/ch)A(id/dK), A(r) is the vector
potential of the magnetic fieltll, and the functionso(l?) in
Eq. (2) is implied to be completely symmetrized in the com-

ponents ofk. Elements of the matrix, are the sums
s or
Hopp' = Mo ppr T Mo ppr
. s
of the pure spin partp.

h
_j u:,Op(r)(nU)uk,Op’(r)dr! (3)

Mg,ppr(k) == 2m

and the orbital contributionﬁg;)p,

'ug,;)p’(k) = (n[VOX QOp,Op’])
h

+52

p",m#0

(n[VOp,mp"X Vmp",Op/])
em(k)—eo(k)

where the spin indexes,p’,p"=1,2; o; is the Pauli matri-
ces;Vo=(1/1)(deo/IK); Vip mer and €y, m,r are the matrix
elements of the velocity operator and the periodik jpart of
the position operator

(4)

- J
an,mp'(k)zlf uk,np(r)ﬁuk,mp/(r)dr! (5)

calculated in thek representation. In Eq€$3) and (5) the
integration is over a unit cell of the crystal lattice and
Uy 1,(r) is the periodic factor in the Bloch wave function of
thelth band

lﬂk,|p:exqikr)uk‘|p .

It is always assumed thaty ;,=(io,Kl)uy ;; wherel, K,

2m

- *
ﬁg defo, ™M
r

is the absolute value of projection wbn the plane
normal toH; dx is the infinitesimal element of the orHit,
and we have inserted the well-known fornfular the cyclo-
tron massm* = (A/2m7)$rdx/v, . Itis Eq.(7) that was used
in numerous publication’.?°

The exact expressions for tigefactor in the semiclassical
limit were derived in Refs. 7,5, and 8. In order to write these
expressions, it is convenient to introduce the complex param-
eter 7(k) that defines the direction of the electron spin

(1
r
in the spinor space of the Hamiltonid®) at the pointk of
the orbitI". Then, the g factor of the orblf is given by

dx

%Fng(k)/UL
= ﬁa[_ﬂo,n(k)],

g_

)

dx

Jro

2m (Tio 12+ 75 15 10

2

g=- o1t €))

v

The function7(k) along the semiclassical orbit is specified
by the equation

- dr 5 .
101 e = MoaaT + 210,117 Ko 125 9
with the boundary condition
7(0) = 7(ko), (10

wherer is written as a function of a length along the electron
trajectory andk is the perimeter of the orbit. Formulé8),
(9), and(10) permit one to find they factor for any electron
orbit.

Taking into account the well-known relatién(d«/v )
=(eH/ch)dt, Eq.(9) can be understood as the equation for
spin dynamics of the electron moving in the semiclassical
orbit (during the motion a direction of the electron spin
changes due to the spin-orbit couplinghen, boundary con-
dition (10) simply means that in the steady state the direction
of the electron spin must periodically return to its initial

andio,K are the spatial inversion, complex conjugation, andvalue.

time reversal operators, respectively. With this choice of the

spinors, the propertyg 11= — to.22 holds®* Several formu-
las simplifying calculations of ,,/ in real situations were
derived in the Appendix of Ref. 8see also Sec. IIB and
Appendix B belowy.

It should be also emphasized that express®)rgenerally
does not admit defining the locglfactor even though one
finds the solution of Eq99) and (10) and inserts this solu-
tion into Eq.(8). Indeed, the integrand of E() at the point
k depends on the electron states of Wieole orbit I" [ 7 at
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the pointk is determined by, (k') with k' #k, see Eq. the constant may depend on the direction of the magnetic
(9)], so it cannot be considered as a local quantity which idield, n). In this case the arguments of Sec. Il A against the
determined only by the electron state corresponding to theéoncept of the locag factor do not work, and E(9) deter-
pointk. Besides this, a true locglfactor should be express- mines thisr through the elements of the matrix,,

ible through its values for three mutually orthogonal direc-

t?ons of the magnetic field: However, if one tilts the magngtic Mot ‘/(Mo,11)2+ |,U40’12]z

field and considers the poikf on the Fermi surface which is T= . (12

the intersection point of the initial and the tilted orbits, the #o.12

integrand of Eq.(8) at ko generally does not satisfy this |t follows from this relation that forr to be constant, the
cqndmon, sllncer(ko) at different directions of are deter-  5trix /10 must have the form

mined by different orbits.

B. Comparison of the approaches o= (k,n) (13

ci(n)  cy(n) )

c5(n)  —cq(n)
Since theg factor is themeasurablequantity, formula(8)

must be independent of a choice of the basis in the spinowvherey(k,n) is some real scalar function &fandn, while

space, i.e., must be invariant under unitary transformations in;(n) andc,(n) are some real and complex functionsrof

this space. The unitary transformations can be represented gasspectively. In the basis in which the mat;{b@ does have

a product of matrices corresponding to phase transformationse form of Eq.(13), and hence in which the locatfactor

of the Bloch factorsuy, and to rotations in the space of approach is valid, the insertion of formul&2) into Eq. (8)

these factorgsee Appendix A Equation(8) is invariant un-  leads to the expression

der the phase transformatioh&n Appendix A we show that

this equation is also invariant under the rotations. Thus, the 2m dx
exact formula for theg factor (8) really satisfies the above- g=*—orf % — (V(po10°+ | ro1d?), (14)
mentioned physical requirement. mm® JrUL

Although formula(7) is invariant under the phase trans- hile the locala fact be defined as foll
formations, the rotations in the spinor space change its formV,V lie the localg factor can be defined as Tollows,

Appendix A. Thus, values of thg-factors determined by this am
expression depend on the basis in the spinor space used in g(k)=iT\/[Mo,n(k)]zﬁL|Mo,1z(k)|2- (15)

calculations of the matrix,, and formula7) could be valid

oply in a s_pecific bgsis. AlthOUQh. De Graaf _and Overhause e Eqs(15) and(14) agree with formula$6) and(7).
did not point out this basis in their paper, it is easy to guess

. . . - . indeed, at constant, the matrixU transforminguq(k) to
it. In this basis, the matrixy(k) should be diagonal at every he di | f is al “th in E
pointk of the Fermi surface. Then, one hag, (k) =0; the the diagonal form is also constant; the second term in Eq.

11 ishes, and the di | el ts of the t f d
solution of Egs.(9) and (10) is 7=0 for any orbit, and for- (11) vanishes, and the diagonal elements of the transforme

Y D 2 211/2
mulas (8) and (7) coincide. Note that just this basis was matrix po(k) are equal mt['.uovll(k)ﬂ'“o’“(k)' 7=
implied in the numerous publications mentioned above, !N general case, the matrp, does not seem to reduce to

However, in practice there exists a problem of determining{orm (13), and therefore the locaj-factor approach is not
. o . ~ rue. However, when the spin-orbit interaction is absent, the
this basis since under an unitary transformatid(k), the

trix s (K) ch foll matrix ,&0 has just this form. Moreover, as was shown in our
matrix uo(k) changes as follows, previous papet,the localg-factor approach is approximately

. valid if the strength of the spin-orbit interaction in the crystal
B o TR S B is sufficiently weak. To describe the strength of this interac-
#o=U" moU 1| i Vox U ak”)’ (D tion, we introduced the parameter
and the problem of calculating the appropri&ték) [trans- A

forming (k) to the diagonal forrhis equivalent to that of (16

solving Eqgs.(9) and(10). In other words, in this way of the
calculations, one deals with another representation of thesghereA is a characteristic spin-orbit energy in the crystal,
equations, and formul&) is the specific form of Eq(8). In  while Eo~mu? is a typical energy scale of an electron-band
any other basis, Eq(7) is not exact since De Graaf and structure in it ¢ describes a characteristic value of interband
Overhauser did not take into account the dynamics of thenatrix elements of velocity, an#, is of the order of the
electron spin when they analyzed the semiclassical motion aitomic energiesEg~0.1—1Ry). When the spin-orbit inter-
the electron wave packet in the magnetic field. action in the crystal is strong, i.ez/~1, one may expect that
Applicability of Eq. (7) in the specific basis does not only formulas(8), (9), and(10) can give the correct results
mean that the locaj-factor approach is true. This approach for the g factor, while the locag-factor approach is not valid
is valid if the dynamics of the electron spin is absent at all,at all. Below we investigate this issue in more detail for
i.e., if there exists a basis in the spinor space in whicgha  various types of the electron-band structures and show that
constant forany direction of the magnetic fiel¢the value of this is not always the case.
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1. “One-band” case [é+F|LKé]|p,|’p’:8|(k)5||’5pp' ’ (20)
Consider the case when the Fermi enesgylies near a . ] ) ) )
minimum or a maximum oé,(K) occurring at a poinke, of whereS is an unitary transformation. It is worth noting that

the Brillouin zone, the two-band model of the energy spectryh®) is more
general than that of Ref. 34, since we do not assume here that
| er—eo(Key ‘ the velocitiesvy=(1/4)(deo/dk) and v,=(1/h)(de,/ k)
min <l vanish atthe samepoint of the Brillouin zone. In other

Key) —0(k
=0l £n(Kex) ~ £o(ker) words, we admit possibility that the bands 0 antkach an

In this situation the orbif” is small and is located near this €xtremum at different points of the Brillouin zone.
point. The quantitieg ,,/ (k) are approximately constant in In our previous papefAppendix of Ref. §we showed
the orbit, wo,,, (K) = 20, (Kex), and the matrixeo has the how to obtain the orbital part of the matritg u;ing the
form of Eq. (13). Thus, in this case, the locgHactor ap- Hamiltonian in the Luttinger-Kohn representatiéh x and
proach leads to the exact results for théactor atarbitrary  the matrixS which transforms it to the diagonal forthe., to
strength of spin-orbit interaction. Using E(L4), we find  the Bloch representationThis formula can be rewritten in
that theg-factor of the orbit coincides with the locglfactor  the form:
and is given by the formula
i
or

am HFopp =57 2 €apyMy
9= V(noalked "+ lmosdked . (A7) "2 apiEis
Note that expressiofil7) fully agrees with formula26) of % { §+(ﬁﬂ+ ﬁHi) (9_8) , (21)
Ref. 34 if one takes into account thaj(ke,) =0. IKe K | IKg 0p,0p’
wheree,z, is the completely antisymmetric tensor which

2. Two-band case . > A
has valuest 1. The spin contribution tp.y, may be neglected

A two-band model can be applied to real situations if inpere since this contribution is comparable with that of the

some region of the Brillouin zone, the energy gap betweenyisieqarded bands. Using E$8) and(21), we find that the
the band under consideratian,(k) and some other ban oA .
matrix uq has the form of Eq(13) with

ea(k) as well as the energy differences between these bands
and the Fermi energye are all relatively small as compared ilep+0.5E,—fivy(0)k]
to other energy intervalsiey(k)—ea(K)|, |eg—eo(K)| P(k)= Y gO ST
<|en(k)—go(K)|, for n#0,a. Then, in this region of the er—h[Vo(0) —Va(0)]
Brillouin zone, one may take into account only the bands Ognd
and a and neglect all other bands. In other words, in this
region, we can use the followinkp Hamiltonian

(22

E
SF“I‘?Q

c;=(nw;) —hky[NXW;]-[NXVa(0)], (23
H ror = 5 r(S /‘i‘ﬁv ’ot k 1
Py =)o 5, ot (OK, (18 wherej=1, 2; the Fermi energy, is measured from the
wherel, 1'=0, a; p, p' =1, 2; the vectok is measured from middle of the gafE,=£0(0)—&,(0) at the pointk=0, and
a point taken inside the regidit is convenient to place the e have used the notatiorls; = (nk),
pointk=0 at the point of an extremum @f,(k)]. The basis
functions of this Hamiltonian are the well-known functions — 2w; =i[Vg;41(0) X Vgp2(0)]1—i[Vp122(0) X Vop41(0)],
of Luttinger-Kohn®® x, ,=exp(kr)q,,, which coincide
with the Bloch functions)y , at the pointk=0. Note that in Wo=1[Vp122(0) X Vp121(0)].

Eq. (18), a diagonal terri? proportional tok? was omitted . L
since its effect on the spectrum is comparable with an effecl "US: Within the two-band approximation, the logalactor
ipproach leads to the exact results for thiactor atarbi-

of the bands disregarded here. The symmetry relative to spé1

tial and time inversion lead&to the following relationships trary strength of spin-orbi_t interaction. Using E(L4), we
betweerv, 1/, (0): find the g factor of the orhit,

Vo1040) = Vo2 64 0)=Vo(0), o= t%\ﬂ—cﬁ P 3Er3—“ Wk, (24)

Va1a1(0)=Vaz22(0)=Va(0). while the localg factor can be defined by the expression
Voza2(0)=V111(0), (19 9(K)==(4m/h) JeT+[coPy(k).
In the special casey(0)=v,(0)=0 andeg—¢q(0), the
Vo2a1(0) = — Vi 15(0). g factor of the orbit was calculated by Cohen and Blotint,
A and it was shown thad=(gm*)/(4m)==+1/2, i.e., the
The electron dispersion relatioag k) for the bands 0 and  splitting of the electron energy levels in the magnetic field
are obtained by diagonalization of E(.9): described by the factor exactlycoincides with their orbital
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TABLE |. Band parameters of bismutfRef. 39. The Fermi energy of electrons in Bi is=35 meV.

a:(a.u) |dz| (a.u) as(@.u) ag(a.u) ay(a.u) Eq (meV)

0.457 0.03 0.344 0.615 11 10

splitting. We now can extend this result to the general casahere the poink=0 is placed at the L point;
wheneg is not close to the band edgg(0) and the veloci-

ties vy, v, do not vanish at the same point of the Brillouin Ey @oa ,|
zone. Indeed, inserting Eq2) and (23) into formula(24), Eoa(k)== 7+ 2 ky)'
we find by a direct calculation that=1/2. Note also that

this result agrees with the exact calculation of the electron t u
energy spectrum in the magnetic fiéft. 'T'(k)z( P );

3. Three or more bands
. t=dike;  U=02ky+qsk,;
In our previous papérwe calculated they factor for a

three-band model of the electron energy spectrum. Thi€;=g0(0)—&4(0), @g, @a, d1, andqs are real parameters
model is commonly used to describe a part of the Fermdf the model, whileg, is an imaginary constant, Rgf=0.
surface of zinc, the so-called needles located near the poiniélues of all these parameters are well knatwf) see Table

K of the Brillouin zone. Theg-factor of zinc is large due to |. The parameters|;, g,, gs denotes the nonzero compo-
very small gaps in the spectrum at the pdint the gaps are  nents offivy,, 5,(0). Note that the value o, is relatively
comparable with the spin-orbit splittind). However, in  small, and just for this reason the Fermi surface is elongated
zinc the parameteh is small as compared to the character-in the k, direction, and|q2|ky~|a0,ak§| at the Fermi level.
istic energyE, (i.e., »<<1), and so the locag-factor ap- The equation for the band energieg k) ande (k) follows
proach is a good approximation. If one formally increasesrom Egs.(25) and(B5):

the strength of the spin-orbit interaction in this three-band
model so that the\ becomes comparable #®,, formulas

(25) and (26) of Ref. 8 show that the matri)&o is not re-
duced to the form of Eq(13). Thus, this example demon- - o2 202
strates that in the case of a sufficiently strong spin-orbit cou- +a1ks a2l ky+azk;,  (26)
pling, the localg-factor approach generally fails when one
deals with three(or more band models of the electron
spectrum.

e—

(a'o_aa)ks 2_
— | =

E+ (ap+ aa)k)zl 2
2 4

where the energy is measured from the middle of the en-
ergy gapEy at the pointL.

The constant matrice}%y, Appendix B, considerably sim-

plify if one takes into account the symmetry of the pdint
Ill. BISMUTH

To consider an example of the spectrum with more than R= S Run.- po 0 27
two bands and with the strong spin-orbit interaction, we now s M= 0 5.
analyze the electrog factor of bismuth. The electron Fermi a
surface of Bi consists of three “ellipsoids” located near thewhere
symmetry points of the Brillouin zone'3! The symmetry
of this point isC,y,. It is @ common practice to take the - (730@ 7/o,a )
axis along the twofold axi€,, to place they-z plane on the Poa=|~, ~
reflection planes;, containing the trigonal axi€; and the Yoa ~Poa
bisector axisC;, and to choose thg axis in the direction of
the longest principal axis of the ellipsoithis axis is ap-
proximately ten times greater than the other two and is tilted ~ ~ .y 2
at the angle about 6 deg from ti& axis). Since the Fermi Poa=Poalx:  Yoa=YoalyT ¥oaNz:
surface of bismuth is elongated in thg direction, the two-  The two real constanis,, p,, and four complex parameters
band model is not sufficient to describe the electron energ)%, WY, W%, vZ represent both the effect of bands different
spectrum in this direction, and the extended two-band model. g q 2 h s> and th . ~g
Appendix B, is commonly used. In the case of bismuth, the om 0 anda on the matrixuo and the pure spin pajt, .

guadratic terms are taken into account only for this direction.SUbSt'tu'[Ing Eq(27) into formula(B8), we obtain the matrix

Then, we arrive at the Hamiltonian of McCI§fe® elements of&o for central cross sections of the Fermi surface

are the 2<2 matrices with

. Eo(K) Loy T(k) MO,ll:A[iBq2q3nx+50(Ea_8F)2+5a(t2_|u|2)
H(k)= (25

-’l\-+(k) Ea(K)loxa/ +t(7/au* +7/§u)]
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to12= AliBd1(qsny—don,) — 2patu
+Vo(Ea—ep) 2+ vat2—viu?], (28)
where

A=[(Ea—ep)(Eg+Ea—2e¢)] 1,

B=(EatEg+eg)/h. (29

Sincepg, and vy; are all of the order ofi/m, the terms
in Eq. (28) proportional to these parameters are relatively
small as compared to the main terms which contain products

of g; and result fromu$?, Eq. (B9). If the magnetic field is

directed along thg axis, the small terms witl,, and vg,
can be omitted. Then, we go over to the case of the two-band

model, and the matrix, takes the form of Eq(13),

18]

. 0 i
p=lmord| i o
Thus, one arrives at . X , ,
10° 0°  -10°  -20°
& Z H,C
5= M _ tE. 8
4m 2

FIG. 1. The quantity§|=|gm*/4m| for electron orbits in bis-
If ny< 1, i.e., if the magnetic-field direction is almost normal muth as functions of angle between the direction of the magnetic

to they axis, the role of the terms Wiﬁ%a and;()a increases field H and th_e t_rigo_nal axis o_f the crystal;H lies in they-z
L ! .~ plane. The solid line is plotted using E@8), (9), (10), (28) and the
due to the small value off,. In this case, the matriy,g

. data of Tables | and II, whil® marks the experimental datRef.
cannot be reduced to the form of Ed3), and to obtain the 31). The lower panel shows the results near the trigonal axis in an

electrong factor, one must use Eq&3), (9), and(10). enlarged scale. The filled circle correspondg threction, and only
The angular dependence of the electgfactor of bis-  for this point the error bars are shown. The dashed line represents
muth in they-z plane was very accurately measured in Ref.the exact factor calculated at alh¥Z=0.

31, see Fig. 1. In Fig. 1 we also show the electgofactor
calculated using Eqs(8), (9), (10), (28), and the data of proaches practically coincide. But whenlies near thex-z
Tables I, and Il. If one neglects the terms witlf;, the  planefi.e., when the two-band model fails and formiiat)
calculatedg factor only qualitatively agrees with the experi- js not valid|, the comparison clearly shows the error which
mental data, but it is impOSSible to obtain their quantitativeoccurs if one continues to use E(q_4) Hence, the formal
agreement. In particular, these terms determine the asymmgse of Eq.(14) in this region of the magnetic-field directions
try of the plot relative to the direction of the axis. The  ¢an lead to a noticeable error in tigefactor. It should be
values of the parameteng); have been chosen so that to emphasized that this conclusion is independent of the set of
provide the best agreement of the calculagddctor with the  the values in Table II.

experimental data. It should be noted that this choice is not

unique, and the Table Il gives only one possible set of the IV. CONCLUSIONS

values. In this context, we point out that the experimental

investigation of angular dependences of gifactor in thex- In the semiclassical approximation the electgofiactor in

z and thex-y planes would enable one to determine the paimetals can be calculated using formul@s, (9), and (10).
rameters unambiguously. Within this approach, Eq9) with boundary condition(10)

The results of Fig. 1 are in agreement with the considerdescribes the dynamics of the electron spin when the electron
ations presented above. If the magnetic-field directiois moves over the semiclassical orbit in the crystal. On the
close to they axis, the combinations=(gm*/4m) ap-  Other hand, in many papers, the so-called laséctor ap-
proaches the value 1/2. But whenis almost perpendicular
to they axis, the magnitude of thé significantly differs ~ TABLE Il. A possible set of the parameteps,, vga, V6 for
from this value characteristic for the two-band model of thePismuth (atomic unit3. po and p, were chosen using the known
electron energy spectrum. data for the electrog factor in thex direction (Ref. 31).

We have compared the exagtfactor calculated using Z v Z
Egs. (8), (9), and (10) with that calculated on the basis of 0 Yo Va Va Po Pa
formula(14), see Fig. 2. When the magnetic-field direction 2 5; -1+2i 245 “142i 1.7 7.4
is not close to thex-z plane, the results of the two ap-
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z R cexdia(k)] —sexdiB(k)]
o R U(k):(sexp{—iﬁ(k)] cexq—ia(k)])’ (A1)
2« s wherec=cog ¢(k)], s=sinN¢(kk)], anda, B, ¢ are some
y real functions ofk. This transformation can be decomposed
SANE as follows,
X
N ~[a+ B . . a—
o=0° o0 000=p| 22 |R(o)p “z—ﬂ) (A2)
whereP(7) is the phase transformation
= o exdin(0)] 0
= PartN= 0" n(k)]), (A3)
. p andR(¢) is the rotation in the spinor space
a b \\,// c R [ cosp(k)  sing(k)
0'0100 6 0° 6 90° Q° ¢ 10° R(¢(k))_( _S|n¢(k) COS¢(k)) . (A4)

FIG. 2. The quantity 5| =|gm*/4m| calculated using Eq¥8), The phase transformatidA?r(n(k)) does not change the form
(9), (10) (the solid lineg, and using Eq(14) (the dashed linggfor of Egs. (8) and (7).2 Consider now rotation transformation
bismuth  when the magnetic-field direction n=H/H (A4). It changes the matri)&o(k) as follows:
=(sin 6cose,sin Bsin ¢,cosd) lies in they-z, z-x, andx-y planes.

The upper panel shows a half of the electron ellipsoid of bismuth . (&ﬁ((ﬁ)) )
VxR ()| — — ],
(AS)

and positions of the points a-d marked in the lower panel. The  u(=R"($)uoR(p)+i
and the solution of transformed equati@ (written with the

calculations were carried out using formul&8) and the data of
pse of the new matrix eIemen,ts{)pp,) has the form

n

Tables | and 11;| 8| has been reduced to the interval 0-1/2.

proach was applied to calculate the electgpfactors of a
number of metals. This simple approach is applicable only i

the dynamics of the electron spin is negligible. In this case : )
one can use formulél4) to calculate theg factor of the 7 (k)= sm¢(k)+cgs¢(k) T(k). (AB)
electron orbits. We compare these two approaches and find cosg(k) —sing(k)- (k)

out when they lead to the samgdactor and when one should
expect a difference in the results.
The local g-factor approach is a good approximation in

Substitutingr” and,,,, into Eq.(8), it can be verified that
the change of the exact g factor is described by

crystals with a weak spin-orbit coupling. Besides this, there m* d ard cose (k) —sin (k) 7(k)]
are two situations when this approach leads to the exact re-7—(9'—9)=5— § dx
. o . . 4m 27 Jr dx
sults at a strong spin-orbit interaction. In the first case, the
Fermi level lies near an edge of the band under consider- =n’, (A7)

ation. In the second situation, the electron spectrum that ) . ] . ] ]
specifies the semiclassical orbit can be well described in th@here n’ is some integer. Since in the semiclassical ap-
framework of the two-band model. In all other cases, ong’roach, the change of=(gm*)/(4m) by arbitrary integer
may expect a difference between the exact results and tho§9es not affect energy spectrufh), we can state that the
obtained by the locad-factor approach. exact expressiofB) is really invariant under transformations
As an example, we consider tigdactor of bismuth. Ifthe  (A4) [and hencéAl)]. In contrast to this, the rotation in the
magnetic field has a direction near the plane containing th&Pinor spacéA4) essentially changes expressiai,
trigonal and the binary axes of bismuth, tgdactor of the

electron orbits cannot be described in the framework of the _, 2m jg d_K o
two-band model, and the effect of other bands ongfiactor  am* Jruy [COS2¢) po.11 SN2 )R k0,12 ]
(and the spin contribution to)ishould be taken into account. (A8)

In this case the two approaches lead to different results for

the g factor. APPENDIX B: THE EXTENDED TWO-BAND MODEL

APPENDIX A: BLOCH BASIS TRANSFORMATIONS There exist situations when the two-band model is not
AND g FACTOR INVARIANCE sufficient to describe the electron energy specteyfk) and

In the case of the crystals with the inversion symmetry,the matrixz.o(k) with an appropriate precision even in the
the most general unitary transformation of the spinor spac€ase of the two close bands. We now show how to obigin
has the form andug for the extended two-band model, in which the effect
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of other bands on these quantities is taken into account to the

PHYSICAL REVIEW B 67, 115114 (2003

first order. I ;23 N,(S"2,S)0p,00" (B6)
The electron energy spectrum of the extended two-band e
model can be derived from the Luttinger-Kohn Where
Hamiltoniar?® "
2k2 [z'y]np,n'p':_%(Xk,np|g'y|xk,n'[)'>' (87)

) 6nn/ 5pp' + hVnp’n/p/(O)k,
(B1)

(HLK>np,n,pf=(sn<0>+m

which includesall bands. We carry out the diagonalization of

infinite matrix (B1) by some unitary transformatios in the

two steps: At the first step the matrix eIemen&L(()mnp,
between the bands under consideratlen), a, and the other

bands,n+#0, a, are reduced to zero by an unitary transfor-

mation S;. At this step we arrive at the following trans-
formed Hamiltonian:

SIS
. (B2)
0 Hek
The matrixS; has the form of a series in componentskof

Thus, we find that the leading correction ﬂé,_@,p,,,p, is a
guadratic form in these components:

P h?
(H=Auoipp = Ep [Vip.np(O)KIDVngr, 17, (OKITY
(83)
where

T, = ! + ! :
1" £1(0)~&n(0)  ¢,(0)—&,(0)

[,I'=0,a, and =, denotes that the summation excludes
=0, a. The lower right block in matriXB2) describes the

bands different from O and and is not considered any more.

The unitary matrixS in these formulas must be taken in the
same approximation as in the determinatiortHof

The two step procedure enables one to represent matrix
elements ot&o as the sum of the two terms

[;‘L]O,pp’ = 7=§1:2 3 n'y[’\Sérﬁ'yASZn'y]Op,Op’ +[;‘L(2)]O,pp’ )

(B8)
where the second term{?) depends only on the matrix ele-
ments of the Hamiltoniai [compare with Eq(21)];

i

~(2 —
[:Uv( )]0,pp’_ﬁ' €apyMy

a,B,vy=1273

.| oeo oM | 05,
+ — — —
X[Sz(akal'i" r9ka) akﬁ] o (B9)
while the four-dimensional matrice%y(k) are determined

by the bands different from @, and by the contributio(B7)
associated with the spin:

Rl S e B 8.
[ y]|py|1p,—2a‘ﬁ=12’3eaﬂy ‘Bﬁﬁka Uadip Il p!
+[ASIiyé1]lp,l’p’ : (B10)
Here
0,=510,8.0,=18] (#8/ky)  (BLD

The second step of the diagonalization is to find a four-

dimensional unitary matriXS,(k) that transformdd to the
diagonal form

(5 HS, )10, =21(K) 8118,y (B4)

The matrixéz(k) depends only on the matrix elements of the

Hamiltonian H. The band energiesq(k) and e,(k) are
found from the equation

defH—&,(k)]=0. (B5)

The matrix elements ofi, can be obtained from Hamil-
tonian (B1) using the formulas of the Appendix of Ref. 8.

The orbital part of[LO is given by formula21) of the present
paper, while its spin par/fLS has the form

and the vector of the matrices, is defined by the relation-
ships éa)np'n,p;vﬁp’n,p, . The matriceéy are series ik,

and in the approximation used, only the first terms of these
series must be taken into account. Therefore, these matrices
reduce to the constant matrices:

i it <,
(R’}/)|p,| rpr :? E,, [V|p,np"(0) Xvnprr’| rpr(o)]Tlnl '
n,p

+(iy)|p,|’ ]

which are determined by values éa‘y at the pointk=0.
When the pointk=0 is a symmetry point of the Brillouin
zone, the form of the matricef%y is considerably simplified
by the use of the selection rules for the matrix elements of
angular momentum.

(B12)
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